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Abstract. Traditionally, Intensity-Duration-Frequency (IDF) curves are based on rain gauge data under the assumption of sta-

tionarity. However, only limited long time series of sub-daily precipitation data are available worldwide, making it difficult

to accurately estimate precipitation intensity for different durations and return periods, while climate change is challenging

stationarity. This study aims to better understand how the stationary assumption and data length of hourly precipitation data

influence the annual maximum intensities of precipitation events in continental Chile, a region with varying climate and topog-5

raphy that has been affected by an unprecedented drought since 2010. Five hourly gridded precipitation datasets (IMEGv06B,

IMERGv07B, ERA5, ERA5-Land, CMORPH-CDR) and 161 quality-checked rain gauges are used to compute annual max-

imum intensities (Imax, mm h−1) using the stationary and non-stationary Gumbel distribution for six return periods (2–100

years) and 11 durations (1–72 h). Bias-correction factors are applied to match the gridded Imax values with the in situ ones, and

the modified Mann-Kendall test is used to assess the trends in Imax. Annual maximum intensities are calculated for the 20-year10

period (2001–2021) for all products, while an additional 40-year period (1981–2021) is used for ERA5 and ERA5-Land to as-

sess the impact of data length. Our results revealed significant decreasing trends across Chile for CMORPH-CDR, decreasing

trends in Central-Southern Chile (32–43◦S) for ERA5 and ERA5-Land, and isolated, divergent trends for IMERGv06B and

IMERGv07B. In addition, our results show that the annual maximum intensities derived from stationary and non-stationary

models (Imax) reached its highest values in central and southern Chile, for all durations and return periods, in contrast to the15

spatial pattern of mean annual precipitation, which increases steadily towards the south. For durations of 24 hours or more, the

highest intensities are primarily found in the Andes, particularly between the Maule and Araucanía region (35-40◦S). While the

Imax values were similar for IMERGv07B, ERA5 and ERA5-Land, they were much higher for IMERGv06B and CMORPH-

CDR. The difference between stationary and non-stationary Imax values ranges from 0 to 5 mm h−1 and become smaller for

durations greater than 8 h. Despite the differences observed in the Gumbel parameters for ERA5 and ERA5-Land when using20

20- and 40-year records, the resulting Imax values showed differences with median values below 1 mm h−1. The Imax values

are available on a public and user-friendly web platform (https://curvasIDF.cl/).
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1 Introduction

Accurately estimating extreme precipitation (P ) events is crucial for various engineering, hydrology, and climate science

applications. One of the essential tools used by engineers worldwide for quantifying extreme precipitation events are the25

Intensity-Duration-Frequency (IDF) curves (Sherman, 1931; Bernard, 1932; Haruna et al., 2023), which represent statistical

relationships between intensity (precipitation depth divided by duration), duration (e.g. 30 minutes, 1 h, 24 h) and frequency of

occurrence of extreme precipitation events. IDF curves are constructed by fitting a theoretical probability distribution function

(pdf) to samples of annual maximum (AM) or peak-over-threshold (POT) precipitation data (Yan et al., 2021). These curves

are central to urban infrastructure design, stormwater management and flood risk assessment.30

Notwithstanding the assumption of stationarity in precipitation extremes, i.e., a time-invariant probability distribution, has

been widely debated in recent decades (Milly et al., 2008; Montanari and Koutsoyiannis, 2014; Koutsoyiannis and Monta-

nari, 2015; Serinaldi and Kilsby, 2015; Serinaldi, 2015; Milly et al., 2015; Beven, 2016), IDF curves are still predominantly

developed under this assumption for most engineering and practical applications. This reliance on stationarity can lead to in-

frastructure failures during extreme events in a changing climate (Cheng and Aghakouchak, 2014; Mohan et al., 2023). While35

stationarity simplifies the construction of IDF curves, it may not adequately capture climate change impacts or long-term

variability in precipitation intensities.

On the other hand, non-stationary IDF curves consider the time-dependent nature of distribution parameters and can capture

existing trends in precipitation intensity (e.g. Agilan and Umamahesh, 2018; Ouarda et al., 2019; Yan et al., 2021; Silva et al.,

2021; Vinnarasi and Dhanya, 2022; Schlef et al., 2023).40

Therefore, several approaches have been developed in the last decades for computing non-stationary intensity-duration-

frequency curves, to face changing precipitation patterns (e.g., Cheng and Aghakouchak, 2014; Agilan and Umamahesh,

2016, 2017; Salas et al., 2018; Agilan and Umamahesh, 2018; Ouarda et al., 2019; Nwaogazie and Sam, 2020; Yan et al.,

2021; Schlef et al., 2023). Among them, Schlef et al. (2023) provides a comprehensive review of IDF curves under non-

stationary conditions, including global precipitation trends, estimation methods, regionalization challenges, and uncertainty in45

design values.

While the aforementioned methods rely on stationary or non-stationary statistical models to summarise historical data,

Koutsoyiannis et al. (2024) introduced a stochastic framework that models precipitation as a random process, and provides a

probabilistic and theoretically grounded approach to estimating the relationships between intensity and duration across time

scales (durations) and return periods. This method accounts for the inherent variability and uncertainty of precipitation events50

without relying on stationary assumptions, and potentially provides more robust estimates under changing climate conditions

(Iliopoulou et al., 2024).

Regarding the data sources used to build IDF curves, traditionally they have been derived from point measurements obtained

from rain gauges installed on the ground (e.g. Chow et al., 1988; Koutsoyiannis et al., 1998; Sivapalan and Blöschl, 1998;

Watkins et al., 2005). However, point-based precipitation data obtained from rain gauges, while valuable, present limitations in55

capturing the true spatio-temporal variability of precipitation patterns, due to the relocation of stations, the use of different types
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of rain gauges, among others (Wood et al., 2000; Habib et al., 2001; Villarini et al., 2008; Gianotti et al., 2013; Pollock et al.,

2018; Morbidelli et al., 2020; Fadhel and Saleh, 2021). In particular, worldwide there is a limited availability of long time series

of sub-daily rainfall data. As a result, the true value of individual annual maximum rainfall depths might be underestimated

up to 50% for short durations, i.e., when the event duration is similar or lower than one day. The use of uncorrected series of60

annual maxima can lead to underestimations of ∼10% in the resulting IDF curves (Morbidelli et al., 2017, 2020).

To overcome these limitations, gridded precipitation products have emerged in recent decades, providing spatially continuous

and temporally homogeneous datasets that offer a more comprehensive representation of precipitation dynamics (Funk et al.,

2015; Huffman et al., 2017; Xie et al., 2017; Beck et al., 2019a, b; Baez-Villanueva et al., 2020; Nguyen et al., 2020; Muñoz-

Sabater et al., 2021; Sadeghi et al., 2021; Beck et al., 2022). These gridded P products have opened up new opportunities to65

improve the accuracy and spatial representation of IDF curves, especially in regions with complex topography and climatic

variability (Endreny and Imbeah, 2009; Marra et al., 2017; Ombadi et al., 2018; Faridzad et al., 2018; Sun et al., 2019; Noor

et al., 2021; Venkatesh et al., 2022). Their improved resolution and coverage make them valuable tools for various scientific

and engineering applications, while also advancing our understanding of extreme precipitation events. However, estimates of

gridded precipitation products are not directly comparable to rain gauge measurements, because gridded estimates represent70

area-averaged values, which can smooth out variability.

Notwithstanding the previous limitation, in the last decades these precipitation products have been extensively evaluated

against in situ measurements (e.g., Aghakouchak et al., 2011; Ward et al., 2011; Chen et al., 2013; Duan et al., 2016; O

et al., 2017; Zambrano-Bigiarini et al., 2017; Baez-Villanueva et al., 2018; Beck et al., 2019a) and used for hydrological pur-

poses (Casse et al., 2015; Bisselink et al., 2016; Maggioni and Massari, 2018; Baez-Villanueva et al., 2020, 2021; Fernandez-75

Palomino et al., 2022; Aguayo et al., 2024). However, only a few studies have focused on the development of IDF curves from

publicly available gridded precipitation datasets for different regions (Endreny and Imbeah, 2009; Marra et al., 2017; Faridzad

et al., 2018; Ombadi et al., 2018; Sun et al., 2019; Courty et al., 2019; Noor et al., 2021; Venkatesh et al., 2022). These studies

highlight the potential of these products as an alternative to in situ rainfall data for developing IDF curves, but also describe

some challenges. Ombadi et al. (2018) mention that errors in IDF curves derived from gridded datasets are related to the ability80

of the original product to reproduce the maximum rainfall intensities and to uncertainties derived from the short length of the

data records, highlighting the necessity of bias adjustment from local rain gauges to provide accurate quantile estimates. Sun

et al. (2019) emphasise the importance of sub-daily rainfall records to obtain reliable IDF curves.

In this study, we aim to address the previously mentioned challenges by deriving IDF curves from five state-of-the-art

hourly-gridded precipitation datasets and 161 hourly rain gauges. In particular, we address the following research questions:85

1. What is the spatial distribution of the stationary annual maximum precipitation intensities for different durations?

2. Are there any significant trends in the stationary annual maximum precipitation intensities that justify using non-

stationary IDF curves?

