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Abstract. The accurate evaluation of Land Surface Models (LSMs) is fundamental to their development and application. 

However, standard metrics such as the Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) possess well-

documented shortcomings. Relying on moment-based statistics such as mean, variance, and correlation often falls short for 10 

land surface modelling data, which are typically non-normal and skewed. These metrics can be misleading due to issues such 

as error compensation, instability when variability is low, and the confusion of magnitude and phase errors, leading to 

inaccurate model assessments. To address these fundamental flaws, we propose the Model Fidelity Metric (MFM), a novel 

evaluation framework constructed using robust statistics and information theory. MFM integrates three orthogonal dimensions 

of model performance within a Euclidean framework, including 1) Accuracy, which measure by the robust Normalized Mean 15 

Absolute p-Error (NMAEp) and penalized for timing issues via a Phase Penalty Factor (PPF); 2) Variability, quantified using 

the information-theoretic Scaled and Unscaled Shannon Entropy differences (SUSE); and 3) Distribution Similarity, assessed 

non-parametrically using the Percentage of Histogram Intersection (PHI). We evaluated MFM against with traditional metrics 

using targeted synthetic experiments and the large-sample CAMELS dataset. Our results demonstrate that MFM provides a 

more authentic and reliable assessment of model fidelity. MFM proved immune to error compensation effects that mislead 20 

KGE and remained stable in low-variability scenarios where NSE and KGE fail. Furthermore, MFM provides superior 

diagnostic capabilities by decoupling phase and magnitude errors and decomposing performance into its core components. 

This work highlights the need to move beyond traditional moment-based metrics. We advocate adopting robust, diagnostic 

frameworks such as MFM to support the development of more trustworthy LSMs. 

1 Introduction 25 

Land surface model (LSM) performance metrics serve as the foundation for model evaluation, calibration, parameter 

optimization, and intercomparison studies (Clark et al., 2021; Gupta et al., 2009). LSMs produce outputs such as latent heat 

flux, soil moisture, and runoff. They form the core of the Earth System Models (ESMs) and Numerical Weather Prediction 

(NWP) systems (Dai et al., 2003). Accurate modelling is critical for climate projection, extreme event forecasting, and water 

resource management (Best et al., 2011). By condensing the complex, high-dimensional relationship between observed and 30 
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simulated time series into a single numerical score, these metrics enable objective model assessment and facilitate decision-

making in water resources management, flood forecasting, and climate impact studies (Mizukami et al., 2019). The choice of 

performance metric highly affects model development trajectories, shapes our understanding of land surface processes, and 

ultimately determines the reliability of model-based predictions (Cinkus et al., 2023). 

The evolution of LSM metrics began with simple error measures like the Root Mean Square Error (RMSE), which 35 

calculates the Euclidean distance between simulations (𝑆) and observations (𝑂) 

RMSE = √
∑(𝑆𝑖−𝑂𝑖)2

𝑛
.           (1) 

Recognizing the limitations of scale-dependent of RMSE, Nash and Sutcliffe (1970) introduced the Nash-Sutcliffe 

Efficiency (NSE), which has become the standard for LSM evaluation: 

NSE = 1 − 
(RMSE)2

𝜎𝑶
2 ,           (2) 40 

where 𝜎𝑶 is the standard deviation of observations (Nash and Sutcliffe, 1970). NSE provides a dimensionless indicator of 

model skill relative to a mean benchmark. Despite its widespread adoption, NSE has significant shortcomings. Its quadratic 

form makes it highly sensitive to outliers and can lead to controversial conclusions (Gupta et al., 2009; Legates and McCabe, 

1999). 

To address these shortcomings, Gupta et al. (2009) proposed the Kling-Gupta efficiency (KGE). KGE provides a 45 

more balanced assessment by decomposing performance into three distinct components within a Euclidean distance from their 

ideal values: 

KGE = 1 − √(𝑟 − 1)2 + (
𝜎𝑺

𝜎𝑶
− 1)

2

+ (
𝜇𝑺

𝜇𝑶
− 1)

2

= 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2,   (3) 

where 𝑟 is the Pearson correlation coefficient, 𝛼 is the relative variability, 𝛽 is the bias ratio. Together, NSE and KGE now 

dominate the land surface modelling literature, serving as the primary criteria for model calibration and performance 50 

assessment across diverse applications and geographical regions (Knoben et al., 2019; Pool et al., 2018). Their widespread 

adoption has established them as a universal method for assessing model performance, as evidenced by numerous studies, 

operational systems, and extensive model comparison initiatives such as the Coupled Model Intercomparison Project Phase 6 

(CMIP6; Eyring et al., 2016).  

However, recent research has increasingly highlighted fundamental flaws in both the NSE and KGE frameworks, 55 

challenging their reliability as comprehensive indicators of model fidelity (Cinkus et al., 2023; Clark et al., 2021; Schaefii and 

Gupta, 2007). These limitations are not merely theoretical concerns but also lead to systematic biases in model selection, 

misleading performance rankings, and potentially incorrect conclusions about model skill across different land surface 

modelling regimes (Klotz et al., 2024; Knoben et al., 2025). One of the most serious failures of KGE is that its vulnerability 

to error compensation, in which opposing errors across different parts of a time series cancel each other out, yielding 60 
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misleadingly favorable scores. Cinkus et al. (2023) demonstrated this phenomenon through systematic synthetic experiments, 

showing that KGE can assign higher scores to models that simultaneously overestimate and underestimate discharge compared 

to models with consistent but unidirectional errors. This behavior occurs since KGE’s variability parameter (𝛼) and bias 

parameter (𝛽) are based on moment-based statistics (mean and standard deviation, see Eq. (3)). These statistics are most 

effective for normally distributed data. However, when applied to non-normal, heavy-tailed, and skewed distributions common 65 

in land surface modelling data, these statistics are highly sensitive to outliers and do not accurately reflect the true 

characteristics of the system (Fu and Zhang, 2024; Mizukami et al., 2019). Since these two components typically account for 

two-thirds of the weight in KGE formulations, error compensation effects can dominate the overall score, rewarding models 

for being “right for the wrong reasons” (Cinkus et al., 2023). Cinkus et al. (2023) tested 130321 synthetic hydrographs 

subjected to controlled transformations to assess their impact across nine performance metrics. They discovered that the 70 

standard KGE and its variants (mKGE, KGE', KGE'') were all highly responsive to these balancing errors. Their analysis 

showed that models with lower actual skill often scored higher on KGE because of coincidental error cancellation. This 

fundamental problem questions KGE’s validity as a full performance measure and casts doubt on studies that mainly depend 

on KGE-based evaluations. 

