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Abstract. Traditionally, Intensity-Duration-Frequency (IDF) curves are based on rain gauge data under the assumption of sta-
tionarity. However, only limited long time series of sub-daily precipitation data are available worldwide, making it difficult
to accurately estimate precipitation intensity for different durations and return periods, while climate change is challenging
stationarity. This study aims to better understand how the stationary assumption and data length of hourly precipitation data
influence the annual maximum intensities of precipitation events in continental Chile, a region with varying climate and topog-
raphy that has been affected by an unprecedented drought since 2010. Five hourly gridded precipitation datasets (IMEGv06B,
IMERGVO07B, ERAS, ERAS-Land, CMORPH-CDR) and 161 quality-checked rain gauges are used to compute annual max-
imum intensities (1,4, mm h™1) using the stationary and non-stationary Gumbel distribution for six return periods (2-100
years) and 11 durations (1-72 h). Bias-correction factors are applied to match the gridded I,,,,, values with the in situ ones, and
the modified Mann-Kendall test is used to assess the trends in I,,,,,. Annual maximum intensities are calculated for the 20-year
period (2001-2021) for all products, while an additional 40-year period (1981-2021) is used for ERAS and ERA5-Land to as-
sess the impact of data length. Our results revealed significant decreasing trends across Chile for CMORPH-CDR, decreasing
trends in Central-Southern Chile (32-43°S) for ERAS and ERAS5-Land, and isolated, divergent trends for IMERGv0O6B and
IMERGVO7B. In addition, our results show that the annual maximum intensities derived from stationary and non-stationary
models (1,,4,) reached its highest values in central and southern Chile, for all durations and return periods, in contrast to the
spatial pattern of mean annual precipitation, which increases steadily towards the south. For durations of 24 hours or more, the
highest intensities are primarily found in the Andes, particularly between the Maule and Araucania region (35-40°S). While the
I qo values were similar for IMERGvO7B, ERAS and ERAS5-Land, they were much higher for IMERGv06B and CMORPH-
CDR. The difference between stationary and non-stationary [,,,, values ranges from 0 to 5 mm h~! and become smaller for
durations greater than 8 h. Despite the differences observed in the Gumbel parameters for ERAS and ERA5-Land when using
20- and 40-year records, the resulting I,,,, values showed differences with median values below 1 mm h=!. The I,,4. values

are available on a public and user-friendly web platform (https://curvasIDFE.cl/).
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1 Introduction

Accurately estimating extreme precipitation (P) events is crucial for various engineering, hydrology, and climate science
applications. One of the essential tools used by engineers worldwide for quantifying extreme precipitation events are the
Intensity-Duration-Frequency (IDF) curves (Sherman, 1931; Bernard, 1932; Haruna et al., 2023), which represent statistical
relationships between intensity (precipitation depth divided by duration), duration (e.g. 30 minutes, 1 h, 24 h) and frequency of
occurrence of extreme precipitation events. IDF curves are constructed by fitting a theoretical probability distribution function
(pdf) to samples of annual maximum (AM) or peak-over-threshold (POT) precipitation data (Yan et al., 2021). These curves
are central to urban infrastructure design, stormwater management and flood risk assessment.

Notwithstanding the assumption of stationarity in precipitation extremes, i.e., a time-invariant probability distribution, has
been widely debated in recent decades (Milly et al., 2008; Montanari and Koutsoyiannis, 2014; Koutsoyiannis and Monta-
nari, 2015; Serinaldi and Kilsby, 2015; Serinaldi, 2015; Milly et al., 2015; Beven, 2016), IDF curves are still predominantly
developed under this assumption for most engineering and practical applications. This reliance on stationarity can lead to in-
frastructure failures during extreme events in a changing climate (Cheng and Aghakouchak, 2014; Mohan et al., 2023). While
stationarity simplifies the construction of IDF curves, it may not adequately capture climate change impacts or long-term
variability in precipitation intensities.

On the other hand, non-stationary IDF curves consider the time-dependent nature of distribution parameters and can capture
existing trends in precipitation intensity (e.g. Agilan and Umamahesh, 2018; Ouarda et al., 2019; Yan et al., 2021; Silva et al.,
2021; Vinnarasi and Dhanya, 2022; Schlef et al., 2023).

Therefore, several approaches have been developed in the last decades for computing non-stationary intensity-duration-
frequency curves, to face changing precipitation patterns (e.g., Cheng and Aghakouchak, 2014; Agilan and Umamahesh,
2016, 2017; Salas et al., 2018; Agilan and Umamahesh, 2018; Ouarda et al., 2019; Nwaogazie and Sam, 2020; Yan et al.,
2021; Schlef et al., 2023). Among them, Schlef et al. (2023) provides a comprehensive review of IDF curves under non-
stationary conditions, including global precipitation trends, estimation methods, regionalization challenges, and uncertainty in
design values.

While the aforementioned methods rely on stationary or non-stationary statistical models to summarise historical data,
Koutsoyiannis et al. (2024) introduced a stochastic framework that models precipitation as a random process, and provides a
probabilistic and theoretically grounded approach to estimating the relationships between intensity and duration across time
scales (durations) and return periods. This method accounts for the inherent variability and uncertainty of precipitation events
without relying on stationary assumptions, and potentially provides more robust estimates under changing climate conditions
(Iliopoulou et al., 2024).

Regarding the data sources used to build IDF curves, traditionally they have been derived from point measurements obtained
from rain gauges installed on the ground (e.g. Chow et al., 1988; Koutsoyiannis et al., 1998; Sivapalan and Bloschl, 1998;
Watkins et al., 2005). However, point-based precipitation data obtained from rain gauges, while valuable, present limitations in

capturing the true spatio-temporal variability of precipitation patterns, due to the relocation of stations, the use of different types
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of rain gauges, among others (Wood et al., 2000; Habib et al., 2001; Villarini et al., 2008; Gianotti et al., 2013; Pollock et al.,
2018; Morbidelli et al., 2020; Fadhel and Saleh, 2021). In particular, worldwide there is a limited availability of long time series
of sub-daily rainfall data. As a result, the true value of individual annual maximum rainfall depths might be underestimated
up to 50% for short durations, i.e., when the event duration is similar or lower than one day. The use of uncorrected series of
annual maxima can lead to underestimations of ~10% in the resulting IDF curves (Morbidelli et al., 2017, 2020).

To overcome these limitations, gridded precipitation products have emerged in recent decades, providing spatially continuous
and temporally homogeneous datasets that offer a more comprehensive representation of precipitation dynamics (Funk et al.,
2015; Huffman et al., 2017; Xie et al., 2017; Beck et al., 2019a, b; Baez-Villanueva et al., 2020; Nguyen et al., 2020; Muiioz-
Sabater et al., 2021; Sadeghi et al., 2021; Beck et al., 2022). These gridded P products have opened up new opportunities to
improve the accuracy and spatial representation of IDF curves, especially in regions with complex topography and climatic
variability (Endreny and Imbeah, 2009; Marra et al., 2017; Ombadi et al., 2018; Faridzad et al., 2018; Sun et al., 2019; Noor
et al., 2021; Venkatesh et al., 2022). Their improved resolution and coverage make them valuable tools for various scientific
and engineering applications, while also advancing our understanding of extreme precipitation events. However, estimates of
gridded precipitation products are not directly comparable to rain gauge measurements, because gridded estimates represent
area-averaged values, which can smooth out variability.

Notwithstanding the previous limitation, in the last decades these precipitation products have been extensively evaluated
against in situ measurements (e.g., Aghakouchak et al., 2011; Ward et al., 2011; Chen et al., 2013; Duan et al., 2016; O
et al., 2017; Zambrano-Bigiarini et al., 2017; Baez-Villanueva et al., 2018; Beck et al., 2019a) and used for hydrological pur-
poses (Casse et al., 2015; Bisselink et al., 2016; Maggioni and Massari, 2018; Baez-Villanueva et al., 2020, 2021; Fernandez-
Palomino et al., 2022; Aguayo et al., 2024). However, only a few studies have focused on the development of IDF curves from
publicly available gridded precipitation datasets for different regions (Endreny and Imbeah, 2009; Marra et al., 2017; Faridzad
et al., 2018; Ombadi et al., 2018; Sun et al., 2019; Courty et al., 2019; Noor et al., 2021; Venkatesh et al., 2022). These studies
highlight the potential of these products as an alternative to in situ rainfall data for developing IDF curves, but also describe
some challenges. Ombadi et al. (2018) mention that errors in IDF curves derived from gridded datasets are related to the ability
of the original product to reproduce the maximum rainfall intensities and to uncertainties derived from the short length of the
data records, highlighting the necessity of bias adjustment from local rain gauges to provide accurate quantile estimates. Sun
et al. (2019) emphasise the importance of sub-daily rainfall records to obtain reliable IDF curves.

In this study, we aim to address the previously mentioned challenges by deriving IDF curves from five state-of-the-art

hourly-gridded precipitation datasets and 161 hourly rain gauges. In particular, we address the following research questions:
1. What is the spatial distribution of the stationary annual maximum precipitation intensities for different durations?

2. Are there any significant trends in the stationary annual maximum precipitation intensities that justify using non-

stationary IDF curves?