3. Is the difference between stationary and non-stationary IDF curves significant enough to justify using a non-stationary

analysis?90
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4. What is the impact of the typical data length of precipitation products used for estimating stationary and non-stationary

IDF curves?

In other words, this study aims to better understand how the spatial distribution, temporal trends and data length of hourly

precipitation data influence the use of stationary versus non-stationary IDF curves in a study area with diverse climate zones

and topography. Additionally, it would provide practical guidance for hydrological and engineering applications that require a95

reliable quantification of extreme precipitation events.

This article is organised as follows: Section 2 describes the study area and datasets, while Section 3 describes the method-

ology used to develop stationary and non-stationary IDF curves. Numerical and graphical results, along with an in-depth

discussion in the light of the wider literature, are described in Section 4. Concluding remarks are summarised in Section 5,

followed by practical considerations that should be considered by decision-makers.100

2 Study area and datasets

2.1 Study area

Our study area is continental Chile, with more than 4,000 km of latitudinal extension (17.5-56.5◦S), from the Pacific Ocean

in the west (∼ 76◦W) to the Andes mountains in the east (∼ 66◦W). It covers an area of ∼756,626 km2, with elevations

ranging from sea level to 6,893 m a.s.l., encompassing four distinctive geomorphological units: coastal plains, coastal mountain105

range, intermediate depression, and the Andes mountain range. This area exhibits exceptional climatic variability (11 different

climates), ranging from hot and dry deserts in the north to polar and tundra climates in the south (Figure 1) .

To better describe the spatial patterns of extreme precipitation, we divided our study area into five macro-climatic zones,

slightly adapted from Zambrano-Bigiarini et al. (2017): Far North (17.5–26.0◦S); Near North (26.0–32.2◦S); Central Chile

(32.2-36.2◦S), South (36.4-43.7◦S) and Austral / Far South (43.7-56.5◦S). Figure 1 shows the macro-climatic zones, elevations110

(Jarvis et al., 2008), mean annual precipitation (Muñoz-Sabater et al., 2021), and the Köppen-Geiger climate classification

(Beck et al., 2023) for our study area.

2.2 Datasets

2.2.1 Rain gauges

The General Directorate of Water (DGA), the Meteorological Directorate of Chile (DMC), the Agrometeorological Network115

of the Agricultural Research Institute (Agromet) and the Center for Advanced Studies in Arid Zones (CEAZA) have more

than 600 rain gauges with hourly time series of observed precipitation in Chile. All these raw hourly records (GMT-4) from

2000 to 2021 are publicly available in the Vismet web platform (https://vismet.cr2.cl/) of the Center of Climate and Resilience

Research (CR2).
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After an exploratory analysis and basic quality control, we discarded 406 Agromet stations due to the existence of some120

anomalously large precipitation values. For the remaining 194 stations, we analysed the amount of hourly data effectively

available for several 5-year temporal periods (see supplementary material S1 in Soto-Escobar et al., 2025), which led to the

selection of 161 rain gauges with more than 80% hourly data between 01-Jan-2013 and 31-Dec-2017. Figure 1a shows the

location of the 161 selected rain gauges, which are described in Table S1 in supplementary material S1 (Soto-Escobar et al.,

2025).125

2.2.2 Gridded precipitation datasets

In this study, we initially analysed six gridded precipitation datasets. However, our analysis and results are only presented

for five of them, listed in Table 1. The sixth dataset, Precipitation Estimation from Remotely Sensed Information Using Ar-

tificial Neural Networks–Dynamic Infrared Rain Rate (PDIR-Now, Nguyen et al., 2020), was ultimately not included in this

manuscript (see details in supplementary material S2; Soto-Escobar et al., 2025). The five gridded precipitation datasets finally130

used for this study are briefly described in the following sections.

Table 1. Gridded P datasets used in this study.

P Full temporal Spatial Spatial and Product References

product period extent temporal resolution type

IMERGv06B* 2000/Jun–2021/Sep 60◦N-60◦S 0.10◦; half-hourly Satellite Huffman et al. (2015, 2017)

IMERGv07B* 1998/Jan–present global 0.10◦; half-hourly Satellite Huffman et al. (2023, 2024)

ERA5 1940/Jan–present global ∼0.28◦; hourly Reanalysis Hersbach et al. (2018, 2020)

ERA5-Land 1950/Jan–present global 0.10◦; hourly Reanalysis Muñoz-Sabater (2019);

Muñoz-Sabater et al. (2021)

CMORPH-CDR** 1998/Jan–present 60◦N-60◦S 0.08◦; half-hourly Satellite Xie et al. (2017, 2018)

* Global Precipitation Climatology Centre (GPCC) monthly precipitation data for 1891–present is used for corrections.

** CPC Unified Daily Gauge Analysis (over land) and the Global Precipitation Climatology Project (GPCP) pentad dataset (over oceans) are used for

corrections.

IMERG V06B Final Run

The Integrated Multi-satellitE Retrievals for GPM (IMERG) is a precipitation product developed by NASA as a part of

the Global Precipitation Measurement (GPM) mission (Huffman et al., 2015). It integrates data from passive microwave and

infrared sources to create an instantaneous precipitation estimate at a 30-minute, 0.1◦ resolution globally from 2000 to the135

present, allowing it to capture a wide range of precipitation events, from light rain to heavy storms (Huffman et al., 2017).

To reduce biases inherent to satellite-only retrievals, monthly satellite precipitation totals are first aligned with the GPCC

Monitoring Product, and then the high-resolution satellite estimates are rescaled accordingly.
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We used the retrospective IMERG V06B Final Run dataset, hereafter IMERGv06B, which provides precipitation intensities

(mm h−1/10) every 30 minutes, from 00:00 to 23:59 UTC+00 and from 01 Jun 2000 to 30 September 2021. To work with140

complete years only, we selected data from 01 January 2001 to 31 December 2020 (i.e., 20 years of data and 350,640 half-

hourly files). We downloaded the half-hourly GeoTiff files from NASA (http://pmm.nasa.gov/data-access/, access date: from

Jan-2019 to Dec-2022) using the WGS84 geodetic geographic coordinate system. Finally, we corrected the IMERG gridded

geolocation error of 0.1◦ (one-pixel) shift westward for all grid boxes, described in the Appendix 1 of Huffman et al. (2024).

IMERG V07B Final Run145

The Integrated Multi-satellitE Retrievals for GPM (IMERG) dataset provides global precipitation estimates at 0.1° spatial

and half-hourly temporal resolution. The latest version, IMERG V07 (released in 2023), incorporates several major upgrades

over V06B (Tan et al., 2022; Huffman et al., 2024). These include enhanced calibration of passive microwave observations,

updated CORRA and GPROF retrieval algorithms, refined infrared (IR) estimates with improved quality control, and better

detection of precipitation phase near freezing temperatures. Additional improvements involve expanded coverage over frozen150

surfaces, correction of the spatial offset present in earlier versions, and increased consistency across the Early, Late, and Final

runs. IMERG V07 also extends the data record back to 1998 using GridSat-B1 observations, providing more than 20 years of

uniformly reprocessed precipitation estimates from the TRMM and GPM eras. Collectively, these updates make IMERG V07

a more accurate, consistent, and globally applicable dataset than its predecessors.

Similarly to IMERGv06B, we used the retrospective IMERG V07B Final Run dataset, hereafter IMERGv07B, which pro-155

vides precipitation intensities (mm h−1/10) every 30 minutes, from 00:00 to 23:59 UTC+00 and from Jan/1998 to present. Due

to data availability during our data processing, we downloaded data from 01 January 2001 to 31 December 2021 (i.e., 21 years

of data and 368,160 half-hourly files). We downloaded the half-hourly GeoTiff files from NASA (https://arthurhouhttps.pps.

eosdis.nasa.gov/gpmdata/, access date: Dec-2023) using the WGS84 geodetic geographic coordinate system.

ERA5160

The fifth Generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA5) super-

sede the previous ERA-Interim used from 2006 to 2019, and provides a comprehensive and high-quality dataset of various

atmospheric variables, including precipitation (Hersbach et al., 2020). It combines observations and model simulations, assim-

ilating a vast amount of data sources to produce hourly precipitation estimates on a regular grid with a spatial resolution of

0.25◦, which allows for detailed analyses of precipitation dynamics at regional and global scales (Hersbach et al., 2020). Since165

2009, ERA5 assimilates ground-based radar-gauge composite observations over certain regions (notably the contiguous United

States), but it is not systematically bias-corrected globally using a dense rain-gauge network. We downloaded hourly data from

the Copernicus Climate Data Store (Hersbach et al., 2018).

ERA5-Land

ERA5-Land is a high-resolution reanalysis dataset that provides land-focused variables from the ERA5 system at 0.1◦ (∼9170

km) spatial and hourly temporal resolution (Muñoz-Sabater et al., 2021). It is specifically designed to represent the spatio-
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temporal dynamics of the water and energy cycles over land, including variables such as soil temperature, soil moisture, snow

cover, and vegetation properties, while ERA5 also includes ocean components. Precipitation in ERA5-Land is obtained by

linearly interpolating ERA5 forcing data onto a finer triangular mesh, without applying bias correction to the original ERA5

fields. Compared to ERA5, the input atmospheric variables (like temperature, humidity, and pressure) used for ERA5-Land175

are corrected for altitude differences between the ERA5 grid and the ERA5-Land grid to account for elevation effects, which

improves the representation of land surface processes (Muñoz-Sabater et al., 2021). We downloaded hourly ERA5-Land data

from the Copernicus Climate Data Store (Muñoz-Sabater, 2019).