Clark et al. (2021) emphasized a significant vulnerability, namely the high sampling uncertainty in NSE and KGE, 75 

which is caused by the heavy-tailed distribution of squared errors. Analysis of 671 catchments from the Catchment Attributes 

and Meteorology for Large-sample Studies (CAMELS) dataset showed that performance metric scores are significantly 

affected by a limited number of extreme data points, with fewer than 0.5 % of simulation-observation pairs accounting for 50 % 

of the sum-of-squared errors (Clark et al., 2021). This high sensitivity to outliers leads to considerable sampling variability, 

with 90 % tolerance intervals for NSE and KGE exceeding 0.1 in more than half of the catchments examined, suggesting that 80 

performance differences below this threshold may be statistically insignificant. The sampling uncertainty problem becomes 

particularly acute in arid regions and during low-flow conditions, where near-zero observed flows in the denominator render 

NSE and KGE numerically unstable (Santos et al., 2018). Under these conditions, a single outlier can cause the metric to shift 

from near ideal to very negative, making these metrics unreliable for comparing models. This instability suggests practical 

implications for model choice and water management, especially in water-scarce areas where precise low-flow predictions are 85 

vital (Pool et al., 2018). 

Similar issue occurs for NSE metrics. Despite NSE’s squared-error formulation, which theoretically emphasizes large 

errors, Mizukami et al. (2019) found that NSE-based calibration systematically underestimates annual peak flows by more 

than 20 % at median values across 492 hydrologically unregulated catchments in the contiguous United States. This interesting 

finding arises because NSE tends to underestimate observed flow variability. While KGE partially addresses this issue by 90 

explicitly including a variability ratio term (𝛼), both metrics struggle to represent model accuracy, which is critical for flooding 

risk assessment (Williams, 2025). 

Nevertheless, a fundamental weakness shared by both NSE and KGE is their reliance on Pearson’s correlation 

coefficient (𝑟), which assumes linear relationships and is designed for normally distributed data. Hydrological time series, 
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especially daily streamflow, often show highly skewed, non-normal distributions with high coefficients of variation (Bhatti et 95 

al., 2019). For such data, Pearson’s 𝑟 is severely upward-biased and highly variable, making it an unreliable measure of model-

observation agreement. Barber et al. (2020) demonstrated this issue across 905 calibrated rainfall-runoff models, 

recommending alternative correlation measures such as Spearman’s rank correlation or log-transformed correlation that are 

more robust to non-normality and outliers. Furthermore, the correlation component in KGE conflates magnitude errors with 

timing errors, creating a “double penalty” problem (Cinkus et al., 2023; Mathevet et al., 2020; Santos et al., 2018). A simulation 100 

that accurately reproduces the magnitude and shape of a hydrograph but is slightly shifted in time will be severely penalized 

in both the correlation term and the point-wise error metrics. Despite this, it remains structurally sound and potentially useful 

for many applications (Liu et al., 2011; Magyar and Sambridge, 2023). This issue becomes particularly problematic when 

evaluating models with uncertain timing of forcing data. It also affects routing-dominated systems, where even slight temporal 

misalignment is problematic. 105 

Land surface variables such as soil moisture, latent heat flux, and evapotranspiration exhibit highly skewed non-

normal distributions. These non-Gaussian characteristics violate the normality assumptions in moment-based metrics. 

Evaluation based on KGE and NSE, facing problems mentioned above, may result in biased performance assessments. 

Therefore, a non-parametric, robust, and diagnostic framework is required to accurately evaluate model fidelity across these 

variables. 110 

Recognizing the limitations of variance-based statistical measures, LSM researchers have increasingly turned to 

information theory as an alternative framework for model evaluation. Shannon entropy quantifies the uncertainty or 

information content of a probability distribution in a nonparametric manner, making it naturally suited to characterizing the 

highly skewed, non-normal distributions typical of hydrological data (Pechlivanidis et al., 2014). Unlike standard deviation, 

which is dominated by extreme values and susceptible to error compensation, entropy captures the entire shape of the 115 

probability distribution and provides a robust measure of system variability and complexity. Pechlivanidis et al. (2010) 

proposed the Scaled and Unscaled Shannon Entropy differences (SUSE) measure for hydrological and land surface models 

evaluation. By computing entropy differences using both common bins (scaled entropy) and individual bins (unscaled entropy), 

SUSE provides a comprehensive assessment of distributional similarity that is immune to the compensating errors that plague 

variance-based metrics. Their multi-objective calibration framework combining SUSE with traditional metrics achieved 120 

superior performance compared to single-objective or conventional multi-objective approaches by extracting complementary 

information from different flow regimes (Pechlivanidis et al., 2014). Most recently, Pizarro et al. (2025) developed the Ratio 

of Uncertainty to Mutual Information (RUMI) metric, which integrates Shannon entropy with uncertainty quantification from 

the BLUECAT method (Koutsoyiannis and Montanari, 2022). Testing across 99 Chilean catchments spanning diverse 

macroclimatic zones, RUMI-based simulations outperformed KGE in 82 % of 50 hydrological signatures analyzed, with 125 

notably lower variability in both calibration and validation periods. This success highlights the practical benefits of 

information-theoretic methods for uses. It also integrates confidence intervals directly into the evaluation process, rather than 

treating them as an afterthought. 
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Histogram-based comparison methods offer another promising avenue for robust model evaluation. The Percentage 

of Histogram Intersection (PHI), originally developed for color indexing in computer vision (Swain and Ballard, 1991), 130 

measures the overlap between two probability distributions in a nonparametric manner. By comparing entire distributions bin-

by-bin rather than relying on summary statistics like means or standard deviations, PHI captures the full statistical signature 

of model performance without making assumptions about data normality or stationarity. This distribution-matching approach 

is particularly relevant for LSM evaluation because it naturally handles multimodal distributions, captures extreme-value 

behavior, and is invariant to monotonic transformations. Unlike KGE’s bias term (𝛽), which reduces the entire distributional 135 

comparison to a single ratio of means, PHI assesses whether the model reproduces the complete frequency distribution of 

observed flows from low flows to extreme peaks. This comprehensive assessment is essential for models intended to support 

diverse management objectives, from drought planning to flood protection. 

A growing body of research emphasizes the importance of distinguishing temporal misalignment from amplitude 

errors in model evaluation. Liu et al. (2011) demonstrated using wavelet transform analysis that timing errors and magnitude 140 

errors often arise from different sources (e.g., routing inaccuracies versus rainfall-runoff process representation) and should 

therefore be evaluated separately. Their wavelet-based timing adjustment reduced root mean square error (RMSE) from 31.4 

to 18.9 m3 s-1 and increased correlation from 0.67 to 0.94 for synthetic examples, showing that traditional metrics severely 

penalize timing-shifted simulations even when the magnitudes are accurate. More recently, the Wasserstein distance (Magyar 

and Sambridge, 2023), a metric derived from optimal transport theory, was introduced as a LSM objective function that 145 

inherently accommodates timing errors by comparing mass distributions rather than point-wise differences. Wasserstein 

distance addresses the “double penalty” problem by measuring the minimum effort required to transform one distribution into 

another, accounting for spatial and temporal displacement of features. While computationally more intensive than traditional 

metrics, Wasserstein distance provides superior performance when displacement errors are present, a common situation in land 

surface modelling due to uncertainties in rainfall timing and routing processes. 150 

In summary, the evidence presented above reveals a clear need for performance metrics that (1) are unaffected by 

error compensation effects, (2) remain stable and reliable in low-variability conditions, (3) robustly address non-normal, heavy-

tailed distributions typical of LSM data, (4) separate timing errors from magnitude errors, and (5) offer diagnostically 

meaningful decomposition to aid model improvement. To address these requirements, we propose the Model Fidelity Metric 

(MFM), a comprehensive performance criterion built on three orthogonal components grounded in robust statistics and 155 

information theory. MFM integrates four fundamental aspects of model performance:  

1. Normalized Mean Absolute p-Error (NMAEp): A flexible, robust measure of overall simulation accuracy based on 𝐿𝑝-

norm, which is inherently immune to error compensation. It allows transparent control over sensitivity to outliers through 

the exponent parameter 𝑝 without introducing arbitrary component weighting. 

