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Abstract. Evapotranspiration (ET) comprises transpiration, soil evaporation, and interception. The partitioning of ET 

evapotranspiration is challenging due to the lack of direct measurements and uncertainty of existing ET evapotranspiration 

partitioning methods. We propose a novel method to estimate long-term mean transpiration to evapotranspiration (Et/ET/ET) 

ratios based on the generalized proportionality hypothesis using long-term mean hydrological observations at the watershed 

scale. We tested the method using 648 watersheds in the United States classified into six vegetation types. We mitigated 15 

impacts of the variability associated with different EpPET data products by rescaling their original EpPET values using the 

product ET E/EpPET ratios in combination with the observed ET E calculated from watershed water balance. With EpPET thus 

rescaled, our method produced consistent Et/ET/ET across six widely used EpPET products. Shrubs (0.38) and grasslands 

(0.33) showed lower mean Et/ET/ET than croplands (0.46) and forests (respectively 0.73, 0.55, and 0.68 for evergreen 

needleleaf, deciduous broadleaf, and mixed forests). Et/ET/ET showed significant dependence on aridity, leaf area index, and 20 

other hydrological and environmental conditions. Using Et/ET/ET estimates, we calculated transpiration to precipitation ratios 

(Et/PT/P) ratios and revealed a bell-shaped curve at the watershed scale, which conformed to the bell-shaped relationship with 

the aridity index (AI) observed at the field and remote-sensing scales (Good et al., 2017). This relationship peaked at an Et/PT/P 

between 0.5 and 0.6, corresponding to an AI between 2 and 3 depending on the EpPET dataset used. These results strengthen 

our understanding of the interactions between plants and water and provide a new perspective on a long-standing challenge 25 

for hydrology and ecosystem science. 

1 Introduction 

Partitioning evapotranspiration (ET) is important for understanding water and energy balances of terrestrial ecosystems. ET 

Evapotranspiration has been predicted to increase at the expense of soil moisture due to climate change (Li et al., 2022; Niu et 

al., 2019) with potential implications for future projections of water, energy, and carbon balances. Large uncertainty remains 30 

in the partitioning of ET evapotranspiration into its components: transpiration, interception, and bare soil evaporation. Various 
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methods have been developed to partition ET evapotranspiration based on measurements (Kool et al., 2014; Stoy et al., 2019). 

These include (1) flux-variance similarity methods using high frequency (10–20 Hz) flux tower measurements, which estimate 

Et/ET/ET based on carbon-water correlation since transpiration and plant carbon uptake are concurrent (Scanlon and Kustas, 

2012, 2010; Scanlon and Sahu, 2008; Skaggs et al., 2018); (2) eddy-covariance methods, which estimate Et/ET/ET using 35 

assumptions related to water use efficiency based on widely available half-hourly/hourly eddy covariance measurements 

(Berkelhammer et al., 2016; Li et al., 2019; Scott and Biederman, 2017; Yu et al., 2022; Zhou et al., 2016) ; and (3) isotopic 

methods (Griffis, 2013; Williams et al., 2004; Zhang et al., 2011). Measurements of sap flow through plant stems have also 

been commonly used to more directly estimate transpiration. Sap flow measurements are classified into three groups (Kool et 

al., 2014): heat balance methods (Čermák et al., 1973; Sakuratani, 1987, 1981), heat pulse methods (Cohen et al., 1981; Green 40 

et al., 2003; Swanson and Whitfield, 1981), and constant heater methods (Čermák et al., 2004; Granier, 1985). Poyatos et al. 

(2021) compiled 202 sap flow datasets to form the global SAPFLUXNET dataset. Recent studies have used remotely sensed 

solar-induced fluorescence (SIF) measurements (Alemohammad et al., 2017; Damm et al., 2018; Liu et al., 2022; Lu et al., 

2018; Pagán et al., 2019; Shan et al., 2019) as a way to estimate global transpiration, relying on the close coupling between 

transpiration and photosynthesis.  45 

The ratio of transpiration to evapotranspiration (Et/ET/ET) is a particularly important quantity because the controls on T (which 

is tightly regulated by plants through stomatal behaviour) are substantially different from the controls on the other two 

components. The ET evapotranspiration partitioning methods summarized above have multiple limitations and produce an 

alarmingly wide range of values for the global mean Et/ET/ET. Wei et al. (2017) showed mean global Et/ET/ET varying from 

0.24 to 0.90 based on a variety of remote-sensing, isotopic, and modelling studies. Another compilation by Liu et al. (2022) 50 

showed the mean varying between 0.24 and 0.86. Schlesinger and Jasechko (2014) showed that Et/ET/ET ratios derived from 

isotopic methods tend to be systematically higher than those produced by other methods. It has also been shown that two 

different ET evapotranspiration partitioning methods could produce greatly different Et/ET/ET values at the same site 

(Cavanaugh et al., 2011; Moran et al., 2009).  Some Et/ET/ET estimates at the stand scale ignore transpiration from subcanopy 

vegetation, resulting in underestimation (Schlesinger and Jasechko, 2014). There is no consensus on which method is more 55 

accurate (Stoy et al., 2019); this presents a challenge for applying the Et/ET/ET estimates using any of the above methods, 

especially when they are developed based on data at site scale but are applied at larger (regional to global) spatial scales. 

Few studies have considered partitioning ET evapotranspiration based on hydrological concepts using widely available long-

term hydrological observations, which could in principle provide reliable methods to estimate Et/ET/ET. Gerrits et al. (2009) 

estimated monthly and (upscaled) annual transpiration based on precipitation, interception, soil moisture, and the aridity index. 60 

They estimated Et/E by modeling interception (which includes topsoil evaporation) as a daily threshold process (threshold is 

the interception storage capacity) and used rainfall distributions to upscale it to the monthly and then annual interception. 

Transpiration was modeled as a monthly threshold process based on net rainfall (precipitation minus interception), with the 

threshold being the soil moisture storage estimated based on a hydrological model, and upscaled it to annual transpiration via 

a rainfall distribution. Et/E is then calculated by assuming evapotranspiration is interception plus transpiration, since topsoil 65 



3 

 

evaporation is included in interception, and deeper soil and open water evaporations are neglected. Mianabadi et al. (2019) 

extended their approach and applied it globally. In this study, we propose a new method to partition ET evapotranspiration 

based on the Generalized Proportionality Hypothesis (GPH) using long-term hydrological observations. The GPH was initially 

used by the United States Soil Conservation Service (SCS) for runoff calculation (USDA SCS, 1985), and was afterwards 

generalized by Ponce and Shetty (1995a, 1995b). Wang and Tang (2014) provided a comprehensive discussion of the use of 70 

GPH and noted its connection to various models, including the “abcd” model, the SCS direct runoff model, and the Budyko-

type models. The GPH partitions water fluxes into their components and has been implemented as a two-stage partitioning. 

