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Abstract. Evapotranspiration (ET)—comprises transpiration, soil evaporation, and interception. The partitioning of—EF

evapotranspiration is challenging due to the lack of direct measurements and uncertainty of existing-EF evapotranspiration
partitioning methods. We propose a novel method to estimate long-term mean transpiration to evapotranspiration (E/EFET)
ratios based on the generalized proportionality hypothesis using long-term mean hydrological observations at the watershed
scale. We tested the method using 648 watersheds in the United States classified into six vegetation types. We mitigated
impacts of the variability associated with different E,PET data products by rescaling their original E,PET values using the
product-EF E/E,PET ratios in combination with the observed-ET E calculated from watershed water balance. With E,PET thus
rescaled, our method produced consistent E/EF/ET across six widely used E;PET products. Shrubs (0.38) and grasslands
(0.33) showed lower mean E/ET/ET than croplands (0.46) and forests (respectively 0.73, 0.55, and 0.68 for evergreen
needleleaf, deciduous broadleaf, and mixed forests). E/EFET showed significant dependence on aridity, leaf area index, and
other hydrological and environmental conditions. Using E/EF/ET estimates, we calculated transpiration to precipitation ratios
(E/PF/P) ratios and revealed a bell-shaped curve at the watershed scale, which conformed to the bell-shaped relationship with
the aridity index (AI) observed at the field and remote-sensing scales (Good et al., 2017). This relationship peaked at an E/PF/P

between 0.5 and 0.6, corresponding to an Al between 2 and 3 depending on the E,PET dataset used. These results strengthen
our understanding of the interactions between plants and water and provide a new perspective on a long-standing challenge

for hydrology and ecosystem science.

1 Introduction

Partitioning evapotranspiration (E¥)-is important for understanding water and energy balances of terrestrial ecosystems.-EF

Evapotranspiration has been predicted to increase at the expense of soil moisture due to climate change (Li et al., 2022; Niu et

al., 2019) with potential implications for future projections of water, energy, and carbon balances. Large uncertainty remains

in the partitioning of-EF evapotranspiration into its components: transpiration, interception, and bare soil evaporation. Various
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methods have been developed to partition-EF evapotranspiration based on measurements (Kool et al., 2014; Stoy et al., 2019).

These include (1) flux-variance similarity methods using high frequency (10-20 Hz) flux tower measurements, which estimate
E/ET/ET based on carbon-water correlation since transpiration and plant carbon uptake are concurrent (Scanlon and Kustas,
2012, 2010; Scanlon and Sahu, 2008; Skaggs et al., 2018); (2) eddy-covariance methods, which estimate E/EF/ET using
assumptions related to water use efficiency based on widely available half-hourly/hourly eddy covariance measurements
(Berkelhammer et al., 2016; Li et al., 2019; Scott and Biederman, 2017; Yu et al., 2022; Zhou et al., 2016) ; and (3) isotopic
methods (Griffis, 2013; Williams et al., 2004; Zhang et al., 2011). Measurements of sap flow through plant stems have also
been commonly used to more directly estimate transpiration. Sap flow measurements are classified into three groups (Kool et
al., 2014): heat balance methods (Cermak et al., 1973; Sakuratani, 1987, 1981), heat pulse methods (Cohen et al., 1981; Green
et al., 2003; Swanson and Whitfield, 1981), and constant heater methods (Cermak et al., 2004; Granier, 1985). Poyatos et al.
(2021) compiled 202 sap flow datasets to form the global SAPFLUXNET dataset. Recent studies have used remotely sensed
solar-induced fluorescence (SIF) measurements (Alemohammad et al., 2017; Damm et al., 2018; Liu et al., 2022; Lu et al.,
2018; Pagan et al., 2019; Shan et al., 2019) as a way to estimate global transpiration, relying on the close coupling between
transpiration and photosynthesis.

The ratio of transpiration to evapotranspiration (E/EF/ET) is a particularly important quantity because the controls on T (which
is tightly regulated by plants through stomatal behaviour) are substantially different from the controls on the other two

components. The-EF evapotranspiration partitioning methods summarized above have multiple limitations and produce an

alarmingly wide range of values for the global mean E/EF/ET. Wei et al. (2017) showed mean global E/EF/ET varying from
0.24 to 0.90 based on a variety of remote-sensing, isotopic, and modelling studies. Another compilation by Liu et al. (2022)
showed the mean varying between 0.24 and 0.86. Schlesinger and Jasechko (2014) showed that E/EF/ET ratios derived from
isotopic methods tend to be systematically higher than those produced by other methods. It has also been shown that two

different—ET_evapotranspiration partitioning methods could produce greatly different E/ETAET values at the same site

(Cavanaugh et al., 2011; Moran et al., 2009). Some E/EF/ET estimates at the stand scale ignore transpiration from subcanopy
vegetation, resulting in underestimation (Schlesinger and Jasechko, 2014). There is no consensus on which method is more
accurate (Stoy et al., 2019); this presents a challenge for applying the E/EF/ET estimates using any of the above methods,
especially when they are developed based on data at site scale but are applied at larger (regional to global) spatial scales.

Few studies have considered partitioning-EF evapotranspiration based on hydrological concepts using widely available long-

term hydrological observations, which could in principle provide reliable methods to estimate E/ET/ET. Gerrits et al. (2009)
estimated monthly and (upscaled) annual transpiration based on precipitation, interception, soil moisture, and the aridity index.

They estimated E/E by modeling interception (which includes topsoil evaporation) as a daily threshold process (threshold is

the interception storage capacity) and used rainfall distributions to upscale it to the monthly and then annual interception.

