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Abstract. The accurate evaluation of Land Surface Models (LSMs) is fundamental to their development and application.
However, standard metrics such as the Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) possess well-
documented shortcomings. Relying on moment-based statistics such as mean, variance, and correlation often falls short for
land surface modelling data, which are typically non-normal and skewed. These metrics can be misleading due to issues such
as error compensation, instability when variability is low, and the confusion of magnitude and phase errors, leading to
inaccurate model assessments. To address these fundamental flaws, we propose the Model Fidelity Metric (MFM), a novel
evaluation framework constructed using robust statistics and information theory. MFM integrates three orthogonal dimensions
of model performance within a Euclidean framework, including 1) Accuracy, which measure by the robust Normalized Mean
Absolute p-Error (NMAEp) and penalized for timing issues via a Phase Penalty Factor (PPF); 2) Variability, quantified using
the information-theoretic Scaled and Unscaled Shannon Entropy differences (SUSE); and 3) Distribution Similarity, assessed
non-parametrically using the Percentage of Histogram Intersection (PHI). We evaluated MFM against with traditional metrics
using targeted synthetic experiments and the large-sample CAMELS dataset. Our results demonstrate that MFM provides a
more authentic and reliable assessment of model fidelity. MFM proved immune to error compensation effects that mislead
KGE and remained stable in low-variability scenarios where NSE and KGE fail. Furthermore, MFM provides superior
diagnostic capabilities by decoupling phase and magnitude errors and decomposing performance into its core components.
This work highlights the need to move beyond traditional moment-based metrics. We advocate adopting robust, diagnostic

frameworks such as MFM to support the development of more trustworthy LSMs.

1 Introduction

Land surface model (LSM) performance metrics serve as the foundation for model evaluation, calibration, parameter
optimization, and intercomparison studies (Clark et al., 2021; Gupta et al., 2009). LSMs produce outputs such as latent heat
flux, soil moisture, and runoff. They form the core of the Earth System Models (ESMs) and Numerical Weather Prediction
(NWP) systems (Dai et al., 2003). Accurate modelling is critical for climate projection, extreme event forecasting, and water

resource management (Best et al., 2011). By condensing the complex, high-dimensional relationship between observed and
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simulated time series into a single numerical score, these metrics enable objective model assessment and facilitate decision-
making in water resources management, flood forecasting, and climate impact studies (Mizukami et al., 2019). The choice of
performance metric highly affects model development trajectories, shapes our understanding of land surface processes, and
ultimately determines the reliability of model-based predictions (Cinkus et al., 2023).

The evolution of LSM metrics began with simple error measures like the Root Mean Square Error (RMSE), which

calculates the Euclidean distance between simulations (S) and observations (0)

RMSE = |Z6iz00% (1)
n

Recognizing the limitations of scale-dependent of RMSE, Nash and Sutcliffe (1970) introduced the Nash-Sutcliffe
Efficiency (NSE), which has become the standard for LSM evaluation:

(RMSE)?
2

NSE =1 — : )

90

where gy is the standard deviation of observations (Nash and Sutcliffe, 1970). NSE provides a dimensionless indicator of
model skill relative to a mean benchmark. Despite its widespread adoption, NSE has significant shortcomings. Its quadratic
form makes it highly sensitive to outliers and can lead to controversial conclusions (Gupta et al., 2009; Legates and McCabe,
1999).

To address these shortcomings, Gupta et al. (2009) proposed the Kling-Gupta efficiency (KGE). KGE provides a
more balanced assessment by decomposing performance into three distinct components within a Euclidean distance from their

ideal values:

KGE=1- (-2 +(2-1) +(B-1) = 1- G- D7+ @ DZ+ (B~ 1% 3)

where r is the Pearson correlation coefficient, a is the relative variability, § is the bias ratio. Together, NSE and KGE now
dominate the land surface modelling literature, serving as the primary criteria for model calibration and performance
assessment across diverse applications and geographical regions (Knoben et al., 2019; Pool et al., 2018). Their widespread
adoption has established them as a universal method for assessing model performance, as evidenced by numerous studies,
operational systems, and extensive model comparison initiatives such as the Coupled Model Intercomparison Project Phase 6
(CMIP6; Eyring et al., 2016).

However, recent research has increasingly highlighted fundamental flaws in both the NSE and KGE frameworks,
challenging their reliability as comprehensive indicators of model fidelity (Cinkus et al., 2023; Clark et al., 2021; Schaefii and
Gupta, 2007). These limitations are not merely theoretical concerns but also lead to systematic biases in model selection,
misleading performance rankings, and potentially incorrect conclusions about model skill across different land surface
modelling regimes (Klotz et al., 2024; Knoben et al., 2025). One of the most serious failures of KGE is that its vulnerability

to error compensation, in which opposing errors across different parts of a time series cancel each other out, yielding
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misleadingly favorable scores. Cinkus et al. (2023) demonstrated this phenomenon through systematic synthetic experiments,
showing that KGE can assign higher scores to models that simultaneously overestimate and underestimate discharge compared
to models with consistent but unidirectional errors. This behavior occurs since KGE’s variability parameter (a) and bias
parameter () are based on moment-based statistics (mean and standard deviation, see Eq. (3)). These statistics are most
effective for normally distributed data. However, when applied to non-normal, heavy-tailed, and skewed distributions common
in land surface modelling data, these statistics are highly sensitive to outliers and do not accurately reflect the true
characteristics of the system (Fu and Zhang, 2024; Mizukami et al., 2019). Since these two components typically account for
two-thirds of the weight in KGE formulations, error compensation effects can dominate the overall score, rewarding models
for being “right for the wrong reasons” (Cinkus et al., 2023). Cinkus et al. (2023) tested 130321 synthetic hydrographs
subjected to controlled transformations to assess their impact across nine performance metrics. They discovered that the
standard KGE and its variants (mKGE, KGE', KGE") were all highly responsive to these balancing errors. Their analysis
showed that models with lower actual skill often scored higher on KGE because of coincidental error cancellation. This
fundamental problem questions KGE’s validity as a full performance measure and casts doubt on studies that mainly depend
on KGE-based evaluations.