The first stage partitions precipitation into soil wetting and surface runoff; the second stage partitions soil wetting into baseflow 

and evaporation (Ponce and Shetty, 1995a, 1995b; Tang and Wang, 2017). We follow an approach based on the GPH 

partitioning of soil wetting to estimate catchment Et/ET/ET based on hydrological observations. Due to the wider availability 75 

of hydrological observations compared to the observations required for the techniques previously mentioned, this method has 

a wide potential for application in gauged watersheds across the globe.  

The objectives of our study are: 1) to develop a new method to estimate Et/ET/ET at the catchment scale based on long-term 

hydrological observations, 2) to test the method and evaluate its robustness to different data products using watersheds with 

different vegetation types, 3) to find Et/PT/P (transpiration/precipitation) ratios based on Et/ET/ET and to compare this to 80 

previous studies, and 4) to understand the effect of hydrological and environmental conditions on both Et/ET/ET and Et/PT/P. 

The paper is organized as follows. Section 2 describes the newly developed method. Section 3 describes datasets used. Section 

4 presents results from the new method and compares them with Et/ET/ET estimates from other studies. Section 5 discusses 

the results and investigates their dependence on hydrological and environmental factors. Section 6 provides an insight into the 

variation of some existing partitioning methods. Section 7 summarizes our conclusions. 85 

2 Methods and Data 

2.1 Theory 

We present a new method to estimate long-term mean Et/ET/ET ratios at a watershed scale by taking advantage of long-term 

available hydrological observations. The new method is based on the Generalized Proportionality Hypothesis (GPH), shown 

in equation (1(1). the GPH equation has been previously established in the literature based on the observed relationships found 90 

by Lʹvovich (1979) and the later mathematical derivation (and generalization) by Ponce & Shetty (1995a, 1995b).  The 

proportionality hypothesis of the SCS method was obtained based on observed data from a larger number of watersheds (USDA 

SCS, 1985), which was then generalized by Ponce and Shetty (1995). GPH partitions an unbounded water quantity 𝑍 into an 

unbounded water quantity 𝑌 and a water quantity 𝑋 that is bound by its potential value 𝑋𝑝. The value 𝑋0 is the initial quantity 

of 𝑋 that is fulfilled prior to the competition between 𝑋 and 𝑌; for example, interception is a portion of ET E that is initially 95 

lost and not accessible for baseflow: 
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𝑋 − 𝑋0
𝑋𝑝 − 𝑋0

=
𝑌

𝑍 − 𝑋0
 (11) 

Ponce and Shetty (1995a, 1995b) applied the GPH for hydrological partitioning. They partitioned annual precipitation over 

two stages: the first stage partitions precipitation into catchment wetting and surface runoff; and the second stage partitions 

wetting (W) into evapotranspiration (E) and baseflow (Qb) as shown in Figure 1. Both stages of partitioning follow the 

generalized formula in equation (1). The two-stage partitioning is well established, has been proved with thermodynamic 100 

principles (D. Wang et al., 2015),  and has been extensively used in the literature in studies such as Sivapalan et al. (2011), D. 

Wang & Tang (2014), Chen & Wang (2015), Tang & Wang (2017), Abeshu & Li (2021).  

 

Figure 1: Two stage partitioning of annual precipitation. E: evapotranspiration; Es: soil evaporation; Ei: interception evaporation; 

Et: transpiration; P: precipitation; W: soil wetting; Qb: baseflow; Qd: direct runoff; Q: total runoff. 105 

In this work, we use the second stage partitioning to partition wetting into evapotranspiration and baseflow They partitioned 

long-term mean precipitation into soil wetting and direct runoff, and further partitioned soil as shown in equation (2(2):  

𝐸𝑇 − 𝐸𝑇0
𝑃𝐸𝑇 − 𝐸𝑇0

=
𝑄𝑏

𝑊 − 𝐸𝑇0

𝐸 − 𝐸0
𝐸𝑝 − 𝐸0

=
𝑄𝑏

𝑊 −𝐸0
 (22) 

where 𝐸𝑇0𝐸0  is the initial evapotranspiration that does not compete with baseflow and 𝑃𝐸𝑇𝐸𝑝  is the potential 

evapotranspiration. 𝑊 can be estimated as 𝑃 − 𝑄𝑑, where 𝑃 is precipitation and 𝑄𝑑 is direct runoff. 𝐸𝑇𝐸 can be estimated as 

𝑃 − 𝑄, where 𝑄 is the total runoff (since the long-term mean soil moisture change can be ignored). Initial evapotranspiration 110 

(𝐸𝑇0𝐸0) has been represented in different ways in the literature. Ponce & Shetty (1995a, 1995b)  used 𝜆𝐸𝑝 to represent 𝐸0, 

where 𝜆 is a coefficient, Tang & Wang (2017) and Wang & Tang (2014)  used 𝜆𝑊, and Tang & Wang (2017) and Abeshu & 

Li (2021) used 𝜆𝐸(e.g., Tang & Wang, 2017; Abeshu & Li, 2021). In this study, we choose 𝜆𝐸 as its 𝐸𝑇0𝐸0  due to the 
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interpretability of the λ parameter. We alternately use 𝑘 instead of 𝜆 to avoid confusion with the latent heat of vaporizationis 

assumed to be a fraction 𝜆 of the total evapotranspiration (𝐸𝑇), leading to equation (3(3): 115 

𝐸𝑇 − 𝜆𝐸𝑇

𝑃𝐸𝑇 − 𝜆𝐸𝑇
=

𝑄𝑏
𝑊 − 𝜆𝐸𝑇

 

𝐸 − k𝐸

Ep − k𝐸
=

𝑄𝑏
𝑊 − k𝐸

 

(33) 

 

What does 𝐸𝑇0 include? In Abeshu & Li (2021), 𝐸0ET0 included interception, surface depression evaporation from surface 

depression, topsoil evaporation, and shallow transpiration in 𝐸𝑇0 . In Gerrits et al. (2009), they assumed that interception 

includes canopy and understoreyunderstory interception, in addition to topsoil evaporation., while They assume that deep soil 

evaporation is insignificant or can be combined with interception. In Savenije (2004), they considered topsoil evaporation to 120 

be a part of interception, and distinguished transpiration between fast and slow transpirationones, where fast transpiration relies 

on moisture in the top 50 com of soil, and slow transpiration relies on deeper soil moisture. Therefore, We assume 𝐸𝑇0 differs 

in humid and arid regions. For humid regions, 𝐸𝑇0 includes bare soil evaporation and interception only, and therefore the ratio 

of transpiration to total evapotranspiration (𝑇/𝐸𝑇) for humid regions becomes 1 − 𝜆. On the other hand, for arid regions, we 

assume that 𝐸𝑇0𝐸0 includes bare soil evaporation, interception, and a portion (𝑓) of the transpiration (𝑇𝐸𝑡) representing the 125 

fast transpiration from the top 10 cm of soil (Abeshu & Li, 2021; Savenije, 2004). Since the atmospheric demand is high in 

arid regions, and since root uptake not only occurs near the surface and but also progresses downwards (Gardner, 1983; 