Transpiration was modeled as a monthly threshold process based on net rainfall (precipitation minus interception), with the

threshold being the soil moisture storage estimated based on a hydrological model, and upscaled it to annual transpiration via

a rainfall distribution. E/E is then calculated by assuming evapotranspiration is interception plus transpiration, since topsoil
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evaporation is included in interception, and deeper soil and open water evaporations are neglected. Mianabadi et al. (2019)

extended their approach and applied it globally. In this study, we propose a new method to partition-EF evapotranspiration

based on the Generalized Proportionality Hypothesis (GPH) using long-term hydrological observations. The GPH was initially
used by the United States Soil Conservation Service (SCS) for runoff calculation (USDA SCS, 1985), and was afterwards
generalized by Ponce and Shetty (1995a, 1995b). Wang and Tang (2014) provided a comprehensive discussion of the use of
GPH and noted its connection to various models, including the “abcd” model, the SCS direct runoff model, and the Budyko-
type models. The GPH partitions water fluxes into their components and has been implemented as a two-stage partitioning.
The first stage partitions precipitation into soil wetting and surface runoff; the second stage partitions soil wetting into baseflow
and evaporation (Ponce and Shetty, 1995a, 1995b; Tang and Wang, 2017). We follow an approach based on the GPH
partitioning of soil wetting to estimate catchment E/ET/ET based on hydrological observations. Due to the wider availability
of hydrological observations compared to the observations required for the techniques previously mentioned, this method has
a wide potential for application in gauged watersheds across the globe.

The objectives of our study are: 1) to develop a new method to estimate E/EF/ET at the catchment scale based on long-term
hydrological observations, 2) to test the method and evaluate its robustness to different data products using watersheds with
different vegetation types, 3) to find E/PF/P (transpiration/precipitation) ratios based on E/ET/EF and to compare this to
previous studies, and 4) to understand the effect of hydrological and environmental conditions on both E/ET/ET and E/PFP.
The paper is organized as follows. Section 2 describes the newly developed method. Section 3 describes datasets used. Section
4 presents results from the new method and compares them with E/ET/ET estimates from other studies. Section 5 discusses
the results and investigates their dependence on hydrological and environmental factors. Section 6 provides an insight into the

variation of some existing partitioning methods. Section 7 summarizes our conclusions.

2 Methods and Data
2.1 Theory

We present a new method to estimate long-term mean E/EF/ET ratios at a watershed scale by taking advantage of long-term
available hydrological observations. The new method is based on the Generalized Proportionality Hypothesis (GPH), shown

in equation (1¢}+). the GPH equation has been previously established in the literature based on the observed relationships found

by L'vovich (1979) and the later mathematical derivation (and generalization) by Ponce & Shetty (1995a, 1995b). The

proportionality hypothesis of the SCS method was obtained based on observed data from a larger number of watersheds (USDA

SCS. 1985), which was then generalized by Ponce and Shetty (1995). GPH partitions an unbounded water quantity Z into an

unbounded water quantity ¥ and a water quantity X that is bound by its potential value X,,. The value Xj, is the initial quantity
of X that is fulfilled prior to the competition between X and Y; for example, interception is a portion of-ET E that is initially

lost and not accessible for baseflow:
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Ponce and Shetty (1995a, 1995b) applied the GPH for hydrological partitioning. They partitioned annual precipitation over

two stages: the first stage partitions precipitation into catchment wetting and surface runoff; and the second stage partitions

wetting (W) into evapotranspiration (E) and baseflow (Qb) as shown in Figure 1. Both stages of partitioning follow the

generalized formula in equation (1). The two-stage partitioning is well established, has been proved with thermodynamic

principles (D. Wang et al., 2015), and has been extensively used in the literature in studies such as Sivapalan et al. (2011), D.
Wang & Tang (2014), Chen & Wang (2015), Tang & Wang (2017), Abeshu & Li (2021).
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Figure 1: Two stage partitioning of annual precipitation. E: evapotranspiration; Es: soil evaporation; Ei: interception evaporation;
E: transpiration; P: precipitation; W: soil wetting; Qb: baseflow; Qd: direct runoff; Q: total runoff.

In this work, we use the second stage partitioning to partition wetting into evapotranspiration and baseflow Fheypartitioned

il-as shown in equation (2(2):

T —Fy @ E—-E @

PEF—EF, W—FRE,—E, W —E, @2

where £, is the initial evapotranspiration that does not compete with baseflow and PETE, is the potential
evapotranspiration. W can be estimated as P — Q,, where P is precipitation and Q is direct runoff. ETE can be estimated as
P — Q, where Q is the total runoff (since the long-term mean soil moisture change can be ignored). Initial evapotranspiration
(E¥gE()_has been represented in different ways in the literature. Ponce & Shetty (1995a, 1995b) —used AE), to represent E,
where A is a coefficient Tang & Wang (2017) and Wang & Tang (2014)_used AW, and Fane& Wane(2017)-and-Abeshu &

Li (2021)_used AEte-gFang-& Wang,20H7Abeshu—& 11,2021, In this study, we choose AE as-its ETgE, due to the
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interpretability of the A parameter. We alternately use k instead of A to avoid confusion with the latent heat of vaporizationis

asstmed-to-be-afractionA-of the-total-evapetranspiration(£71), leading to equation (3(3):

ET—AET Gy
PET —AEF W —AET
E —kE Qb @3

E, —KE W —kE

What-dees ET-inelude?In Abeshu & Li (2021), E,£%, included interception, surface-depression-cvaporation from surface

depression, topsoil evaporation, and shallow transpiration-in#7+y. In Gerrits et al. (2009), they assumed that interception

includes canopy and understoreyunderstory interception, in addition to topsoil evaporation:, while Fhey-assume-that-deep soil

evaporation is insignificant or can be combined with interception. In Savenije (2004), they considered topsoil evaporation to

be a part of interception, and distinguished transpiration between fast and slow transpiratienones, where fast transpiration relies

on moisture in the top 50 com of soil, and slow transpiration relies on deeper soil moisture. Therefore, We-assumeETy-differs

assume that £7;E, includes bare soil evaporation, interception, and a portion (f) of the transpiration (¥E;) representing the
fast transpiration from the top 10 cm of soil (Abeshu & Li, 2021; Savenije, 2004). Since the-atmospherie-demand-is-high-in
arid-regions;—and-sinee-root uptake not only occurs near the surface and-but also progresses downwards (Gardner, 1983;

Savenije, 2004), we assume that transpiration extracted from the topsoil_that-occurs in a rapid manner that that-makes it

inaccessible to the competition between baseflow and FEF, and therefore is-belongs to be-apart-efE;EFy. The remaining
portion of £TE after deducting E,£7%y is equivalent to the remaining portion of E,7-a after deducting the portion f. That is.:

(1 - Ak)ET = (1 — /)TE, (44)
Therefore, the transpiration ratio (T £, /ET) fer-arid-regions-becomes:
TE, _ 1— 2k (55)
EFE  1-f

Equation (5) indicates that FE,/ET can be found using k4 and f values. The k4 parameter can be found by applying an

optimization technique that maximizes the non-parametric Kling-Gupta efficiency (KGE, equation 6) (Gupta et al., 2009; Pool

et al., 2018) between observed soil wetting_(from watershed balance) and simulated soil wetting (rearranging equation (3) to

be in terms of soil wetting).:

KGE=1—(r-12+(a—1)2+ (B —1)2 (6)
where 7 is: Pearson correlation coefficient,
«_is: relative variability in the simulated and observed values, and

B_is + ratio between the mean simulated and mean observed flows.