Clark et al. (2021) emphasized a significant vulnerability, namely the high sampling uncertainty in NSE and KGE,
which is caused by the heavy-tailed distribution of squared errors. Analysis of 671 catchments from the Catchment Attributes
and Meteorology for Large-sample Studies (CAMELS) dataset showed that performance metric scores are significantly
affected by a limited number of extreme data points, with fewer than 0.5 % of simulation-observation pairs accounting for 50 %
of the sum-of-squared errors (Clark et al., 2021). This high sensitivity to outliers leads to considerable sampling variability,
with 90 % tolerance intervals for NSE and KGE exceeding 0.1 in more than half of the catchments examined, suggesting that
performance differences below this threshold may be statistically insignificant. The sampling uncertainty problem becomes
particularly acute in arid regions and during low-flow conditions, where near-zero observed flows in the denominator render
NSE and KGE numerically unstable (Santos et al., 2018). Under these conditions, a single outlier can cause the metric to shift
from near ideal to very negative, making these metrics unreliable for comparing models. This instability suggests practical
implications for model choice and water management, especially in water-scarce areas where precise low-flow predictions are
vital (Pool et al., 2018).

Similar issue occurs for NSE metrics. Despite NSE’s squared-error formulation, which theoretically emphasizes large
errors, Mizukami et al. (2019) found that NSE-based calibration systematically underestimates annual peak flows by more
than 20 % at median values across 492 hydrologically unregulated catchments in the contiguous United States. This interesting
finding arises because NSE tends to underestimate observed flow variability. While KGE partially addresses this issue by
explicitly including a variability ratio term («), both metrics struggle to represent model accuracy, which is critical for flooding
risk assessment (Williams, 2025).

Nevertheless, a fundamental weakness shared by both NSE and KGE is their reliance on Pearson’s correlation

coefficient (1), which assumes linear relationships and is designed for normally distributed data. Hydrological time series,
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especially daily streamflow, often show highly skewed, non-normal distributions with high coefficients of variation (Bhatti et
al.,2019). For such data, Pearson’s r is severely upward-biased and highly variable, making it an unreliable measure of model-
observation agreement. Barber et al. (2020) demonstrated this issue across 905 calibrated rainfall-runoff models,
recommending alternative correlation measures such as Spearman’s rank correlation or log-transformed correlation that are
more robust to non-normality and outliers. Furthermore, the correlation component in KGE conflates magnitude errors with
timing errors, creating a “double penalty” problem (Cinkus et al., 2023; Mathevet et al., 2020; Santos et al., 2018). A simulation
that accurately reproduces the magnitude and shape of a hydrograph but is slightly shifted in time will be severely penalized
in both the correlation term and the point-wise error metrics. Despite this, it remains structurally sound and potentially useful
for many applications (Liu et al., 2011; Magyar and Sambridge, 2023). This issue becomes particularly problematic when
evaluating models with uncertain timing of forcing data. It also affects routing-dominated systems, where even slight temporal
misalignment is problematic.

Land surface variables such as soil moisture, latent heat flux, and evapotranspiration exhibit highly skewed non-
normal distributions. These non-Gaussian characteristics violate the normality assumptions in moment-based metrics.
Evaluation based on KGE and NSE, facing problems mentioned above, may result in biased performance assessments.
Therefore, a non-parametric, robust, and diagnostic framework is required to accurately evaluate model fidelity across these
variables.

Recognizing the limitations of variance-based statistical measures, LSM researchers have increasingly turned to
information theory as an alternative framework for model evaluation. Shannon entropy quantifies the uncertainty or
information content of a probability distribution in a nonparametric manner, making it naturally suited to characterizing the
highly skewed, non-normal distributions typical of hydrological data (Pechlivanidis et al., 2014). Unlike standard deviation,
which is dominated by extreme values and susceptible to error compensation, entropy captures the entire shape of the
probability distribution and provides a robust measure of system variability and complexity. Pechlivanidis et al. (2010)
proposed the Scaled and Unscaled Shannon Entropy differences (SUSE) measure for hydrological and land surface models
evaluation. By computing entropy differences using both common bins (scaled entropy) and individual bins (unscaled entropy),
SUSE provides a comprehensive assessment of distributional similarity that is immune to the compensating errors that plague
variance-based metrics. Their multi-objective calibration framework combining SUSE with traditional metrics achieved
superior performance compared to single-objective or conventional multi-objective approaches by extracting complementary
information from different flow regimes (Pechlivanidis et al., 2014). Most recently, Pizarro et al. (2025) developed the Ratio
of Uncertainty to Mutual Information (RUMI) metric, which integrates Shannon entropy with uncertainty quantification from
the BLUECAT method (Koutsoyiannis and Montanari, 2022). Testing across 99 Chilean catchments spanning diverse
macroclimatic zones, RUMI-based simulations outperformed KGE in 82 % of 50 hydrological signatures analyzed, with
notably lower variability in both calibration and validation periods. This success highlights the practical benefits of
information-theoretic methods for uses. It also integrates confidence intervals directly into the evaluation process, rather than

treating them as an afterthought.
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Histogram-based comparison methods offer another promising avenue for robust model evaluation. The Percentage
of Histogram Intersection (PHI), originally developed for color indexing in computer vision (Swain and Ballard, 1991),
measures the overlap between two probability distributions in a nonparametric manner. By comparing entire distributions bin-
by-bin rather than relying on summary statistics like means or standard deviations, PHI captures the full statistical signature
of model performance without making assumptions about data normality or stationarity. This distribution-matching approach
is particularly relevant for LSM evaluation because it naturally handles multimodal distributions, captures extreme-value
behavior, and is invariant to monotonic transformations. Unlike KGE’s bias term (f), which reduces the entire distributional
comparison to a single ratio of means, PHI assesses whether the model reproduces the complete frequency distribution of
observed flows from low flows to extreme peaks. This comprehensive assessment is essential for models intended to support
diverse management objectives, from drought planning to flood protection.