Savenije, 2004), we assume that transpiration extracted from the topsoil that occurs in a rapid manner that that makes it 

inaccessible to the competition between baseflow and 𝐸ET, and therefore is belongs to be a part of 𝐸0ET0. The remaining 

portion of 𝐸𝑇𝐸 after deducting 𝐸0𝐸𝑇0 is equivalent to the remaining portion of 𝐸𝑡𝑇 a after deducting the portion 𝑓. That is,:   130 

(1 − 𝜆𝑘)𝐸𝑇 = (1 − 𝑓)𝑇𝐸𝑡  (44) 

Therefore, the transpiration ratio (𝑇𝐸𝑡/𝐸𝑇) for arid regions becomes:  

𝑇𝐸𝑡
𝐸𝑇𝐸

=
1 − 𝜆𝑘

1 − 𝑓
 (55) 

Equation (5) indicates that 𝑇𝐸𝑡/𝐸𝑇 can be found using 𝑘𝜆 and 𝑓 values. The 𝑘𝜆 parameter can be found by applying an 

optimization technique that maximizes the non-parametric Kling-Gupta efficiency (KGE, equation 6) (Gupta et al., 2009; Pool 

et al., 2018) between observed soil wetting (from watershed balance) and simulated soil wetting (rearranging equation (3) to 

be in terms of soil wetting).: 135 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (6) 

where r is: Pearson correlation coefficient, 

𝛼 is: relative variability in the simulated and observed values, and  

𝛽 is : ratio between the mean simulated and mean observed flows. 

 

From the water balance equation at the watershed scale, we have (7) 
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𝑊𝑜𝑏𝑠 = 𝑃 − 𝑄𝑑  

  

𝑊𝑠𝑖𝑚 = 𝑄𝑏
𝑃𝐸𝑝𝑇 − 𝜆𝑘𝐸𝑇

𝐸𝑇 − 𝑘𝜆𝐸𝑇
+ 𝑘𝜆𝐸𝑇 (8) 

 

Since 𝑓 represents the fast response of transpiration, we follow a similar approach to Abolafia-Rosenzweig et al. (2020) in 

defining the ratio of surface transpiration using root distribution in soil water stress. We additionally distinguish between 

energy- and water-limited regions by constraining energy-limited f using the aridity index as displayed in equation (4): 

𝑓 = 𝑟10 × 𝑆 × 𝑓𝐴𝐼  140 

Where 𝑟10 is the root percentage in the top 10 cm of the soil, 𝑆 is the soil moisture availability, and 𝑓𝐴𝐼 represents impact of 

available energy. If the aridity index (AI) is less than 1, the region is energy limited. Thus, 𝑓𝐴𝐼.= AI. If AI ≥ 1, then 𝑓𝐴𝐼 = 1. 

The rationale behind this is that when 𝐴𝐼 < 1, only a fraction of the transpiration from the top surface layer is quantified to be 

part of the fast components due to its energy limited nature.  

The soil moisture availability, S, represents the moisture availability in the root zone for root water uptake. (Abolafia-145 

Rosenzweig et al., ( 2020) calculated the soil moisture availability as a function of soil moisture, wilting point, and field 

capacity. To rely on hydrological observations instead of simulated or remotely sensed soil moisture, we assume the soil 

moisture availability to be represented by the ratio between baseflow and total streamflow (𝑄𝑏/𝑄).  This ratio can give an 

indication of water availability in the soil, and hence can be used to indicate soil moisture availability. Since we apply this 

method at the watershed scale, there may be multiple vegetation types in the same watershed, and therefore, we calculate a 150 

weighted value of 𝑓. 

2.2 Data 

From Equations 2-5 and the descriptions of Section 2.1, we see that one needs long-term observed precipitation, streamflow, 

baseflow, estimated EpPET, and root distribution to estimate the Et/ET/ET ratio. Watershed boundaries and precipitation data 

were retrieved from the Hydrometeorological Sandbox - École de technologie supérieure (HYSETS) dataset ((Arsenault et al., 155 

2020)). The HYSETS dataset includes watershed boundaries, land cover, soil properties, meteorology, and hydrological data 

for 14,425 watersheds in North American. We selected 648 watersheds (Fig. 1) across the United States with at least 10 years 

of streamflow data between 1980 and 2018 from this HYSETS data source. Detailed land cover data were retrieved from the 

ESA CCI Land Cover project (www.esa-landcover-cci.org, last accessed December 28, 2022).  

Streamflow data were retrieved from the US Geological Survey (USGS), and their corresponding baseflow magnitudes were 160 

estimated by separating it from the streamflow data using a one-parameter digital filter separation method (Lyne & Hollick, 

1979). Filtering methods separate direct runoff and baseflow by differentiating them based on between frequency spectrums 

of the hydrograph, where low frequency flow represents baseflow and high frequency represents the direct runoff which has 

http://www.esa-landcover-cci.org/
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rapid responses to precipitation. We usedemployed the widely used filtering method tool developed by Purdue University, 

Web-based Hydrological Analysis Tool (WHAT, Lim et al., 2010, 2005; https://engineering.purdue.edu/mapserve/WHAT, 165 

last accessed 25 Oct 2022), to separate baseflow from the observed streamflow.  We set the value of the filter parameter to be 

0.925 which is within the suggested range. We did a sensitivity analysis (in a separate study) and used different filter values 

and methods available from WHAT, the results were similar.  Since other methods such as Eckhardt (2005) require knowledge 

of hydrogeological conditions, we chose the one-parameter digital filter method due to its simplicity and constant parameter 

value, which produces plausible results (Eckhardt, 2008; Xie et al., 2020)Streamflow data were retrieved from the US 170 

Geological Survey (USGS), while their corresponding baseflow magnitudes were estimated by separating it from the 

streamflow data in which a one-parameter digital filter separation method -- the Web-based Hydrological Analysis Tool 

(WHAT) – was applied (Lim et al., 2005, 2010) https://engineering.purdue.edu/mapserve/WHAT, last accessed 25 Oct 2022). 