From the water balance equation at the watershed scale, we have (@)
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Since f represents the fast response of transpiration, we follow a similar approach to Abolafia-Rosenzweig et al. (2020) in
defining the ratio of surface transpiration using root distribution in soil water stress. We additionally distinguish between
energy- and water-limited regions by constraining energy-limited fusing the aridity index as displayed in equation (4):
f =110 XSX fa

Where 1y, is the root percentage in the top 10 cm of the soil, S is the soil moisture availability, and f,; represents impact of
available energy. If the aridity index (Al) is less than 1, the region is energy limited. Thus, f4;.= AL If Al = 1, then f;; = 1.
The rationale behind this is that when Al < 1, only a fraction of the transpiration from the top surface layer is quantified to be
part of the fast components due to its energy limited nature.

The soil moisture availability, S. represents the moisture availability in the root zone for root water uptake. (Abolafia-
Rosenzweig et al., (-2020) calculated the soil moisture availability as a function of soil moisture, wilting point, and field
capacity. To rely on hydrological observations instead of simulated or remotely sensed soil moisture, we assume the soil
moisture availability to be represented by the ratio between baseflow and total streamflow (Qp,/@Q). This ratio can give an
indication of water availability in the soil, and hence can be used to indicate soil moisture availability. Since we apply this
method at the watershed scale, there may be multiple vegetation types in the same watershed, and therefore, we calculate a

weighted value of f.

2.2 Data

From Equations 2-5 and the descriptions of Section 2.1, we see that one needs long-term observed precipitation, streamflow,
baseflow, estimated E,PET, and root distribution to estimate the E/ET/ET ratio. Watershed boundaries and precipitation data
were retrieved from the Hydrometeorological Sandbox - Ecole de technologie supérieure (HYSETS) dataset (¢Arsenault et al.,
2020)). The HYSETS dataset includes watershed boundaries, land cover, soil properties, meteorology, and hydrological data
for 14,425 watersheds in North American. We selected 648 watersheds (Fig. 1) across the United States with at least 10 years

of streamflow data between 1980 and 2018 from this HYSETS data source. Detailed land cover data were retrieved from the

ESA CCI Land Cover project (www.esa-landcover-cci.org, last accessed December 28, 2022).

Streamflow data were retrieved from the US Geological Survey (USGS), and their corresponding baseflow magnitudes were

estimated by separating it from the streamflow data using a one-parameter digital filter separation method (Lyne & Hollick,

1979). Filtering methods separate direct runoff and baseflow by differentiating them based on between-frequency spectrums

of the hydrograph, where low frequency flow represents baseflow and high frequency represents the direct runoff which has
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rapid responses to precipitation. We usedemployed the widely used filtering method tool developed by Purdue University,

Web-based Hydrological Analysis Tool (WHAT, Lim et al., 2010, 2005;_https://engineering.purdue.edu/mapserve/ WHAT,

last accessed 25 Oct 2022), to separate baseflow from the observed streamflow. We set the value of the filter parameter to be

0.925 which is within the suggested range. We did a sensitivity analysis (in a separate study) and used different filter values

and methods available from WHAT, the results were similar. Since other methods such as Eckhardt (2005) require knowledge

of hydrogeological conditions, we chose the one-parameter digital filter method due to its simplicity and constant parameter

value, which produces plausible results (Eckhardt, 2008; Xie et al., 2020)Streamflow—data—were—retrievedfrom—the US

: 925, Additional Details-details on the baseflow separation method are presented
in Lim et al. (2005).

Information related to root density functions was obtained from Zeng (2001), who represented root density distribution as a
two-parameter function for each vegetation type based on compiled root database. The root density distribution from Zeng
(2001) was validated using root information from other studies (Fan et al., 2016; Jackson et al., 1996; Lozanova et al., 2019;
Schenk & Jackson, 2002; Wallace et al., 1980). Soil moisture stress (Qp/@Q) was calculated based on the USGS observed
streamflow and the estimated baseflow from WHAT.

Numerous E,PET data products are available that satisfy our study regions and time period requirements, posing a question as
to which one should be selected — as each has its own strengths. To address this question, we examined six widely used E,PETF
data products and assessed their impact on the estimation of E/ET/ET ratios. These data products were selected because they
are (1) widely used within the hydrological and ecological communities, (2) associated with a wide range of spatial resolutions,
and (3) derived using different methods. The six E,PET datasets are the Global Land Evaporation Amsterdam Model (GLEAM
v3.5a) (Martens et al., 2017), the Moderate Resolution Imaging Spectroradiometer (MODIS MOD16A3GF) product (Running
et al., 2021), the dataset from Zhang et al. (2010), the North American Regional Reanalysis (NARR) (Mesinger et al., 2006),
the Simple Process-Led Algorithms for Simulating Habitats (SPLASH v1.0) (Davis et al., 2017), and the Breathing Earth
System Simulator (BESS v2) (Li et al., 2023). Details of these six products are provided in Table |Fable-}.
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Figure 21: 648 watersheds in the US, categorized into six vegetation types; crops, grass, shrubs, evergreen needleleaf forest (ENF),
deciduous broadleaf forests (DBF), and mixed forests (MF). The inset map at the bottom left shows watersheds in Alaska.
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Table 11: Description of six E,PETF products used in this study.