3. Is the difference between stationary and non-stationary IDF curves significant enough to justify using a non-stationary

analysis?
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4. What is the impact of the typical data length of precipitation products used for estimating stationary and non-stationary

IDF curves?

In other words, this study aims to better understand how the spatial distribution, temporal trends and data length of hourly
precipitation data influence the use of stationary versus non-stationary IDF curves in a study area with diverse climate zones
and topography. Additionally, it would provide practical guidance for hydrological and engineering applications that require a
reliable quantification of extreme precipitation events.

This article is organised as follows: Section 2 describes the study area and datasets, while Section 3 describes the method-
ology used to develop stationary and non-stationary IDF curves. Numerical and graphical results, along with an in-depth
discussion in the light of the wider literature, are described in Section 4. Concluding remarks are summarised in Section 5,

followed by practical considerations that should be considered by decision-makers.

2 Study area and datasets
2.1 Study area

Our study area is continental Chile, with more than 4,000 km of latitudinal extension (17.5-56.5°S), from the Pacific Ocean
in the west (~ 76°W) to the Andes mountains in the east (~ 66°W). It covers an area of ~756,626 km?, with elevations
ranging from sea level to 6,893 m a.s.l., encompassing four distinctive geomorphological units: coastal plains, coastal mountain
range, intermediate depression, and the Andes mountain range. This area exhibits exceptional climatic variability (11 different
climates), ranging from hot and dry deserts in the north to polar and tundra climates in the south (Figure 1) .

To better describe the spatial patterns of extreme precipitation, we divided our study area into five macro-climatic zones,
slightly adapted from Zambrano-Bigiarini et al. (2017): Far North (17.5-26.0°S); Near North (26.0-32.2°S); Central Chile
(32.2-36.2°S), South (36.4-43.7°S) and Austral / Far South (43.7-56.5°S). Figure 1 shows the macro-climatic zones, elevations
(Jarvis et al., 2008), mean annual precipitation (Mufioz-Sabater et al., 2021), and the K&ppen-Geiger climate classification

(Beck et al., 2023) for our study area.
2.2 Datasets
2.2.1 Rain gauges

The General Directorate of Water (DGA), the Meteorological Directorate of Chile (DMC), the Agrometeorological Network
of the Agricultural Research Institute (Agromet) and the Center for Advanced Studies in Arid Zones (CEAZA) have more
than 600 rain gauges with hourly time series of observed precipitation in Chile. All these raw hourly records (GMT-4) from
2000 to 2021 are publicly available in the Vismet web platform (https://vismet.cr2.cl/) of the Center of Climate and Resilience
Research (CR2).
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After an exploratory analysis and basic quality control, we discarded 406 Agromet stations due to the existence of some
anomalously large precipitation values. For the remaining 194 stations, we analysed the amount of hourly data effectively
available for several 5-year temporal periods (see supplementary material S1 in Soto-Escobar et al., 2025), which led to the
selection of 161 rain gauges with more than 80% hourly data between 01-Jan-2013 and 31-Dec-2017. Figure 1a shows the
location of the 161 selected rain gauges, which are described in Table S1 in supplementary material S1 (Soto-Escobar et al.,

2025).
2.2.2 Gridded precipitation datasets

In this study, we initially analysed six gridded precipitation datasets. However, our analysis and results are only presented
for five of them, listed in Table 1. The sixth dataset, Precipitation Estimation from Remotely Sensed Information Using Ar-
tificial Neural Networks—Dynamic Infrared Rain Rate (PDIR-Now, Nguyen et al., 2020), was ultimately not included in this
manuscript (see details in supplementary material S2; Soto-Escobar et al., 2025). The five gridded precipitation datasets finally

used for this study are briefly described in the following sections.

Table 1. Gridded P datasets used in this study.

P Full temporal Spatial Spatial and Product  References

product period extent temporal resolution type

IMERGV06B* 2000/Jun-2021/Sep  60°N-60°S 0.10°; half-hourly Satellite Huffman et al. (2015, 2017)

IMERGV07B* 1998/Jan—present global 0.10°; half-hourly Satellite Huffman et al. (2023, 2024)
ERAS 1940/Jan—present global ~0.28°; hourly Reanalysis  Hersbach et al. (2018, 2020)
ERAS5-Land 1950/Jan—present global 0.10°; hourly Reanalysis  Muiioz-Sabater (2019);

Muiioz-Sabater et al. (2021)
CMORPH-CDR*#* 1998/Jan—present 60°N-60°S 0.08°; half-hourly Satellite Xie et al. (2017, 2018)

* Global Precipitation Climatology Centre (GPCC) monthly precipitation data for 1891—present is used for corrections.

** CPC Unified Daily Gauge Analysis (over land) and the Global Precipitation Climatology Project (GPCP) pentad dataset (over oceans) are used for

corrections.

IMERG V06B Final Run

The Integrated Multi-satellitE Retrievals for GPM (IMERG) is a precipitation product developed by NASA as a part of
the Global Precipitation Measurement (GPM) mission (Huffman et al., 2015). It integrates data from passive microwave and
infrared sources to create an instantaneous precipitation estimate at a 30-minute, 0.1° resolution globally from 2000 to the
present, allowing it to capture a wide range of precipitation events, from light rain to heavy storms (Huffman et al., 2017).
To reduce biases inherent to satellite-only retrievals, monthly satellite precipitation totals are first aligned with the GPCC

Monitoring Product, and then the high-resolution satellite estimates are rescaled accordingly.
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We used the retrospective IMERG V06B Final Run dataset, hereafter IMERGvV06B, which provides precipitation intensities
(mm h~!/10) every 30 minutes, from 00:00 to 23:59 UTC+00 and from 01 Jun 2000 to 30 September 2021. To work with
complete years only, we selected data from 01 January 2001 to 31 December 2020 (i.e., 20 years of data and 350,640 half-
hourly files). We downloaded the half-hourly GeoTiff files from NASA (http://pmm.nasa.gov/data-access/, access date: from
Jan-2019 to Dec-2022) using the WGS84 geodetic geographic coordinate system. Finally, we corrected the IMERG gridded
geolocation error of 0.1° (one-pixel) shift westward for all grid boxes, described in the Appendix 1 of Huffman et al. (2024).

IMERG V07B Final Run

The Integrated Multi-satellitE Retrievals for GPM (IMERG) dataset provides global precipitation estimates at 0.1° spatial
and half-hourly temporal resolution. The latest version, IMERG V07 (released in 2023), incorporates several major upgrades
over VO6B (Tan et al., 2022; Huffman et al., 2024). These include enhanced calibration of passive microwave observations,
updated CORRA and GPROF retrieval algorithms, refined infrared (IR) estimates with improved quality control, and better
detection of precipitation phase near freezing temperatures. Additional improvements involve expanded coverage over frozen
surfaces, correction of the spatial offset present in earlier versions, and increased consistency across the Early, Late, and Final
runs. IMERG V07 also extends the data record back to 1998 using GridSat-B1 observations, providing more than 20 years of
uniformly reprocessed precipitation estimates from the TRMM and GPM eras. Collectively, these updates make IMERG V07
a more accurate, consistent, and globally applicable dataset than its predecessors.

Similarly to IMERGVO06B, we used the retrospective IMERG V07B Final Run dataset, hereafter IMERGvVO07B, which pro-
vides precipitation intensities (mm h=1/10) every 30 minutes, from 00:00 to 23:59 UTC+00 and from Jan/1998 to present. Due
to data availability during our data processing, we downloaded data from 01 January 2001 to 31 December 2021 (i.e., 21 years
of data and 368,160 half-hourly files). We downloaded the half-hourly GeoTiff files from NASA (https://arthurhouhttps.pps.
eosdis.nasa.gov/gpmdata/, access date: Dec-2023) using the WGS84 geodetic geographic coordinate system.

ERAS

The fifth Generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERAS) super-
sede the previous ERA-Interim used from 2006 to 2019, and provides a comprehensive and high-quality dataset of various
atmospheric variables, including precipitation (Hersbach et al., 2020). It combines observations and model simulations, assim-
ilating a vast amount of data sources to produce hourly precipitation estimates on a regular grid with a spatial resolution of
0.25°, which allows for detailed analyses of precipitation dynamics at regional and global scales (Hersbach et al., 2020). Since
2009, ERAS assimilates ground-based radar-gauge composite observations over certain regions (notably the contiguous United
States), but it is not systematically bias-corrected globally using a dense rain-gauge network. We downloaded hourly data from

the Copernicus Climate Data Store (Hersbach et al., 2018).

ERAS5-Land
ERAS-Land is a high-resolution reanalysis dataset that provides land-focused variables from the ERAS system at 0.1° (~9

km) spatial and hourly temporal resolution (Mufioz-Sabater et al., 2021). It is specifically designed to represent the spatio-
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temporal dynamics of the water and energy cycles over land, including variables such as soil temperature, soil moisture, snow
cover, and vegetation properties, while ERAS also includes ocean components. Precipitation in ERAS5-Land is obtained by
linearly interpolating ERAS5 forcing data onto a finer triangular mesh, without applying bias correction to the original ERAS
fields. Compared to ERAS, the input atmospheric variables (like temperature, humidity, and pressure) used for ERAS5-Land
are corrected for altitude differences between the ERAS5 grid and the ERAS-Land grid to account for elevation effects, which
improves the representation of land surface processes (Mufioz-Sabater et al., 2021). We downloaded hourly ERAS5-Land data
from the Copernicus Climate Data Store (Mufioz-Sabater, 2019).