A growing body of research emphasizes the importance of distinguishing temporal misalignment from amplitude
errors in model evaluation. Liu et al. (2011) demonstrated using wavelet transform analysis that timing errors and magnitude
errors often arise from different sources (e.g., routing inaccuracies versus rainfall-runoff process representation) and should
therefore be evaluated separately. Their wavelet-based timing adjustment reduced root mean square error (RMSE) from 31.4
to 18.9 m®s™! and increased correlation from 0.67 to 0.94 for synthetic examples, showing that traditional metrics severely
penalize timing-shifted simulations even when the magnitudes are accurate. More recently, the Wasserstein distance (Magyar
and Sambridge, 2023), a metric derived from optimal transport theory, was introduced as a LSM objective function that
inherently accommodates timing errors by comparing mass distributions rather than point-wise differences. Wasserstein
distance addresses the “double penalty” problem by measuring the minimum effort required to transform one distribution into
another, accounting for spatial and temporal displacement of features. While computationally more intensive than traditional
metrics, Wasserstein distance provides superior performance when displacement errors are present, a common situation in land
surface modelling due to uncertainties in rainfall timing and routing processes.

In summary, the evidence presented above reveals a clear need for performance metrics that (1) are unaffected by
error compensation effects, (2) remain stable and reliable in low-variability conditions, (3) robustly address non-normal, heavy-
tailed distributions typical of LSM data, (4) separate timing errors from magnitude errors, and (5) offer diagnostically
meaningful decomposition to aid model improvement. To address these requirements, we propose the Model Fidelity Metric
(MFM), a comprehensive performance criterion built on three orthogonal components grounded in robust statistics and
information theory. MFM integrates four fundamental aspects of model performance:

1. Normalized Mean Absolute p-Error (NMAEp): A flexible, robust measure of overall simulation accuracy based on L,-
norm, which is inherently immune to error compensation. It allows transparent control over sensitivity to outliers through
the exponent parameter p without introducing arbitrary component weighting.

2. Scaled and Unscaled Shannon Entropy Difference (SUSE): A nonparametric measure of variability and information
content that is robust to extreme values, directly addressing the fundamental flaws in KGE’s a parameter (Pechlivanidis

etal., 2014).
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3. Percentage of Histogram Intersection (PHI): A distribution similarity metric that compares entire probability distributions
without parametric assumptions, replacing KGE’s problematic bias term with a comprehensive assessment of statistical
signature reproduction.

4.  Phase Penalty Factor (PPF): A spectral-analysis-based quantification of timing errors that scales the magnitude error
appropriately rather than treating phase misalignment as an independent component, avoiding the double-penalty
problem inherent in correlation-based metrics.

These four components are combined into a single dimensionless score using a Euclidean distance framework similar to KGE.

PPF is incorporated as a scaling factor within the accuracy component based on the geometric relationship between timing and

magnitude errors.

To provide a detailed introduction to MFM, the remainder of this paper is organized as follows: Section 2 presents

the theoretical foundation and mathematical formulation of MFM, including a detailed justification for each component and a

comparison with traditional metrics. Section 3 describes our synthetic experiments and real-world application methodology,

including the selection of the CAMELS dataset. We tested MFM using runoff data to measure land surface variables with
standard metrics, ensuring broad applicability. Section 4 presents results from both synthetic tests and real catchment
applications, demonstrating MFM’s advantages and limitations. Section 5 discusses practical implications, computational

considerations, and future research directions. Section 6 provides concluding remarks and recommendations for the community.

2 Rationale and formulation of MFM

The development of the MFM is driven by the desire to go beyond the limits of traditional metrics that mainly depend on
moment-based statistics. We propose a framework that leverages robust statistical techniques and information theory to provide
a more genuine evaluation of model performance. This approach is especially helpful for the non-normal, skewed data often

seen in land surface modelling.

2.1 Principle for robust metric design

We adhere to the three principles introduced earlier: Holistic Representation, Immunity to Error Compensation, and Statistical
Robustness. To achieve this, MFM fundamentally replaces the components of KGE (a, 5, and r) with alternatives grounded
in robust statistics and information theory. As mentioned before, KGE evaluates performance by comparing summary statistics
(mean, standard deviation, and linear correlation). This approach is efficient for normally distributed data but is susceptible to
the flaws discussed previously. In contrast, MFM is based on nonparametric and robust measures. It evaluates the time series
through three dimensions: (1) overall accuracy using a generalized error norm penalized by phase shifts; (2) variability using

Shannon entropy; and (3) distribution similarity by directly comparing probability distributions.
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2.2 Revisiting model performance components

We systematically reconstruct the evaluation framework by addressing the flaws in KGE’s components and proposing robust

alternatives.

2.2.1  Quantifying accuracy and decoupling phase errors

In the KGE framework, the Pearson correlation coefficient (1) is intended to capture temporal synchronization. However, r
measures only linear covariation, not agreement (Legates and McCabe, 1999). Critically, it conflates magnitude errors with
phase (timing) errors, as mentioned before. We argue that overall accuracy (magnitude error) and phase error must be
decoupled. MFM addresses this by introducing two separate measures, i.c., the Normalized Mean Absolute p-Error (NMAEp)
for accuracy, and the Phase Penalty Factor (PPF) to account for timing issues.

To quantify overall accuracy robustly, we introduce NMAEp, based on the generalized L,-norm:

1

NMAEp = (E2E)7 /. )
The exponent parameter p controls the metric’s sensitivity to error magnitude. When p = 1, NMAEp is equivalent to the
Normalized Mean Absolute Error (NMAE), which is relatively robust to outliers. When p = 2, it is equivalent to the
Normalized Root Mean Square Error (NRMSE), which emphasizes large errors. The flexibility of the L,-norm provides a
significant advantage over the ad-hoc component weighting often used in multi-objective frameworks (e.g., arbitrarily
doubling the weight of the bias term in KGE). Such arbitrary weighting lacks mathematical justification and renders metrics
incomparable. In contrast, adjusting p represents a mathematically consistent redefinition of the error distance within the L,
space, allowing users to adjust sensitivity while maintaining the metric’s structural integrity transparently.

Standard error metrics often misinterpret a temporal mismatch (phase shift) between simulations and observations.
As illustrated in Fig. 1, an instantaneous error metric measures the vertical distance d; = |S; — 0;|. However, the magnitude
error corrected for an optimal time lag k would be d, = |S;,x — 0;]. While time series realignment could find d,, it would
destroy the temporal structure of the simulation. Instead, we propose to approximate the phase-corrected error geometrically.