2. Scaled and Unscaled Shannon Entropy Difference (SUSE): A nonparametric measure of variability and information 160 

content that is robust to extreme values, directly addressing the fundamental flaws in KGE’s 𝛼 parameter (Pechlivanidis 

et al., 2014). 
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3. Percentage of Histogram Intersection (PHI): A distribution similarity metric that compares entire probability distributions 

without parametric assumptions, replacing KGE’s problematic bias term with a comprehensive assessment of statistical 

signature reproduction. 165 

4. Phase Penalty Factor (PPF): A spectral-analysis-based quantification of timing errors that scales the magnitude error 

appropriately rather than treating phase misalignment as an independent component, avoiding the double-penalty 

problem inherent in correlation-based metrics. 

These four components are combined into a single dimensionless score using a Euclidean distance framework similar to KGE. 

PPF is incorporated as a scaling factor within the accuracy component based on the geometric relationship between timing and 170 

magnitude errors. 

 To provide a detailed introduction to MFM, the remainder of this paper is organized as follows: Section 2 presents 

the theoretical foundation and mathematical formulation of MFM, including a detailed justification for each component and a 

comparison with traditional metrics. Section 3 describes our synthetic experiments and real-world application methodology, 

including the selection of the CAMELS dataset. We tested MFM using runoff data to measure land surface variables with 175 

standard metrics, ensuring broad applicability. Section 4 presents results from both synthetic tests and real catchment 

applications, demonstrating MFM’s advantages and limitations. Section 5 discusses practical implications, computational 

considerations, and future research directions. Section 6 provides concluding remarks and recommendations for the community. 

2 Rationale and formulation of MFM 

The development of the MFM is driven by the desire to go beyond the limits of traditional metrics that mainly depend on 180 

moment-based statistics. We propose a framework that leverages robust statistical techniques and information theory to provide 

a more genuine evaluation of model performance. This approach is especially helpful for the non-normal, skewed data often 

seen in land surface modelling. 

2.1 Principle for robust metric design 

We adhere to the three principles introduced earlier: Holistic Representation, Immunity to Error Compensation, and Statistical 185 

Robustness. To achieve this, MFM fundamentally replaces the components of KGE (𝛼, 𝛽, and 𝑟) with alternatives grounded 

in robust statistics and information theory. As mentioned before, KGE evaluates performance by comparing summary statistics 

(mean, standard deviation, and linear correlation). This approach is efficient for normally distributed data but is susceptible to 

the flaws discussed previously. In contrast, MFM is based on nonparametric and robust measures. It evaluates the time series 

through three dimensions: (1) overall accuracy using a generalized error norm penalized by phase shifts; (2) variability using 190 

Shannon entropy; and (3) distribution similarity by directly comparing probability distributions. 
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2.2 Revisiting model performance components 

We systematically reconstruct the evaluation framework by addressing the flaws in KGE’s components and proposing robust 

alternatives. 

2.2.1 Quantifying accuracy and decoupling phase errors 195 

In the KGE framework, the Pearson correlation coefficient (𝑟) is intended to capture temporal synchronization. However, 𝑟 

measures only linear covariation, not agreement (Legates and McCabe, 1999). Critically, it conflates magnitude errors with 

phase (timing) errors, as mentioned before. We argue that overall accuracy (magnitude error) and phase error must be 

decoupled. MFM addresses this by introducing two separate measures, i.e., the Normalized Mean Absolute p-Error (NMAEp) 

for accuracy, and the Phase Penalty Factor (PPF) to account for timing issues. 200 

To quantify overall accuracy robustly, we introduce NMAEp, based on the generalized 𝐿𝑝-norm: 

NMAEp = (
∑|𝑆𝑖−𝑂𝑖|𝑝

𝑛
)

1

𝑝
/𝜇𝑶.          (4) 

The exponent parameter 𝑝 controls the metric’s sensitivity to error magnitude. When 𝑝 = 1, NMAEp is equivalent to the 

Normalized Mean Absolute Error (NMAE), which is relatively robust to outliers. When 𝑝 = 2 , it is equivalent to the 

Normalized Root Mean Square Error (NRMSE), which emphasizes large errors. The flexibility of the 𝐿𝑝-norm provides a 205 

significant advantage over the ad-hoc component weighting often used in multi-objective frameworks (e.g., arbitrarily 

doubling the weight of the bias term in KGE). Such arbitrary weighting lacks mathematical justification and renders metrics 

incomparable. In contrast, adjusting 𝑝 represents a mathematically consistent redefinition of the error distance within the 𝐿𝑝 

space, allowing users to adjust sensitivity while maintaining the metric’s structural integrity transparently. 

 Standard error metrics often misinterpret a temporal mismatch (phase shift) between simulations and observations. 210 

As illustrated in Fig. 1, an instantaneous error metric measures the vertical distance 𝑑1 = |𝑆𝑖 − 𝑂𝑖|. However, the magnitude 

error corrected for an optimal time lag 𝑘 would be 𝑑2 = |𝑆𝑖+𝑘 − 𝑂𝑖|. While time series realignment could find 𝑑2, it would 

destroy the temporal structure of the simulation. Instead, we propose to approximate the phase-corrected error geometrically. 

As suggested by the geometry in Fig. 1, the relationship can be approximated as: 

∑𝑑2 ≈ ∑
𝑑1

cos(𝜃)
.            (5) 215 

This indicates that the phase difference acts as a scaling factor on the magnitude error, rather than an independent component 

of model performance. This is further supported by the observation that histogram-based components (discussed below) are 

invariant to the temporal ordering of the data. 
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Figure 1. Geometric interpretation of the relationship between instantaneous error (𝒅𝟏), phase-corrected error (𝒅𝟐), and phase shift (𝜽). This 220 
illustrates how phase differences inflate perceived magnitude errors, thereby justifying treating phase shift as a penalty factor (PPF) applied 

to the accuracy component. 