Dataset E,PET equation Spatial and temporal scale [Remarks
GLEAM Priestley-Taylor 0.25x0.25°, Daily/Monthly, 1980-
v3.5a 2021
NARR Eta Model (Penman | 32x32 km, Daily/Monthly, 1979-
based) 2022
MODIS Combination of Penman- | 500x500m, 8-day/Yearly, 2000-
MOD16A3GF | Monteith and Priestley- | 2021
Taylor
SPLASH Priestly-Taylor 1 km, Daily, 1980-2018 Forced wusing daily DayMet
(Thornton et al., 2022) data
BESS v2 Priestly-Taylor 5 km, Monthly, 1982-2022
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Zhang Penman-Monteith 8x8 km, Daily/Monthly, 1983-2006

Environmental variables — relative humidity, downward shortwave radiation, air temperature, wind speed, and soil moisture
content — were retrieved from the NARR dataset to study the dependencies of E/EF/EF on environmental factors. Data on leaf

area index (LAI) were obtained from_the Global Monthly Mean Leaf Area Index Climatology produced by ORNL DAAC

(Mao & Yan, 2019) and aggregated to obtain the long-term mean LAI at watershed scale.

The relevant data were collected for 648 watersheds and aggregated to the annual timescale. The dominant vegetation type
was determined for each watershed from the ESA CCI land cover data, and watersheds were classified into six vegetation
types: crops, grass, shrubs, evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), and mixed forest (MF). We
assume each watershed has a single mean long-term E/EF/ET value. For each dataset, due to the different time coverage of
the datasets and the streamflow gauges, we filtered the watersheds to include only those that have available data for at least 10
years. We used optimization to find Ak. We then performed additional filtering for each dataset to remove watersheds with
KGE values less than zero. Using the filtered watersheds, we calculated E/ET/ET based on estimated Ak and f together with
the other variables. The final number of watersheds associated with each dataset used in this study, after filtering, is shown in

Table 2Fable 2.

Table 22: Number of filtered watersheds for each potential evapotranspiration (E,PET) data product. Watersheds with less than 10
years of data and/or with Kling-Gupta efficiencies less than zero were removed from the analysis. Numbers are shown for each of
the six vegetation types.

All GLEAM BESS

Type watersheds NARR MODIS Zhang V3.5 v SPLASH
Crops 74 72 61 57 73 59 71

Grass 89 84 66 73 86 79 81
Shrubs 146 131 107 114 134 128 131

ENF 206 166 118 118 173 161 156
DBF 65 65 61 54 65 64 65

MF 68 63 58 52 66 51 61

Total 648 581 471 468 597 542 565
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3 Impact of E,PET products

Figure 3Figure2a shows mean annual E,PET values from six different data products for the 648 study watersheds. We observe
large differences in mean annual E,;PET among the six different data products. The differences in E,PET are likely attributed
to variations in input data and parameter values used by these products, while differences in methods and resolutions used to
compute E,PET may play a secondary role (Hassan et al., 2024). Discrepancies between the input net radiation used in different
data products result in especially large variations in the computed E,PEF. Variations in parameter values, including the
Priestly-Taylor a parameter, among different data products also result in significant differences in the resulting E,PEF. On the
other hand, the-EF E/E,PET ratios from the six different E,PET products are relatively consistent among the six datasets
(except for GLEAM) as shown in Figure 3Eigure2b. This is likely because within each product the same input/forcing data
and parameter values are employed for both E,;PET and-ET E, resulting in similar impacts on both. Such consistency is an
indication of a uniformity of the underlying physics across these five products, despite the large disparities in their individual
E,PET magnitudes. The GLEAM E,PET product, which has also been previously identified for its overestimation of-EF
E/E PET ratio by Peng et al. (2019) in comparison with FLUXNET-ETF E/E,PET, appears to be an exception. Rather than
excluding the GLEAM data product, we opted to reseale-adjust itsEF E/EPET ratio {referred-to-asresealingfactor)-by
normalizing it with the average ratio of the other five datasets (NARR, MODIS, Zhang, SPLASH, and BESS), yielding a
reseating-adjusting factor of 0.7. This resealing-adjusting factor of 0.7 was applied to GLEAM to adjust its E/E, values. derive

v In addition, E,PET values forthe-otherfivefrom
the six data products in this study were newly derived by applying their individual-EF E/E,PET ratios, obtained from their
own data products, to the ebservedEFwatershed balanee-E values calculated based on data (i.e., £¥ = P — Q) for each

watershed. The importance of deriving E PET values for each data product through this rescaling approach (referred to rescaled
E,PET), rather than using the original E,;PET product, is to ensure consistency between the E,PET values and the ebserved
EFwatershed-budget estimated balanee—E values for each watershed while preserving the—ET E/EPET ratios from the

individual products. This is necessary retleast-because the magnitudes of some original E,PET products are smaller than their

corresponding ebserved-ETwatershed-budget estimated balanee-E values.

In essence, we derive new E,PET values for all six products using Equation (9), maintaining the-ET E/E PET ratio for each

data product (except for GLEAM). This approach yields consistent E,PET values across the 648 watershed for each individual

data product six-datasets-while-and eapturing-captures the essential variations among themthe six E,;PET datasets. The rescaled

E,PET values obtained from Equation (9) uphold the fundamental principles of individual products by preserving their
respective-ET E/E,PET ratios. By doing so, the effects stemming from differences or uncertainties in their inputs/forcing data

are notably mitigated, as the new E PET values are calculated using ebserved-ETthe watershed-budget estimated balanee-E

and their own-ETF E/E PET ratios. This concept is akin to the notion of emergent constraints employed by others (Green et al.,

2024; Hall et al., 2019; Williamson et al., 2021):

10
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where ET;q¢q5er and E, PET 44450 are values extracted from different data products, and ET,, is ebserved-the watershed-

Prescaled

budget estiamtedestimated ET calculated as P — Q based on observed P and Q for each watershed. Table 3Fable-3 shows the

correlation between the rescaled E,PET values of the six data products; the correlations show good consistency between the
rescaled E,PET values. These six rescaled E,PET data products are then applied to Equations 2-5 to obtain E/EF/ET ratios for
255 each of the six vegetation types over the 648 watersheds. With the six rescaled E,PET data products, we can assess how

variations in E,PET affect the robustness of our new method in estimating E/EF/ET.
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Figure 32: Original E,PET for six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH, and BESS v2 for 648
watersheds. (a) E,PET values retrieved from the data products, and (b)-EF_E/E,PET ratios retrieved from the data products.
260 Watersheds are sorted in descending order according to GLEAM’s-ET E/E,PET.