Although ERA5 and ERA5-Land share the same underlying reanalysis, their differences in spatial resolution and land-

surface representation might have meaningful implications for characterising sub-daily extreme precipitation. Including both180

datasets allows us to assess whether the finer resolution and enhanced land-surface processes in ERA5-Land improve the es-

timation of IDF curves compared to ERA5, providing insights into the influence of spatial detail on extreme precipitation

metrics. This comparison is particularly relevant for researchers and practitioners across hydrology, climatology, and water re-

sources, as it highlights potential trade-offs between computational cost, data volume, and the added value of higher-resolution

products.185

CMORPH-CDR

The National Oceanic and Atmospheric Administration (NOAA) uses the Climate Prediction Center (CPC) morphing tech-

nique (CMORPH; Joyce et al., 2004) to create near-real-time and high-resolution satellite precipitation estimates at the global

scale. CMORPH estimates are obtained exclusively from passive microwave observations from low-orbiting satellites (PMW)

and then transported in space using infrared data from geostationary satellites during periods when no direct PMW data are190

available (Joyce et al., 2004).

Unlike the original CMORPH, which does not include any bias correction, the Climate Data Record (CDR) version of

CMORPH (Xie et al., 2017, 2018) incorporates the CPC Unified Daily Gauge Analysis (over land) and the Global Precipitation

Climatology Project (GPCP) pentad dataset (over oceans) to bias correct the raw integrated CMORPH satellite precipitation

estimates. These corrections ensure improved temporal consistency and spatial homogeneity, essential for long-term climate195

studies (Bates and Barkstrom, 2006).

CMORPH-CDR is a quasi-global dataset (60◦N–60◦S) with a spatial resolution of 8 km and half-hourly temporal frequency,

starting from 01-Jan-1998 (Xie et al., 2017, 2018). In this work, we used CMORPH-CDR version 1, hereafter CMORPH-

CDR, which is produced manually once a month with a latency of 3-4 months (Xie et al., 2018). We downloaded half-hourly

NetCDF files from NOAA ( https://www.ncei.noaa.gov/products/climate-data-records/precipitation-cmorph, access date: Jun-200

2022) using the WGS84 geodetic geographic coordinate system.

3 Methodology

After downloading the original datasets, the half-hourly precipitation products (IMERGv06B, IMERGv07B and CMORPH-

CDR) were aggregated into hourly intervals to ensure consistency in the temporal resolution used for the subsequent analyses.
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As a basic first checking, all the products were able to reproduce the spatial distribution of annual mean precipitation when205

compared with the Chilean CR2METv2.5 gridded precipitation product (Boisier, 2023). All the spatio-temporal analyses were

carried out using the terra (Hijmans, 2025) and hydroRTS (Zambrano-Bigiarini and Bernal Vallejos, 2023) R packages (R

Core Team, 2024).

Figure 2 illustrates the procedure used to address the research questions outlined in Section 1: i) estimation of annual maxi-

mum intensities for different durations d using stationary and non-stationary statistical models, for each one of the 161 in situ210

rain gauges, and for the five gridded precipitation datasets described in Section 2.2; ii) computation of bias-correction factors

for each gridded dataset, to match the annual maximum intensities observed at each rain gauge; iii) assessment of the temporal

evolution of the bias-corrected annual maximum intensities using the modified Mann-Kendall trend tests; iv) estimation of

annual maximum intensities for different durations and return periods T and each one of the bias-corrected gridded datasets,

using both the stationary and non-stationary Gumbel probability distribution. Finally, for ERA5 and ERA5-Land, we addition-215

ally estimated annual maximum intensities using 40 (1981-2021) and 20 (2001-2021) years of hourly precipitation data, to test

the impact of the data length used in the computation of annual maximum intensities, for both the stationary and non-stationary

approaches.
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Figure 1. Study area. From left to right: (a) rain gauges and macro-climatic zones; (b) digital elevation model (Jarvis et al., 2008); (c) mean

annual precipitation (ERA5-Land; Muñoz-Sabater et al., 2021) (d) Köppen-Geiger climate classes (Beck et al., 2023).

9



Figure 2. Flowchart summarising the methodology used to compute Imax values from both the stationary and non-stationary models for

each gridded precipitation dataset.
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3.1 Annual maximum intensities (Imax)

In this study, IDF curves are developed by fitting stationary and non-stationary statistical models to samples of annual maximum220

precipitation data. The annual maximum precipitation intensities corresponding to various durations d, as estimated by these

models, are hereafter denoted as Imax (mm h−1).

For the 161 selected rain gauges and for the five gridded precipitation datasets described in Section 2.2, we computed Imax

for durations d of 1, 2, 4, 6, 8, 10, 12, 18, 24, 48, and 72 hours. In contrast to the widely used fixed time windows (e.g., for

a duration of 2 hours, intensities are computed from 00:00 to 02:00 UTC, 02:00 to 04:00 UTC, ...), we used moving time225

windows (Soto and Mier, 2013a, b; Moraga et al., 2015), where each selected duration becomes the length of a moving time

window used to sum the hourly precipitation data along the selected duration. For example, when computing the maximum

precipitation intensity for a duration of 2 hours, the hourly precipitation data are aggregated from 00:00 to 02:00 UTC, from

01:00 to 03:00 UTC, from 02:00 to 04:00 UTC, ..., and then the corresponding annual maximum is computed for every 2-hour

moving window in any given year. The adoption of a moving window instead of a fixed window is expected to avoid the230

omission of the highest intensities in each duration (Haruna et al., 2023).

3.2 Bias correction of Imax

Several studies have evaluated satellite-based precipitation products by comparing them with in situ measurements (e.g. Beck

et al., 2020; Baez-Villanueva et al., 2018; Ombadi et al., 2018; Zambrano-Bigiarini et al., 2017), with a consensus that both

random and systematic errors are present in any gridded precipitation data. Following Ombadi et al. (2018), we first computed235

bias-correction factors for each gridded precipitation dataset to achieve a good agreement between the Imax observed at each

rain gauge and the Imax obtained at the corresponding grid cell of each gridded dataset. The procedure can be summarised as

follows:

1. Computation of Imax,d. For each one of the 161 selected rain gauges, and for durations d of 1, 2, 4, 6, 8, 10, 12, 18, 24,

48, and 72 hours, we used the moving time windows described in Section 3.1 to compute: i) the Imax in each rain gauge240

RG (Imaxd,RG,year
), and ii) the Imax for each gridded precipitation product PP at the grid cell where a rain gauge RG

is located (Imaxd,PP,year
), where the year index represent the year under analysis.

2. Computation of Sd,RG,year. For each duration d and grid cell where a rain gauge RG is located, we computed an annual

bias correction factor Sd,RG,year, where the year index represent the year under analysis, as follows (Venkatesh et al.,

2022; Nguyen et al., 2020; Arias-Hidalgo et al., 2013):245

Sd,RG,year =
Imaxd,RG,year

Imaxd,PP,year

(1)

3. Computation of Sd,RG. To correct the systematic error in each gridded precipitation dataset we computed average annual

bias-correction factors (Sd,RG) for each grid cell and duration d where a rain gauge RG is located as follows:

11



Sd,RG =

nyears∑
n=1

Sd,RG,year

nyears
(2)

where nyears represents the amount of years used in the analysis of each P dataset.250

4. Interpolation of average annual bias-correction factors (Sd,interp) for each duration. To obtain bias-correction factors for

the whole spatial extent of the study area and each duration d, we interpolated the average annual bias-correction factors

obtained at the 161 selected rain gauges using a thin plate spline interpolation (Karger et al., 2021), as implemented in

the fields R package (Nychka et al., 2021; R Core Team, 2024). This resulted in a gap-free surface of interpolated

bias-correction factors Sd,interp.255

5. Computation of bias-corrected gridded Imax for each duration. Finally, we computed bias-corrected annual maximum

intensities for each duration d (Imaxd,BC
) by multiplying the previously computed Sd,interp surface by the annual max-

imum intensity of each gridded precipitation product, (Imaxd,PP
), as follows:

Imaxd,BC
= Imaxd,PP

·Sd,interp (3)

3.3 Trends in Imax260

Following Cheng et al. (2014) and Cheng and Aghakouchak (2014), we investigated whether using non-stationary IDF curves

is justified for our study area or not. In our study, we used the non-parametric modified Mann-Kendall test (Hamed and Rao,

1998) to identify the existence of monotonic upward or downward trends over time in the bias-corrected annual maximum

intensities (Imaxd,BC
) (Cheng et al., 2014). The modified Mann-Kendall trend test adjusts for autocorrelation to prevent false

trends. It detrends the time series, calculates the effective sample size using significant serial correlations, and corrects the265

inflated (or deflated) variance of the test statistic S. The results are evaluated using Kendall’s Tau (τ ), which normalizes the

test statistic S based on the effective sample size. τ ranges between -1 and +1, with positive (negative) values indicating an

increasing (decreasing) trend. The closer τ is to -1 or +1, the stronger the trend is, and τ = 0 indicates no trend (i.e., data are

independent or random). We evaluated the statistical significance of the computed trends using a significance level α= 0.05.