Although ERAS and ERAS5-Land share the same underlying reanalysis, their differences in spatial resolution and land-
surface representation might have meaningful implications for characterising sub-daily extreme precipitation. Including both
datasets allows us to assess whether the finer resolution and enhanced land-surface processes in ERAS5-Land improve the es-
timation of IDF curves compared to ERAS, providing insights into the influence of spatial detail on extreme precipitation
metrics. This comparison is particularly relevant for researchers and practitioners across hydrology, climatology, and water re-
sources, as it highlights potential trade-offs between computational cost, data volume, and the added value of higher-resolution

products.

CMORPH-CDR

The National Oceanic and Atmospheric Administration (NOAA) uses the Climate Prediction Center (CPC) morphing tech-
nique (CMORPH; Joyce et al., 2004) to create near-real-time and high-resolution satellite precipitation estimates at the global
scale. CMORPH estimates are obtained exclusively from passive microwave observations from low-orbiting satellites (PMW)
and then transported in space using infrared data from geostationary satellites during periods when no direct PMW data are
available (Joyce et al., 2004).

Unlike the original CMORPH, which does not include any bias correction, the Climate Data Record (CDR) version of
CMORPH (Xie et al., 2017, 2018) incorporates the CPC Unified Daily Gauge Analysis (over land) and the Global Precipitation
Climatology Project (GPCP) pentad dataset (over oceans) to bias correct the raw integrated CMORPH satellite precipitation
estimates. These corrections ensure improved temporal consistency and spatial homogeneity, essential for long-term climate
studies (Bates and Barkstrom, 2006).

CMORPH-CDR is a quasi-global dataset (60°N—60°S) with a spatial resolution of 8 km and half-hourly temporal frequency,
starting from 01-Jan-1998 (Xie et al., 2017, 2018). In this work, we used CMORPH-CDR version 1, hereafter CMORPH-
CDR, which is produced manually once a month with a latency of 3-4 months (Xie et al., 2018). We downloaded half-hourly
NetCDF files from NOAA ( https://www.ncei.noaa.gov/products/climate-data-records/precipitation-cmorph, access date: Jun-

2022) using the WGS84 geodetic geographic coordinate system.

3 Methodology

After downloading the original datasets, the half-hourly precipitation products (IMERGv06B, IMERGv07B and CMORPH-

CDR) were aggregated into hourly intervals to ensure consistency in the temporal resolution used for the subsequent analyses.
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As a basic first checking, all the products were able to reproduce the spatial distribution of annual mean precipitation when
compared with the Chilean CR2METv2.5 gridded precipitation product (Boisier, 2023). All the spatio-temporal analyses were
carried out using the terra (Hijmans, 2025) and hydroRTS (Zambrano-Bigiarini and Bernal Vallejos, 2023) R packages (R
Core Team, 2024).

Figure 2 illustrates the procedure used to address the research questions outlined in Section 1: ¢) estimation of annual maxi-
mum intensities for different durations d using stationary and non-stationary statistical models, for each one of the 161 in situ
rain gauges, and for the five gridded precipitation datasets described in Section 2.2; i7) computation of bias-correction factors
for each gridded dataset, to match the annual maximum intensities observed at each rain gauge; iii) assessment of the temporal
evolution of the bias-corrected annual maximum intensities using the modified Mann-Kendall trend tests; iv) estimation of
annual maximum intensities for different durations and return periods 7" and each one of the bias-corrected gridded datasets,
using both the stationary and non-stationary Gumbel probability distribution. Finally, for ERAS and ERAS5-Land, we addition-
ally estimated annual maximum intensities using 40 (1981-2021) and 20 (2001-2021) years of hourly precipitation data, to test
the impact of the data length used in the computation of annual maximum intensities, for both the stationary and non-stationary

approaches.
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Figure 1. Study area. From left to right: (a) rain gauges and macro-climatic zones; (b) digital elevation model (Jarvis et al., 2008); (c) mean

annual precipitation (ERAS5-Land; Mufloz-Sabater et al., 2021) (d) Koppen-Geiger climate classes (Beck et al., 2023).
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3.1 Annual maximum intensities (I,,,q.z)

In this study, IDF curves are developed by fitting stationary and non-stationary statistical models to samples of annual maximum
precipitation data. The annual maximum precipitation intensities corresponding to various durations d, as estimated by these
models, are hereafter denoted as I, (mm h™1).

For the 161 selected rain gauges and for the five gridded precipitation datasets described in Section 2.2, we computed 1,4
for durations d of 1, 2, 4, 6, 8, 10, 12, 18, 24, 48, and 72 hours. In contrast to the widely used fixed time windows (e.g., for
a duration of 2 hours, intensities are computed from 00:00 to 02:00 UTC, 02:00 to 04:00 UTC, ...), we used moving time
windows (Soto and Mier, 2013a, b; Moraga et al., 2015), where each selected duration becomes the length of a moving time
window used to sum the hourly precipitation data along the selected duration. For example, when computing the maximum
precipitation intensity for a duration of 2 hours, the hourly precipitation data are aggregated from 00:00 to 02:00 UTC, from
01:00 to 03:00 UTC, from 02:00 to 04:00 UTC, ..., and then the corresponding annual maximum is computed for every 2-hour
moving window in any given year. The adoption of a moving window instead of a fixed window is expected to avoid the

omission of the highest intensities in each duration (Haruna et al., 2023).
3.2 Bias correction of I,,, .

Several studies have evaluated satellite-based precipitation products by comparing them with in situ measurements (e.g. Beck
et al., 2020; Baez-Villanueva et al., 2018; Ombadi et al., 2018; Zambrano-Bigiarini et al., 2017), with a consensus that both
random and systematic errors are present in any gridded precipitation data. Following Ombadi et al. (2018), we first computed
bias-correction factors for each gridded precipitation dataset to achieve a good agreement between the I,,,,, observed at each
rain gauge and the I,,,, obtained at the corresponding grid cell of each gridded dataset. The procedure can be summarised as

follows:

1. Computation of I, 4. For each one of the 161 selected rain gauges, and for durations d of 1, 2, 4, 6, 8, 10, 12, 18, 24,
48, and 72 hours, we used the moving time windows described in Section 3.1 to compute: ) the [, in each rain gauge
RG (Imazg re year)» a0d i1) the I,;,4, for each gridded precipitation product PP at the grid cell where a rain gauge RG

is located (7, ), where the year index represent the year under analysis.

axd,PP,year

2. Computation of Sy R, year. For each duration d and grid cell where a rain gauge RG is located, we computed an annual
bias correction factor Sg ra,year, Where the year index represent the year under analysis, as follows (Venkatesh et al.,

2022; Nguyen et al., 2020; Arias-Hidalgo et al., 2013):

I

MATJ,RG,year (1)

1,

maxdq,ppP,year

Sd,RG,year =

3. Computation of S _rg. To correct the systematic error in each gridded precipitation dataset we computed average annual

bias-correction factors (Sy,rg) for each grid cell and duration d where a rain gauge RG is located as follows:
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where nyears represents the amount of years used in the analysis of each P dataset.

4. Interpolation of average annual bias-correction factors (gd,interp) for each duration. To obtain bias-correction factors for
the whole spatial extent of the study area and each duration d, we interpolated the average annual bias-correction factors
obtained at the 161 selected rain gauges using a thin plate spline interpolation (Karger et al., 2021), as implemented in
the fields R package (Nychka et al., 2021; R Core Team, 2024). This resulted in a gap-free surface of interpolated

bias-correction factors Sgq interp-

5. Computation of bias-corrected gridded I,,,, for each duration. Finally, we computed bias-corrected annual maximum
intensities for each duration d (Jynqz, ) by multiplying the previously computed gd,interp surface by the annual max-

imum intensity of each gridded precipitation product, (/inaz, pp)> as follows:

Imaa:d,Bc = Imaxd_pp . Sd,interp (3)

3.3 Trendsin I,,,,

Following Cheng et al. (2014) and Cheng and Aghakouchak (2014), we investigated whether using non-stationary IDF curves
is justified for our study area or not. In our study, we used the non-parametric modified Mann-Kendall test (Hamed and Rao,
1998) to identify the existence of monotonic upward or downward trends over time in the bias-corrected annual maximum
intensities (Iynaz, ;) (Cheng et al., 2014). The modified Mann-Kendall trend test adjusts for autocorrelation to prevent false
trends. It detrends the time series, calculates the effective sample size using significant serial correlations, and corrects the
inflated (or deflated) variance of the test statistic S. The results are evaluated using Kendall’s Tau (7), which normalizes the
test statistic S based on the effective sample size. T ranges between -1 and +1, with positive (negative) values indicating an
increasing (decreasing) trend. The closer 7 is to -1 or +1, the stronger the trend is, and 7 = 0 indicates no trend (i.e., data are
independent or random). We evaluated the statistical significance of the computed trends using a significance level o = 0.05.
The trend analysis was conducted using the mmkh function from the modifiedmk R package (Patakamuri and O’Brien,
2021; R Core Team, 2024). For IMERGV06B, the analysis covered the period 2001-2020, as data were unavailable from Octo-
ber 2021 onwards. For IMERGv07B, ERAS, ERAS-Land, and CMORPH-CDR, we used the period 2001-2021. Additionally,
to evaluate the impact of data length on trend estimation, we extended the analysis to 1981-2021 for ERAS5 and ERA5-Land,

the only datasets with time series longer than 20 years.
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3.4 Stationary model of 1,

Stationary intensity-duration-frequency (IDF) curves have historically been widely used in civil engineering to design drainage
systems, flood control works, and urban stormwater management based on return periods (e.g., 10 or 100-year events). These
stationary IDF curves offer a simple yet robust means of estimating rainfall extremes, under the assumption that the statistical
properties of precipitation intensities, at least their first two moments (mean and variance), remain constant over time.