 To quantify this scaling, we first identify the dominant phase lag (𝜃𝑙𝑎𝑔) between the simulated and observed time 

series. This is achieved by applying the Fast Fourier Transform (FFT) to both series and determining the phase angle at the 

frequency corresponding to the maximum power in the cross-power spectrum. We then define the Phase Penalty Factor (PPF) 225 

using the cosine function, which naturally ranges from 1.0 (zero lag, no penalty) to lower values as the lag increases: 

PPF = cos (
𝜃𝑙𝑎𝑔

𝑐
),           (6) 

where 𝜃𝑙𝑎𝑔 is the dominant phase lag in radians [−𝜋, 𝜋]. The scaling parameter (𝑐 > 2) is introduced to control the sensitivity 

of the penalty and to avoid singularity (PPF = 0), if the lag approaches ±𝜋/2. A smaller 𝑐 imposes a heavier penalty, while a 

larger 𝑐 minimizes the impact of phase shift. 230 

2.2.2 Capturing variability using information theory 

KGE measures variability using the ratio of standard deviations (𝛼 = 𝜎𝑺/𝜎𝑶). The standard deviation is a robust measure of 

spread only for normal distributions. For skewed LSM data, it is highly sensitive to outliers and prone to error compensation. 

In other words, a model can achieve a perfect 𝛼 = 1 result by simultaneously overestimating and underestimating flows. 

 To overcome this, we utilize Shannon entropy from information theory to quantify the intrinsic uncertainty and 235 

dispersion of the data (Pechlivanidis et al., 2010). Entropy is a non-parametric measure that characterizes the shape of the 

probability distribution, regardless of its skewness or modality. Shannon entropy (𝐻) is calculated from a discrete probability 

distribution 𝑃, obtained by binning the time series data into 𝑛SUSE bins: 

https://doi.org/10.5194/egusphere-2025-6212
Preprint. Discussion started: 27 December 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

𝐻(𝑃) = − ∑ 𝑝𝑘
𝑛SUSE

𝑘=1 log(𝑝𝑘)          (7) 

where 𝑝𝑘 is the probability of the data falling into the 𝑘-th bin. Entropy differences can be misleading if the ranges of the 240 

simulated and observed data differ significantly. Therefore, we adopt the Scaled and Unscaled Shannon Entropy differences 

(SUSE), which considers both the overall range and the internal shape of the distributions. 

First, the scaled Shannon Entropy Difference (SEDscaled) is calculated by binning both time series using a common 

range from min (𝑺, 𝑶) to max (𝑺, 𝑶). 

SEDscaled = |𝐻𝑺,scaled − 𝐻𝑶,scaled|.          (8) 245 

Second, the unscaled Shannon Entropy Difference (SEDunscaled) is calculated by binning the time series over their respective 

ranges (or normalizing them first). This measures the dissimilarity of the distributions’ internal shapes, independent of their 

absolute magnitudes. 

SEDunscaled = |𝐻𝑺,unscaled − 𝐻𝑶,unscaled|.         (9) 

The SUSE component is defined as the maximum of these two values: 250 

SUSE = max (SEDscaled, SEDunscaled).         (10) 

This ensures that the metric captures discrepancies in either the range or the shape of the variability. The number of bins (𝑛SUSE) 

serves as a sensitivity parameter, enabling comparisons across different resolutions. 

2.2.3 Nonparametric assessment of distribution similarity 

KGE’s bias term (𝛽 = 𝜇𝑺/𝜇𝑶) assesses the central tendency by comparing means. For non-normal streamflow data, the mean 255 

is a non-robust statistic, heavily influenced by extreme events and highly susceptible to error propagation. To provide a more 

comprehensive assessment of distribution similarity, we employ the Percentage of Histogram Intersection (PHI; Swain and 

Ballard, 1991). PHI is a nonparametric statistic that measures the overlapping area between the normalized probability 

distributions (histograms) of the simulated and observed data, binning the time series data into 𝑛PHI bins: 

PHI = ∑ min(𝑃𝑺,𝑘, 𝑃𝑶,𝑘)
𝑛PHI
𝑘=1 ,          (11) 260 

where 𝑃𝑺,𝑘 and 𝑃𝑶,𝑘 are the probabilities of the simulated and observed data falling into the 𝑘-th bin, respectively. PHI ranges 

from 0 (no overlap) to 1 (identical distributions). It provides a bin-by-bin assessment of the model’s ability to reproduce the 

complete statistical signature of the observed data. 
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2.3 MFM integration and interpretation 

MFM integrates the four components (NMAEp, PPF, SUSE, PHI) into a three-dimensional Euclidean framework. To ensure 265 

commensurability, each dimension is normalized to [0, 1], where 1.0 represents the ideal value. We use the exponential 

transform for error and entropy components, as it provides natural and bounded normalization from [0, ∞) to (0, 1]. 

 The three dimensions of MFM are defined as: 

1. Accuracy with phase penalty (𝜔): 

𝜔 = PPF × 𝑒−NMAEp = cos (
𝜃𝑙𝑎𝑔

𝑐
) × 𝑒−NMAEp.        (12) 270 

This component integrates magnitude error and timing accuracy. 

2. Variability (𝜑): 

𝜑 = 𝑒−SUSE.            (13) 

This component represents the similarity in information content and dynamic range. 

3. Distribution similarity (𝜂): 275 

𝜂 = PHI.            (14) 

This component represents the degree of congruence between the probability distributions. 

 The final MFM score is calculated as 1.0 minus the normalized Euclidean distance from the ideal point (1, 1, 1) in 

this three-dimensional space: 

MFM = 1 −
√(𝜔−1)2+(𝜑−1)2+(𝜂−1)2

√3
= 1 −

dist((𝜔, 𝜑, 𝜂),(1, 1, 1))

√3
.       (15) 280 

The distance is normalized by √3 (the maximum possible distance from (0, 0, 0) to (1, 1, 1)) to ensure that MFM is strictly 

bounded within the range [0, 1]. An MFM score of 1.0 is achieved if and only if the simulation perfectly matches the 

observation in magnitude, timing, variability, and distribution. The decomposition into 𝜔 , 𝜑 , and 𝜂  provides powerful 

diagnostic capabilities, allowing users to identify specific aspects of model failure. 

3 Experimental design and datasets 285 

To evaluate the robustness and diagnostic capabilities of MFM, we designed a series of experiments that compared its 

performance with established metrics. These experiments include targeted synthetic case studies designed to isolate known 

failure modes of traditional metrics, as well as an actual application using a large-sample hydrological dataset. Furthermore, 

we conduct a sensitivity analysis of MFM’s hyperparameters. 
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3.1 Benchmark metrics 290 

We compare MFM against the following standard metrics, including NSE (Eq. (2)), KGE (Eq. (3)), and modified KGE (mKGE, 

Kling et al. (2012)), which modifies the relationship between the variability and bias terms: 

mKGE = 1 − √(𝑟 − 1)2 + (
𝛼

𝛽
− 1)

2

+ (𝛽 − 1)2.        (16) 

Additionally, we include RMSE (Eq. (1)) and Normalized RMSE (NRMSE, NRMSE =  RMSE / 𝜇𝑶) as direct benchmarks 

of error magnitude. 295 

 For all MFM calculations in case studies (Sect. 4.1–Sect. 4.4), we use the default hyperparameters: 𝑝 = 1 (using 

NMAE for robustness), 𝑛SUSE = 𝑛PHI = 10 for both SUSE and PHI (providing a coarse-grained distribution comparison), and 

𝑐 = 4 for the PPF (providing a moderate phase penalty). 