As suggested by the geometry in Fig. 1, the relationship can be approximated as:

dq

Sdy ~ T )

This indicates that the phase difference acts as a scaling factor on the magnitude error, rather than an independent component
of model performance. This is further supported by the observation that histogram-based components (discussed below) are

invariant to the temporal ordering of the data.
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Figure 1. Geometric interpretation of the relationship between instantaneous error (d ), phase-corrected error (d3), and phase shift (8). This
illustrates how phase differences inflate perceived magnitude errors, thereby justifying treating phase shift as a penalty factor (PPF) applied
to the accuracy component.

To quantify this scaling, we first identify the dominant phase lag (6,,4) between the simulated and observed time
series. This is achieved by applying the Fast Fourier Transform (FFT) to both series and determining the phase angle at the
frequency corresponding to the maximum power in the cross-power spectrum. We then define the Phase Penalty Factor (PPF)

using the cosine function, which naturally ranges from 1.0 (zero lag, no penalty) to lower values as the lag increases:

PPF = cos (elag)’ (6)

o
where 0,4 is the dominant phase lag in radians [—, 7r]. The scaling parameter (¢ > 2) is introduced to control the sensitivity

of the penalty and to avoid singularity (PPF = 0), if the lag approaches +m/2. A smaller ¢ imposes a heavier penalty, while a

larger ¢ minimizes the impact of phase shift.

2.2.2  Capturing variability using information theory

KGE measures variability using the ratio of standard deviations (a = gg/0y). The standard deviation is a robust measure of
spread only for normal distributions. For skewed LSM data, it is highly sensitive to outliers and prone to error compensation.
In other words, a model can achieve a perfect @ = 1 result by simultaneously overestimating and underestimating flows.

To overcome this, we utilize Shannon entropy from information theory to quantify the intrinsic uncertainty and
dispersion of the data (Pechlivanidis et al., 2010). Entropy is a non-parametric measure that characterizes the shape of the
probability distribution, regardless of its skewness or modality. Shannon entropy (H) is calculated from a discrete probability

distribution P, obtained by binning the time series data into ngygg bins:
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H(P) = = 2,27 py. log(pi) ()

where py, is the probability of the data falling into the k-th bin. Entropy differences can be misleading if the ranges of the
simulated and observed data differ significantly. Therefore, we adopt the Scaled and Unscaled Shannon Entropy differences
(SUSE), which considers both the overall range and the internal shape of the distributions.

First, the scaled Shannon Entropy Difference (SEDj,cq) is calculated by binning both time series using a common

range from min (S, 0) to max (S, 0).

SEDscaled = |HS,scaled - HO,scaled|~ (8)

Second, the unscaled Shannon Entropy Difference (SED pqcateq) 18 calculated by binning the time series over their respective
ranges (or normalizing them first). This measures the dissimilarity of the distributions’ internal shapes, independent of their

absolute magnitudes.

SEDunscaled = |HS,unscaled - HO,unscaled|' (9)

The SUSE component is defined as the maximum of these two values:
SUSE = max (SEDscaleds SEDunscaled)' (10)

This ensures that the metric captures discrepancies in either the range or the shape of the variability. The number of bins (ngysg)

serves as a sensitivity parameter, enabling comparisons across different resolutions.

2.2.3 Nonparametric assessment of distribution similarity

KGE’s bias term (f = pug/1g) assesses the central tendency by comparing means. For non-normal streamflow data, the mean
is a non-robust statistic, heavily influenced by extreme events and highly susceptible to error propagation. To provide a more
comprehensive assessment of distribution similarity, we employ the Percentage of Histogram Intersection (PHI; Swain and
Ballard, 1991). PHI is a nonparametric statistic that measures the overlapping area between the normalized probability

distributions (histograms) of the simulated and observed data, binning the time series data into npy; bins:
PHI = X, 2 min(Pg k., Po i), (1D

where P, and Py are the probabilities of the simulated and observed data falling into the k-th bin, respectively. PHI ranges

from 0 (no overlap) to 1 (identical distributions). It provides a bin-by-bin assessment of the model’s ability to reproduce the

complete statistical signature of the observed data.
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2.3 MFM integration and interpretation

MFM integrates the four components (NMAEp, PPF, SUSE, PHI) into a three-dimensional Euclidean framework. To ensure
commensurability, each dimension is normalized to [0, 1], where 1.0 represents the ideal value. We use the exponential
transform for error and entropy components, as it provides natural and bounded normalization from [0, o) to (0, 1].

The three dimensions of MFM are defined as:

1. Accuracy with phase penalty (w):
w = PPF X e "NMAEP = (qg (91%) x e NMAEp, (12)

This component integrates magnitude error and timing accuracy.

2. Variability (¢):
@ = e SUSE, (13)

This component represents the similarity in information content and dynamic range.

3. Distribution similarity (n):
n = PHL (14)

This component represents the degree of congruence between the probability distributions.
The final MFM score is calculated as 1.0 minus the normalized Euclidean distance from the ideal point (1, 1, 1) in

this three-dimensional space:

_ Jw-1)2+(p-1)2+(n-1)% _ 1— dist((w, @, 7),(1, 1, 1)

MFM = 1 = - (15)

The distance is normalized by V3 (the maximum possible distance from (0, 0, 0) to (1, 1, 1)) to ensure that MFM is strictly
bounded within the range [0, 1]. An MFM score of 1.0 is achieved if and only if the simulation perfectly matches the
observation in magnitude, timing, variability, and distribution. The decomposition into w, ¢, and n provides powerful

diagnostic capabilities, allowing users to identify specific aspects of model failure.

3 Experimental design and datasets

To evaluate the robustness and diagnostic capabilities of MFM, we designed a series of experiments that compared its
performance with established metrics. These experiments include targeted synthetic case studies designed to isolate known
failure modes of traditional metrics, as well as an actual application using a large-sample hydrological dataset. Furthermore,

we conduct a sensitivity analysis of MFM’s hyperparameters.

10
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3.1 Benchmark metrics

We compare MFM against the following standard metrics, including NSE (Eq. (2)), KGE (Eq. (3)), and modified KGE (mKGE,
Kling et al. (2012)), which modifies the relationship between the variability and bias terms:

mKGE=1—\/(r—1)2+(%—1)2+(,8—1)2. (16)

Additionally, we include RMSE (Eq. (1)) and Normalized RMSE (NRMSE, NRMSE = RMSE / ug) as direct benchmarks
of error magnitude.