The three-parameter Generalized Extreme Value (GEV) distribution has been commonly used to model extreme rainfall
events (Koutsoyiannis et al., 1998; Papalexiou and Koutsoyiannis, 2013; Koutsoyiannis and Papalexiou, 2017; Lazoglou et al.,

2019), which cumulative distribution function can be expressed as follows (Coles et al., 2001):

F(z;p,0,6) =exp [— (1—?—5("@;”))_%] 4)

where p is the location parameter, that is often informally associated with central tendency, is formally linearly related to

the mean, and only coincides with the mode if £ = 0; o is the scale parameter, which controls the spread of the distribution;
¢ is the shape parameter, determining whether the GEV distribution is Weibull (¢ > 0), Gumbel (¢ = 0), or GEV-II/Frechet
(& < 0). In this work, we considered £ = 0, i.e. a Gumbel distribution because it has been the most common distribution used
in modelling precipitation extremes (e.g. Koutsoyiannis et al., 1998; Koutsoyiannis, 2004a). In addition, preliminary works
in Chile using IMERGvV06B (Soto-Escobar, 2019) showed that the Gumbel distribution was more stable and produced fewer
numerical artifacts than the three-parameter GEV-II with £ = 0.15 suggested by Koutsoyiannis (2004b) when using 20 years
of data records. We evaluated the validity of the assumption that the Gumbel distribution is a good candidate for simulating
extreme rainfall events using the Kolmogorov-Smirnoff test (see supplementary material S6.2 in Soto-Escobar et al., 2025).

The cumulative distribution function of the Gumbel distribution is given by:

F(x;p,0) = exp (—exp (—T)) 5)

The numerical values of the parameters of the Gumbel distribution were estimated with the maximum goodness-of-fit esti-
mation method included in the fitdistrplus R package (Delignette-Muller and Dutang, 2015; R Core Team, 2024). For a
given non-exceedance probability of occurrence p in any given year (assumed constant under stationarity), the p- return level

gy derived from the Gumbel distribution can be expressed as (Coles et al., 2001):

ap(pip,0) = F 1 (p;p,0) = p— oln(—In(p)) (©6)

In other words, p represents the frequency of occurrence of the analysed precipitation events, i.e., how often an event of a
given intensity and duration is expected to occur, while the n —year return-period precipitation intensity corresponds to annual

maximum precipitation having a probability of exceedence 1/n.
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For each cell of all precipitation datasets, we computed I}, 4 values using the stationary model for return periods of 2, 5,
10, 25, 50 and 100 years, and durations of 1, 2, 4, 6, 8, 10, 12, 18, 24, 48, and 72 hours.

3.5 Non-stationary model of I,

The I,,4, values from the non-stationary model were computed following the approach described by Cheng et al. (2014) and
Cheng and Aghakouchak (2014), where statistical modelling is integrated with climate change considerations to estimate rain-
fall intensity, while allowing the parameters of the selected statistical distribution to vary over time. This is typically achieved
by introducing covariates influencing rainfall intensity, such as time or temperature. We assumed the location parameter ;. of
the Gumbel distribution is only a function of time, while keeping the scale parameter o constant (Katz, 2010; Gilleland and

Katz, 2011; Renard et al., 2012; Cheng et al., 2014):

p(t) = pa(t) + po ™

where p(t) represents the location parameter of the Gumbel distribution at time ¢ (in years) and p1(¢) and uo(t) are regres-
sion coefficients used to model the temporal change in the location parameter. The parameters of the non-stationary Gumbel
distribution (0 = 1, po, o) were estimated using the maximum likelihood method, as implemented in the extRemes R pack-
age (Gilleland and Katz, 2016; R Core Team, 2024).

Once the non-stationary parameters are estimated, the time-variant parameter ;(t), termed 1, was computed as the 95th
percentile of fis1, fis2, ..., fien, where t1, ..., tn are the initial and ending years of the non-stationary analysis period. The decision
to use the 95th percentile of the ; values in the historical record can be considered as a conservative (i.e., safer) approach for
non-stationary extreme value analysis (Cheng et al., 2014). For decreasing (increasing) trends in [, 4., the effective return level
gp (Katz et al., 2002), i.e., the non-stationary precipitation intensities corresponding to jz will be located close to the beginning
(end) of the data record. The estimated model parameters are then used to compute the non-stationary precipitation intensities

as follows:

4p(p,0,p) = fi — o ln(—In(p)) ®)

where ¢, can be considered an effective way to represent the temporal variation in extreme values. This concept is similar in

interpretation to the quantile associated with a given stationary return period, but it changes based on the year.
3.6 Impact of data length on I,,,,,

To analyse the impact of the data length used in the estimation of annual maximum intensities for different durations and return
periods, in this work we compared the annual maximum intensities estimated with 40 and 20 years of data for ERAS and

ERAS5-Land, the only two datasets with 40 or more years of hourly precipitation data.
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4 Results and discussion
4.1 Biasin I,,,,, at rain gauges

Figure 3 shows boxplots with the distribution and median values (horizontal black lines) of the average annual bias-correction
factors (§d7 rea) for each gridded dataset, aggregated by macroclimatic zone. §d7 Rra values equal to one indicate no bias, while
§d’ ra values lower (greater) than 1 indicate overestimation (underestimation).

In all macroclimatic zones but the Far North, most of the gridded datasets -except CMORPH-CDR- showed smaller biases
for longer durations. In particular, both IMERG products tended to overestimate [,,,, at short durations, with median bias
correction factors between 0.65 and 0.82 for 1-6 h, but this overestimation decreased for longer durations, reaching values
between 0.92 and 0.98 for 24-72 h. In contrast, ERAS5 and ERAS5-Land underestimated I,,,, at short durations (median
bias correction factors in [1.16, 1.49] for 1-6 h). This underestimation decreased with increasing durations, reaching almost
unbiased values for 10-12 h (median bias correction factors in [1.04, 1.07]), before shifting to an overestimation for longer
durations (median bias correction factors in [0.83, 0.95] for 24-72 h). Nonetheless, in the Far North, where all the rain gauges
are at high elevations (above 3,000 m a.s.l.), both IMERG products notoriously underestimate I,,,, for all durations. This
underestimation is in agreement with previous studies (Xiong et al., 2025; Chen et al., 2023), specially in mountainous regions,
where underestimations of up to 50% have been reported for IMERGvV06B (Rojas et al., 2021). Regarding bias variability, it is
larger in the Far North (17 gauges) and Far South (66 gauges) in comparison to the Near North (10 gauges), Central Chile (38
gauges) and the Near South (30 gauges). The following paragraphs describe the biases in I,,,4, obtained in each macroclimatic
zone.

In the Far North (17.5-26.0°S), underestimations of I, ., for IMERGv06B and IMERGvV07B reach median values of §d7 RG
in [1.2, 1.77]), with larger biases for durations larger than 18 h in the case of IMERGVO06B, and similar biases for all the
durations for IMERGvVO7B. On the other hand, ERAS and ERAS5-Land mostly underestimate I,,,,, for durations lower than
8 h (median values of §d7 ra in [1.2, 1.74]), show no median bias for durations between 10 and 24 h, and present a slight
overestimation for 48 and 72 h (median values of §d7 ra in [0.71, 0.83]). Finally, CMORPH-CDR overestimates I,,,,, for all
durations (median values of Sy g in [0.5, 0.7]).