The trend analysis was conducted using the mmkh function from the modifiedmk R package (Patakamuri and O’Brien,270

2021; R Core Team, 2024). For IMERGv06B, the analysis covered the period 2001-2020, as data were unavailable from Octo-

ber 2021 onwards. For IMERGv07B, ERA5, ERA5-Land, and CMORPH-CDR, we used the period 2001-2021. Additionally,

to evaluate the impact of data length on trend estimation, we extended the analysis to 1981-2021 for ERA5 and ERA5-Land,

the only datasets with time series longer than 20 years.
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3.4 Stationary model of Imax275

Stationary intensity-duration-frequency (IDF) curves have historically been widely used in civil engineering to design drainage

systems, flood control works, and urban stormwater management based on return periods (e.g., 10 or 100-year events). These

stationary IDF curves offer a simple yet robust means of estimating rainfall extremes, under the assumption that the statistical

properties of precipitation intensities, at least their first two moments (mean and variance), remain constant over time.

The three-parameter Generalized Extreme Value (GEV) distribution has been commonly used to model extreme rainfall280

events (Koutsoyiannis et al., 1998; Papalexiou and Koutsoyiannis, 2013; Koutsoyiannis and Papalexiou, 2017; Lazoglou et al.,

2019), which cumulative distribution function can be expressed as follows (Coles et al., 2001):

F (x;µ,σ,ξ) = exp

[
−
(
1+ ξ

(
x−µ

σ

))− 1
ξ

]
(4)

where µ is the location parameter, that is often informally associated with central tendency, is formally linearly related to

the mean, and only coincides with the mode if ξ = 0; σ is the scale parameter, which controls the spread of the distribution;285

ξ is the shape parameter, determining whether the GEV distribution is Weibull (ξ > 0), Gumbel (ξ = 0), or GEV-II/Frechet

(ξ < 0). In this work, we considered ξ = 0, i.e. a Gumbel distribution because it has been the most common distribution used

in modelling precipitation extremes (e.g. Koutsoyiannis et al., 1998; Koutsoyiannis, 2004a). In addition, preliminary works

in Chile using IMERGv06B (Soto-Escobar, 2019) showed that the Gumbel distribution was more stable and produced fewer

numerical artifacts than the three-parameter GEV-II with ξ = 0.15 suggested by Koutsoyiannis (2004b) when using 20 years290

of data records. We evaluated the validity of the assumption that the Gumbel distribution is a good candidate for simulating

extreme rainfall events using the Kolmogorov-Smirnoff test (see supplementary material S6.2 in Soto-Escobar et al., 2025).

The cumulative distribution function of the Gumbel distribution is given by:

F (x;µ,σ) = exp

(
−exp

(
−x−µ

σ

))
(5)

The numerical values of the parameters of the Gumbel distribution were estimated with the maximum goodness-of-fit esti-295

mation method included in the fitdistrplus R package (Delignette-Muller and Dutang, 2015; R Core Team, 2024). For a

given non-exceedance probability of occurrence p in any given year (assumed constant under stationarity), the p- return level

qp derived from the Gumbel distribution can be expressed as (Coles et al., 2001):

qp(p;µ,σ) = F−1(p;µ,σ) = µ−σ ln(− ln(p)) (6)

In other words, p represents the frequency of occurrence of the analysed precipitation events, i.e., how often an event of a300

given intensity and duration is expected to occur, while the n−year return-period precipitation intensity corresponds to annual

maximum precipitation having a probability of exceedence 1/n.
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For each cell of all precipitation datasets, we computed Imax,d values using the stationary model for return periods of 2, 5,

10, 25, 50 and 100 years, and durations of 1, 2, 4, 6, 8, 10, 12, 18, 24, 48, and 72 hours.

3.5 Non-stationary model of Imax305

The Imax values from the non-stationary model were computed following the approach described by Cheng et al. (2014) and

Cheng and Aghakouchak (2014), where statistical modelling is integrated with climate change considerations to estimate rain-

fall intensity, while allowing the parameters of the selected statistical distribution to vary over time. This is typically achieved

by introducing covariates influencing rainfall intensity, such as time or temperature. We assumed the location parameter µ of

the Gumbel distribution is only a function of time, while keeping the scale parameter σ constant (Katz, 2010; Gilleland and310

Katz, 2011; Renard et al., 2012; Cheng et al., 2014):

µ(t) = µ1(t)+µ0 (7)

where µ(t) represents the location parameter of the Gumbel distribution at time t (in years) and µ1(t) and µ0(t) are regres-

sion coefficients used to model the temporal change in the location parameter. The parameters of the non-stationary Gumbel

distribution (θ = µ1,µ0,σ) were estimated using the maximum likelihood method, as implemented in the extRemes R pack-315

age (Gilleland and Katz, 2016; R Core Team, 2024).

Once the non-stationary parameters are estimated, the time-variant parameter µ(t), termed µ̃, was computed as the 95th

percentile of µt1,µt2, ...,µtn, where t1, ..., tn are the initial and ending years of the non-stationary analysis period. The decision

to use the 95th percentile of the µt values in the historical record can be considered as a conservative (i.e., safer) approach for

non-stationary extreme value analysis (Cheng et al., 2014). For decreasing (increasing) trends in Imax, the effective return level320

qp (Katz et al., 2002), i.e., the non-stationary precipitation intensities corresponding to µ̃ will be located close to the beginning

(end) of the data record. The estimated model parameters are then used to compute the non-stationary precipitation intensities

as follows:

qp(µ,σ,p) = µ̃−σ ln(− ln(p)) (8)

where qp can be considered an effective way to represent the temporal variation in extreme values. This concept is similar in325

interpretation to the quantile associated with a given stationary return period, but it changes based on the year.

3.6 Impact of data length on Imax

To analyse the impact of the data length used in the estimation of annual maximum intensities for different durations and return

periods, in this work we compared the annual maximum intensities estimated with 40 and 20 years of data for ERA5 and

ERA5-Land, the only two datasets with 40 or more years of hourly precipitation data.330
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4 Results and discussion

4.1 Bias in Imax at rain gauges

Figure 3 shows boxplots with the distribution and median values (horizontal black lines) of the average annual bias-correction

factors (Sd,RG) for each gridded dataset, aggregated by macroclimatic zone. Sd,RG values equal to one indicate no bias, while

Sd,RG values lower (greater) than 1 indicate overestimation (underestimation).335

In all macroclimatic zones but the Far North, most of the gridded datasets -except CMORPH-CDR- showed smaller biases

for longer durations. In particular, both IMERG products tended to overestimate Imax at short durations, with median bias

correction factors between 0.65 and 0.82 for 1–6 h, but this overestimation decreased for longer durations, reaching values

between 0.92 and 0.98 for 24–72 h. In contrast, ERA5 and ERA5-Land underestimated Imax at short durations (median

bias correction factors in [1.16, 1.49] for 1–6 h). This underestimation decreased with increasing durations, reaching almost340

unbiased values for 10–12 h (median bias correction factors in [1.04, 1.07]), before shifting to an overestimation for longer

durations (median bias correction factors in [0.83, 0.95] for 24–72 h). Nonetheless, in the Far North, where all the rain gauges

are at high elevations (above 3,000 m a.s.l.), both IMERG products notoriously underestimate Imax for all durations. This

underestimation is in agreement with previous studies (Xiong et al., 2025; Chen et al., 2023), specially in mountainous regions,

where underestimations of up to 50% have been reported for IMERGv06B (Rojas et al., 2021). Regarding bias variability, it is345

larger in the Far North (17 gauges) and Far South (66 gauges) in comparison to the Near North (10 gauges), Central Chile (38

gauges) and the Near South (30 gauges). The following paragraphs describe the biases in Imax obtained in each macroclimatic

zone.

In the Far North (17.5–26.0◦S), underestimations of Imax for IMERGv06B and IMERGv07B reach median values of Sd,RG

in [1.2, 1.77]), with larger biases for durations larger than 18 h in the case of IMERGv06B, and similar biases for all the350

durations for IMERGv07B. On the other hand, ERA5 and ERA5-Land mostly underestimate Imax for durations lower than

8 h (median values of Sd,RG in [1.2, 1.74]), show no median bias for durations between 10 and 24 h, and present a slight

overestimation for 48 and 72 h (median values of Sd,RG in [0.71, 0.83]). Finally, CMORPH-CDR overestimates Imax for all

durations (median values of Sd,RG in [0.5, 0.7]).