3.2 Synthetic case studies 

We designed three synthetic scenarios targeting specific metric failures. 300 

3.2.1 Case 1: Error compensation 

This case tests a metric’s ability to avoid rewarding models where overestimation cancels out underestimation, a failure mode 

identified by Cinkus et al. (2023). We utilized a real streamflow time series (ID 01013500) from the CAMELS dataset (Addor 

et al., 2017) and duplicated it to create a double-length observation series (𝑂). Two synthetic simulations are generated: (1) 

Bad-Good (BG) model: The first half is biased (𝑆𝑖 = 𝑘1 × 𝑂𝑖), and the second half is perfect (𝑆𝑖 = 𝑂𝑖); (2) Bad-Bad (BB) 305 

model: The first half has the same bias as BG (𝑆𝑖 = 𝑘1 × 𝑂𝑖), and the second half has a compensating bias (𝑆𝑖 = 𝑘2 × 𝑂𝑖). We 

first test the scenario where 𝑘1 = 1.25 and 𝑘2 = 0.75. Since the errors are purely proportional, the Pearson correlation (𝑟) is 

1.0 for both models, isolating the effects of the 𝛼 and 𝛽 components in KGE/mKGE. To test the sensitivity across different 

error magnitudes, we vary a scaling parameter 𝑘 (from 1 to 50) and redefine the models such that the errors decrease as 𝑘 

increases: (1) BG model: 𝑆𝑓𝑖𝑟𝑠𝑡 =
𝑘+1

𝑘
𝑂𝑓𝑖𝑟𝑠𝑡 , 𝑆𝑠𝑒𝑐𝑜𝑛𝑑 = 𝑂𝑠𝑒𝑐𝑜𝑛𝑑 . and 2) BB model: 𝑆𝑓𝑖𝑟𝑠𝑡 =

𝑘+1

𝑘
𝑂𝑓𝑖𝑟𝑠𝑡 , 𝑆𝑠𝑒𝑐𝑜𝑛𝑑 =

𝑘−1

𝑘
𝑂𝑠𝑒𝑐𝑜𝑛𝑑 . 310 

We analysed the score difference (BG score − BB score) to determine if the metric correctly identifies BG as superior (positive 

difference). 

3.2.2 Case 2: Stability in near-constant conditions 

This case tests the stability of metrics under low-variability conditions, where normalization by small 𝜎𝑶 or 𝜇𝑶 can lead to 

erratic scores (Santos et al., 2018). We construct a time series of length 100 where the first 99 steps are a perfect match (𝑆𝑖 =315 

𝑂𝑖 = 1). We then introduce a small perturbation at the final time step (𝑖 = 100), with (1) Scenario A (anti-phase outlier): 

𝑆100 = 1.01, 𝑂100 = 0.99 and (2) Scenario B (in-phase outlier): 𝑆100 = 1.01, 𝑂100 = 1.03. In both scenarios, the overall error 
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magnitude (RMSE) is identical and negligible. We further test the sensitivity by iteratively increasing the magnitude of the 

outliers in both scenarios over 51 steps (𝑘 ranges from 0 to 50) observing the trajectory of the metrics: (1) Scenario A (anti-

phase outlier): 𝑆100 = 1.01 + 𝑘/100, 𝑂100 = 0.99 − 𝑘/100; (2) Scenario B (in-phase outlier): 𝑆100 = 1.01 + 𝑘/100, 𝑂100 =320 

1.03 + 𝑘/100. 

3.2.3 Case 3: Phase and error decoupling 

This case examines how metrics balance phase errors versus magnitude errors. We design three distinct scenarios that yield 

the same RMSE (1.0) and NRMSE (≈ 1.0), but represent fundamentally different types of model failure: (1) Scenario A 

(extreme event): Near-constant data (𝑆𝑖 = 𝑂𝑖 = 1.0 for the first 99 steps) with a single large mismatch at the end (𝑆100 = 12, 325 

𝑂100 = 2); (2) Scenario B (anti-phase): A perfectly anti-phase oscillation (𝑟 = −1.0): 𝑆𝑖 = −
cos(𝑖𝜋)

2
+ 1, 𝑂100 =

cos(𝑖𝜋)

2
+ 1; 

3) Scenario C (simulation failure): Perfect phase (𝑟 = 1.0) but large constant bias: 𝑆𝑖 =
cos(𝑖𝜋)

100
+ 2, 𝑂𝑖 =

cos(𝑖𝜋)

100
+ 1. We also 

conduct a sensitivity analysis on the reverse phase scenario (Scenario B) by varying the frequency parameter 𝑗 (from 1 to 50) 

in the equation: 𝑆𝑖 = −
cos(𝑖𝜋)

𝑗
+ 1, 𝑂𝑖 =

cos(𝑖𝜋)

𝑗
+ 1. This gradually changes the error characteristics, allowing us to observe 

how metrics respond to changes in error while a constant phase error (𝑟 = −1.0) remains. 330 

3.3 CAMELS dataset 

We apply MFM and the benchmark metrics to the CAMELS dataset (Addor et al., 2017), using the Daymet forcings and 

corresponding streamflow observations. The CAMELS dataset is a large-sample, publicly available dataset that provides 

attributes and meteorological forcing for 671 catchments across the contiguous United States, specifically compiled to support 

the development and evaluation of hydrological and land-surface models. The Daymet dataset provides daily meteorological 335 

forcing for CAMELS. Daymet catchments have continuous runoff data spanning 34 years from 1980 to 2014, with the effects 

of human activity can be ignored. The model output runoff data for CAMELS were generated using a coupled model consisting 

of the Snow-17 and SAC-SMA models (Addor et al., 2017; Newman et al., 2015). For this study, we selected the model output 

files corresponding to a starting seed of 05 for consistency. We analysed daily data from 1 October 1980 to 31 December 2014. 

We adopted the validation criteria used by Clark et al. (2021), which states that a catchment is valid if it contains at least 10 340 

valid years with at least 100 days of positive discharge each. We analysed the spatial distribution of the scores and examined 

specific catchments that highlight the diagnostic differences between the metrics. 