The value of the filter parameter was taken as 0.925. Additional Details details on the baseflow separation method are presented 

in Lim et al. (2005).  175 

Information related to root density functions was obtained from Zeng (2001), who represented root density distribution as a 

two-parameter function for each vegetation type based on compiled root database. The root density distribution from Zeng 

(2001) was validated using root information from other studies (Fan et al., 2016; Jackson et al., 1996; Lozanova et al., 2019; 

Schenk & Jackson, 2002; Wallace et al., 1980). Soil moisture stress (𝑄𝑏/𝑄) was calculated based on the USGS observed 

streamflow and the estimated baseflow from WHAT.  180 

Numerous EpPET data products are available that satisfy our study regions and time period requirements, posing a question as 

to which one should be selected – as each has its own strengths. To address this question, we examined six widely used EpPET 

data products and assessed their impact on the estimation of Et/ET/ET ratios. These data products were selected because they 

are (1) widely used within the hydrological and ecological communities, (2) associated with a wide range of spatial resolutions, 

and (3) derived using different methods. The six EpPET datasets are the Global Land Evaporation Amsterdam Model (GLEAM 185 

v3.5a) (Martens et al., 2017), the Moderate Resolution Imaging Spectroradiometer (MODIS MOD16A3GF) product (Running 

et al., 2021), the dataset from Zhang et al. (2010), the North American Regional Reanalysis (NARR) (Mesinger et al., 2006), 

the Simple Process-Led Algorithms for Simulating Habitats (SPLASH v1.0) (Davis et al., 2017), and the Breathing Earth 

System Simulator (BESS v2) (Li et al., 2023). Details of these six products are provided in Table 1Table 1. 

https://engineering.purdue.edu/mapserve/WHAT
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 190 

Figure 21: 648 watersheds in the US, categorized into six vegetation types; crops, grass, shrubs, evergreen needleleaf forest (ENF), 

deciduous broadleaf forests (DBF), and mixed forests (MF). The inset map at the bottom left shows watersheds in Alaska. 

 

 

 195 

 

Table 11: Description of six EpPET products used in this study. 

Dataset EpPET equation Spatial and temporal scale Remarks 

GLEAM 

v3.5a 

Priestley-Taylor 0.25×0.25°, Daily/Monthly, 1980-

2021 

 

NARR Eta Model (Penman 

based) 

32×32 km, Daily/Monthly, 1979-

2022 

 

MODIS 

MOD16A3GF 

Combination of Penman-

Monteith and Priestley-

Taylor 

500×500m, 8-day/Yearly, 2000-

2021 

 

SPLASH Priestly-Taylor 1 km, Daily, 1980-2018 Forced using daily DayMet 

(Thornton et al., 2022) data 

BESS v2 Priestly-Taylor 5 km, Monthly, 1982-2022  
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Zhang Penman-Monteith 8×8 km, Daily/Monthly, 1983-2006  

 

Environmental variables – relative humidity, downward shortwave radiation, air temperature, wind speed, and soil moisture 

content – were retrieved from the NARR dataset to study the dependencies of Et/ET/ET on environmental factors. Data on leaf 200 

area index (LAI) were obtained from the Global Monthly Mean Leaf Area Index Climatology produced by ORNL DAAC 

(Mao & Yan, 2019) and aggregated to obtain the long-term mean LAI at watershed scale.  

The relevant data were collected for 648 watersheds and aggregated to the annual timescale. The dominant vegetation type 

was determined for each watershed from the ESA CCI land cover data, and watersheds were classified into six vegetation 

types: crops, grass, shrubs, evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), and mixed forest (MF). We 205 

assume each watershed has a single mean long-term Et/ET/ET value. For each dataset, due to the different time coverage of 

the datasets and the streamflow gauges, we filtered the watersheds to include only those that have available data for at least 10 

years. We used optimization to find 𝜆𝑘. We then performed additional filtering for each dataset to remove watersheds with 

KGE values less than zero. Using the filtered watersheds, we calculated Et/ET/ET based on estimated 𝜆𝑘 and 𝑓 together with 

the other variables. The final number of watersheds associated with each dataset used in this study, after filtering, is shown in 210 

Table 2Table 2. 

 

 

 

Table 22: Number of filtered watersheds for each potential evapotranspiration (EpPET) data product. Watersheds with less than 10 215 
years of data and/or with Kling-Gupta efficiencies less than zero were removed from the analysis. Numbers are shown for each of 

the six vegetation types. 

Type 
All 

watersheds 
NARR MODIS Zhang 

GLEAM 

v3.5a 

BESS 

v2 
SPLASH 

Crops 74 72 61 57 73 59 71 

Grass 89 84 66 73 86 79 81 

Shrubs 146 131 107 114 134 128 131 

ENF 206 166 118 118 173 161 156 

DBF 65 65 61 54 65 64 65 

MF 68 63 58 52 66 51 61 

Total 648 581 471 468 597 542 565 
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3 Impact of EpPET products 

Figure 3Figure 2a shows mean annual EpPET values from six different data products for the 648 study watersheds. We observe 

large differences in mean annual EpPET among the six different data products. The differences in EpPET are likely attributed 220 

to variations in input data and parameter values used by these products, while differences in methods and resolutions used to 

compute EpPET may play a secondary role (Hassan et al., 2024). Discrepancies between the input net radiation used in different 

data products result in especially large variations in the computed EpPET. Variations in parameter values, including the 

Priestly-Taylor α parameter, among different data products also result in significant differences in the resulting EpPET. On the 

other hand, the ET E/EpPET ratios from the six different EpPET products are relatively consistent among the six datasets 225 

(except for GLEAM) as shown in Figure 3Figure 2b. This is likely because within each product the same input/forcing data 

and parameter values are employed for both EpPET and ET E, resulting in similar impacts on both. Such consistency is an 

indication of a uniformity of the underlying physics across these five products, despite the large disparities in their individual 

EpPET magnitudes. The GLEAM EpPET product, which has also been previously identified for its overestimation of ET 

E/EpPET ratio by Peng et al. (2019) in comparison with FLUXNET ET E/EpPET, appears to be an exception. Rather than 230 

excluding the GLEAM data product, we opted to rescale adjust its ET E/EpPET ratio (referred to as rescaling factor) by 

normalizing it with the average ratio of the other five datasets (NARR, MODIS, Zhang, SPLASH, and BESS), yielding a 

rescaling adjusting factor of 0.7. This rescaling adjusting factor of 0.7 was applied to GLEAM to adjust its E/Ep values. derive 

new PET data, using watershed ET values (referred to as observed ET hereafter) obtained from the water balance equation 

with observed long-term mean precipitation and streamflow data. Similarly, In addition, EpPET values for the other fivefrom 235 

the six data products in this study were newly derived by applying their individual ET E/EpPET ratios, obtained from their 

own data products, to the observed ETwatershed balance E values calculated based on data (i.e., ET = P – Q) for each 

watershed. The importance of deriving EpPET values for each data product through this rescaling approach (referred to rescaled 

EpPET), rather than using the original EpPET product, is to ensure consistency between the EpPET values and the observed 

ETwatershed-budget estimated balance E values for each watershed while preserving the ET E/EpPET ratios from the 240 

individual products. This is necessary not least because the magnitudes of some original EpPET products are smaller than their 

corresponding observed ETwatershed-budget estimated balance E values.  