In the Near North (26.0–32.2◦S) and Central Chile (32.2-36.2◦S) IMERGv06B and IMERGv07B overestimate Imax for355

all durations (median values of Sd,RG in [0.76, 0.95] and [0.51, 0.86] for IMERGv06B and IMERGv07B, respectively),

and smaller median biases for IMERGv06B at expense of a higher dispersion. For both IMERGv06B and IMERGv07B the

biases are low for durations larger than 6 h (median values of Sd,RG in [0.85, 0.95] and [0.75, 0.86] for IMERGv06B and

IMERGv07B, respectively) and increase for shorter durations (median values of Sd,RG in [0.76, 0.95] and [0.50, 0.75] for

IMERGv06B and IMERGv07B, respectively). On the other hand, ERA5 and ERA5-Land tend to underestimate Imax for360

durations of 10 hours or less in the Near North, and for durations of 24 hours or less in Central Chile. As the duration increases,

the bias gradually decreases, and for durations greater than 12 hours in the Near North and greater than 48 hours in Central

Chile, ERA5 and ERA5-Land begin to overestimate Imax. Finally, CMORPH-CDR overestimates Imax for all durations in

the Near North (median values of Sd,RG in [0.56, 0.91]), with the largest bias for durations of 1 and 2 h and the smallest
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Figure 3. Boxplots summarising annual bias-correction factors (Sd,RG) for each gridded product by macroclimatic zone; for durations of 1,

2, 4, 6, 8, 10, 12, 18, 24, 48, and 72 hours.
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bias for durations of 24 h. In comparison, in Central Chile CMORPH-CDR slightly overestimates Imax for durations equal or365

shorter than 4 h (median values of Sd,RG in [0.85, 0.94]) and progressively underestimates the annual maximum intensities for

durations equal or larger than 8 h (median values of Sd,RG in [1.06, 1.38]).

In the the Near South (36.4-43.7◦S) both IMERGv06B and IMERGv07B overestimate Imax for all durations (median values

of Sd,RG in [0.55, 0.92]), with slightly lower median biases and dispersion for IMERGv07B. On the other hand, the behaviour

of ERA5 and ERA5-Land is just the opposite of the IMERG products, underestimating Imax for all durations (median values370

of Sd,RG in [1.03, 1.72]), with slightly lower biases for ERA5-Land. Finally, CMORPH-CDR slightly overestimates Imax for

durations of 1 and 2 h (median values of Sd,RG in [0.83, 0.90]) and underestimates Imax for durations equal or larger than 6 h

(median values of Sd,RG in [1.03, 1.30]), with larger dispersion for durations equal or larger than 18 h.

In the Far South (43.7-56.5◦S), IMERGv07B presents lower median biases (median values of Sd,RG in [0.94, 1.29]) than

IMERGv06B (median values of Sd,RG in [0.56, 1.22]), with IMERGv06B overestimating Imax for durations equal or lower375

than 12 h. In contrast, IMERGv07B only slightly overestimates Imax for one-hour duration events. Again, the behaviour of

ERA5 and ERA5-Land is almost the opposite of the two IMERG products, underestimating Imax for durations equal or lower

than 8 and 6 h, respectively (median values of Sd,RG in [1.07, 1.45]) and slightly overestimating Imax for durations equal or

longer than 18 h, in both cases (median values of Sd,RG in [0.74, 0.95]). Finally, CMORPH-CDR presents a behaviour similar

to IMERGv06B, overestimating Imax for durations of equal or lower than 8 h (median values of Sd,RG in [0.46, 0.88]) and380

slightly underestimating it for durations of 48 and 72 h (median values of Sd,RG in [1.13, 1.19]). In this macroclimatic zone,

most biases are relatively small (median values of Sd,RG close to 1) across all durations and products. However, IMERGv06B

and CMORPH-CDR exhibit a few outliers with substantial underestimation (median Sd,RG values in the range [3.5, 5.5]) for

long-duration events. In contrast, ERA5 and ERA5-Land show outliers of similar magnitude to CMORPH-CDR, but these

occur for short-duration events (1–2 h).385

The higher variability in gridded precipitation biases in the Far North and Far South of Chile likely arises from the com-

bination of complex orography, sparse observational networks, and the nature of precipitation processes in these regions. In

the Far North, precipitation is highly sporadic and convective (e.g. Garreaud, 1999), often associated with isolated storms and

strong topographic gradients, which are challenging for coarse-resolution or satellite-based products to capture accurately. In

the Far South, precipitation is dominated by frontal systems with cold cloud-tops and marked orographic enhancement over the390

austral Andes (Viale and Garreaud, 2015), producing highly spatially variable precipitation that may not be fully resolved by

the spatial resolution of ERA5 or IMERG. In contrast, Central Chile exhibits more frequent and spatially uniform precipitation

events (Falvey and Garreaud, 2007), which are easier for gridded products to represent, resulting in lower bias variability

4.2 Spatial interpolation of bias-correction factors

To move from the Sd,RG values obtained at point locations in the previous section into a spatially continuous field, we first395

followed Ombadi et al. (2018) and investigated whether there is a relationship between the bias in Imax and elevation or not,

finding no clear correlation between both variables (R2 < 0.3, see supplementary material S3 in Soto-Escobar et al., 2025).

Based on this result, we discarded implementing a bias correction based on elevation.
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Second, we interpolated the bias-correction factors using thin-plate splines (Karger et al., 2021), which produced the most

realistic maps compared to alternative methods like inverse distance weighting and bilinear interpolation. Unlike the other400

methods, the thin-plate spline interpolation provided a smoother and more balanced surface, without abrupt bias changes or

convergence issues. The bias-correction factors were interpolated using the values from 144 rain gauges located in all the study

areas but the Far North (see supplementary material S1 in Soto-Escobar et al., 2025), obtaining specific bias-correction maps

for each product and duration (see supplementary material S4 in Soto-Escobar et al., 2025). In the data-scarce and hyper-arid

Far North we chose not to provide maps of annual maximum intensities, because the bias-correction factors were derived405

exclusively from hourly rain gauges located above 3,000 m a.s.l. The current absence of hourly precipitation data in the Far

North highlights the need to increase the density of rain gauges in hyper-arid areas, where a few extreme precipitation events

can trigger important damages to civil population and infrastructure (e.g., Hauser, A, 1997; Vargas et al., 2000; Wilcox et al.,

2016).

4.3 Trends in Imax410

For all the gridded datasets, supplementary material S5.2 (Soto-Escobar et al., 2025) contains maps showing Kendall’s τ values

statistically significant at α= 0.01, α= 0.05 and α= 0.10; as well as maps with all the computed trends independent of their

statistical significance. Although the trend areas are somewhat smaller at lower significance levels, such as α= 0.01, the spatial

distribution of areas with statistically significant trends remains the same. In general, for all durations the results of the trend

analysis were similar between ERA5 and ERA5-Land, as well as for IMERGv06B and IMERGv07B. In addition, the trends415

obtained for ERA5 and ERA5-Land were also similar when using 20 (2001-2021) and 40 (1981-2021) years of data length,

although with slightly smaller areas with significant trends in the latter case. Therefore, Figure 4 only shows Kendall’s τ for all

gridded products for 2001-2021, where cells with green (orange and red) colour represent increasing (decreasing) trends, and

white cells indicate the absence of a statistically significant τ value at α= 0.05.

Figure 4 shows that IMERGv07B presents isolated increasing trends for both 2- and 12-hour durations in the Near North (τ420

values in [0.2, 0.68]), and decreasing trends from 32.4 to 34.6◦S (Valparaíso and Metropolitana regions) in Central Chile (τ

values in [−0.2, −0.5]), with a larger area with decreasing trends as the duration increases, which similar for all durations. In

the Near South, IMERGv07B shows almost no trend for the 2-hour duration, a pattern that remains similar for durations up

to 8 hours; for 12 hours and longer, it presents decreasing trends (τ values in [−0.2, −0.7]). In the Far South, only isolated

increasing trends are observed for all durations. On the other hand, ERA5-Land shows decreasing trends in the Near North for425

the 12-hour duration (τ values in [−0.1, −0.4]), a behaviour that is also observed for durations between 6 and 72 hours. For

all durations from Valparaíso to the Biobío regions (32–38◦S), decreasing trends are observed (τ values in [−0.3, −0.68]),

and there are no significant trends for any duration south of 38◦S. Finally, CMORPH-CDR shows decreasing trends for all

durations and across the entire continental area of Chile (τ values in [−0.2, −0.78]).

The results of the modified Mann-Kendall trend test for the 20 and 40-year periods revealed large areas with no trends,430

as well as a predominant decreasing behaviour of Imax, which is observed for all products and durations in Central Chile.
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IMERGv07B showed increasing trends for isolated areas of Near North and Far South, contrary to the decreasing or no trends

obtained for ERA5-Land and the decreasing trends found in CMORPH-CDR in the same areas.