In the Near North (26.0-32.2°S) and Central Chile (32.2-36.2°S) IMERGvVO6B and IMERGvV0O7B overestimate I,,,,, for
all durations (median values of ?d, ra 1n [0.76, 0.95] and [0.51, 0.86] for IMERGV0O6B and IMERGvV07B, respectively),
and smaller median biases for IMERGV06B at expense of a higher dispersion. For both IMERGv06B and IMERGvVO07B the
biases are low for durations larger than 6 h (median values of Ed’ rc in [0.85, 0.95] and [0.75, 0.86] for IMERGvV06B and
IMERGVO7B, respectively) and increase for shorter durations (median values of §d7 ra 1n [0.76, 0.95] and [0.50, 0.75] for
IMERGVO06B and IMERGVO7B, respectively). On the other hand, ERAS and ERAS5-Land tend to underestimate I,,,, for
durations of 10 hours or less in the Near North, and for durations of 24 hours or less in Central Chile. As the duration increases,
the bias gradually decreases, and for durations greater than 12 hours in the Near North and greater than 48 hours in Central
Chile, ERA5 and ERAS5-Land begin to overestimate I,,,,,. Finally, CMORPH-CDR overestimates I,,,,, for all durations in
the Near North (median values of ?,L ra in [0.56, 0.91]), with the largest bias for durations of 1 and 2 h and the smallest
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Figure 3. Boxplots summarising annual bias-correction factors (S4, re) for each gridded product by macroclimatic zone; for durations of 1,

2,4,6,8,10, 12, 18, 24, 48, and 72 hours.
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bias for durations of 24 h. In comparison, in Central Chile CMORPH-CDR slightly overestimates I,,,,, for durations equal or
shorter than 4 h (median values of ?d, ra in [0.85, 0.94]) and progressively underestimates the annual maximum intensities for
durations equal or larger than 8 h (median values of §d7 ra in [1.06, 1.38]).

In the the Near South (36.4-43.7°S) both IMERGvV06B and IMERGvV07B overestimate I,,,, for all durations (median values
of ?d’ ra in [0.55, 0.92]), with slightly lower median biases and dispersion for IMERGvO7B. On the other hand, the behaviour
of ERAS and ERAS-Land is just the opposite of the IMERG products, underestimating /,,,,, for all durations (median values
of §d7 ra in [1.03, 1.72]), with slightly lower biases for ERAS-Land. Finally, CMORPH-CDR slightly overestimates 1, for
durations of 1 and 2 h (median values of §d7 ra in [0.83, 0.90]) and underestimates I,,,, for durations equal or larger than 6 h
(median values of §d$ rc in [1.03, 1.30]), with larger dispersion for durations equal or larger than 18 h.

In the Far South (43.7-56.5°S), IMERGvVO7B presents lower median biases (median values of §d7 ra 1n [0.94, 1.29]) than
IMERGV06B (median values of §d7 Rra in [0.56, 1.22]), with IMERGvV06B overestimating I,,,, for durations equal or lower
than 12 h. In contrast, IMERGvV07B only slightly overestimates I,,,,, for one-hour duration events. Again, the behaviour of
ERAS and ERAS5-Land is almost the opposite of the two IMERG products, underestimating 1,4, for durations equal or lower
than 8 and 6 h, respectively (median values of §d7 ra in [1.07, 1.45]) and slightly overestimating I,,,,, for durations equal or
longer than 18 h, in both cases (median values of §d7 ra in [0.74, 0.95]). Finally, CMORPH-CDR presents a behaviour similar
to IMERGV06B, overestimating I,,,, for durations of equal or lower than 8 h (median values of ng rc in [0.46, 0.88]) and
slightly underestimating it for durations of 48 and 72 h (median values of ?d, ra in [1.13, 1.19]). In this macroclimatic zone,
most biases are relatively small (median values of §d7 Rra close to 1) across all durations and products. However, IMERGv06B
and CMORPH-CDR exhibit a few outliers with substantial underestimation (median gdy Rra values in the range [3.5, 5.5]) for
long-duration events. In contrast, ERAS5 and ERAS5-Land show outliers of similar magnitude to CMORPH-CDR, but these
occur for short-duration events (1-2 h).

The higher variability in gridded precipitation biases in the Far North and Far South of Chile likely arises from the com-
bination of complex orography, sparse observational networks, and the nature of precipitation processes in these regions. In
the Far North, precipitation is highly sporadic and convective (e.g. Garreaud, 1999), often associated with isolated storms and
strong topographic gradients, which are challenging for coarse-resolution or satellite-based products to capture accurately. In
the Far South, precipitation is dominated by frontal systems with cold cloud-tops and marked orographic enhancement over the
austral Andes (Viale and Garreaud, 2015), producing highly spatially variable precipitation that may not be fully resolved by
the spatial resolution of ERAS or IMERG. In contrast, Central Chile exhibits more frequent and spatially uniform precipitation

events (Falvey and Garreaud, 2007), which are easier for gridded products to represent, resulting in lower bias variability
4.2 Spatial interpolation of bias-correction factors

To move from the S, e values obtained at point locations in the previous section into a spatially continuous field, we first
followed Ombadi et al. (2018) and investigated whether there is a relationship between the bias in I,,,,, and elevation or not,
finding no clear correlation between both variables (R? < 0.3, see supplementary material S3 in Soto-Escobar et al., 2025).

Based on this result, we discarded implementing a bias correction based on elevation.
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Second, we interpolated the bias-correction factors using thin-plate splines (Karger et al., 2021), which produced the most
realistic maps compared to alternative methods like inverse distance weighting and bilinear interpolation. Unlike the other
methods, the thin-plate spline interpolation provided a smoother and more balanced surface, without abrupt bias changes or
convergence issues. The bias-correction factors were interpolated using the values from 144 rain gauges located in all the study
areas but the Far North (see supplementary material S1 in Soto-Escobar et al., 2025), obtaining specific bias-correction maps
for each product and duration (see supplementary material S4 in Soto-Escobar et al., 2025). In the data-scarce and hyper-arid
Far North we chose not to provide maps of annual maximum intensities, because the bias-correction factors were derived
exclusively from hourly rain gauges located above 3,000 m a.s.l. The current absence of hourly precipitation data in the Far
North highlights the need to increase the density of rain gauges in hyper-arid areas, where a few extreme precipitation events
can trigger important damages to civil population and infrastructure (e.g., Hauser, A, 1997; Vargas et al., 2000; Wilcox et al.,
2016).

4.3 Trendsin I,,,.

For all the gridded datasets, supplementary material S5.2 (Soto-Escobar et al., 2025) contains maps showing Kendall’s 7 values
statistically significant at « = 0.01, & = 0.05 and o = 0.10; as well as maps with all the computed trends independent of their
statistical significance. Although the trend areas are somewhat smaller at lower significance levels, such as o = 0.01, the spatial
distribution of areas with statistically significant trends remains the same. In general, for all durations the results of the trend
analysis were similar between ERAS and ERAS-Land, as well as for IMERGvV06B and IMERGvV07B. In addition, the trends
obtained for ERAS and ERAS-Land were also similar when using 20 (2001-2021) and 40 (1981-2021) years of data length,
although with slightly smaller areas with significant trends in the latter case. Therefore, Figure 4 only shows Kendall’s 7 for all
gridded products for 2001-2021, where cells with green (orange and red) colour represent increasing (decreasing) trends, and
white cells indicate the absence of a statistically significant 7 value at o = 0.05.

Figure 4 shows that IMERGv07B presents isolated increasing trends for both 2- and 12-hour durations in the Near North (7
values in [0.2, 0.68]), and decreasing trends from 32.4 to 34.6°S (Valparaiso and Metropolitana regions) in Central Chile (7
values in [—0.2, —0.5]), with a larger area with decreasing trends as the duration increases, which similar for all durations. In
the Near South, IMERGVO7B shows almost no trend for the 2-hour duration, a pattern that remains similar for durations up
to 8 hours; for 12 hours and longer, it presents decreasing trends (7 values in [—0.2, —0.7]). In the Far South, only isolated
increasing trends are observed for all durations. On the other hand, ERAS-Land shows decreasing trends in the Near North for
the 12-hour duration (7 values in [—0.1, —0.4]), a behaviour that is also observed for durations between 6 and 72 hours. For
all durations from Valparaiso to the Biobio regions (32-38°S), decreasing trends are observed (7 values in [—0.3, —0.68]),
and there are no significant trends for any duration south of 38°S. Finally, CMORPH-CDR shows decreasing trends for all
durations and across the entire continental area of Chile (7 values in [—0.2, —0.78]).

The results of the modified Mann-Kendall trend test for the 20 and 40-year periods revealed large areas with no trends,

as well as a predominant decreasing behaviour of I,,,., which is observed for all products and durations in Central Chile.
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IMERGvVO07B showed increasing trends for isolated areas of Near North and Far South, contrary to the decreasing or no trends
obtained for ERAS-Land and the decreasing trends found in CMORPH-CDR in the same areas.