In essence, we derive new EpPET values for all six products using Equation (9), maintaining the ET E/EpPET ratio for each 

data product (except for GLEAM). This approach yields consistent EpPET values across the 648 watershed for each individual 

data product six datasets while and capturing captures the essential variations among themthe six EpPET datasets. The rescaled 245 

EpPET values obtained from Equation (9) uphold the fundamental principles of individual products by preserving their 

respective ET E/EpPET ratios. By doing so, the effects stemming from differences or uncertainties in their inputs/forcing data 

are notably mitigated, as the new EpPET values are calculated using observed ETthe watershed-budget estimated balance E 

and their own ET E/EpPET ratios. This concept is akin to the notion of emergent constraints employed by others (Green et al., 

2024; Hall et al., 2019; Williamson et al., 2021): 250 
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𝑃𝐸𝑇𝐸𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑃𝐸𝑇𝐸𝑝𝑑𝑎𝑡𝑎𝑠𝑒𝑡
𝐸𝑇𝑑𝑎𝑡𝑎𝑠𝑒𝑡

× 𝐸𝑇𝑜𝑏𝑠 (9) 

where 𝐸𝑇𝑑𝑎𝑡𝑎𝑠𝑒𝑡 and 𝐸𝑝𝑃𝐸𝑇𝑑𝑎𝑡𝑎𝑠𝑒𝑡  are values extracted from different data products, and 𝐸𝑇𝑜𝑏𝑠 is observed the watershed-

budget estiamtedestimated 𝐸𝑇 calculated as 𝑃 − 𝑄 based on observed P and Q for each watershed. Table 3Table 3 shows the 

correlation between the rescaled EpPET values of the six data products; the correlations show good consistency between the 

rescaled EpPET values. These six rescaled EpPET data products are then applied to Equations 2-5 to obtain Et/ET/ET ratios for 

each of the six vegetation types over the 648 watersheds. With the six rescaled EpPET data products, we can assess how 255 

variations in EpPET affect the robustness of our new method in estimating Et/ET/ET. 

 

Figure 32: Original EpPET for six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH, and BESS v2 for 648 

watersheds. (a) EpPET values retrieved from the data products, and (b) ET E/EpPET ratios retrieved from the data products. 

Watersheds are sorted in descending order according to GLEAM’s ET E/EpPET. 260 

Table 33: Correlations between rescaled EpPET of six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH, and BESS 

v2 for 648 watersheds. 
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  MODIS GLEAM NARR SPLASH BESS Zhang 

MODIS 1 
     

GLEAM v3.5a 0.72 1 
    

NARR 0.81 0.83 1 
   

SPLASH 0.80 0.84 0.83 1 
  

BESS 0.92 0.78 0.73 0.75 1 
 

Zhang 0.70 0.83 0.68 0.69 0.92 1 

4 Results 

Figure 4Figure 3 shows the estimated values of 𝜆𝑘 for each of the six datasets based on Equations 6-8. Figure 5Figure 4 shows 

the comparison between observed soil wetting (W) and the simulated soil wetting with estimated 𝑘λ value for a representative 265 

vegetation type. The six datasets show similar trends, where the highest 𝑘λ values are observed for the shrubs and grass 

vegetation types. Crops have lower 𝑘λ values than shrubs and grass, but equal or higher than those for forests according to the 

dataset used. Figure 4Figure 3 illustrates that the greatest variations among the six data products occur in the mixed forest and 

crops. This discrepancy may be attributed to differences in how each data product defines mixed forest and crop compositions, 

resulting in varying estimated parameters.  270 
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Figure 43:  λ𝒌 values for the watersheds using data from six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after rescaling, 

SPLASH, and BESS. Note that ENF, DBF, and MF represent, respectively, evergreen needle-leaf forest, deciduous broadleaf forest, 

and mixed forest in the figure. 275 
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Figure 54: Optimization of 𝝀𝒌 values using observed and simulated soil wetting as explained in equations 6-8. Figure shows observed 

and simulated soil wetting time series for an example watershed for each of the six vegetation types (crops, grass, shrubs, ENF, DBF, 

MF) using NARR data. 

Figure 6 shows the values of the 𝑓 parameter for 648 watersheds classified into six vegetation types. The highest 𝑓 value is 280 

observed in grass, which can be explained by their shallow rooting depths causing higher portions of fast transpiration. The 

lowest 𝑓 values can be observed in forests due to their deeper rooting system, which provides access to deeper soil moisture, 

reducing the portion of fast transpiration. 
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Figure 6: 𝑓 values for six vegetation types for 648 watersheds 285 

Et/ET/ET ratios are shown in Figure 7Figure 5 and Table 4Table 4. Overall, the trend is consistent among the six datasets. 

Grass and shrubs have the lowest Et/ET/ET values, with mean Et/ET/ET in the range of 0.19-0.39. Crops have higher mean 

Et/ET/ET ratios, with NARR, Zhang, and GLEAM averaging around 0.4, while MODIS and SPLASH show a higher crop 

mean Et/ET/ET of around 0.51. BESS has the lowest crop Et/ET/ET with a value of 0.29. All datasets have similar forest 

Et/ET/ET trend, with lowest mean Et/ET/ET for DBF (0.46-0.60), followed by ENF (0.52-0.71). The highest mean Et/ET/ET 290 

is exhibited for MF (0.55-0.76).  
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Figure 75: T/ETEt/E values for the watersheds using data from the six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after 

rescaling, SPLASH, and BESS 295 

Table 44: Mean Et/ET/ET values for six vegetation types using EpPET data from the six data products. Minimum, maximum, and 

mean values are shown for each vegetation type. 

Data 

product 
Crops Grass Shrubs ENF DBF MF Mean 

NARR 0.420.52 0.350.37 0.400.37 0.710.72 0.510.59 0.550.61 0.490.52 

MODIS 0.540.65 0.400.38 0.440.41 0.790.77 0.580.67 0.720.80 0.580.59 

Zhang 0.410.49 0.310.34 0.360.34 0.720.69 0.630.69 0.790.90 0.540.52 

GLEAM 0.400.48 0.220.28 0.300.31 0.650.67 0.480.54 0.610.67 0.440.48 

SPLASH 0.540.43 0.410.30 0.400.29 0.780.65 0.630.55 0.740.71 0.580.47 

BESS 0.420.35 0.280.25 0.360.30 0.700.65 0.490.56 0.660.64 0.490.45 

Minimum 0.400.35 0.220.25 0.300.29 0.650.65 0.480.54 0.550.61 0.440.45 

Maximum 0.540.65 0.410.38 0.440.41 0.790.77 0.630.69 0.790.90 0.580.59 

Mean 0.460.48 0.330.32 0.380.33 0.730.69 0.550.60 0.680.70 0.520.50 
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5 Discussion 

5.1 𝝀𝒌 and Et/E T/ET ratios 300 

Shrubs and grass showed higher 𝜆𝑘 values, likely due to their occurrence in arid and semi-arid regions in the US. The high 𝑘λ 

values could be explained by the higher bare soil evaporation expected in arid regions (Baver et al., 1972), especially due to 

the sparse nature of shrubs, increasing bare areas and thus bare soil evaporation (Liu et al., 2022). Also, the high aridity is 

expected to cause water stress, lowering the continuing transpiration (portion of transpiration not included in 𝑘λ). The lower 

𝑘λ values in crops and forests may be due to the higher vegetation coverage in these areas which provides shade to the soil, 305 

reducing the amount of soil evaporation (Baver et al., 1972). Additionally, litter contributes to reducing soil evaporation, and 

may even have a larger reducing reduction effect than canopy shade (Magliano et al., 2017). The broader leaves of DBF 

increase their interception compared to ENF, thus resulting in a higher 𝜆𝑘 value as well. 