In contrast to studies that suggest an increase in extreme precipitation intensities worldwide due to rising temperatures

(Trenberth, 1999; Allen and Ingram, 2002; Pall et al., 2007; Fowler et al., 2021a, b; Neelin et al., 2022), our results show435

that Imax is decreasing in Chile, a pattern that is also observed in other regions of the world (Liu et al., 2005; Utsumi et al.,

2011; Serrano-Notivoli et al., 2018). This decrease in Imax could be due to the fact that non-stationarity is only applied to the

location parameter of the Gumbel distribution, as discussed by Prosdocimi and Kjeldsen (2021) using a three-parameter GEV

distribution with data from 40 streamflow stations spanning 65 to 115 years. However, we are confident that the decrease in

Imax is likely due to the decreasing number of winter storms (cold fronts) that have reached central Chile in recent decades440

(Garreaud et al., 2019). Our results are consistent with the observed decrease in daily precipitation records from 1979 to 2017

in all seasons except summer (Lagos-Zúñiga et al., 2024). The decrease in Imax is also consistent with a strong drying trend

(in terms of annual accumulation) registered in central and southern Chile in 2010-2022, partly due to climate change (Boisier

et al., 2018) and strongly influenced by the Chilean megadrought (Garreaud et al., 2017). However, the wet years 2023 and

2024 (outside the temporal period of our analysis) could potentially change these observed trends. On the other hand, the global445

models also project a slight decrease in precipitation extremes for the Near North and Central Chile for 2075–2099 compared to

1990–2014, despite a global increase in precipitation extremes (Martinez-Villalobos and Neelin, 2023). In particular, Martinez-

Villalobos and Neelin (2023) projects a strong increase in extreme events for the Far North. Unfortunately, we did not provide

Imax values for this region due to the sparse network of sub-daily rainfall records.

Our results also indicate that the decreasing trends in Imax for durations longer than 24 hours are consistent with those450

observed for shorter durations, suggesting that trends in precipitation intensities persist across different temporal scales.
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Figure 4. Kendall’s Tau (τ ) for all gridded datasets for 2001-2021. Positive (negative) values indicate an increasing (decreasing) trend. White

cells indicate that τ was not statistically significant at α= 0.05.
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4.4 Imax derived from the stationary model

Based on bias-corrected annual maximum intensities, we obtained Imax using stationary and non-stationary models for dura-

tions of 1, 2, 4, 6, 8, 10, 12, 18, 24, 48, and 72 hours and return periods of 2, 5, 10, 25, 50 and 100 years. Due to the large

number of figures involved in the previous analyses, and the similarity in Imax from the stationary and non-stationary model455

(see Section 4.5), panels a) and c) of Figure 5 only shows maps of Imax values derived from stationary model, in mm h−1, for

a 50-years return period and durations of 2 and 12 h, as representative of important storms affecting Central-Southern Chile.

Additionally, in this figure, IMERGv06B is excluded to emphasise IMERGv07B, the latest version of the product, while ERA5

is not included due to its similarity to ERA5-Land. Supplementary materials S7 and S8 (Soto-Escobar et al., 2025) contain

boxplots and maps, respectively, with Imax values obtained from the stationary and non-stationary models, for all gridded460

datasets, all durations and all return periods. In all these maps the hyper-arid Far North (17.5–26.0◦S) has been intentionally

removed, due to unrealistic Imax values created by the interpolation of the bias-correction factors (see details in supplementary

material S4 in Soto-Escobar et al., 2025).

Figure 5 and the supplementary material S8.1 (Soto-Escobar et al., 2025) show that the spatial distribution and numerical

values of Imax shown by IMERGv07B are very similar to those obtained from ERA5 and ERA5-Land, for all durations. At the465

same time, IMERGv06B shows higher Imax values than the three previous products, and CMORPH-CDR shows the highest

values among all precipitation datasets, especially in the Andes Cordillera. As expected, the highest Imax values are obtained

for the shortest durations, for all products. For d= 1 h, IMERGv06B shows a larger spatial area with high Imax values than

IMERGv07B, but this difference increasingly disappears for longer durations. For all return periods and for durations of 1

and 2 h, the highest Imax values are distributed from Central Chile throughout to the Austral Patagonia. For durations of470

4 h or longer, however, these highest Imax values are only concentrated in Central and Southern Chile (32.2–43.7◦S). For

precipitation events with a duration of 12 h or longer, Central and Southern Chile show two different patterns: from 32.4 to

34.6◦S (Valparaíso and Metropolitana regions), the annual maximum intensities occur along the coast, while between 34.6 and

36.4◦S these maximum intensities shift towards the Andes, with weaker intensities on the coast.

On the other hand, for all products, the difference in Imax between the Andes and the intermediate depression/western Pacific475

border becomes more pronounced with increasing duration. For durations of 24 h or more, the highest intensities are mainly

concentrated in the Andes, from the Maule to the Araucanía region (35-40◦S). An exception to this pattern is the coastal area of

the Bio-Bio region (∼ 37◦S), which is dominated by the Nahuelbuta mountains (with elevations over 1,200 m a.s.l.), which are

responsible for much higher precipitation values than the surrounding lowlands (Garreaud et al., 2016). The large longitudinal

differences in the Imax values emphasise the importance of using a spatially explicit representation of precipitation intensities480

in civil infrastructure design, stormwater management, and flood risk assessment. Furthermore, the intensities observed in the

intermediate depression are not representative of those in the Andes. Recently, Abarca et al. (2024) calculated the accumulated

precipitation over six hours triggering societal impacts in Central Chile during the 8-year period 2015–2022. Our Imax values

for a 6-hour duration and 10-year return period resulted in accumulated precipitation values exceeding the warning thresholds

given by Abarca et al. (2024) in all geomorphological units.485
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Interestingly, this is the first work showing how the spatial distribution of Imax differs from the distribution of mean annual

precipitation in continental Chile (Figure 1). While mean annual precipitation increases almost monotonically from the Far

North towards southern Patagonia, for all durations Imax presents its maximum values in Central-Southern Chile (32.2-43.7◦S).

To provide a quantitative summary of the differences in annual maximum intensities across all gridded datasets, Figure 6

shows boxplots summarising the Imax values for each gridded dataset for T=50 years and durations of 1, 2, 6, 12, 24, 48, and490

72 hours, aggregated by macroclimatic area. Supplementary material S7 (Soto-Escobar et al., 2025) contains boxplots for all

gridded datasets, durations and return periods.

In general, Figure 6 shows that for all macroclimatic areas the highest intensity values are provided by CMORPH-CDR,

followed by IMERGv06B. These two products are also the ones with the largest amount of outliers for all durations, with

CMORPH-CDR always having more outliers than IMERGv06B in any macroclimatic area. For CMORPH-CDR, the amount495

of outliers is largest in Central Chile (32.2-36.2◦S) and the Near South (36.4-43.7◦S), while in the case of IMERGv06B the

largest amount of outliers is observed in the Near South followed by the Far South (43.7-56.5◦S). In the case of CMORPH-

CDR, the large number of outliers (Figure 6) would indicate either a high spatial variability of Imax (which we can not discard

or confirm with the current density of rain gauges), or a low ability of this product to reproduce the annual maximum intensities.

Figure 6 shows a strong agreement among the Imax values derived from IMERGv07B, ERA5 and ERA5-Land, from the500

Near North to the Near South (26.0–43.7◦S), while in the Far South (43.7-56.5◦S), IMERGv07B presents slightly higher annual

maximum intensities for all durations. Overall, despite important differences between their origin, we obtained similar Imax

values for IMERGv07B, ERA5 and ERA5-Land, mainly for Central and Southern Chile (32.2-43.7◦S), which concentrate the

highest amount of rain gauges. The convergence of Imax between the satellite-based IMERGv07B product and those resulting

from reanalyses (ERA5 and ERA5-Land) increases our confidence in the Imax values provided by these three datasets.505

Although not directly comparable due to differences in the dataset, temporal period of analysis and methodology used, our

Imax values obtained for a duration of 24 h and a return period of 10 years are similar to the isohyets values used as reference

in Chile until today (DGA, 1991). Similarly, our Imax values obtained for return periods of 2, 5, 20, 50 and 100 years are

close to those derived from DGA (1995) using frequency and duration factors. Supplementary material S10 (Soto-Escobar

et al., 2025) shows that the IDF curves obtained after bias-correction are similar to those derived from in situ rain gauge510

data, demonstrating the efficiency of the bias-correction method, despite the challenge of having a low number of stations and

relatively short observed data length.

Finally, in supplementary material S11 (Soto-Escobar et al., 2025) we also compared our annual maximum intensities (in

mm h−1) with those of the Precipitation Probability DISTribution (PPDIST) product (Beck et al., 2020), which provides values

for return periods ranging from 3 days to 15 years, considering 3-hour and daily events. For T=10 years and a duration of 3 h,515

all PPDIST values were in general higher (∼ 5-10 mm h−1) than those of IMERGv06B, IMERGv07B, ERA5 and ERA5-Land,

and where mostly lower than those of CMORPH-CDR (∼ 2-5 mm h−1). These higher Imax in PPDIST could be attributed to

the lack of hourly rainfall gauges in PPDIST for continental Chile. On the other hand, for T=10 years and a duration of 24 h

all PPDIST values were similar to those provided by IMERGv06B, IMERGv07B, ERA5 and ERA5-Land (median values of
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all these products in [3.3, 4.1] mm h−1), and slightly lower than those derived from CMORPH-CDR (median value of 4.8 mm520

h−1).

4.5 Comparison of Imax from non-stationary vs stationary models

To facilitate the comparison of the Imax obtained with the stationary and non-stationary models of extreme rainfall, figures

5 and 6 show maps and boxplots, respectively, of Imax differences for various durations and T=50 years across all grid cells

belonging to each macroclimatic region, calculated as non-stationary minus stationary values. These figures use all the cells525

with a statistically significant τ value at α= 0.05. Supplementary material S8 show Imax obtained from stationary and non-

stationary models for other return periods for all the gridded precipitation datasets used in this study.