For all MFM calculations in case studies (Sect. 4.1 - Sect. 4.4), we use the default hyperparameters: p = 1 (using
NMAE for robustness), ngygg = npy; = 10 for both SUSE and PHI (providing a coarse-grained distribution comparison), and

¢ = 4 for the PPF (providing a moderate phase penalty).

3.2 Synthetic case studies

We designed three synthetic scenarios targeting specific metric failures.

3.2.1 Case 1: Error compensation

This case tests a metric’s ability to avoid rewarding models where overestimation cancels out underestimation, a failure mode
identified by Cinkus et al. (2023). We utilized a real streamflow time series (ID 01013500) from the CAMELS dataset (Addor
et al., 2017) and duplicated it to create a double-length observation series (0). Two synthetic simulations are generated: (1)
Bad-Good (BG) model: The first half is biased (S; = k; X 0;), and the second half is perfect (S; = 0;); (2) Bad-Bad (BB)
model: The first half has the same bias as BG (S; = k; X 0;), and the second half has a compensating bias (S; = k, X 0;). We
first test the scenario where k; = 1.25 and k, = 0.75. Since the errors are purely proportional, the Pearson correlation (r) is
1.0 for both models, isolating the effects of the a and f components in KGE/mKGE. To test the sensitivity across different

error magnitudes, we vary a scaling parameter k (from 1 to 50) and redefine the models such that the errors decrease as k

. k+1 k+1 k-1
increases: (1) BG model: Sfirst = “k Ofirsts Ssecona = Osecona- and 2) BB model: Sfirst = Tofirsts Ssecond = “® Osecona-

We analysed the score difference (BG score — BB score) to determine if the metric correctly identifies BG as superior (positive

difference).

3.2.2  Case 2: Stability in near-constant conditions

This case tests the stability of metrics under low-variability conditions, where normalization by small g, or g can lead to
erratic scores (Santos et al., 2018). We construct a time series of length 100 where the first 99 steps are a perfect match (S; =
0; = 1). We then introduce a small perturbation at the final time step (i = 100), with (1) Scenario A (anti-phase outlier):

S100 = 1.01, 099 = 0.99 and (2) Scenario B (in-phase outlier): S;5o = 1.01, 0199 = 1.03. In both scenarios, the overall error

11
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magnitude (RMSE) is identical and negligible. We further test the sensitivity by iteratively increasing the magnitude of the
outliers in both scenarios over 51 steps (k ranges from 0 to 50) observing the trajectory of the metrics: (1) Scenario A (anti-
phase outlier): S;50 = 1.01 + k£/100, 0,99 = 0.99 — k/100; (2) Scenario B (in-phase outlier): S;oo = 1.01 + k/100, O,y =
1.03 + k/100.

3.2.3 Case 3: Phase and error decoupling

This case examines how metrics balance phase errors versus magnitude errors. We design three distinct scenarios that yield
the same RMSE (1.0) and NRMSE (= 1.0), but represent fundamentally different types of model failure: (1) Scenario A

(extreme event): Near-constant data (S; = 0; = 1.0 for the first 99 steps) with a single large mismatch at the end (S;y9 = 12,

cos(im)
2

cos(im)

0100 = 2); (2) Scenario B (anti-phase): A perfectly anti-phase oscillation (r = —1.0): §; = + 1,000 = S T 1;

3) Scenario C (simulation failure): Perfect phase (r = 1.0) but large constant bias: S; = % +2,0;, = Colsgl:)

+ 1. We also

conduct a sensitivity analysis on the reverse phase scenario (Scenario B) by varying the frequency parameter j (from 1 to 50)

cos(im)

_ cos(im)

in the equation: S; = +1,0; = + 1. This gradually changes the error characteristics, allowing us to observe

how metrics respond to changes in error while a constant phase error (r = —1.0) remains.

3.3 CAMELS dataset

We apply MFM and the benchmark metrics to the CAMELS dataset (Addor et al., 2017), using the Daymet forcings and
corresponding streamflow observations. The CAMELS dataset is a large-sample, publicly available dataset that provides
attributes and meteorological forcing for 671 catchments across the contiguous United States, specifically compiled to support
the development and evaluation of hydrological and land-surface models. The Daymet dataset provides daily meteorological
forcing for CAMELS. Daymet catchments have continuous runoff data spanning 34 years from 1980 to 2014, with the effects
of human activity can be ignored. The model output runoff data for CAMELS were generated using a coupled model consisting
of the Snow-17 and SAC-SMA models (Addor et al., 2017; Newman et al., 2015). For this study, we selected the model output
files corresponding to a starting seed of 05 for consistency. We analysed daily data from 1 October 1980 to 31 December 2014.
We adopted the validation criteria used by Clark et al. (2021), which states that a catchment is valid if it contains at least 10
valid years with at least 100 days of positive discharge each. We analysed the spatial distribution of the scores and examined

specific catchments that highlight the diagnostic differences between the metrics.

3.4 Hyperparameter sensitivity analysis

To evaluate the robustness of the MFM with respect to its user-defined hyperparameters, a sensitivity analysis was conducted
on four primary parameters: 1) Error exponent (p), varied from 1.0 (corresponding to NMAE) to 2.0 (corresponding to NRMSE)

to examine the sensitivity to outliers; 2) Number of bins, varied from 5 to 100 for both SUSE (ngygg) and PHI (npy;) to assess
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the impact of distribution discretization resolution; 3) Phase penalty scaling factor (c), varied from 2 (indicating a heavy
penalty) to 10 (indicating a light penalty) for the PPF. We perform this analysis using the CAMELS dataset results, calculating
the MFM score distributions across all catchments for different parameter combinations. We analysed score variance to

determine the impact of parameter choice on overall evaluation outcomes.

4 Results
4.1 Immunity to error compensation (Case 1)

The error compensation test (Case 1) reveals a failure in KGE and mKGE. In the initial scenario (k; = 1.25, k, = 0.75), both
KGE and mKGE assign higher scores to the BB model than to the objectively better BG model (Fig. 2a). In contrast, MFM
and NSE correctly identify the BG model as superior. The reason for this failure is evident in the KGE components (Fig. 2b).
The compensating errors in the BB model (underestimation followed by overestimation) artificially pull its mean (ug) and
standard deviation (o) closer to the observed values. Consequently, the BB model achieves a and [ values closer to the ideal
(1.0) than the BG model. KGE and mKGE, by design, reward this statistical compensation. MFM and NSE, which incorporate
direct error magnitude terms (NMAEp and RMSE?, respectively), are immune to this effect, as larger errors are always

penalized more heavily, regardless of cancellation elsewhere in the time series.