Table 33: Correlations between rescaled E,PET of six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH, and BESS
v2 for 648 watersheds.

11



265

270

4 Results

Figure 4Figure3 shows the estimated values of Ak for each of the six datasets based on Equations 6-8. Figure SEigure4 shows
the comparison between observed soil wetting (W) and the simulated soil wetting with estimated kX value for a representative
vegetation type. The six datasets show similar trends, where the highest kX values are observed for the shrubs and grass
vegetation types. Crops have lower k# values than shrubs and grass, but equal or higher than those for forests according to the
dataset used. Figure 4Figure3 illustrates that the greatest variations among the six data products occur in the mixed forest and

crops. This discrepancy may be attributed to differences in how each data product defines mixed forest and crop compositions,

MODIS | GLEAM | NARR | SPLASH | BESS | Zhang
MODIS 1
GLEAM v3.5a 0.72 1
NARR 0.81 0.83 1
SPLASH 0.80 0.84 0.83 1
BESS 0.92 0.78 0.73 0.75 1
Zhang 0.70 0.83 0.68 0.69 0.92 1

resulting in varying estimated parameters.

12
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Figure 43:- %k values for the watersheds using data from six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after rescaling,
SPLASH, and BESS. Note that ENF, DBF, and MF represent, respectively, evergreen needle-leaf forest, deciduous broadleaf forest,
275 and mixed forest in the figure.
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Figure 54: Optimization of Ak values using observed and simulated soil wetting as explained in equations 6-8. Figure shows observed
and simulated soil wetting time series for an example watershed for each of the six vegetation types (crops, grass, shrubs, ENF, DBF,

MF)_using NARR data.

Figure 6 shows the values of the f parameter for 648 watersheds classified into six vegetation types. The highest f value is

observed in grass, which can be explained by their shallow rooting depths causing higher portions of fast transpiration. The

lowest f values can be observed in forests due to their deeper rooting system, which provides access to deeper soil moisture,

reducing the portion of fast transpiration.
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E/EF/ET ratios are shown in Figure 7Figure5 and Table 4Fable-4. Overall, the trend is consistent among the six datasets.
Grass and shrubs have the lowest E/ET/AET values, with mean E/ETAET in the range of 0.19-0.39. Crops have higher mean
E/EF/ET ratios, with NARR, Zhang, and GLEAM averaging around 0.4, while MODIS and SPLASH show a higher crop

mean E/ETAET of around 0.51. BESS has the lowest crop E/EFAET with a value of 0.29. All datasets have similar forest

290 E/EFET trend, with lowest mean E/EFAET for DBF (0.46-0.60), followed by ENF (0.52-0.71). The highest mean E/ETAEF
is exhibited for MF (0.55-0.76).
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Figure 75: TAEFE(/E values for the watersheds using data from the six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after
295  rescaling, SPLASH, and BESS

Table 44: Mean E/ET/ET values for six vegetation types using E,PET data from the six data products. Minimum, maximum, and
mean values are shown for each vegetation type.

[l?:::uct Crops Grass Shrubs | ENF DBF MF Mean

MODIS 0-540.65 | 6:400.38 | 6:440.41 | 6-790.77 | 6-580.67 | 8-720.80 | 8-580.59
Zhang 641049 | 6:310.34 | 6:360.34 | 6720.69 | 6:630.69 | 6:790.90 | 6-540.52
GLEAM 646048 | 6:220.28 | 6:360.31 | 6:650.67 | 0:480.54 | 6-610.67 | 6-440.48
SPLASH 054043 | 6:410.30 | 6:460.29 | 6780.65 | 6:630.55 | 6-740.71 | 6-580.47
BESS 6:420.35 | 6:280.25 | 6:360.30 | 6-760.65 | 6:490.56 | 6:660.64 | 6:490.45
Minimum 0:400.35 | 6:220.25 | 6:360.29 | 0:650.65 | 0-480.54 | 0-550.61 | 0-440.45
Maximum 0:540.65 | 0-410.38 | 644041 | 6-790.77 | 6-630.69 | 6-790.90 | 6-580.59
Mean 0:460.48 | 6:330.32 | 6-380.33 | 6-730.69 | 6-550.60 | 6-680.70 | 6-520.50
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5 Discussion
5.1 Ak and E/E T/ET ratios

Shrubs and grass showed higher Ak values, likely due to their occurrence in arid and semi-arid regions in the US. The high kX
values could be explained by the higher bare soil evaporation expected in arid regions (Baver et al., 1972), especially due to
the sparse nature of shrubs, increasing bare areas and thus bare soil evaporation (Liu et al., 2022). Also, the high aridity is
expected to cause water stress, lowering the continuing transpiration (portion of transpiration not included in k%*). The lower
k* values in crops and forests may be due to the higher vegetation coverage in these areas which provides shade to the soil,
reducing the amount of soil evaporation (Baver et al., 1972). Additionally, litter contributes to reducing soil evaporation, and
may even have a larger redueing-reduction effect than canopy shade (Magliano et al., 2017). The broader leaves of DBF
increase their interception compared to ENF, thus resulting in a higher Ak value as well.

These estimated mean FAETFE/E ratios followed explainable trends, with shrubs and grass watersheds showing low ETFE/E
ratios, forests exhibiting higher E/EF/ETF- ratios, and crops falling in between. Given greater water availability in crops and
forests, it is expected that they would exhibit higher E/EF/ET- ratios. Many crops in the US benefit from continuous irrigation,
reducing water stress and promoting transpiration. Forests, with their dense canopy cover offering shade, reduce soil
evaporation (Baver et al., 1972) and consequently boost the E/EF/ET- ratios. Crops also show high vegetation coverage,
thereby providing shade to the soil and increasing E/E F/ET-(Baver et al., 1972)-. Moreover, in arid regions dominated by
shrubs, lower soil water content is anticipated, resulting in diminished root water uptake (Gardner, 1983). Furthermore, the
shedding of leaves in deciduous forests reduces transpiration when examined over the whole year (as here), resulting in a
decreased E/ET/ET- ratio for DBF.