3.4 Hyperparameter sensitivity analysis 

To evaluate the robustness of the MFM with respect to its user-defined hyperparameters, a sensitivity analysis was conducted 

on four primary parameters: 1) Error exponent (𝑝), varied from 1.0 (corresponding to NMAE) to 2.0 (corresponding to NRMSE) 345 

to examine the sensitivity to outliers; 2) Number of bins, varied from 5 to 100 for both SUSE (𝑛SUSE) and PHI (𝑛PHI) to assess 
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the impact of distribution discretization resolution; 3) Phase penalty scaling factor (𝑐), varied from 2 (indicating a heavy 

penalty) to 10 (indicating a light penalty) for the PPF. We perform this analysis using the CAMELS dataset results, calculating 

the MFM score distributions across all catchments for different parameter combinations. We analysed score variance to 

determine the impact of parameter choice on overall evaluation outcomes. 350 

4 Results 

4.1 Immunity to error compensation (Case 1) 

The error compensation test (Case 1) reveals a failure in KGE and mKGE. In the initial scenario (𝑘1 = 1.25, 𝑘2 = 0.75), both 

KGE and mKGE assign higher scores to the BB model than to the objectively better BG model (Fig. 2a). In contrast, MFM 

and NSE correctly identify the BG model as superior. The reason for this failure is evident in the KGE components (Fig. 2b). 355 

The compensating errors in the BB model (underestimation followed by overestimation) artificially pull its mean (𝜇𝑺) and 

standard deviation (𝜎𝑺) closer to the observed values. Consequently, the BB model achieves 𝛼 and 𝛽 values closer to the ideal 

(1.0) than the BG model. KGE and mKGE, by design, reward this statistical compensation. MFM and NSE, which incorporate 

direct error magnitude terms (NMAEp and RMSE2, respectively), are immune to this effect, as larger errors are always 

penalized more heavily, regardless of cancellation elsewhere in the time series. 360 

 

Figure 2. Error compensation results (𝒌𝟏 = 𝟏. 𝟐𝟓, 𝒌𝟐 = 𝟎. 𝟕𝟓). (a) Goodness-of-fit scores. KGE and mKGE incorrectly prefer the BB 

model, while MFM and NSE correctly identify the BG model; (b) Error benchmarks and KGE components. The BB model’s 𝜶 and 𝜷 are 

misleadingly closer to 1.0. 

The sensitivity analysis across varying error magnitudes (Fig. 3) confirms the persistence of this failure. MFM and 365 

NSE consistently show a positive difference in scores, favoring the BG model. KGE remains negative, always rewarding the 

BB model. mKGE succeeds only at the most extreme scaling (𝑘 = 1 and 𝑘 = 2) and fails in all other scenarios. This 
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demonstrates that metrics relying on aggregate statistics (e.g., mean, standard deviation) for assessing bias and variability are 

inherently unreliable when error compensation occurs. 

 370 

Figure 3. The difference in goodness-of-fit with different scaling parameters. The trend of metrics when the error decreases. MFM and NSE 

correctly distinguish BG model, while KGE fails every test. The mKGE, however, only correctly identifies the BG model when the error is 

large enough and fails immediately as the error shrinks. 

4.2 Stability under low-variability conditions (Case 2) 

The near-constant condition test (Case 2) highlights the instability of traditional metrics. In Scenario A (Fig. 4a), where a 375 

single anti-phase outlier exists, the RMSE (0.002) and NRMSE (0.002) indicate a near-perfect simulation (>99.8 % accuracy). 

However, NSE (-3.04), KGE (-1.00), and mKGE (-1.00) report a failure. This instability arises because the standard deviation 

(𝜎𝑶 ) and mean (𝜇𝑶 ) of the observations are very small, thereby amplifying the impact of single-point errors in their 

normalization schemes. MFM provides a score of 0.830. This score is not near 1.0 because the PPF component successfully 

identified the phase reversal at 𝑖 = 100 and applied a penalty. If the phase penalty is disabled (PPF = 1.0), the MFM score 380 

increases to 0.994, indicating an excellent magnitude match. This demonstrates MFM’s stability and diagnostic capability 

when traditional metrics fail. 

 In Scenario B (Fig. 4b), where the outlier is in-phase and magnitude errors change slightly (RMSE = 0.002 , 

NRMSE = 0.00199), the traditional metrics recover somewhat (NSE = 0.551, KGE = 0.333, mKGE = 0.333), illustrating 

their volatility. MFM reports a near-perfect score (0.994), indicating the simulation’s high fidelity. 385 
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Figure 4. Stability test under near-constant conditions. (a) Scenario A: Anti-phase outlier. Traditional metrics show failure (scores ≤ −𝟏) 

despite negligible error, while MFM provides a diagnostic score (0.830); (b) Scenario B: In-phase outlier. Traditional metrics are volatile, 

while MFM correctly identifies high performance (0.994). 

 The sensitivity analysis (Fig. 5) further emphasizes this instability. In Scenario A (Fig. 5a), as the error (RMSE) 390 

increases slightly, MFM responds with a stable, minor decrease in score (0.830 to 0.826), indicating that 99 % of the data 

remains perfect. NSE, KGE, and mKGE remain stuck at their initial failed values, showing no sensitivity to changes in error 

magnitude. In Scenario B (Fig. 5b), the RMSE remains constant. However, as the outlier magnitude increases, 𝜎𝑶  also 

increases. This change in the normalization factor causes the scores of NSE, KGE, and mKGE to rise rapidly from poor to 

near-perfect. Their scores reflect the changing statistical properties of the observations rather than the model performance itself. 395 

MFM remains stable and high (0.994 to 0.999), demonstrating its robustness. 
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Figure 5. Sensitivity analysis under near-constant conditions. (a) Scenario A: Increasing error magnitude. MFM shows a slight decrease, 

while standard metrics remain insensitive at their failed values; (b) Scenario B: Constant error magnitude but increasing outlier size. Standard 

metrics exhibit volatile increases attributable to changes in normalization factors, whereas MFM remains stable. 400 

4.3 Diagnostic capability for phase errors (Case 3) 

Case 3 compares three scenarios with identical RMSE (1.0) but different structural characteristics (Fig. 6). In Scenario A 

(extreme event, Fig. 6a), the low variability again causes the standard metrics to fail (scores ≤ −8.0). MFM (0.936) is the only 

metric that indicates this is a generally good model, with a single significant error. In Scenario B (anti-phase, Fig. 6b), the 

perfect anti-correlation (𝑟 = −1.0) leads to severe penalties by KGE (-1.00) and mKGE (-1.00). NSE (-3.0) also indicates total 405 

failure. MFM (0.572) also rates the model as poor, where PPF (0.707) heavily reduces the accuracy score (𝜔 = 0.260). In 

Scenario C (simulation failure; Fig. 6c), all metrics indicate that the model is poor. However, the reasons differ significantly. 