In panels b) and d) of Figure 5, blue (yellow, orange, red) colours indicate that the values estimated from non-stationary

are higher (lower) than their stationary counterparts. The predominance of the yellow colour in this figure indicates that, in

general, intensities from the non-stationary model are slightly lower than their stationary equivalents (differences in [0, 5]530

mm h−1). Some isolated exceptions for the previous finding are localised in the Near North (26.0–32.2◦S) and Austral South

(43.7-56.5◦S) for durations equal or higher than 12 h, and all along the country for short precipitation events (d= 1 h). The

differences between the non-stationary and stationary models become smaller for longer durations (greater than 8 h), which

aligns with findings from Ganguli and Coulibaly (2017).

On the other hand, Figure 6 shows that the median differences between Imax estimated using the non-stationary and station-535

ary models are consistently shifted towards negative values, confirming that the non-stationary Imax values are slightly lower

than their stationary counterparts (median differences in [0, 1] mm h−1). Only three exceptions where the median differences

are higher or close to zero were found: i) IMERGv07B in the Near North (26.0–32.2◦S); ii) CMORPH-CDR in the Near North

and Far South (43.7-56.5◦S), and iii) ERA5 and ERA5-Land in the Far South.

In addition, Figure 6 also shows that the median differences between Imax based on the non-stationary and stationary540

models are close to zero for all gridded datasets (median values in [0, 2] mm h−1), and the dispersion around these median

values generally decrease with increasing durations. It is worth mentioning that, in the Far South (43.7-56.5◦S), ERA5 and

ERA5-Land present almost no differences between Imax values obtained under stationary and non-stationary assumptions,

with median values very close to zero and the interquantile range (q97-q25) in [-0.5, 0.5] mm h−1.

Finally, Figure 6 shows that the variability of the difference between non-stationary and stationary models is very low for545

all durations, with the interquantile range (q97-q25) in [-2, 2] mm h−1. CMRORPH-CDR is the product with the largest

amount and largest absolute values of outliers for all durations, while IMERGv06B and IMERGv07B present similar median

differences in Imax derived from both models, but with much lower variability in the case of IMERGv07B. ERA5 and ERA5-

Land exhibited similar median differences and variability.

To further assess the statistical similarity between stationary and non-stationary models, Figure 7 presents scatter plots of550

the estimated values for each product and region. The strong clustering of points along the 1:1 line across all panels indicates

a high degree of agreement between the two approaches throughout the full distribution of annual maxima. A slight tendency

for Imax from the non-stationary model to be lower, particularly for the most extreme values, supports the systematic nega-
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tive differences identified in the boxplot analysis (Figure 6). IMERGv07B, ERA5, and ERA5-Land exhibit particularly high

consistency between the modelling approaches, with minimal scatter. By contrast, IMERGv06B and CMORPH-CDR display555

greater variability, especially in regions characterised by more intense precipitation, such as the Near North and Far South.

Despite these discrepancies, the differences introduced by the (non-)stationary modelling assumption remain small relative to

the magnitude of the Imax extremes. Overall, the scatter plots confirm that the observed differences are systematic across the

full range of values rather than driven by spatial climatological gradients. They complement the boxplot results and show that

non-stationary modelling generally introduces only minor adjustments to extreme precipitation estimates for most datasets and560

regions

In conclusion, our findings indicate that locations with a statistically significant trend in Imax do not necessarily exhibit

significant differences between Imax values derived from stationary and non-stationary models. Therefore, while accounting

for the non-stationarity of extreme precipitation is important, observed trends can also be captured by stationary models when

using time-dependent parameters or flexible probability distributions (Dimitriadis et al., 2021), consistent with findings from565

Ganguli and Coulibaly (2017); Yilmaz et al. (2014); Yilmaz and Perera (2014). In addition, Dimitriadis et al. (2021); Dong

et al. (2021) further showed that stationary models incorporating flexible distributions or temporal correlation can reproduce

observed trends and long-term persistence in precipitation extremes.

24



a)

Lon

La
t

55
°S

50
°S

45
°S

40
°S

35
°S

30
°S

74°W 70°W

IMERGv07B ERA5−Land

74°W 70°W

CMORPH−CDR

0

3

5

7

9

12

15

20

30

60

80

100

I [mm/hr] 

b)

Lon

La
t

55
°S

50
°S

45
°S

40
°S

35
°S

30
°S

74°W 70°W

IMERGv07B ERA5−Land

74°W 70°W

CMORPH−CDR

−8

−5

−4

−3

−2

0

2

3

4

5

8

I [mm/hr] 

c)

Lon

La
t

55
°S

50
°S

45
°S

40
°S

35
°S

30
°S

74°W 70°W

IMERGv07B ERA5−Land

74°W 70°W

CMORPH−CDR

0

1

2

3

4

5

7

9

11

15

30

72

I [mm/hr] 

d)

Lon

La
t

55
°S

50
°S

45
°S

40
°S

35
°S

30
°S

74°W 70°W

IMERGv07B ERA5−Land

74°W 70°W

CMORPH−CDR

−8

−5

−4

−3

−2

0

2

3

4

5

8

I [mm/hr] 

Figure 5. Panels a) and c) show maps of Imax derived from the stationary model for the IMERGv07B, ERA5-Land, and CMORPH-CDR, for

a 50-year return period: panel a) shows results for the 2-hour duration, and panel c) for the 12-hour duration. Panels b) and d) present maps

of the differences in Imax between the non-stationary and stationary models for the same datasets and return period, with 2-hour duration in

panel b), and 12-hour duration in panel d). 25



Figure 6. Boxplots of Imax for all gridded datasets and climatic macrozones, corresponding to a 50-year return period and durations of 1,

2, 6, 12, 24, 48, and 72 hours. Panel (a) shows the values derived from stationary models, while panel (b) presents the differences in Imax

between non-stationary and stationary models, for the same datasets, climatic macrozones, and durations.
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Figure 7. Scatterplots comparing Imax derived from stationary and non-stationary model for each product and all durations. Points are

coloured by climatic macrozone, and the 1:1 line indicates perfect agreement between both approaches.
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4.6 Impact of data length on Imax

For each grid cell of ERA5 and ERA5-Land, we compared the Imax values estimated with 40 and 20 years of data using570

both stationary and non-stationary approaches for return periods of 2, 5, 10, 25, 50, and 100 years. Figure 8 focuses on

the case of T = 50 years, summarising the differences Imax,40years − Imax,20years for both approaches. Our results show

median differences close to 0 mm h−1, interquartile ranges within [-1, 1] mm h−1, and maximum differences within [-4, 4]

mm h−1 across all durations and macroclimatic zones. Readers interested in other return periods can find similar results in

supplementary material S9.1 and S9.2 (Soto-Escobar et al., 2025).575

The smallest differences were found in the Near North (26.0–32.2◦S) and Far South (43.7-56.5◦S), where the median dif-

ferences were almost 0 mm h−1, the interquartile values were in [-0.5, 0.5] mm h−1, and almost all the largest differences

were in [-2, 2] mm h−1 for all durations. In Central Chile (32.2-36.2◦S), for both ERA5 and ERA5-Land, there were almost no

differences in Imax for d= 48 and d= 72 h, with a median value of practically 0 mm h−1 in both cases, and all the differences

in [-0.5, 1] mm h−1; while for durations d= 1 and d= 2 h the median differences were slightly positive (in [0.1, 0.2] mm580

h−1), with a larger spread (mostly in [-3, 4] mm h−1); and for durations of 6, 12 and 24 h the median differences were slightly

negative (in [-0.1, -0.2] mm h−1), with a relatively small spread (mostly in [-2, 1.5] mm h−1). In the Near South (36.4-43.7◦S),

the differences obtained between ERA5 and ERA5-Land were very similar to the ones obtained for Central Chile, with the

exception of the very short durations. For d= 1 and d= 2 the median differences were slightly negative (in [-0.1, -0.2] mm

h−1), with a spread mostly in [-4, 4] mm h−1.585

Our results align with Marra et al. (2017), who found that the uncertainty in the estimated parameters of the GEV distribution

is particularly pronounced in arid climates and for short durations, likely due to the limited number of rainfall events considered

in each year. This result suggests that time aggregation may help mitigate some of the challenges of using short data records.

Our findings also align with Ombadi et al. (2018), who mentioned that short data records can be associated with increasing

errors in Imax for increasing return periods, when introducing a new framework to develop IDF curves over the contiguous590

United States based on daily PERSIANN-CDR data.