(a) Goodness-of-fit (b) Error and components
MFM A e—O RMSE - o—=e
NSE - e—O NRMSEq O—@
KGE-{ © ® alpha - @O
mKGE A . O—. . . beta . ' | .—O
0.80 085 090 0095 1.00 02 04 0.6 0.8 1.0 1.2

O BG model ® BB model

Figure 2. Error compensation results (k; = 1.25, k; = 0.75). (a) Goodness-of-fit scores. KGE and mKGE incorrectly prefer the BB
model, while MFM and NSE correctly identify the BG model; (b) Error benchmarks and KGE components. The BB model’s a and f8 are
misleadingly closer to 1.0.

The sensitivity analysis across varying error magnitudes (Fig. 3) confirms the persistence of this failure. MFM and
NSE consistently show a positive difference in scores, favoring the BG model. KGE remains negative, always rewarding the

BB model. mKGE succeeds only at the most extreme scaling (k = 1 and k = 2) and fails in all other scenarios. This
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demonstrates that metrics relying on aggregate statistics (e.g., mean, standard deviation) for assessing bias and variability are

inherently unreliable when error compensation occurs.

08/ | —— MFM  —-- KGE
= NSE mKGE
2 0.61
=
1 04'
®
3 0.2
O N
“0.0- . e

Scaling parameter

Figure 3. The difference in goodness-of-fit with different scaling parameters. The trend of metrics when the error decreases. MFM and NSE
correctly distinguish BG model, while KGE fails every test. The mKGE, however, only correctly identifies the BG model when the error is
large enough and fails immediately as the error shrinks.

4.2 Stability under low-variability conditions (Case 2)

The near-constant condition test (Case 2) highlights the instability of traditional metrics. In Scenario A (Fig. 4a), where a
single anti-phase outlier exists, the RMSE (0.002) and NRMSE (0.002) indicate a near-perfect simulation (>99.8 % accuracy).
However, NSE (-3.04), KGE (-1.00), and mKGE (-1.00) report a failure. This instability arises because the standard deviation
(09) and mean (pgo) of the observations are very small, thereby amplifying the impact of single-point errors in their
normalization schemes. MFM provides a score of 0.830. This score is not near 1.0 because the PPF component successfully
identified the phase reversal at i = 100 and applied a penalty. If the phase penalty is disabled (PPF = 1.0), the MFM score
increases to 0.994, indicating an excellent magnitude match. This demonstrates MFM’s stability and diagnostic capability
when traditional metrics fail.

In Scenario B (Fig. 4b), where the outlier is in-phase and magnitude errors change slightly (RMSE = 0.002,
NRMSE = 0.00199), the traditional metrics recover somewhat (NSE = 0.551, KGE = 0.333, mKGE = 0.333), illustrating
their volatility. MFM reports a near-perfect score (0.994), indicating the simulation’s high fidelity.
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Figure 4. Stability test under near-constant conditions. (a) Scenario A: Anti-phase outlier. Traditional metrics show failure (scores < —1)
despite negligible error, while MFM provides a diagnostic score (0.830); (b) Scenario B: In-phase outlier. Traditional metrics are volatile,
while MFM correctly identifies high performance (0.994).

390 The sensitivity analysis (Fig. 5) further emphasizes this instability. In Scenario A (Fig. 5a), as the error (RMSE)
increases slightly, MFM responds with a stable, minor decrease in score (0.830 to 0.826), indicating that 99 % of the data
remains perfect. NSE, KGE, and mKGE remain stuck at their initial failed values, showing no sensitivity to changes in error
magnitude. In Scenario B (Fig. 5b), the RMSE remains constant. However, as the outlier magnitude increases, og also
increases. This change in the normalization factor causes the scores of NSE, KGE, and mKGE to rise rapidly from poor to

395 near-perfect. Their scores reflect the changing statistical properties of the observations rather than the model performance itself.

MFM remains stable and high (0.994 to 0.999), demonstrating its robustness.
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Figure 5. Sensitivity analysis under near-constant conditions. (a) Scenario A: Increasing error magnitude. MFM shows a slight decrease,
while standard metrics remain insensitive at their failed values; (b) Scenario B: Constant error magnitude but increasing outlier size. Standard
metrics exhibit volatile increases attributable to changes in normalization factors, whereas MFM remains stable.

4.3 Diagnostic capability for phase errors (Case 3)

Case 3 compares three scenarios with identical RMSE (1.0) but different structural characteristics (Fig. 6). In Scenario A
(extreme event, Fig. 6a), the low variability again causes the standard metrics to fail (scores < —8.0). MFM (0.936) is the only
metric that indicates this is a generally good model, with a single significant error. In Scenario B (anti-phase, Fig. 6b), the
perfect anti-correlation (r = —1.0) leads to severe penalties by KGE (-1.00) and mKGE (-1.00). NSE (-3.0) also indicates total
failure. MFM (0.572) also rates the model as poor, where PPF (0.707) heavily reduces the accuracy score (w = 0.260). In
Scenario C (simulation failure; Fig. 6¢), all metrics indicate that the model is poor. However, the reasons differ significantly.
NSE approaches —oo (—9999 in the calculation) due to the combination of low variability and large error. KGE (0.00) is
driven solely by the large bias ratio (8 = 2.0), as r = 1.0 and @ = 1.0. MFM (0.316) provides a clear diagnosis through its
components (w = 0.367, ¢ = 1.0, and n = 0.0), i.e., large magnitude error, perfect match in variability (entropy), but

completely disjoint distributions.
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(a) Extreme event
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Time

Figure 6. Phase and error decoupling test (all scenarios have RMSE = 1. 0). (a) Extreme event. MFM (0.936) identifies high fidelity, while
standard metrics fail NSE = —100, KGE = —9.00, mKGE = —8.00, NRMSE = 0.990); (b) Reverse phase. All metrics identify failure,
driven by r = —1.0 or PPF = 0.707 (MFM = 0.572, NSE = —3.0, KGE = —1.0, mKGE = —1.0, NRMSE = 1.0); (¢) Simulation
failure, driven by large bias/error (MFM = 0.316, NSE = —9999, KGE = 0.0, mKGE = —0.118, NRMSE = 1.0).