NSE approaches −∞ (−9999 in the calculation) due to the combination of low variability and large error. KGE (0.00) is 

driven solely by the large bias ratio (𝛽 = 2.0), as 𝑟 = 1.0 and 𝛼 = 1.0. MFM (0.316) provides a clear diagnosis through its 

components (𝜔 = 0.367 , 𝜑 = 1.0 , and 𝜂 = 0.0), i.e., large magnitude error, perfect match in variability (entropy), but 410 

completely disjoint distributions. 
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Figure 6. Phase and error decoupling test (all scenarios have RMSE = 𝟏. 𝟎). (a) Extreme event. MFM (0.936) identifies high fidelity, while 

standard metrics fail (NSE = −𝟏𝟎𝟎, KGE = −𝟗. 𝟎𝟎, mKGE = −𝟖. 𝟎𝟎, NRMSE = 𝟎. 𝟗𝟗𝟎); (b) Reverse phase. All metrics identify failure, 

driven by 𝒓 = −𝟏. 𝟎 or PPF = 𝟎. 𝟕𝟎𝟕 (MFM = 𝟎. 𝟓𝟕𝟐, NSE = −𝟑. 𝟎, KGE = −𝟏. 𝟎, mKGE = −𝟏. 𝟎, NRMSE = 𝟏. 𝟎); (c) Simulation 415 
failure, driven by large bias/error (MFM = 𝟎. 𝟑𝟏𝟔, NSE = −𝟗𝟗𝟗𝟗, KGE = 𝟎. 𝟎, mKGE = −𝟎. 𝟏𝟏𝟖, NRMSE = 𝟏. 𝟎). 

 The sensitivity analysis of the reverse phase scenario (Fig. 7) highlights a crucial difference in the behavior of the 

metric. As the oscillation characteristics change, the magnitude error (RMSE, NRMSE) decreases significantly. MFM is the 

only metric that responds appropriately to this improvement, with its score increasing as the error decreases. Standard metrics 

remain completely insensitive, fixed at their initial low scores. This occurs because KGE and mKGE prioritize the correlation 420 

coefficient (fixed at 𝑟 = −1.0) over the actual error magnitude. MFM, by decoupling phase (via PPF) and magnitude error 

(via NMAEp), provides a more nuanced and reliable assessment. 
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Figure 7. Sensitivity analysis of the reverse phase scenario with decreasing magnitude error. MFM correctly responds to the decreasing 

error, while standard metrics remain insensitive, overly penalized by the constant anti-correlation (𝒓 = −𝟏. 𝟎). 425 

4.4 Performance in real-world catchments 

The application to the CAMELS dataset validates the findings from the synthetic experiments. The spatial distribution of 

scores (Fig. 8a–f) shows general agreement in patterns across all metrics. However, MFM exhibits a much tighter range of 

scores ([0.486, 0.887]) compared to NSE ([-8.43, 0.910]), KGE ([-1.47, 0.948]), and mKGE ([-1.51, 0.948]). The distribution 

of scores (Fig. 8g) highlights the robustness of MFM. MFM scores are centralized, whereas the distributions for standard 430 

metrics are flatter and include extreme negative values. These extreme negative scores often reflect the undue influence of a 

few outliers in low-variability catchments, rather than the overall model performance, confirming the instability issues 

identified in Case 2 (Sect. 3.2.2). 
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Figure 8. Spatial pattern and distribution of metrics across CAMELS dataset. (a)–(f) Spatial representation of MFM, KGE, RMSE, NSE, 435 
mKGE, and NRMSE; (g) Histogram of scores. MFM shows a more centralized distribution, reflecting its robustness. Standard metrics 

exhibit long tails and extreme negative values. 

 We examine two specific catchments to illustrate MFM’s diagnostic capabilities (Fig. 9). Site 05120500 (Fig. 9a) 

represents a low-flow, low-variability catchment (𝜇𝑶 = 0.0877), similar to Case 2 (Sect. 3.2.2). The simulation matches most 

of the observations well, but a single extreme event (April 2009) shows a large overestimation (sim = 34.8 vs obs = 6.3). 440 

This single event dominates the standard metrics, resulting in catastrophic scores (NSE = −8.43, KGE = −1.39). MFM 

(0.600) identifies the model as medium quality, acknowledging the large error but remaining robust. Site 06409000 (Fig. 9b) 

exhibits strong periodicity with a slight phase shift (FFT estimated lag ≈ 1 d), similar to Case 3 (Sect. 3.2.3). This small lag 

heavily penalizes the correlation (𝑟 = 0.677) due to nonlinearity, resulting in poor scores for NSE (-0.164) and KGE (0.438). 

MFM (0.810) identifies the model as good. 445 
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Figure 9. Time series examples from the CAMELS dataset. (a) Site 05120500. Near-constant data with an extreme event, highlighting the 

instability of standard metrics; (b) Site 06409000. Data with a small phase shift but low 𝒓, highlighting MFM’s ability to decouple phase 

and magnitude errors. 

The diagnostic power of MFM is further illustrated by examining its components (Fig. 10). For site 05120500, the 450 

moderate MFM score is primarily driven by the relatively low accuracy (𝜔 = 0.319), reflecting the impact of the extreme 

event on the NMAEp. For site 06409000, the high accuracy (𝜔 = 0.735), the low phase lag (PPF = 0.999), the high variability 

(𝜑 = 0.818), and distribution similarity (𝜂 = 0.929) indicate that the model captures the system dynamics well, resulting in 

an overall good MFM score. This decomposition enables a nuanced understanding of model behavior. 
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 455 

Figure 10. Radar plot illustrating the diagnostic components of MFM for the two example catchments. Site 05120500 shows relatively low 

accuracy (𝝎) due to the extreme event. Site 06409000 shows high accuracy (𝝎) and excellent variability (𝝋) and distribution similarity (𝜼). 

4.5 Sensitivity to hyperparameters 

The sensitivity analysis of MFM’s hyperparameters across the CAMELS dataset demonstrates its robustness to parameter 

choices (Fig. 11). Varying the error exponent 𝑝 from 1.0 to 2.0 (Fig. 11a) results in a decrease in the MFM score, as expected, 460 

because 𝑝 = 2.0 (NRMSE) imposes heavier penalties on large errors compared to 𝑝 = 1.0 (NMAE). The overall distribution 

remains stable with a consistent interquartile range (IQR), indicating that the choice of 𝑝 allows for transparent adjustment of 

sensitivity to outliers without destabilizing the metric. The number of bins for both SUSE (𝑛SUSE, Fig. 11b) and PHI (𝑛PHI, Fig. 

11c) shows a high degree of robustness. Varying the bin count from 5 to 100 has a mild impact on median scores and IQR. 