In contrast to studies that suggest an increase in extreme precipitation intensities worldwide due to rising temperatures
(Trenberth, 1999; Allen and Ingram, 2002; Pall et al., 2007; Fowler et al., 2021a, b; Neelin et al., 2022), our results show
that I,,,, is decreasing in Chile, a pattern that is also observed in other regions of the world (Liu et al., 2005; Utsumi et al.,
2011; Serrano-Notivoli et al., 2018). This decrease in I, could be due to the fact that non-stationarity is only applied to the
location parameter of the Gumbel distribution, as discussed by Prosdocimi and Kjeldsen (2021) using a three-parameter GEV
distribution with data from 40 streamflow stations spanning 65 to 115 years. However, we are confident that the decrease in
Iz 1s likely due to the decreasing number of winter storms (cold fronts) that have reached central Chile in recent decades
(Garreaud et al., 2019). Our results are consistent with the observed decrease in daily precipitation records from 1979 to 2017
in all seasons except summer (Lagos-Zuiiiga et al., 2024). The decrease in I,,,, is also consistent with a strong drying trend
(in terms of annual accumulation) registered in central and southern Chile in 2010-2022, partly due to climate change (Boisier
et al., 2018) and strongly influenced by the Chilean megadrought (Garreaud et al., 2017). However, the wet years 2023 and
2024 (outside the temporal period of our analysis) could potentially change these observed trends. On the other hand, the global
models also project a slight decrease in precipitation extremes for the Near North and Central Chile for 2075-2099 compared to
1990-2014, despite a global increase in precipitation extremes (Martinez- Villalobos and Neelin, 2023). In particular, Martinez-
Villalobos and Neelin (2023) projects a strong increase in extreme events for the Far North. Unfortunately, we did not provide
14 values for this region due to the sparse network of sub-daily rainfall records.

Our results also indicate that the decreasing trends in [,,,, for durations longer than 24 hours are consistent with those

observed for shorter durations, suggesting that trends in precipitation intensities persist across different temporal scales.
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Figure 4. Kendall’s Tau (7) for all gridded datasets for 2001-2021. Positive (negative) values indicate an increasing (decreasing) trend. White

cells indicate that 7 was not statistically significant at o = 0.05.
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4.4 I,,,. derived from the stationary model

Based on bias-corrected annual maximum intensities, we obtained I,,,,, using stationary and non-stationary models for dura-
tions of 1, 2, 4, 6, 8, 10, 12, 18, 24, 48, and 72 hours and return periods of 2, 5, 10, 25, 50 and 100 years. Due to the large
number of figures involved in the previous analyses, and the similarity in I,,,, from the stationary and non-stationary model
(see Section 4.5), panels a) and c) of Figure 5 only shows maps of I,,,q, values derived from stationary model, in mm h~?!, for
a 50-years return period and durations of 2 and 12 h, as representative of important storms affecting Central-Southern Chile.
Additionally, in this figure, IMERGVO06B is excluded to emphasise IMERGvV07B, the latest version of the product, while ERAS
is not included due to its similarity to ERAS-Land. Supplementary materials S7 and S8 (Soto-Escobar et al., 2025) contain
boxplots and maps, respectively, with I,,,, values obtained from the stationary and non-stationary models, for all gridded
datasets, all durations and all return periods. In all these maps the hyper-arid Far North (17.5-26.0°S) has been intentionally
removed, due to unrealistic I,,,, values created by the interpolation of the bias-correction factors (see details in supplementary
material S4 in Soto-Escobar et al., 2025).

Figure 5 and the supplementary material S8.1 (Soto-Escobar et al., 2025) show that the spatial distribution and numerical
values of I,,,,, shown by IMERGvV07B are very similar to those obtained from ERAS and ERAS5-Land, for all durations. At the
same time, IMERGvV06B shows higher I,,,,, values than the three previous products, and CMORPH-CDR shows the highest
values among all precipitation datasets, especially in the Andes Cordillera. As expected, the highest I,,,,, values are obtained
for the shortest durations, for all products. For d = 1 h, IMERGv06B shows a larger spatial area with high I,,,, values than
IMERGV07B, but this difference increasingly disappears for longer durations. For all return periods and for durations of 1
and 2 h, the highest I,,,,, values are distributed from Central Chile throughout to the Austral Patagonia. For durations of
4 h or longer, however, these highest I,,,, values are only concentrated in Central and Southern Chile (32.2-43.7°S). For
precipitation events with a duration of 12 h or longer, Central and Southern Chile show two different patterns: from 32.4 to
34.6°S (Valparaiso and Metropolitana regions), the annual maximum intensities occur along the coast, while between 34.6 and
36.4°S these maximum intensities shift towards the Andes, with weaker intensities on the coast.

On the other hand, for all products, the difference in I,,,,, between the Andes and the intermediate depression/western Pacific
border becomes more pronounced with increasing duration. For durations of 24 h or more, the highest intensities are mainly
concentrated in the Andes, from the Maule to the Araucania region (35-40°S). An exception to this pattern is the coastal area of
the Bio-Bio region (~ 37°S), which is dominated by the Nahuelbuta mountains (with elevations over 1,200 m a.s.l.), which are
responsible for much higher precipitation values than the surrounding lowlands (Garreaud et al., 2016). The large longitudinal
differences in the I,,,,, values emphasise the importance of using a spatially explicit representation of precipitation intensities
in civil infrastructure design, stormwater management, and flood risk assessment. Furthermore, the intensities observed in the
intermediate depression are not representative of those in the Andes. Recently, Abarca et al. (2024) calculated the accumulated
precipitation over six hours triggering societal impacts in Central Chile during the 8-year period 2015-2022. Our 1,,,,, values
for a 6-hour duration and 10-year return period resulted in accumulated precipitation values exceeding the warning thresholds

given by Abarca et al. (2024) in all geomorphological units.
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Interestingly, this is the first work showing how the spatial distribution of I,,,,, differs from the distribution of mean annual
precipitation in continental Chile (Figure 1). While mean annual precipitation increases almost monotonically from the Far
North towards southern Patagonia, for all durations I,,,,,. presents its maximum values in Central-Southern Chile (32.2-43.7°S).

To provide a quantitative summary of the differences in annual maximum intensities across all gridded datasets, Figure 6
shows boxplots summarising the I,,,, values for each gridded dataset for T=50 years and durations of 1, 2, 6, 12, 24, 48, and
72 hours, aggregated by macroclimatic area. Supplementary material S7 (Soto-Escobar et al., 2025) contains boxplots for all
gridded datasets, durations and return periods.

In general, Figure 6 shows that for all macroclimatic areas the highest intensity values are provided by CMORPH-CDR,
followed by IMERGV06B. These two products are also the ones with the largest amount of outliers for all durations, with
CMORPH-CDR always having more outliers than IMERGvVO06B in any macroclimatic area. For CMORPH-CDR, the amount
of outliers is largest in Central Chile (32.2-36.2°S) and the Near South (36.4-43.7°S), while in the case of IMERGV06B the
largest amount of outliers is observed in the Near South followed by the Far South (43.7-56.5°S). In the case of CMORPH-
CDR, the large number of outliers (Figure 6) would indicate either a high spatial variability of I,,,4, (Which we can not discard
or confirm with the current density of rain gauges), or a low ability of this product to reproduce the annual maximum intensities.

Figure 6 shows a strong agreement among the [,,,, values derived from IMERGv0O7B, ERAS and ERAS-Land, from the
Near North to the Near South (26.0-43.7°S), while in the Far South (43.7-56.5°S), IMERGvO07B presents slightly higher annual
maximum intensities for all durations. Overall, despite important differences between their origin, we obtained similar 4,
values for IMERGv07B, ERAS and ERAS5-Land, mainly for Central and Southern Chile (32.2-43.7°S), which concentrate the
highest amount of rain gauges. The convergence of I,,,,, between the satellite-based IMERGv07B product and those resulting
from reanalyses (ERAS and ERAS5-Land) increases our confidence in the I,,,,, values provided by these three datasets.

Although not directly comparable due to differences in the dataset, temporal period of analysis and methodology used, our
I 4. values obtained for a duration of 24 h and a return period of 10 years are similar to the isohyets values used as reference
in Chile until today (DGA, 1991). Similarly, our I,,,, values obtained for return periods of 2, 5, 20, 50 and 100 years are
close to those derived from DGA (1995) using frequency and duration factors. Supplementary material S10 (Soto-Escobar
et al., 2025) shows that the IDF curves obtained after bias-correction are similar to those derived from in situ rain gauge
data, demonstrating the efficiency of the bias-correction method, despite the challenge of having a low number of stations and
relatively short observed data length.

Finally, in supplementary material S11 (Soto-Escobar et al., 2025) we also compared our annual maximum intensities (in
mm h~!) with those of the Precipitation Probability DISTribution (PPDIST) product (Beck et al., 2020), which provides values
for return periods ranging from 3 days to 15 years, considering 3-hour and daily events. For T=10 years and a duration of 3 h,
all PPDIST values were in general higher (~ 5-10 mm h~1) than those of IMERGv06B, IMERGV07B, ERAS5 and ERA5-Land,
and where mostly lower than those of CMORPH-CDR (~ 2-5 mm h™1). These higher I,,,4, in PPDIST could be attributed to
the lack of hourly rainfall gauges in PPDIST for continental Chile. On the other hand, for T=10 years and a duration of 24 h
all PPDIST values were similar to those provided by IMERGv06B, IMERGv0O7B, ERAS and ERAS5-Land (median values of
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all these products in [3.3, 4.1] mm h—!), and slightly lower than those derived from CMORPH-CDR (median value of 4.8 mm
h=1).

4.5 Comparison of I,,,,, from non-stationary vs stationary models

To facilitate the comparison of the I,,,,, obtained with the stationary and non-stationary models of extreme rainfall, figures
5 and 6 show maps and boxplots, respectively, of I,,,,, differences for various durations and T=50 years across all grid cells
belonging to each macroclimatic region, calculated as non-stationary minus stationary values. These figures use all the cells
with a statistically significant 7 value at a = 0.05. Supplementary material S8 show I,,,,, obtained from stationary and non-
stationary models for other return periods for all the gridded precipitation datasets used in this study.