The sensitivity analysis of the reverse phase scenario (Fig. 7) highlights a crucial difference in the behavior of the
metric. As the oscillation characteristics change, the magnitude error (RMSE, NRMSE) decreases significantly. MFM is the
only metric that responds appropriately to this improvement, with its score increasing as the error decreases. Standard metrics
remain completely insensitive, fixed at their initial low scores. This occurs because KGE and mKGE prioritize the correlation
coefficient (fixed at r = —1.0) over the actual error magnitude. MFM, by decoupling phase (via PPF) and magnitude error

(via NMAEp), provides a more nuanced and reliable assessment.
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Figure 7. Sensitivity analysis of the reverse phase scenario with decreasing magnitude error. MFM correctly responds to the decreasing
425  error, while standard metrics remain insensitive, overly penalized by the constant anti-correlation (r = —1.0).

4.4 Performance in real-world catchments

The application to the CAMELS dataset validates the findings from the synthetic experiments. The spatial distribution of
scores (Fig. 8a - f) shows general agreement in patterns across all metrics. However, MFM exhibits a much tighter range of
scores ([0.486, 0.887]) compared to NSE ([-8.43, 0.910]), KGE ([-1.47, 0.948]), and mKGE ([-1.51, 0.948]). The distribution
430 of scores (Fig. 8g) highlights the robustness of MFM. MFM scores are centralized, whereas the distributions for standard
metrics are flatter and include extreme negative values. These extreme negative scores often reflect the undue influence of a
few outliers in low-variability catchments, rather than the overall model performance, confirming the instability issues

identified in Case 2 (Sect. 3.2.2).
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435  Figure 8. Spatial pattern and distribution of metrics across CAMELS dataset. (a) - (f) Spatial representation of MFM, KGE, RMSE, NSE,
mKGE, and NRMSE; (g) Histogram of scores. MFM shows a more centralized distribution, reflecting its robustness. Standard metrics
exhibit long tails and extreme negative values.

We examine two specific catchments to illustrate MFM’s diagnostic capabilities (Fig. 9). Site 05120500 (Fig. 9a)
represents a low-flow, low-variability catchment (¢ = 0.0877), similar to Case 2 (Sect. 3.2.2). The simulation matches most
440 of the observations well, but a single extreme event (April 2009) shows a large overestimation (sim = 34.8 vs obs = 6.3).
This single event dominates the standard metrics, resulting in catastrophic scores (NSE = —8.43, KGE = —1.39). MFM
(0.600) identifies the model as medium quality, acknowledging the large error but remaining robust. Site 06409000 (Fig. 9b)
exhibits strong periodicity with a slight phase shift (FFT estimated lag = 1 d), similar to Case 3 (Sect. 3.2.3). This small lag
heavily penalizes the correlation (r = 0.677) due to nonlinearity, resulting in poor scores for NSE (-0.164) and KGE (0.438).

445 MFM (0.810) identifies the model as good.
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Figure 9. Time series examples from the CAMELS dataset. (a) Site 05120500. Near-constant data with an extreme event, highlighting the
instability of standard metrics; (b) Site 06409000. Data with a small phase shift but low 7, highlighting MFM’s ability to decouple phase
and magnitude errors.

The diagnostic power of MFM is further illustrated by examining its components (Fig. 10). For site 05120500, the
moderate MFM score is primarily driven by the relatively low accuracy (w = 0.319), reflecting the impact of the extreme
event on the NMAEp. For site 06409000, the high accuracy (w = 0.735), the low phase lag (PPF = 0.999), the high variability
(¢ = 0.818), and distribution similarity (n = 0.929) indicate that the model captures the system dynamics well, resulting in

an overall good MFM score. This decomposition enables a nuanced understanding of model behavior.
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Figure 10. Radar plot illustrating the diagnostic components of MFM for the two example catchments. Site 05120500 shows relatively low
accuracy (w) due to the extreme event. Site 06409000 shows high accuracy (w) and excellent variability (¢) and distribution similarity (7).

4.5 Sensitivity to hyperparameters

The sensitivity analysis of MFM’s hyperparameters across the CAMELS dataset demonstrates its robustness to parameter
choices (Fig. 11). Varying the error exponent p from 1.0 to 2.0 (Fig. 11a) results in a decrease in the MFM score, as expected,
because p = 2.0 (NRMSE) imposes heavier penalties on large errors compared to p = 1.0 (NMAE). The overall distribution
remains stable with a consistent interquartile range (IQR), indicating that the choice of p allows for transparent adjustment of
sensitivity to outliers without destabilizing the metric. The number of bins for both SUSE (ngygg, Fig. 11b) and PHI (npy;, Fig.
11c) shows a high degree of robustness. Varying the bin count from 5 to 100 has a mild impact on median scores and IQR.
This suggests that even a coarse discretization (e.g., the default of 10 bins) is sufficient to capture the essential characteristics
of variability and distributional similarity in daily streamflow data. The phase penalty scaling factor (c, Fig. 11d) also shows
a stable response. As ¢ increases from 2 (heaviest penalty) to 10 (lightest penalty), the MFM scores slightly and smoothly
increase. This indicates that, while c adjusts the severity of the phase penalty, it does not fundamentally alter the overall
assessment of model fidelity. Overall, the sensitivity analysis confirms that MFM is robust to its hyperparameters. The
parameters provide meaningful, mathematically consistent adjustments to metric sensitivity without inducing volatility or

instability observed in traditional metrics.
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Figure 11. Sensitivity of MFM scores across the CAMELS dataset to its four hyperparameters. (a) Sensitivity to error exponent (p). MFM
scores decrease as p increases, reflecting a higher penalty for large errors; (b) Sensitivity to bins for SUSE (ngsysg). Scores are stable; (c)
475  Sensitivity to bins for PHI (npy;). Scores are stable; (d) Sensitivity to phase penalty (¢). MFM slightly increases as ¢ increases.
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5 Discussion