These estimated mean T/ETEt/E ratios followed explainable trends, with shrubs and grass watersheds showing low T/ETEt/E 

ratios, forests exhibiting higher Et/ET/ET  ratios, and crops falling in between. Given greater water availability in crops and 310 

forests, it is expected that they would exhibit higher Et/ET/ET  ratios. Many crops in the US benefit from continuous irrigation, 

reducing water stress and promoting transpiration. Forests, with their dense canopy cover offering shade, reduce soil 

evaporation (Baver et al., 1972)  and consequently boost the Et/ET/ET  ratios. Crops also show high vegetation coverage, 

thereby providing shade to the soil and increasing Et/E T/ET (Baver et al., 1972) . Moreover, in arid regions dominated by 

shrubs, lower soil water content is anticipated, resulting in diminished root water uptake (Gardner, 1983). Furthermore, the 315 

shedding of leaves in deciduous forests reduces transpiration when examined over the whole year (as here), resulting in a 

decreased Et/ET/ET  ratio for DBF.  

Differences in study scale may hinder the comparison with other studies, since our method estimates Et/ET/ET  at the watershed 

scale, while other studies are based at a plot-scale (field/eddy covariance-based methods) or grid scale (models and remote-

sensing methods). Factors affecting watershed scale Et/ET/ET  include the possible presence of secondary vegetation within 320 

the watershed and the possible sparseness of the primary vegetation and presence of bare areas which can increase soil 

evaporation and reduce Et/ET/ET, especially for shrublands. Therefore, this method has the advantage of providing a realistic 

watershed Et/ET/ET ratio that accounts for multiple vegetation types and sparseness in vegetation distribution. Consistent 

results across different datasets underscore the reliability of our new method, irrespective of the data product employed (see 

Fig. 5 and Table 3).  325 

5.2 Effect of hydrological indices on T/ETEt/E 

We explore the sensitivity of T/ETEt/E to two hydrological indices, namely the runoff ratio (Q/P) and the baseflow ratio 

(Qb/Q). Figure 8Figure 6a shows a proportional relationship between Et/E T/ET and Q/P. The relationship appears to manifest 

as two distinct linear correlations, with arid catchments showing a steeper slope than humid catchments. Arid regions typically 

experience minimum runoff as a significant portion of precipitation evaporates in various forms owing to elevated atmospheric 330 



18 

 

demand. This phenomenon yields high Et/ET/ET ratios at relatively low Q/P values. Conversely, humid catchments often 

experience substantial runoff, attributed to either saturation excess or infiltration excess runoff mechanisms, resulting in 

elevated Q/P ratios compared to arid catchments at equivalent Et/ET/ET values. In both cases, a higher Q/P ratio signifies 

increased water availability, consequently leading to higher Et/ET/ET ratios.  

In Figure 8Figure 6b a non-linear positive relationship is depicted between the mean Et/ET/ET and Qb/Q (baseflow ratio). The 335 

baseflow ratio serves as an indicator of soil water availability, as higher baseflow typically corresponds to increased soil 

moisture content (Hurkmans et al., 2008). Consequently, a positive correlation between Et/ET/ET and the baseflow ratio is 

anticipated. Notably, the majority of arid catchments cluster in the low Qb/Q and low Et/ET/ET region, while transitioning 

toward wetter catchments naturally augments both Qb/Q and Et/ET/ET.  

1.  340 
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Figure 86: Relationship between mean T/ETEt/E and two hydrological indices (a) Q/P and (b) Qb/Q for 648 watersheds based on 

NARR data. Plots are colored according to aridity index. 

 5.3 Effect of LAI on T/ETEt/E 345 

The leaf area index (LAI), representing the leaf area per unit ground area, reflects the combined influences of leaf size and 

canopy density. As shown in Figure 9Figure 7, LAI appears to exert some influence over ET evapotranspiration partitioning. 

Arid watersheds show lower LAI values, and Et/ET/ET ratios increase non-linearly with LAI. However, as watersheds 

transition toward higher humidity levels, their LAI and Et/ET/ET ratios increase non-linearly, albeit at different rates. In arid 

regions, plants tend to reduce their leaf area to mitigate water loss (Chaves et al., 2003) decreasing both LAI and Et/ET/ET – 350 

a direct consequence of heightened high aridity. This suggests that aridity plays a role in regulating Et/ET/ET. Conversely, 

Figure 9Figure 7 illustrates a complex relationship between LAI and Et/ET/ET, characterized by substantial scatter. Our 

findings align with previous studies indicating diverse dependence of Et/ET/ET on LAI. For instance, LAI has been shown to 

provide a control on ET E partitioning (X. Li et al., 2019; L. Wang et al., 2014; Wei et al., 2017), but that effect varies from 

one study to another. Wang et al. (2014) showed that LAI has a non-linear relationship with Et/ET/ET during the growing 355 

season, whereas X. Li et al. (2019) showed a weak linear relationship between mean growing season LAI and mean annual 

Et/ET/ET across sites, with the Et/ET/ET and LAI relationship within the same site being non-linear. Additionally, Cao et al. 

(2022) showed a non-linear positive relationship between annual Et/ET/ET and LAI.  
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 360 

Figure 97: Relationship between Et/ET/ET and LAI for 648 watersheds using Et/ET/ET calculated based on the NARR dataset. 

5.4 Impacts of environmental variables on Et/ET/ET ratios 

We explore the effect of six environmental factors on the mean Et/ET/ET ratios. They are aridity index (AI), relative humidity 

(RH), air temperature (Tair), downward shortwave radiation (DSW), soil moisture, and wind speed (WS). These factors were 

derived from the NARR dataset, and the Et/ET/ET ratios were calculated based on the same dataset. Since some of these 365 

environmental variables are highly correlated (as shown in Figure 10Figure 8), we first perform variable selection using 
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stepwise regression and Lasso regression to identify those that are strongly correlated with each other. Stepwise regression 

aims to select a subset of variables that provide the best prediction with minimum redundancy, while Lasso regression adds a 

penalty term to reduce the coefficients of insignificant variables. Both methods resulted in the elimination of relative humidity 

and downward shortwave radiation, while stepwise selection additionally eliminated relative humidity and air temperature. 370 

Table 5Table 5 shows the coefficients of the environmental variables and their significance for both stepwise and Lasso 

regression. Although the significance test shows that air temperature and relative humidity has an insignificant impact on the 

Lasso regression, while the aridity index, soil moisture, and wind speed are significant (Table 5), air temperature isthey are 

still included because it they marginally contributes to the model's predictive power. Additionally, it they represents an 

independent and observable dimensions, distinct from the other three significant environmental variables.  375 

A negative non-linear correlation between Et/ET/ET and AI is present. Increased aridity prompts plants to adopt water 

conserving strategies (Chaves et al., 2003), thereby reducing the transpiration ratios. In humid regions, the relationship between 