In panels b) and d) of Figure 5, blue (yellow, orange, red) colours indicate that the values estimated from non-stationary
are higher (lower) than their stationary counterparts. The predominance of the yellow colour in this figure indicates that, in
general, intensities from the non-stationary model are slightly lower than their stationary equivalents (differences in [0, 5]
mm h™!). Some isolated exceptions for the previous finding are localised in the Near North (26.0-32.2°S) and Austral South
(43.7-56.5°S) for durations equal or higher than 12 h, and all along the country for short precipitation events (d = 1 h). The
differences between the non-stationary and stationary models become smaller for longer durations (greater than 8 h), which
aligns with findings from Ganguli and Coulibaly (2017).

On the other hand, Figure 6 shows that the median differences between I,,, estimated using the non-stationary and station-
ary models are consistently shifted towards negative values, confirming that the non-stationary I,,,,, values are slightly lower
than their stationary counterparts (median differences in [0, 1] mm h~!). Only three exceptions where the median differences
are higher or close to zero were found: ¢) IMERGvO07B in the Near North (26.0-32.2°S); i) CMORPH-CDR in the Near North
and Far South (43.7-56.5°S), and i) ERAS and ERAS5-Land in the Far South.

In addition, Figure 6 also shows that the median differences between I,,,, based on the non-stationary and stationary
models are close to zero for all gridded datasets (median values in [0, 2] mm h~'), and the dispersion around these median
values generally decrease with increasing durations. It is worth mentioning that, in the Far South (43.7-56.5°S), ERAS5 and
ERAS5-Land present almost no differences between I,,,, values obtained under stationary and non-stationary assumptions,
with median values very close to zero and the interquantile range (q97-q25) in [-0.5, 0.5] mm h~!.

Finally, Figure 6 shows that the variability of the difference between non-stationary and stationary models is very low for
all durations, with the interquantile range (q97-q25) in [-2, 2] mm h~!. CMRORPH-CDR is the product with the largest
amount and largest absolute values of outliers for all durations, while IMERGv06B and IMERGVO07B present similar median
differences in I,,,,, derived from both models, but with much lower variability in the case of IMERGv07B. ERAS and ERAS-
Land exhibited similar median differences and variability.

To further assess the statistical similarity between stationary and non-stationary models, Figure 7 presents scatter plots of
the estimated values for each product and region. The strong clustering of points along the 1:1 line across all panels indicates
a high degree of agreement between the two approaches throughout the full distribution of annual maxima. A slight tendency

for I,,,4, from the non-stationary model to be lower, particularly for the most extreme values, supports the systematic nega-
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tive differences identified in the boxplot analysis (Figure 6). IMERGv07B, ERAS, and ERAS5-Land exhibit particularly high
consistency between the modelling approaches, with minimal scatter. By contrast, IMERGv06B and CMORPH-CDR display
greater variability, especially in regions characterised by more intense precipitation, such as the Near North and Far South.
Despite these discrepancies, the differences introduced by the (non-)stationary modelling assumption remain small relative to
the magnitude of the I,,,,, extremes. Overall, the scatter plots confirm that the observed differences are systematic across the
full range of values rather than driven by spatial climatological gradients. They complement the boxplot results and show that
non-stationary modelling generally introduces only minor adjustments to extreme precipitation estimates for most datasets and
regions

In conclusion, our findings indicate that locations with a statistically significant trend in I,,,,, do not necessarily exhibit
significant differences between I,,,,, values derived from stationary and non-stationary models. Therefore, while accounting
for the non-stationarity of extreme precipitation is important, observed trends can also be captured by stationary models when
using time-dependent parameters or flexible probability distributions (Dimitriadis et al., 2021), consistent with findings from
Ganguli and Coulibaly (2017); Yilmaz et al. (2014); Yilmaz and Perera (2014). In addition, Dimitriadis et al. (2021); Dong
et al. (2021) further showed that stationary models incorporating flexible distributions or temporal correlation can reproduce

observed trends and long-term persistence in precipitation extremes.
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Figure 5. Panels a) and ¢) show maps of I, derived from the stationary model for the IMERGvV07B, ERA5-Land, and CMORPH-CDR, for
a 50-year return period: panel a) shows results for the 2-hour duration, and panel c) for the 12-hour duration. Panels b) and d) present maps
of the differences in I,,q, between the non-stationary and stationary models for the same datasets and return period, with 2-hour duration in

panel b), and 12-hour duration in panel d). 25
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Figure 6. Boxplots of /4. for all gridded datasets and climatic macrozones, corresponding to a 50-year return period and durations of 1,
2,6, 12, 24, 48, and 72 hours. Panel (a) shows the values derived from stationary models, while panel (b) presents the differences in 1,40

between non-stationary and stationary models, for the same datasets, climatic macrozones, and durations.
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4.6 Impact of data length on I,

For each grid cell of ERAS and ERAS5-Land, we compared the I,,,,, values estimated with 40 and 20 years of data using
both stationary and non-stationary approaches for return periods of 2, 5, 10, 25, 50, and 100 years. Figure 8 focuses on
the case of T'= 50 years, summarising the differences I,,az 40years — Imax,20years for both approaches. Our results show
median differences close to 0 mm h~!, interquartile ranges within [-1, 1] mm h~!, and maximum differences within [-4, 4]
mm h~! across all durations and macroclimatic zones. Readers interested in other return periods can find similar results in
supplementary material S9.1 and S9.2 (Soto-Escobar et al., 2025).

The smallest differences were found in the Near North (26.0-32.2°S) and Far South (43.7-56.5°S), where the median dif-
ferences were almost 0 mm h™!, the interquartile values were in [-0.5, 0.5] mm h~!, and almost all the largest differences
were in [-2, 2] mm h~! for all durations. In Central Chile (32.2-36.2°S), for both ERA5 and ERAS5-Land, there were almost no
differences in I, 4, for d = 48 and d = 72 h, with a median value of practically 0 mm h~—! in both cases, and all the differences
in [-0.5, 1] mm h~'; while for durations d = 1 and d = 2 h the median differences were slightly positive (in [0.1, 0.2] mm
h™1), with a larger spread (mostly in [-3, 4] mm h~1); and for durations of 6, 12 and 24 h the median differences were slightly
negative (in [-0.1, -0.2] mm h™1), with a relatively small spread (mostly in [-2, 1.5] mm h~1). In the Near South (36.4-43.7°S),
the differences obtained between ERAS and ERAS5-Land were very similar to the ones obtained for Central Chile, with the
exception of the very short durations. For d = 1 and d = 2 the median differences were slightly negative (in [-0.1, -0.2] mm
h~1), with a spread mostly in [-4, 4] mm h~!.

Our results align with Marra et al. (2017), who found that the uncertainty in the estimated parameters of the GEV distribution
is particularly pronounced in arid climates and for short durations, likely due to the limited number of rainfall events considered
in each year. This result suggests that time aggregation may help mitigate some of the challenges of using short data records.
Our findings also align with Ombadi et al. (2018), who mentioned that short data records can be associated with increasing
errors in I,,,, for increasing return periods, when introducing a new framework to develop IDF curves over the contiguous
United States based on daily PERSTANN-CDR data.

Figure 9 presents representative maps of the percentage differences in the location and scale parameters of the stationary
Gumbel distribution for ERAS-Land, comparing estimates obtained with 20 years (2001-2021) and 40 years (1981-2021)
of data. The differences were computed by subtracting the 20-year parameter estimates from the 40-year estimates and then
normalising by the 40-year values. The results show generally minor differences in the location parameter (—10% to 10%)
across the study area for both ERAS and ERAS5-Land, with the exception of the coastal area of the Coquimbo region (26-30°S),
where differences reach up to -40%. By contrast, the scale parameter exhibits larger differences (—40% to 40%) throughout the
domain. These include a clear spatial pattern of higher values for the 20-year period in most of the Near North (26.0-32.2°S)
and Central Chile (32.2-36.2°S), and a more heterogeneous “salt and pepper” pattern in the South (36.4-43.7°S) and Far South
(43.7-56.5°SS) macrozones. Readers interested in the raw maps of the Gumbel parameters for the stationary model can find

them in supplementary material S6.1 (Soto-Escobar et al., 2025).

28



a) b)
24 24
11 11 g
8
Al . . , . . . R — . , . ‘ .
2 6 12 24 48 72 1 12 24 48 72
4 T 4l T
Q
) ;g ) ;é g
S
s BB s
L] -1 ++ L] -1 ++ @
= i 1
T 2 : : : : : : ol = : : : ‘ :
£ 2 12 24 48 72 1 2 6 12 24 48 72
£ oA TT TT A TT TT
11 11 z
S
01 01 o
2
11 11 S
24 1 -2 1
2 6 12 24 48 72 1 2 6 12 24 48 72
154 T 154 T
1.0 1.0
051 051 &
0.0 0.0 2
=
-0.51 -0.51 5
109 | 104 |
2 6 12 24 48 72 1 2 6 12 24 48 72
Duration [h]

E3 ERA5 E3 ERA5-Land

Figure 8. Boxplots summarising differences between I, derived from stationary and non-stationary models, estimated using data series
of 40 and 20 years (Iimaz,40years — Imaz,20ycars), for ERAS (green colour) and ERAS-Land (yellow colour), considering a 50-years return
period and durations of 1, 2, 6, 12, 24, 48, and 72 hours. From top to bottom, each panel corresponds to a different macroclimatic area.