The systematic failures of NSE, KGE, and mKGE demonstrated in our case studies (Sect. 4.1 - Sect. 4.3) are not isolated
anomalies. They are direct consequences of relying on moment-based statistics (mean, standard deviation, and Pearson
correlation coefficient) to evaluate LSM data, which are typically non-normal, skewed, and prone to outliers (Mizukami et al.,
2019). The vulnerability to error compensation (Sect. 4.1) highlights the danger of using moment-based statistics. As Cinkus
et al. (2023) argued and our results confirmed, metrics that allow errors to cancel out can reward models that are “right for the
wrong reasons”. MFM’s immunity to this effect is achieved by grounding its accuracy component (w) in the NMAEp, which
penalizes errors directly, and its distribution components (¢, 7) in non-parametric methods (SUSE, PHI) that compare the
entire distribution rather than summary statistics. The instability of traditional metrics under low-variability conditions (Sect.
4.2) underscores the problems inherent in their normalization schemes. When g, and pgy approaches zero, these metrics
become hyper-sensitive to minor fluctuations, leading to erratic and misleading scores. MFM’s architecture, particularly the
use of SUSE and histogram intersection (PHI), provides a stable assessment across all flow regimes, as these measures are less
affected by the absolute magnitude or variance of the data. For decades, the LSM community has attempted to improve KGE
by rearranging or reweighting its components (e.g., Garcia et al., 2017; Pool et al., 2018; Tang et al., 2025). While these
variants can offer advantages in specific scenarios, certain inherent statistical limitations remain. MFM offers a complementary
perspective, advocating the adoption of robust, information-theoretic methods appropriate to the characteristics of the data
being evaluated.

This study primarily validates MFM using streamflow discharge, but its theoretical framework is designed for more
LSM cases. Land surface variables, such as soil moisture, latent heat flux, and evapotranspiration, frequently exhibit
periodicity, threshold behaviours, and high skewness. To address low-flow failure, traditional metrics such as NSE and KGE
require a logarithmic transformation, which can introduce additional biases (Pushpalatha et al., 2012; Santos et al., 2018). In
contrast, non-parametric components enable MFM to robustly quantify accuracy, variability, and pattern reproduction. This
capacity makes MFM valuable for multivariate LSM evaluation.

We do not advocate for the immediate abandonment of NSE and KGE. These legacy metrics are deeply embedded in
the LSM literature and major intercomparison projects (e.g., CMIP6; Eyring et al., 2016), serving as a necessary benchmark
for historical comparison. However, it is crucial to distinguish between metrics used for calibration optimization and those
used for holistic model evaluation. KGE was originally designed to balance trade-offs during calibration (Gupta et al., 2009).
While KGE’s use as an overall evaluation metric is problematic, MFM offers a robust alternative for both purposes. MFM can
serve as the objective function for calibration, or its components can be used within a multi-objective optimization framework
to achieve a balanced model performance. When comprehensive evaluation is the goal, especially under complex or extreme
conditions, MFM provides a more authentic and reliable assessment. We recommend that researchers report MFM alongside
traditional metrics to provide a more complete picture of model fidelity and to facilitate the transition towards more robust

evaluation practices.
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The calculation of MFM (involving FFT, entropy estimation, and histogram) is computationally more intensive than
KGE or NSE. This may pose a challenge for applications that require millions of model evaluations, such as intensive Monte
Carlo simulations or complex optimization routines. While the sensitivity analysis (Sect. 4.5) demonstrated MFM’s robustness
to its hyperparameters (p, ngysg, Mpr» €), the choice of these parameters still requires user consideration based on the specific
application and data characteristics. A critical direction for future work is the integration of uncertainty estimation. A metric
score is only meaningful if its statistical reliability is understood (Schaefii and Gupta, 2007). The reliance on observational
data, which often contains significant uncertainty, further complicates model evaluation (Moriasi et al., 2007; Refsgaard et al.,
2007). We have integrated MFM within uncertainty estimation frameworks, such as the gumboot package (Clark et al., 2021)
and the Open Source Land Surface Model Benchmarking System (OpenBench, Wei et al., 2025), to provide confidence
intervals for MFM scores. This will enable a more rigorous assessment of model performance, moving beyond deterministic

scoring towards a probabilistic evaluation (Vrugt et al., 2022).

6 Conclusion

Evaluating LSMs requires metrics that are robust, diagnostic, and reliable across diverse conditions. Traditional metrics like
NSE and KGE, while widely used, have fundamental flaws stemming from their reliance on moment-based statistics that are
ill-suited to the non-normal, skewed nature of LSM data. These flaws can lead to error compensation, instability in low-
variability conditions, and inadequate treatment of phase errors, resulting in misleading model evaluations. To address these
fundamental limitations, we introduced the MFM, a comprehensive performance criterion derived from first principles,
employing robust statistics and information theory. MFM fundamentally reconstructs the evaluation framework, replacing
KGE’s components with three orthogonal dimensions of model fidelity. It integrates a robust measure of accuracy (NMAEp)
penalized by timing errors (PPF), captures variability using information entropy (SUSE), and assesses distribution similarity
nonparametrically (PHI). Through targeted synthetic experiments and application to the CAMELS dataset, we demonstrated
that MFM provides a more authentic and reliable assessment of model performance than traditional metrics. MFM is immune
to error compensation, remains stable under low-variability conditions in which NSE and KGE fail, and provides powerful
diagnostic insights by decomposing performance into its core components. MFM represents a significant advancement in
LSMs evaluation. We advocate a transition from the community’s reliance on traditional metrics toward more robust,
diagnostic frameworks, for which MFM serves as a powerful, reliable alternative, supporting the development of more

trustworthy LSMs.

Code and data availability

The CAMELS dataset used in this study is available at https://zenodo.org/records/15529996 (last access: 24 June 2022)
(https://doi.org/10.5065/D6MW2F4D, Newman et al., 2022). The MFM and case studies code are available at
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https://github.com/wuzezhen5577/Model-Fidelity-Metric/tree/1.0.0 (last access: 1 December 2025) (Wu, 2025). MFM has
been integrated into OpenBench and is available at https://github.com/zhongwangwei/OpenBench (last access: 30 November

2025) (Wei, 2025).
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