Et/ET/ET and AI is more discernible, with AI accounting for a significant portion of the variance of Et/ET/ET. Conversely, for 

arid regions, particularly those dominated by shrubs, the relationship shows greater scatter, suggesting that AI exerts a 

relatively smaller effect on Et/ET/ET, while other factors play a more prominent role. Furthermore, higher air temperature 380 

contributes to lowering Et/ET/ET (see Fig. 9b), as it prompts water-conserving behaviors in plants and elevates soil 

evaporation, consequently reducing Et/ET/ET ratios. Conversely, increasing soil moisture leads to enhanced water availability 

for plant root uptake, resulting in a near linear increase in Et/ET/ET, as shown in Figure 11Figure 9c.  The relationship between 

wind speed (WS) and Et/ET/ET is inconclusive; this finding is consistent with several previous studies (e.g., Dixon and Grace, 

1984; Huang et al., 2015; Schymanski and Or, 2016) which have presented a mixed effect of wind speed on transpiration. 385 

Nevertheless, the effects of other environmental variables on Et/ET/ET demonstrate explainable patterns as discussed here. 

The other five data products (MODIS, Zhang, GLEAM, SPLASH, and BESS) show similar impacts of all the environmental 

variables on Et/ET/ET as those shown in Figure 11Figure 9 for NARR.  
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Figure 108: Correlation between environmental variables. AI: aridity index, RH: relative humidity, Ta: air temperature, DSW: 390 
downward shortwave radiation, SM: soil moisture, WS: wind speed. 

Table 55: Coefficients of standardized environmental variables regressed against Et/ET/ET using stepwise selection and Lasso 

regression. Significance levels are shown next to the coefficients (***: p<0.001, **: p<0.01, *: p<0.05, blank: p>0.1  

  
Coefficient  

(Stepwise selection) 

Coefficient  

(Lasso regression) 

AI -0.065-0.105*** -0.022-0.026*** 

RH    0.001 

Tair -0.015 -0.003-0.004 

DSW     

SM 0.0390.066*** 0.00030.0005*** 

WS 0.0250.023** 0.0420.037*** 
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Figure 119: Relationships between mean annual Et/ET/ET and environmental factors (a) aridity index (PETEp/P), (b) air 

temperature (Tair), (c) soil moisture (SM), and (d)  wind speed (WS) for 648 watersheds. Et/ET/ET is calculated based on NARR 

data, and the environmental variables are also retrieved from the NARR product. Significance of the pairwise relationships between 

Et/ET/ET and the environmental variables are shown on each plot. 

5.5 TEt/P ratios 400 

We computed transpiration to precipitation (TEt/P) ratios based on Et/ET/ET values calculated from the six adjusted EpPET 

data products. The mean Et/PT/P ratios from these six datasets range from 0.24 to 0.36, aligning closely with the global mean 

Et/PT/P of 0.39 estimated by Schlesinger and Jasechko (2014) 

We also compared our estimated Et/PT/P ratios to the Et/PT/P versus aridity index relationship identified by Good et al. (2017). 

Good et al. (2017) presented this relationship based on a compilation of field studies, three remote-sensing based models, and 405 

an ecohydrological model, revealing good consistency among the various Et/PT/P data sources. Figure 12Figure 10 shows a 

similar trend to that presented in Fig. 1 of Good et al. (2017), with the maximum Et/PT/P ratio close to the intersection between 

water and energy-limited states. This maximum Et/PT/P corresponds to an aridity index ranging between 2 and 3 in our study, 
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similar to the estimated aridity index range of 1.3 to 1.9 for the maximum Et/PT/P as reported by Good et al. (2017). Moreover, 

the maximum Et/PT/P shown in Figure 12Figure 10 ranges between 0.5 and 0.58, consistent with the maximum Et/PT/P of 0.6 410 

based on field data in Good et al. (2017). Notably, there is greater variation on the right side of the curve (indicating more arid 

conditions) compared to the left side (representing wetter conditions). In arid regions, transpiration is influenced not only by 

aridity, but also by factors such as groundwater table depth and soil moisture content, resulting in higher variability in the 

Et/PT/P versus aridity index (AI) relationship. The consistency between Good et al. (2017) and this study suggests that this 

relationship holds not only at the field scaleand remote sensing scales (as shown by Good et al., 2017), but also at the watershed 415 

scale, as demonstrated in this study. This relationship holds significance for studies like that of Cai et al. (2023) , Cai et al. 

(2023) and B. Zhou et al. (2025) where Et/PT/P serves as a parameter (referred to as f0 in their study) to determine water-

limited fAPAR and LAI. Currently, in their study, this T/P ratio is estimated (Cai et al., 2023) estimated Et/P as a global mean 

using non-linear regression, with a value of 0.62, akin to the maximum Et/PT/P of 0.5 to 0.58 estimated by our fitted curves 

depicted in Figure 12Figure 10. B. Zhou et al. (2025) used a variable Et/P as a function of AI, akin to our fitted curves. Their 420 

maximum Et/P of 0.65 occurred at an AI of 1.9, similar to our fitted curves. Utilizing a variable T/P as a function of AI, as 

demonstrated by the derived relationships here, could prove beneficial in improving fAPAR and LAI estimates on a global 

scale. 
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Figure 1210: Et/PT/P versus the aridity index for six datasets: (a) NARR, (b) MODIS, (c) Zhang et al. (2010), (d) GLEAM after 

rescaling, (e) SPLASH, (f) BESS 
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6 Variation of ET evapotranspiration partitioning methods 

Figure 7Figure 5 demonstrates the influence of the six adjusted EpPET data products on the Et/ET/ET ratios by our new method 430 

for each vegetation type, while Table 4Table 4 provides their variation range between the minimum and maximum mean 

Et/ET/ET ratios. On the other hand, as outlined in the introduction, estimated global mean values of Et/ET/ET from various 

existing methods exhibit a considerable variation, ranging from 0.24 to 0.9 (Liu et al., 2022; Wei et al., 2017). This variation 

may be attributed to several factors, including data inconsistencies, geographical disparities, and differences in selected time 

periods, apart from differences in methodology. In an effort to explore what may be the cause for the large variation among 435 

the different methods, we have tried to mitigate these factors by using the same half-hourly eddy covariance data from the 

FLUXNET and AMERIFLUX ONEFLUX towers measurements in the US for the same locations and same time periods. Such 

an approach would allow us to elucidate the disparities among the existing ET E partitioning methods, consequently, providing 

insights on influences by different EpPET datasets in our method versus current existing different methods on the large range 

of Et/ET/ET ratios.   440 

The four methods we selected to investigate are: (1) Zhou et al. (2016), (2) Scott and Biederman (2017), (3) Li et al. (2019), 

and (4) Yu et al. (2022). These four methods are selected because they are based on eddy covariance measurements whose 

data are widely available, unlike sap flow and isotope measurements. Since these methods are based on flux measurements, 

they can be considered as field-based estimations of Et/ET/ET.  We apply these four methods to the same datasets from the 

FLUXNET and AMERIFLUX ONEFLUX towers in the US, but the final number of flux towers included for each method 445 

depends on the filtering criteria in each method and the limitations in applying each method.  