Differences in study scale may hinder the comparison with other studies, since our method estimates E/EF/ET- at the watershed
scale, while other studies are based at a plot-scale (field/eddy covariance-based methods) or grid scale (models and remote-
sensing methods). Factors affecting watershed scale E/EF/ET- include the possible presence of secondary vegetation within
the watershed and the possible sparseness of the primary vegetation and presence of bare areas which can increase soil
evaporation and reduce E/ET/ET, especially for shrublands. Therefore, this method has the advantage of providing a realistic
watershed E/EF/ET ratio that accounts for multiple vegetation types and sparseness in vegetation distribution. Consistent
results across different datasets underscore the reliability of our new method, irrespective of the data product employed (see

Fig. 5 and Table 3).

5.2 Effect of hydrological indices on F/ETE/E

We explore the sensitivity of F/AEFE/E to two hydrological indices, namely the runoff ratio (Q/P) and the baseflow ratio
(Qv/Q). Figure 8Figure-6a shows a proportional relationship between E/E F/ET-and Q/P. The relationship appears to manifest
as two distinct linear correlations, with arid catchments showing a steeper slope than humid catchments. Arid regions typically

experience minimum runoff as a significant portion of precipitation evaporates in various forms owing to elevated atmospheric
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demand. This phenomenon yields high E/EF/ET ratios at relatively low Q/P values. Conversely, humid catchments often
experience substantial runoff, attributed to either saturation excess or infiltration excess runoff mechanisms, resulting in
elevated Q/P ratios compared to arid catchments at equivalent E/EF/ET values. In both cases, a higher Q/P ratio signifies
increased water availability, consequently leading to higher E/EFAET ratios.

In Figure 8Figure-6b a non-linear positive relationship is depicted between the mean E/EF/EF and Qb/Q (baseflow ratio). The
baseflow ratio serves as an indicator of soil water availability, as higher baseflow typically corresponds to increased soil
moisture content (Hurkmans et al., 2008). Consequently, a positive correlation between E/ET/ET and the baseflow ratio is
anticipated. Notably, the majority of arid catchments cluster in the low Qb/Q and low E/ETF/ET region, while transitioning
toward wetter catchments naturally augments both Qb/Q and E/EF/ET.
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Figure 86: Relationship between mean T/ETE(/E and two hydrological indices (a) Q/P and (b) Qb/Q for 648 watersheds based on
NARR data. Plots are colored according to aridity index.

5.3 Effect of LAI on T/ETE/E

The leaf area index (LAI), representing the leaf area per unit ground area, reflects the combined influences of leaf size and

canopy density. As shown in Figure 9Eigure7, LAI appears to exert some influence over EF-cvapotranspiration partitioning.

Arid watersheds show lower LAI values, and E/EF/ET ratios increase non-linearly with LAI. However, as watersheds
transition toward higher humidity levels, their LAI and E/EF/ET ratios increase non-linearly, albeit at different rates. In arid
regions, plants tend to reduce their leaf area to mitigate water loss (Chaves et al., 2003) decreasing both LAI and E/ET/ET —
a direct consequence of heightened-high aridity. This suggests that aridity plays a role in regulating E/EF/ET. Conversely
Figure 9Figure7 illustrates a complex relationship between LAI and E/EF/ET, characterized by substantial scatter. Our
findings align with previous studies indicating diverse dependence of E/ET/ET on LAI For instance, LAI has been shown to
provide a control on-ET E partitioning (X. Li et al., 2019; L. Wang et al., 2014; Wei et al., 2017), but that effect varies from
one study to another. Wang et al. (2014) showed that LAI has a non-linear relationship with E/ET/ET during the growing
season, whereas X. Li et al. (2019) showed a weak linear relationship between mean growing season LAI and mean annual
E/ET/ET across sites, with the E/ET/ET and LAI relationship within the same site being non-linear. Additionally, Cao et al.
(2022) showed a non-linear positive relationship between annual E/ETAEF and LAIL
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Figure 97: Relationship between E«/EF/ET and LAI for 648 watersheds using E/ETF/AET calculated based on the NARR dataset.
5.4 Impacts of environmental variables on E/ETF/AET ratios

We explore the effect of six environmental factors on the mean E/EF/ET ratios. They are aridity index (Al), relative humidity
(RH), air temperature (Tair), downward shortwave radiation (DSW), soil moisture, and wind speed (WS). These factors were
365 derived from the NARR dataset, and the E/ET/ET ratios were calculated based on the same dataset. Since some of these

environmental variables are highly correlated (as shown in Figure 10Fisure-8), we first perform variable selection using
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stepwise regression and Lasso regression to identify those that are strongly correlated with each other. Stepwise regression
aims to select a subset of variables that provide the best prediction with minimum redundancy, while Lasso regression adds a
penalty term to reduce the coefficients of insignificant variables. Both methods resulted in the elimination of relative humidity

and-downward shortwave radiation, while stepwise selection additionally eliminated relative humidity and air temperature.

Table 5Fable5 shows the coefficients of the environmental variables and their significance for both stepwise and Lasso

regression. Although the significance test shows that air temperature and relative humidity has an insignificant impact on the
Lasso regression, while the aridity index, soil moisture, and wind speed are significant (Table 5), airtemperatareisthey are
still included because it-they marginally contributes to the model's predictive power. Additionally, it-they represents an
independent and observable dimensions, distinct from the other three significant environmental variables.