This suggests that even a coarse discretization (e.g., the default of 10 bins) is sufficient to capture the essential characteristics 465 

of variability and distributional similarity in daily streamflow data. The phase penalty scaling factor (𝑐, Fig. 11d) also shows 

a stable response. As 𝑐 increases from 2 (heaviest penalty) to 10 (lightest penalty), the MFM scores slightly and smoothly 

increase. This indicates that, while 𝑐 adjusts the severity of the phase penalty, it does not fundamentally alter the overall 

assessment of model fidelity. Overall, the sensitivity analysis confirms that MFM is robust to its hyperparameters. The 

parameters provide meaningful, mathematically consistent adjustments to metric sensitivity without inducing volatility or 470 

instability observed in traditional metrics. 
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Figure 11. Sensitivity of MFM scores across the CAMELS dataset to its four hyperparameters. (a) Sensitivity to error exponent (𝒑). MFM 

scores decrease as 𝒑 increases, reflecting a higher penalty for large errors; (b) Sensitivity to bins for SUSE (𝒏SUSE). Scores are stable; (c) 

Sensitivity to bins for PHI (𝒏PHI). Scores are stable; (d) Sensitivity to phase penalty (𝒄). MFM slightly increases as 𝒄 increases. 475 
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5 Discussion 

The systematic failures of NSE, KGE, and mKGE demonstrated in our case studies (Sect. 4.1–Sect. 4.3) are not isolated 

anomalies. They are direct consequences of relying on moment-based statistics (mean, standard deviation, and Pearson 

correlation coefficient) to evaluate LSM data, which are typically non-normal, skewed, and prone to outliers (Mizukami et al., 

2019). The vulnerability to error compensation (Sect. 4.1) highlights the danger of using moment-based statistics. As Cinkus 480 

et al. (2023) argued and our results confirmed, metrics that allow errors to cancel out can reward models that are “right for the 

wrong reasons”. MFM’s immunity to this effect is achieved by grounding its accuracy component (𝜔) in the NMAEp, which 

penalizes errors directly, and its distribution components (𝜑, 𝜂) in non-parametric methods (SUSE, PHI) that compare the 

entire distribution rather than summary statistics. The instability of traditional metrics under low-variability conditions (Sect. 

4.2) underscores the problems inherent in their normalization schemes. When 𝜎𝑶  and 𝜇𝑶  approaches zero, these metrics 485 

become hyper-sensitive to minor fluctuations, leading to erratic and misleading scores. MFM’s architecture, particularly the 

use of SUSE and histogram intersection (PHI), provides a stable assessment across all flow regimes, as these measures are less 

affected by the absolute magnitude or variance of the data. For decades, the LSM community has attempted to improve KGE 

by rearranging or reweighting its components (e.g., Garcia et al., 2017; Pool et al., 2018; Tang et al., 2025). While these 

variants can offer advantages in specific scenarios, certain inherent statistical limitations remain. MFM offers a complementary 490 

perspective, advocating the adoption of robust, information-theoretic methods appropriate to the characteristics of the data 

being evaluated. 

 This study primarily validates MFM using streamflow discharge, but its theoretical framework is designed for more 

LSM cases. Land surface variables, such as soil moisture, latent heat flux, and evapotranspiration, frequently exhibit 

periodicity, threshold behaviours, and high skewness. To address low-flow failure, traditional metrics such as NSE and KGE 495 

require a logarithmic transformation, which can introduce additional biases (Pushpalatha et al., 2012; Santos et al., 2018). In 

contrast, non-parametric components enable MFM to robustly quantify accuracy, variability, and pattern reproduction. This 

capacity makes MFM valuable for multivariate LSM evaluation. 

 We do not advocate for the immediate abandonment of NSE and KGE. These legacy metrics are deeply embedded in 

the LSM literature and major intercomparison projects (e.g., CMIP6; Eyring et al., 2016), serving as a necessary benchmark 500 

for historical comparison. However, it is crucial to distinguish between metrics used for calibration optimization and those 

used for holistic model evaluation. KGE was originally designed to balance trade-offs during calibration (Gupta et al., 2009). 

While KGE’s use as an overall evaluation metric is problematic, MFM offers a robust alternative for both purposes. MFM can 

serve as the objective function for calibration, or its components can be used within a multi-objective optimization framework 

to achieve a balanced model performance. When comprehensive evaluation is the goal, especially under complex or extreme 505 

conditions, MFM provides a more authentic and reliable assessment. We recommend that researchers report MFM alongside 

traditional metrics to provide a more complete picture of model fidelity and to facilitate the transition towards more robust 

evaluation practices. 
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 The calculation of MFM (involving FFT, entropy estimation, and histogram) is computationally more intensive than 

KGE or NSE. This may pose a challenge for applications that require millions of model evaluations, such as intensive Monte 510 

Carlo simulations or complex optimization routines. While the sensitivity analysis (Sect. 4.5) demonstrated MFM’s robustness 

to its hyperparameters (𝑝, 𝑛SUSE, 𝑛PHI, 𝑐), the choice of these parameters still requires user consideration based on the specific 

application and data characteristics. A critical direction for future work is the integration of uncertainty estimation. A metric 

score is only meaningful if its statistical reliability is understood (Schaefii and Gupta, 2007). The reliance on observational 

data, which often contains significant uncertainty, further complicates model evaluation (Moriasi et al., 2007; Refsgaard et al., 515 

2007). We have integrated MFM within uncertainty estimation frameworks, such as the gumboot package (Clark et al., 2021) 

and the Open Source Land Surface Model Benchmarking System (OpenBench, Wei et al., 2025), to provide confidence 

intervals for MFM scores. This will enable a more rigorous assessment of model performance, moving beyond deterministic 

scoring towards a probabilistic evaluation (Vrugt et al., 2022). 

6 Conclusion 520 

Evaluating LSMs requires metrics that are robust, diagnostic, and reliable across diverse conditions. Traditional metrics like 

NSE and KGE, while widely used, have fundamental flaws stemming from their reliance on moment-based statistics that are 

ill-suited to the non-normal, skewed nature of LSM data. These flaws can lead to error compensation, instability in low-

variability conditions, and inadequate treatment of phase errors, resulting in misleading model evaluations. To address these 

fundamental limitations, we introduced the MFM, a comprehensive performance criterion derived from first principles, 525 

employing robust statistics and information theory. MFM fundamentally reconstructs the evaluation framework, replacing 

KGE’s components with three orthogonal dimensions of model fidelity. It integrates a robust measure of accuracy (NMAEp) 

penalized by timing errors (PPF), captures variability using information entropy (SUSE), and assesses distribution similarity 

nonparametrically (PHI). Through targeted synthetic experiments and application to the CAMELS dataset, we demonstrated 

that MFM provides a more authentic and reliable assessment of model performance than traditional metrics. MFM is immune 530 

to error compensation, remains stable under low-variability conditions in which NSE and KGE fail, and provides powerful 

diagnostic insights by decomposing performance into its core components. MFM represents a significant advancement in 

LSMs evaluation. We advocate a transition from the community’s reliance on traditional metrics toward more robust, 

diagnostic frameworks, for which MFM serves as a powerful, reliable alternative, supporting the development of more 

trustworthy LSMs. 535 

Code and data availability 

The CAMELS dataset used in this study is available at https://zenodo.org/records/15529996 (last access: 24 June 2022) 

(https://doi.org/10.5065/D6MW2F4D, Newman et al., 2022). The MFM and case studies code are available at 

https://doi.org/10.5194/egusphere-2025-6212
Preprint. Discussion started: 27 December 2025
c© Author(s) 2025. CC BY 4.0 License.



25 

 

https://github.com/wuzezhen5577/Model-Fidelity-Metric/tree/1.0.0 (last access: 1 December 2025) (Wu, 2025). MFM has 

been integrated into OpenBench and is available at https://github.com/zhongwangwei/OpenBench (last access: 30 November 540 

2025) (Wei, 2025). 
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