The first method by Zhou et al. (2016) is based on the water use efficiency. The ratio Et/ET/ET is estimated as the ratio between 

the apparent water use efficiency (𝑊𝑈𝐸𝑎 = 𝐺𝑃𝑃 ×
𝑉𝑃𝐷0.5

𝐸𝑇
) and the potential water use efficiency (𝑊𝑈𝐸𝑝 = 𝐺𝑃𝑃 ×

𝑉𝑃𝐷0.5

𝑇
). 

Assuming that Et/ET/ET approaches 1 at some time during the growing season, the WUEp is estimated from the 95th quantile 

regression of the half-hourly scatter plot (based on all half-hourly data for the site) between GPP×VPD0.5 and ET E and is 450 

assumed to be constant for the flux tower. WUEa is then estimated for each time step as the linear regression of the ET E and 

GPP×VPD0.5 relationship using half-hourly data for the desired time period, which can be 8-day, monthly or annually.  

The second method by Scott and Biederman (2017) is based on water use efficiency to estimate multiyear monthly average 

Et/ET/ET ratios. This approach estimates transpiration as the product of the inverse of the marginal water use efficiency, the 

ratio between transpiration WUE and marginal WUE, and GPP. The inverse of the marginal WUE is estimated from the linear 455 

regression of the GPP versus ET E scatter plot. The ratio between transpirational and marginal WUEs is assumed to be 1. This 

method requires multiple years of data for its application.  

The third method by Li et al. (2019) is based on the stomatal conductance model of Lin et al. (2018) to partition ET 

evapotranspiration. The Et/ET/ET ratio is equivalent to the ratio between canopy conductance and ecosystem conductance. 

The eddy covariance data are divided into soil moisture bins to calibrate the parameters. Therefore, the method requires soil  460 

moisture data, along with GPP, VPD, ET E, and three calibrated parameters to estimate the Et/ET/ET ratio.  
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The fourth method by Yu et al. (2022) combines the water use efficiency with the Medlyn et al. (2011) stomatal conductance 

model. This method relies on GPP, ET E, Ca, Pa, and VPD from the flux tower data in addition to the parameter g1 from the 

Medlyn et al. (2011) model. The authors compared their method to other methods and showed a high correlation with the Zhou 

et al. (2016) but a low correlation with the Li et al. (2019) method. 465 

Additionally, we compare our results to Et/ET/ET values for 20 global flux towers from Tan et al. (2021). Et/ET/ET was 

calculated based on flux tower data and P-model (Stocker et al., 2020; H. Wang et al., 2017) outputs.  

The estimated Et/ET/ET ratios from the five methods are shown in Figure 13Figure 11a – e and Table 4Table 4, respectively, 

for the same six different vegetation types as shown in Figure 7Figure 5 with our new method.  

 470 

 

Figure 1311: Et/ET/ET values based on the eddy covariance tower data with 5 methods: (a) Zhou et al. (2016) (n=80), (b) Scott and 

Biederman (2017) (n=53), (c) Li et al. (2019) (n=46), (d) Yu et al. (2022) (n=60) (e) Tan et al. (2021) (n=15). 

Table 66: Mean Et/ET/ET values for six vegetation types using four ET evapotranspiration partitioning methods. Minimum, 

maximum, and mean values are shown for each vegetation type. 475 

ET 

Evapotranspiration 

partitioning 

method 

Crops Grass Shrubs ENF DBF MF Mean 

Zhou et al. 0.54 0.48 0.46 0.46 0.52 0.42 0.48 
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Scott and 

Biederman 
0.56 0.59 0.65 0.66 0.65 0.77 0.62 

Li et al. 0.70 0.63 0.59 0.69 0.70 0.61 0.66 

Yu et al. 0.34 0.37 0.38 0.43 0.46 0.44 0.39 

Tan et al. 0.48 - 0.44 0.56 0.6 0.61 0.54 

Minimum 0.34 0.37 0.38 0.43 0.46 0.42 0.39 

Maximum 0.70 0.63 0.65 0.69 0.70 0.77 0.66 

Mean 0.52 0.52 0.50 0.56 0.59 0.57 0.54 

 

The inconsistencies among the five methods are evident, with Zhou, Yu, Li, and Tan showing minimal variation among 

vegetation types, while Scott displays substantial variation. Moreover, the magnitudes and trends of Et/ET/ET across these 

methods are also inconsistent. These discrepancies indicate a lack of agreement on both the mean Et/ET/ET values and the 

variation ranges among the different methods. Consequently, these methods are not suitable as reference points for evaluating 480 

our new method. Instead, the assessment of our new method should be based on its physical behavior and relationships with 

other variables, as discussed in Section 5. It is noteworthy that compared to Figure 7Figure 5, the variation range of Et/ET/ET 

ratios from the five different methods, utilizing the same data at the same locations, is significantly greater than that for our 

new method in which disparity is attributed to the variations associated with the EpPET methods employed. Additionally, since 

our method is at a larger (watershed) scale, we observe larger variations between vegetation types, which can be attributed to 485 

different vegetation densities and bare land percentages at larger scales which is not a factor at smaller (flux tower) scales. 

7 Conclusions 

We have presented a new method for determining the transpiration to total evapotranspiration (Et/ET/ET) ratio using long-

term hydrological observations. This method is based on the generalized proportionality hypothesis, which has wide 

applications in hydrology. We applied the method to 648 watersheds in the US using six different EpPET data products. Our 490 

findings demonstrate consistent Et/ET/ET results across these diverse EpPET datasets, facilitated by a rescaling of EpPET 

derived from the ET E/EpPET ratios obtained from each individual data product and observed ETwatershed-budget estimated 

balance E computed from the watershed water balances. 

Our analysis reveals that varying Et/ET/ET ratios across watersheds are associated with different vegetation types, with shrubs 

and grasslands exhibiting lower Et/ET/ET values compared to crops and forests. Furthermore, our results underscore the 495 

significant influence of leaf area index (LAI), hydrological indices (Q/P and Qb/Q), and prevailing environmental conditions 

on Et/ET/ET. Our method also provides a realistic estimate of Et/ET/ET at a watershed scale that implicitly accounts for the 

heterogeneity of vegetation within the catchment. Our method can also be useful for constraining hydrological models, land 

surface models, and climate models. 
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We also explore the relationship between T/ET Et/P and aridity index, unveiling a bell-shaped curve at the watershed scale, 500 

where the maximum T/ETEt/P ratio occurs at an aridity index between 2 and 3, corresponding to an Et/PT/P ratio of around 

0.5 to 0.58. These findings provide valuable insights into the intricate interplay between hydrological processes and 

environmental variables, shedding light on the complex dynamics of evapotranspiration in diverse watershed ecosystems. 
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