A negative non-linear correlation between E/ET/ET and Al is present. Increased aridity prompts plants to adopt water
conserving strategies (Chaves et al., 2003), thereby reducing the transpiration ratios. In humid regions, the relationship between
E/ET/ET and Al is more discernible, with Al accounting for a significant portion of the variance of E/ET/EF. Conversely, for
arid regions, particularly those dominated by shrubs, the relationship shows greater scatter, suggesting that Al exerts a
relatively smaller effect on E/ET/EF, while other factors play a more prominent role. Furthermore, higher air temperature
contributes to lowering E/EF/ET (see Fig. 9b), as it prompts water-conserving behaviors in plants and elevates soil
evaporation, consequently reducing E/ET/ET ratios. Conversely, increasing soil moisture leads to enhanced water availability
for plant root uptake, resulting in a near linear increase in E/EF/EF, as shown in Figure 11Figure 9c. The relationship between
wind speed (WS) and E/ETF/ET is inconclusive; this finding is consistent with several previous studies (e.g., Dixon and Grace,
1984; Huang et al., 2015; Schymanski and Or, 2016) which have presented a mixed effect of wind speed on transpiration.
Nevertheless, the effects of other environmental variables on E/EF/ET demonstrate explainable patterns as discussed here.
The other five data products (MODIS, Zhang, GLEAM, SPLASH, and BESS) show similar impacts of all the environmental
variables on E/EF/ET as those shown in Figure 11FEisure-9 for NARR.
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| Table 55: Coefficients of standardized environmental variables regressed against E/ET/ET using stepwise selection and Lasso
regression. Significance levels are shown next to the coefficients (***: p<0.001, **: p<0.01, *: p<0.05, blank: p>0.1

Coefficient Coefficient
(Stepwise selection) (Lasso regression)
Al -0.065-0.105%** -0.022-0.026%**
RH 0.001
Tair s -0-603-0.004
DSW
SM 0:0390.066%** 0.00030.0005%%*
WS 0:0250.023** 0:0420.03 7%x%
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Figure 119: Relationships between mean annual E/EF/ET and environmental factors (a) aridity index (PETE,/P), (b) air
temperature (Tair), (c) soil moisture (SM), and (d) -wind speed (WS) for 648 watersheds. E/EFAT is calculated based on NARR
data, and the environmental variables are also retrieved from the NARR product. Significance of the pairwise relationships between
E/EF/ET and the environmental variables are shown on each plot.

5.5 FE/P ratios

We computed transpiration to precipitation (*E/P) ratios based on E/ET/ET values calculated from the six adjusted E,PEF
data products. The mean E/PT/P ratios from these six datasets range from 0.24 to 0.36, aligning closely with the global mean
Ey/PF/2 of 0.39 estimated by Schlesinger and Jasechko (2014)

We also compared our estimated E/PF/P ratios to the E/PF/P versus aridity index relationship identified by Good et al. (2017).
Good et al. (2017) presented this relationship based on a compilation of field studies, three remote-sensing based models, and
an ecohydrological model, revealing good consistency among the various E/PF/P data sources. Figure [2Eigure10 shows a
similar trend to that presented in Fig. 1 of Good et al. (2017), with the maximum E/PF/P ratio close to the intersection between

water and energy-limited states. This maximum E/PF#P corresponds to an aridity index ranging between 2 and 3 in our study,
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similar to the estimated aridity index range of 1.3 to 1.9 for the maximum E/PF/P as reported by Good et al. (2017). Moreover,
the maximum E/PF/ shown in Figure 12Figure 10 ranges between 0.5 and 0.58, consistent with the maximum E/PFP of 0.6
based on field data in Good et al. (2017). Notably, there is greater variation on the right side of the curve (indicating more arid
conditions) compared to the left side (representing wetter conditions). In arid regions, transpiration is influenced not only by
aridity, but also by factors such as groundwater table depth and soil moisture content, resulting in higher variability in the

Ey/PF/2 versus aridity index (Al) relationship. The consistency between Good et al. (2017) and this study suggests that this

relationship holds not only at the field sealeand remote sensing scales (as shown by Good et al., 2017), but also at the watershed
scale, as demonstrated in this study. This relationship holds significance for studies like that of-Cai-et-al(2623) -Cai et al.
(2023) and B. Zhou et al. (2025) where E/PT/P serves as a parameter (referred to as fy in their study) to determine water-
limited fAPAR and LAI-Currently,in-theirstudy-this T/Pratio-is-estimated (Cai et al., 2023) estimated E/P as a global mean
using non-linear regression, with a value of 0.62, akin to the maximum E/PT/ of 0.5 to 0.58 estimated by our fitted curves

depicted in Figure 12Figure10. B. Zhou et al. (2025) used a variable E/P as a function of Al akin to our fitted curves. Their
maximum E/P of 0.65 occurred at an Al of 1.9, similar to our fitted curves. Btilizing-a-variable T/P-as-afanction-of-Alas
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Figure 1219: E/PT/P versus the aridity index for six datasets: (a) NARR, (b) MODIS, (c) Zhang et al. (2010), (d) GLEAM after
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6 Variation of ET evapotranspiration partitioning methods

Figure 7Figure-5 demonstrates the influence of the six adjusted E,PET data products on the E/ET/ET ratios by our new method
for each vegetation type, while Table 4Fable4 provides their variation range between the minimum and maximum mean
E/ET/ET ratios. On the other hand, as outlined in the introduction, estimated global mean values of E/EF/ET from various
existing methods exhibit a considerable variation, ranging from 0.24 to 0.9 (Liu et al., 2022; Wei et al., 2017). This variation
may be attributed to several factors, including data inconsistencies, geographical disparities, and differences in selected time
periods, apart from differences in methodology. In an effort to explore what may be the cause for the large variation among
the different methods, we have tried to mitigate these factors by using the same half-hourly eddy covariance data from the
FLUXNET and AMERIFLUX ONEFLUX towers measurements in the US for the same locations and same time periods. Such
an approach would allow us to elucidate the disparities among the existing-ET E partitioning methods, consequently, providing
insights on influences by different E,PET datasets in our method versus current existing different methods on the large range
of E/EF/ET ratios.

The four methods we selected to investigate are: (1) Zhou et al. (2016), (2) Scott and Biederman (2017), (3) Li et al. (2019),
and (4) Yu et al. (2022). These four methods are selected because they are based on eddy covariance measurements whose
data are widely available, unlike sap flow and isotope measurements. Since these methods are based on flux measurements,
they can be considered as field-based estimations of E/ETAET. -We apply these four methods to the same datasets from the
FLUXNET and AMERIFLUX ONEFLUX towers in the US, but the final number of flux towers included for each method
depends on the filtering criteria in each method and the limitations in applying each method.