Column a) shows results obtained using the stationary model, while column b) shows results from the non-stationary model.

Despite the previous differences in the Gumbel parameters, we obtained only minor differences (median values lower than
1 mm h™1) in the I,,,,, derived from 20 and 40 years of data, both for ERAS5 and ERAS5-Land, as shown in Figure 8§ for the

stationary and non-stationary models.



605

610

615

Our findings complement results obtained by Papalexiou and Koutsoyiannis (2013), who found that the data length used in
the frequency analysis had an important effect in the values of the shape parameter, when the 3-parameter GEV is used instead
of the 2-parameter Gumbel distribution. In addition, their analysis was based on data lengths ranging from 40 to 163 years,
making their findings not directly comparable to ours.

Endreny and Imbeah (2009) used data from the Tropical Rainfall Measuring Mission (TRMM) processed by the 3B42
algorithm with precipitation records every 3 hours from the Ghana Meteorological Service Department (GMSD), combining
both records for the generation of IDF curves in Ghana, obtaining good results, but limited by the TRMM temporal resolution
of 3 hours. Although these results are not directly comparable to ours; due to differences in study areas, satellite products,
temporal periods, and methodologies; they suggests that combining station data and satellite products is essential for generating
IDF curves, which aligns with our findings.

Although not directly comparable to our study due to substantial differences in data length and methodology, Iliopoulou and
Koutsoyiannis (2019) highlighted that the length of the precipitation time series can have an important influence on extreme

precipitation values when using stationary models, due to the long-term persistence observed in precipitation time series.
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Figure 9. Panel a) presents maps of the percentage difference in the location parameter between the periods 1981-2021 and 2001-2021
using the ERAS-Land dataset. Panel b) shows maps of the percentage difference in the scale parameter for the same periods, based on the

ERAS dataset. Results are provided for rainfall durations of 1, 12, and 48 hours
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4.7 curvasIDF: a web platform for IDF curves in Chile

For each grid cell of each P dataset is possible to obtain a figure with the I,,,,, values obtained in this work, for different
620 durations and return periods. However, presenting such a large number of figures in a single document is not feasible from a
practical point of view, not even in supplementary material. Therefore, we implemented a user-friendly web platform (https:
/lcurvasIDFE.cl/), where the interested reader can define a duration and return period of interest and then click at any point of the
study area to obtain the corresponding IDF curves for all the gridded datasets used in this work. We made an important effort
into developing this web platform to make it easier for practitioners and decision makers to obtain IDF curves for designing

625 climate-resilient infrastructure and managing the impacts of climate change on water resources.

5 Conclusions

To overcome the limited availability of long time series of in situ sub-daily precipitation data, we use five state-of-the-art hourly

precipitation datasets (IMERGv06B, IMERGv07B, ERAS, ERAS-Land, CMORPH-CDR) and 161 quality-checked hourly rain

gauges to compute stationary and non-stationary annual maximum intensities (1,,,4,) and IDF curves for the climatologically
630 and topographically diverse Chilean territory (17-56°S).

To the best of our knowledge, this is the first work comparing annual maximum intensities derived from stationary and non-
stationary statistical models and from two different families of state-of-the-art gridded precipitation datasets: IMERGvO6B/IMERGv07B
and ERAS5/ERAS5-Land. In particular, this is the very first study providing intensity-duration-frequency curves at high spatial
and temporal resolution using state-of-the-art gridded precipitation datasets for continental Chile. This constitutes an important

635 contribution to advancing our knowledge about extreme precipitation events in mountainous areas where such information is
generally unavailable.

Our key findings are summarised in the following lines:

— The biases in I,,,, varied depending on the gridded precipitation product, the macroclimatic zone and the duration con-

sidered in the analysis. In general, most gridded datasets —except CMORPH-CDR~- showed smaller biases for longer du-

640 rations. IMERG products consistently overestimated short-duration extremes (1-6 h) but improved toward near-unbiased
estimates at longer durations (24-72 h), whereas ERAS and ERAS5-Land shifted from slight underestimation at short

durations (1-6 h) to slight overestimation at longer durations (24-72 h). Bias variability is greater in the extreme Far

North and Far South, as compared to the more central macroclimatic zones.

— This is the first study showing how the spatial distribution of the annual maximum intensities (1,,,4,) derived from

645 stationary and non-stationary models differs from the distribution of the spatial pattern of mean annual precipitation in
continental Chile. While mean annual precipitation increases steadily southward, I,,,,, reaches its maximum values in
Central-Southern Chile, for all durations. For durations of 24 hours or more, the highest intensities are primarily found

in the Andes, particularly between the Maule and Araucania region (35-40°S).
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— There is a high longitudinal gradient in I,,,,,, from the low values in the intermediate depression to the high values
650 in the Andes, which increase with larger durations. This is particularly relevant for the design of civil infrastructure,
stormwater management and for flood risk assessment in Chile: intensities measured in the intermediate depression

(typical of current design manuals) are not representative of I, in the Andes.

— Despite important differences in their technical foundations, for all durations, IMERGvV07B closely matches ERAS and
ERAS5-Land in spatial distribution and I,,,4, values. IMERGvV06B shows higher I,,,,, values, while CMORPH-CDR has
655 the highest, especially in the Andes cordillera.

— The largest intensity values are provided by CMORPH-CDR, followed by IMERGvV06B for all macroclimatic areas, and

these two products have the largest amount of outliers for all durations.

— In Central Chile, all precipitation products revealed either significant decreases in I,,,4, (at & =0.01, o« = 0.05, and

a = 0.10) or no detectable trends. While the extent of significant areas was smaller at the stricter level (o = 0.01),

660 their spatial distribution remained consistent across significance levels. For ERA5 and ERAS-Land, these declining
trends were evident in both 1981-2021 and 2001-2021, whereas the other products were only available for the shorter

2001-2021 period. In contrast, regional differences emerged outside Central Chile: in the Near North and Far South,
IMERGvVO07B displayed localised increases, ERA5-Land showed mostly decreases or no trends, and CMORPH-CDR

consistently indicated widespread declines.

665 — In general, for all durations and most of the gridded precipitation datasets, the non-stationary I,,,, values are slightly
lower than their stationary equivalents (differences in [0, 5] mm h~1!), and the differences between the non-stationary
and stationary I,,,,, become smaller for longer durations (greater than 8 h). This result suggests that the choice between
stationary and non-stationary approaches should be carefully analysed for each study area, and for the Chilean case study
it does not significantly affect the estimation of I,,,, values. In addition, locations with a significant trend in I,,,4, Will

670 not necessarily exhibit significant differences between stationary and non-stationary I,

— When comparing the Gumbel parameters derived from ERAS and ERAS5-Land using 20-year (2001-2021) and 40-year
(1981-2021) data under the stationary assumption, we found minor differences (-10% to 10%) in the location parameter
across the study area for both datasets. In contrast, the scale parameter exhibited larger differences, ranging from -40%
to 40%.

675 — Despite the previously noted differences in the Gumbel parameters, the resulting I, values derived from 20- and 40-
year records show only minor differences (median values below 1 mm h~!) for both ERA5 and ERAS5-Land, across all

durations and for both the stationary and non-stationary cases.
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6 Practical recommendations

To provide practical guidance for hydrological and engineering applications that require a reliable quantification of extreme

precipitation events in Chile, we make the following recommendations:

— We encourage the Chilean Water Directorate (DGA) to increase the number of hourly rain gauges in mountainous areas,
which are fundamental to assessing the behaviour of gridded precipitation products. We also encourage the National
Agroclimatic Network (Agromet) to apply quality control algorithms to ensure the reliability of their hourly precipitation

time series (e.g., Blenkinsop et al., 2017).

— Given the convergence between I,,,, obtained from ERAS, ERAS5-Land and IMERGVO07B, we recommend using the

highest value among them for designing safer climate-resilient infrastructure.

— Given the large amount of spatially explicit I,,,, for different durations and return periods, all our results are publicly

available in a user-friendly web platform: https://curvasidf.cl.

Code availability. Documentation about data processing is provided in Section 3 of this paper and is based exclusively in the use of open-

source software. R codes used in this study are available from the corresponding author upon reasonable request

Data availability. The gridded datasets on which this paper is based are too large to be retained or publicly archived with available resources.
All the previous datasets are openly available at locations cited in Section 2.2.2. The raw hourly rain gauge data used in this study, described
in Section 2.2.1, can be downloaded from the Vismet web platform (https://vismet.cr2.cl/) of the Center of Climate and Resilience Research
(CR2). The I,,q4, maps resulting of this work are available from the corresponding author upon reasonable request, and they are publicly

available on www.curvasidf.cl.
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