Figure 9 presents representative maps of the percentage differences in the location and scale parameters of the stationary

Gumbel distribution for ERA5-Land, comparing estimates obtained with 20 years (2001–2021) and 40 years (1981–2021)

of data. The differences were computed by subtracting the 20-year parameter estimates from the 40-year estimates and then

normalising by the 40-year values. The results show generally minor differences in the location parameter (–10% to 10%)595

across the study area for both ERA5 and ERA5-Land, with the exception of the coastal area of the Coquimbo region (26–30◦S),

where differences reach up to –40%. By contrast, the scale parameter exhibits larger differences (–40% to 40%) throughout the

domain. These include a clear spatial pattern of higher values for the 20-year period in most of the Near North (26.0–32.2◦S)

and Central Chile (32.2–36.2◦S), and a more heterogeneous “salt and pepper” pattern in the South (36.4–43.7◦S) and Far South

(43.7–56.5◦SS) macrozones. Readers interested in the raw maps of the Gumbel parameters for the stationary model can find600

them in supplementary material S6.1 (Soto-Escobar et al., 2025).
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Figure 8. Boxplots summarising differences between Imax derived from stationary and non-stationary models, estimated using data series

of 40 and 20 years (Imax,40years − Imax,20years), for ERA5 (green colour) and ERA5-Land (yellow colour), considering a 50-years return

period and durations of 1, 2, 6, 12, 24, 48, and 72 hours. From top to bottom, each panel corresponds to a different macroclimatic area.

Column a) shows results obtained using the stationary model, while column b) shows results from the non-stationary model.

Despite the previous differences in the Gumbel parameters, we obtained only minor differences (median values lower than

1 mm h−1) in the Imax derived from 20 and 40 years of data, both for ERA5 and ERA5-Land, as shown in Figure 8 for the

stationary and non-stationary models.
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Our findings complement results obtained by Papalexiou and Koutsoyiannis (2013), who found that the data length used in605

the frequency analysis had an important effect in the values of the shape parameter, when the 3-parameter GEV is used instead

of the 2-parameter Gumbel distribution. In addition, their analysis was based on data lengths ranging from 40 to 163 years,

making their findings not directly comparable to ours.

Endreny and Imbeah (2009) used data from the Tropical Rainfall Measuring Mission (TRMM) processed by the 3B42

algorithm with precipitation records every 3 hours from the Ghana Meteorological Service Department (GMSD), combining610

both records for the generation of IDF curves in Ghana, obtaining good results, but limited by the TRMM temporal resolution

of 3 hours. Although these results are not directly comparable to ours; due to differences in study areas, satellite products,

temporal periods, and methodologies; they suggests that combining station data and satellite products is essential for generating

IDF curves, which aligns with our findings.

Although not directly comparable to our study due to substantial differences in data length and methodology, Iliopoulou and615

Koutsoyiannis (2019) highlighted that the length of the precipitation time series can have an important influence on extreme

precipitation values when using stationary models, due to the long-term persistence observed in precipitation time series.
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Figure 9. Panel a) presents maps of the percentage difference in the location parameter between the periods 1981–2021 and 2001–2021

using the ERA5-Land dataset. Panel b) shows maps of the percentage difference in the scale parameter for the same periods, based on the

ERA5 dataset. Results are provided for rainfall durations of 1, 12, and 48 hours
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4.7 curvasIDF: a web platform for IDF curves in Chile

For each grid cell of each P dataset is possible to obtain a figure with the Imax values obtained in this work, for different

durations and return periods. However, presenting such a large number of figures in a single document is not feasible from a620

practical point of view, not even in supplementary material. Therefore, we implemented a user-friendly web platform (https:

//curvasIDF.cl/), where the interested reader can define a duration and return period of interest and then click at any point of the

study area to obtain the corresponding IDF curves for all the gridded datasets used in this work. We made an important effort

into developing this web platform to make it easier for practitioners and decision makers to obtain IDF curves for designing

climate-resilient infrastructure and managing the impacts of climate change on water resources.625

5 Conclusions

To overcome the limited availability of long time series of in situ sub-daily precipitation data, we use five state-of-the-art hourly

precipitation datasets (IMERGv06B, IMERGv07B, ERA5, ERA5-Land, CMORPH-CDR) and 161 quality-checked hourly rain

gauges to compute stationary and non-stationary annual maximum intensities (Imax) and IDF curves for the climatologically

and topographically diverse Chilean territory (17-56◦S).630

To the best of our knowledge, this is the first work comparing annual maximum intensities derived from stationary and non-

stationary statistical models and from two different families of state-of-the-art gridded precipitation datasets: IMERGv06B/IMERGv07B

and ERA5/ERA5-Land. In particular, this is the very first study providing intensity-duration-frequency curves at high spatial

and temporal resolution using state-of-the-art gridded precipitation datasets for continental Chile. This constitutes an important

contribution to advancing our knowledge about extreme precipitation events in mountainous areas where such information is635

generally unavailable.

Our key findings are summarised in the following lines:

– The biases in Imax varied depending on the gridded precipitation product, the macroclimatic zone and the duration con-

sidered in the analysis. In general, most gridded datasets –except CMORPH-CDR– showed smaller biases for longer du-

rations. IMERG products consistently overestimated short-duration extremes (1-6 h) but improved toward near-unbiased640

estimates at longer durations (24-72 h), whereas ERA5 and ERA5-Land shifted from slight underestimation at short

durations (1-6 h) to slight overestimation at longer durations (24-72 h). Bias variability is greater in the extreme Far

North and Far South, as compared to the more central macroclimatic zones.

– This is the first study showing how the spatial distribution of the annual maximum intensities (Imax) derived from

stationary and non-stationary models differs from the distribution of the spatial pattern of mean annual precipitation in645

continental Chile. While mean annual precipitation increases steadily southward, Imax reaches its maximum values in

Central-Southern Chile, for all durations. For durations of 24 hours or more, the highest intensities are primarily found

in the Andes, particularly between the Maule and Araucanía region (35-40◦S).

32

https://curvasIDF.cl/
https://curvasIDF.cl/
https://curvasIDF.cl/


– There is a high longitudinal gradient in Imax, from the low values in the intermediate depression to the high values

in the Andes, which increase with larger durations. This is particularly relevant for the design of civil infrastructure,650

stormwater management and for flood risk assessment in Chile: intensities measured in the intermediate depression

(typical of current design manuals) are not representative of Imax in the Andes.

– Despite important differences in their technical foundations, for all durations, IMERGv07B closely matches ERA5 and

ERA5-Land in spatial distribution and Imax values. IMERGv06B shows higher Imax values, while CMORPH-CDR has

the highest, especially in the Andes cordillera.655

– The largest intensity values are provided by CMORPH-CDR, followed by IMERGv06B for all macroclimatic areas, and

these two products have the largest amount of outliers for all durations.

– In Central Chile, all precipitation products revealed either significant decreases in Imax (at α= 0.01, α= 0.05, and

α= 0.10) or no detectable trends. While the extent of significant areas was smaller at the stricter level (α= 0.01),

their spatial distribution remained consistent across significance levels. For ERA5 and ERA5-Land, these declining660

trends were evident in both 1981–2021 and 2001–2021, whereas the other products were only available for the shorter

2001–2021 period. In contrast, regional differences emerged outside Central Chile: in the Near North and Far South,

IMERGv07B displayed localised increases, ERA5-Land showed mostly decreases or no trends, and CMORPH-CDR

consistently indicated widespread declines.

– In general, for all durations and most of the gridded precipitation datasets, the non-stationary Imax values are slightly665

lower than their stationary equivalents (differences in [0, 5] mm h−1), and the differences between the non-stationary

and stationary Imax become smaller for longer durations (greater than 8 h). This result suggests that the choice between

stationary and non-stationary approaches should be carefully analysed for each study area, and for the Chilean case study

it does not significantly affect the estimation of Imax values. In addition, locations with a significant trend in Imax will

not necessarily exhibit significant differences between stationary and non-stationary Imax.670

– When comparing the Gumbel parameters derived from ERA5 and ERA5-Land using 20-year (2001–2021) and 40-year

(1981–2021) data under the stationary assumption, we found minor differences (-10% to 10%) in the location parameter

across the study area for both datasets. In contrast, the scale parameter exhibited larger differences, ranging from -40%

to 40%.

– Despite the previously noted differences in the Gumbel parameters, the resulting Imax values derived from 20- and 40-675

year records show only minor differences (median values below 1 mm h−1) for both ERA5 and ERA5-Land, across all

durations and for both the stationary and non-stationary cases.
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6 Practical recommendations

To provide practical guidance for hydrological and engineering applications that require a reliable quantification of extreme

precipitation events in Chile, we make the following recommendations:680

– We encourage the Chilean Water Directorate (DGA) to increase the number of hourly rain gauges in mountainous areas,

which are fundamental to assessing the behaviour of gridded precipitation products. We also encourage the National

Agroclimatic Network (Agromet) to apply quality control algorithms to ensure the reliability of their hourly precipitation

time series (e.g., Blenkinsop et al., 2017).

– Given the convergence between Imax obtained from ERA5, ERA5-Land and IMERGv07B, we recommend using the685

highest value among them for designing safer climate-resilient infrastructure.

– Given the large amount of spatially explicit Imax for different durations and return periods, all our results are publicly

available in a user-friendly web platform: https://curvasidf.cl.

Code availability. Documentation about data processing is provided in Section 3 of this paper and is based exclusively in the use of open-

source software. R codes used in this study are available from the corresponding author upon reasonable request690
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in Section 2.2.1, can be downloaded from the Vismet web platform (https://vismet.cr2.cl/) of the Center of Climate and Resilience Research

(CR2). The Imax maps resulting of this work are available from the corresponding author upon reasonable request, and they are publicly

available on www.curvasidf.cl.695
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