The first method by Zhou et al. (2016) is based on the water use efficiency. The ratio E/ET/ET is estimated as the ratio between

vpDO95
ET

0.5
the apparent water use efficiency (WUE, = GPP X ) and the potential water use efficiency (WUE, = GPP X %).

Assuming that E/ET/ET approaches 1 at some time during the growing season, the WUE,, is estimated from the 95" quantile
regression of the half-hourly scatter plot (based on all half-hourly data for the site) between GPPXVPD®® and-ET E and is
assumed to be constant for the flux tower. WUE, is then estimated for each time step as the linear regression of the-E* E and
GPPxVPD’3 relationship using half-hourly data for the desired time period, which can be 8-day, monthly or annually.

The second method by Scott and Biederman (2017) is based on water use efficiency to estimate multiyear monthly average
E/EF/ET ratios. This approach estimates transpiration as the product of the inverse of the marginal water use efficiency, the
ratio between transpiration WUE and marginal WUE, and GPP. The inverse of the marginal WUE is estimated from the linear
regression of the GPP versus-ET E scatter plot. The ratio between transpirational and marginal WUEs is assumed to be 1. This
method requires multiple years of data for its application.

The third method by Li et al. (2019) is based on the stomatal conductance model of Lin et al. (2018) to partition—EF

evapotranspiration. The E/ET/ET ratio is equivalent to the ratio between canopy conductance and ecosystem conductance.
The eddy covariance data are divided into soil moisture bins to calibrate the parameters. Therefore, the method requires soil

moisture data, along with GPP, VPD,-ET E, and three calibrated parameters to estimate the E/EF/ET ratio.
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The fourth method by Yu et al. (2022) combines the water use efficiency with the Medlyn et al. (2011) stomatal conductance
| model. This method relies on GPP,-ET E, C,, P,, and VPD from the flux tower data in addition to the parameter g; from the

Medlyn et al. (2011) model. The authors compared their method to other methods and showed a high correlation with the Zhou

465 etal. (2016) but a low correlation with the Li et al. (2019) method.
| Additionally, we compare our results to E/EF/ET values for 20 global flux towers from Tan et al. (2021). E/EFET was
calculated based on flux tower data and P-model (Stocker et al., 2020; H. Wang et al., 2017) outputs.
The estimated E/ET/ET ratios from the five methods are shown in Figure 13FiguretHa — e and Table 4Fable4, respectively,
for the same six different vegetation types as shown in Figure 7Figure-5 with our new method.
470
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| Figure 13H1: E/EFAET values based on the eddy covariance tower data with 5 methods: (a) Zhou et al. (2016) (n=80), (b) Scott and
Biederman (2017) (n=53), (¢) Li et al. (2019) (n=46), (d) Yu et al. (2022) (n=60) (e) Tan ct al. (2021) (n=15).
| Table 66: Mean EJ/ETAT values for six vegetation types using four—EF evapotranspiration partitioning methods. Minimum,
475 maximum, and mean values are shown for each vegetation type.
ET
Evapotranspiration
Crops Grass Shrubs ENF DBF MF Mean
partitioning
method
Zhou et al. 0.54 0.48 0.46 0.46 0.52 0.42 0.48
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Scott and

Biederman 0.56 0.59 0.65 0.66 0.65 0.77 0.62
Li et al. 0.70 0.63 0.59 0.69 0.70 0.61 0.66
Yu et al. 0.34 0.37 0.38 0.43 0.46 0.44 0.39
Tan et al. 0.48 - 0.44 0.56 0.6 0.61 0.54
Minimum 0.34 0.37 0.38 0.43 0.46 0.42 0.39
Maximum 0.70 0.63 0.65 0.69 0.70 0.77 0.66
Mean 0.52 0.52 0.50 0.56 0.59 0.57 0.54

The inconsistencies among the five methods are evident, with Zhou, Yu, Li, and Tan showing minimal variation among
vegetation types, while Scott displays substantial variation. Moreover, the magnitudes and trends of E/EF/ET across these
methods are also inconsistent. These discrepancies indicate a lack of agreement on both the mean E/ET/ET values and the
variation ranges among the different methods. Consequently, these methods are not suitable as reference points for evaluating
our new method. Instead, the assessment of our new method should be based on its physical behavior and relationships with
other variables, as discussed in Section 5. It is noteworthy that compared to Figure 7Eigure-5, the variation range of E/ETET

ratios from the five different methods, utilizing the same data at the same locations, is significantly greater than that for our

new method in which disparity is attributed to the variations associated with the E,PET methods employed. Additionally, since

our method is at a larger (watershed) scale, we observe larger variations between vegetation types, which can be attributed to

different vegetation densities and bare land percentages at larger scales which is not a factor at smaller (flux tower) scales.

7 Conclusions

We have presented a new method for determining the transpiration to total evapotranspiration (E/ET/ET) ratio using long-
term hydrological observations. This method is based on the generalized proportionality hypothesis, which has wide
applications in hydrology. We applied the method to 648 watersheds in the US using six different E,PET data products. Our
findings demonstrate consistent E/EF/ET results across these diverse E,;PET datasets, facilitated by a rescaling of E,PET
derived from the-EF E/E,PET ratios obtained from each individual data product and ebserved-EFwatershed-budget estimated

balanee E computed from the watershed water balances.

Our analysis reveals that varying E/EF/ET ratios across watersheds are associated with different vegetation types, with shrubs
and grasslands exhibiting lower E/ET/ET values compared to crops and forests. Furthermore, our results underscore the
significant influence of leaf area index (LAI), hydrological indices (Q/P and Qb/Q), and prevailing environmental conditions
on E/EFAET. Our method also provides a realistic estimate of E/EF/ET at a watershed scale that implicitly accounts for the
heterogeneity of vegetation within the catchment. Our method can also be useful for constraining hydrological models, land

surface models, and climate models.
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We also explore the relationship between F/ETF-E/P and aridity index, unveiling a bell-shaped curve at the watershed scale,
where the maximum TAETFE/P ratio occurs at an aridity index between 2 and 3, corresponding to an E/PF/P ratio of around
0.5 to 0.58. These findings provide valuable insights into the intricate interplay between hydrological processes and

environmental variables, shedding light on the complex dynamics of evapotranspiration in diverse watershed ecosystems.
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