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Abstract. Projections of future climate are key to society’s adaptation and mitigation plans in response to climate change.

Numerical climate models provide projections, but the large dispersion between them makes future climate very uncertain.

To refine it, approaches called observational constraints (OC) have been developed. They constrain an ensemble of climate

projections by some real-world observations. However, there are many difficulties in dealing with the large literature on OC:

the methods are diverse, the mathematical formulation and underlying assumptions used are not always clear, and the methods5

are often limited to the use of the observation of only one variable. To address these challenges, this article proposes a new

statistical model called ClimLoco1.0, which stands for "CLimate variable confidence Interval of Multivariate Linear Observa-

tional COnstraint". It describes, in a rigorous way, the confidence interval of a projected variable (its best guess associated with

an uncertainty at a confidence level) obtained using a multivariate linear OC. The article is built up in increasing complexity

by expressing in three different cases, the last one being ClimLoco1.0, the confidence interval of a projected variable: un-10

constrained, constrained by multiple real-world observations assumed to be noiseless, and constrained by multiple real-world

observations assumed to be noisy. ClimLoco1.0 thus accounts for observational noise (instrumental error and climate-internal

variability), which is sometimes neglected in the literature but is important as it reduces the impact of the OC. Furthermore,

ClimLoco1.0 accounts for uncertainty rigorously by taking into account the quality of the estimators, which depends, for ex-

ample, on the number of climate models considered. In addition to providing an interpretation of the mathematical results, this15

article provides
:::::::
proposes

:
graphical interpretations based on synthetic data.

::::::::::
ClimLoco1.0

:
is
:::::::::
compared

::
to

:::::
some

:::::::
methods

:::::
from

::
the

::::::::
literature

::
in

:::
the

::::
end

::
of

:::
the

::::::
article,

:::
and

::::
used

::
in

::
a

:::
real

::::
case

:::::
study

::
in

:::
the

::::::::
appendix.

:

1 Introduction

Numerical climate models are no exception to the often quoted statement "all models are wrong, but some are useful" from Box

(1976). Indeed, their climate projections (simulated responses to a scenario of greenhouse gas and aerosol emissions) are useful20

to assess future climate change, but they vary widely from one climate model to another (e.g. Bellomo et al., 2021, figure from IPCC 2021)

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Figure 4.2 in IPCC in: Lee et al., 2021; Bellomo et al., 2021). There are now several dozen

::
of climate models around the

world.
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To assess the future value of a climate variable, such as global temperature in 2100, a traditional approach is to examine

the distribution of projections of the variable simulated by an ensemble of climate models. The climate variable projected25

by climate models is hereafter referred to as the projected variable. The mean and standard deviation, which characterise

the distribution of the projected variable, are usually used to define the so-called best guess and uncertainty of the projected

variable, respectively (Collins et al., 2013). However, this uncertainty is generally high and the best guess may be biased.

To incorporate knowledge of real-world observations, statistical methods called observational constraints (OC) or emergent

constraints (Brunner et al., 2020a; O’Reilly et al., 2024) examine the distribution of the projected variable given real-world30

observations of an observable variable to obtain a constrained distribution. Such OC approaches are now used in the reports of

the Intergovernmental Panel on Climate Change (IPCC) since 2021. They have huge implications for our society. The literature

on OC methods is flourishing, but there are many difficulties in using them.

Firstly, the large number of existing OC methods makes it very difficult to choose one. Some methods average the projections

of climate models, with weights that depend on the ability of the models to reproduce real-world observations of a given35

observable variable (Brunner et al., 2020b; Giorgi and Mearns, 2002; Olson et al., 2018). Some methods use climate models to

learn a relationship between the projected variable and a related observable variable, and use this relationship and a real-world

observation of that observable variable to predict the value of the projected variable. This relationship may be linear (Cox et al.,

2018; Weijer et al., 2020; Bracegirdle and Stephenson, 2012; Karpechko et al., 2013) or non-linear (Schlund et al., 2020; Li

et al., 2021; Forzieri et al., 2021). Other methods statistically give
::::::
provide

:
the constrained distribution as the probability density40

function of the projected variable given the real-world observation of an observable variable (Bowman et al., 2018; Ribes et al.,

2021). This diversity illustrates the lack of consensus on which approach to use. Methods are developed individually and

need to be compared to better understand their differences and similarities. However, there are some work of OC methods

comparison, for example
:
,
::
as

::::
done

:::
for

::::::::
example

::
in Brunner et al. (2020a).

Secondly, the approaches and assumptions used to compute the constrained distribution can vary widely between articles and45

are not always reported. For example, their calculation does not always take into account the instrumental error associated with

the real-world observation. Some papers provide clarification, e.g. Williamson and Sansom (2019), which provided
::::::::
proposed

a comprehensive review of the underlying assumptions and uncertainty calculation in OC methods based on linear regression.

However, some elements are still missing from the literature. For example, the terms "very likely", "unlikely" etc used by the

IPCC (Mastrandrea et al., 2011) come from an underlying statistical model that provides a confidence interval, i.e. an interval50

that contains the projected variable value with a given confidence level. OC methods rarely use or describe a confidence

interval. There is therefore a need for a proper statistical description of the theoretical basis of OC’s, including confidence

intervals, and a full description of the underlying statistical assumptions Hegerl et al. (2021)
::::::::::::::::
(Hegerl et al., 2021).

Thirdly, OC articles often use a univariate framework, i.e. they constrain the projected variable using only one observable

variable. This may be surprising given the complexity of the climate system, which suggests that the spread between climate55

model projections may be related to multiple processes. For example, Cox et al. (2018) constrained the equilibrium climate

sensitivity (ECS) using a measure of temperature variability. A few studies, particularly those using non-linear regression,
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use
::::::::
employed

:
a multivariate framework, but these are still rare. For example, Schlund et al. (2020) constrained future spatio-

temporal GPP (Gross Primary Production) by past spatio-temporal GPP and temperature.

To address these challenges, this article proposes a statistical model called ClimLoco1.0, which stands for "CLimate variable60

confidence Interval of Multivariate Linear Observational COnstraint". ClimLoco1.0 expresses the confidence interval of a

climate variable constrained using a linear multivariate observational constraint that takes into account observational noise.

ClimLoco1.0 can also be used in univariate instead of multivariate. This is the first version, 1.0, calling for further improvements

to better account for all uncertainties. This article builds ClimLoco1.0 progressively by increasing complexity by expressing

the confidence interval of the projected variable unconstrained (Sect. 2) ,
::::::::::::
unconstrained,

:::::
(Sect.

::
3)

:
constrained by noiseless65

real-world observations
:
,
:::
and

:
(Sect. 3) , and finally

::
4)

:
constrained by a noisy real-world observation(Sect. 4). .

:
The latter

corresponds to ClimLoco1.0. Since the devil can be
::::::
hidden in the details, the article presents the statistical procedure in a

rigorous and clear manner, based on mathematical demonstrations. Moreover, the use of this complex statistical procedure is

justified by illustrations of the underestimation of the uncertainty usually made in the literature by not using rigorous CI’s.

These results are then compared with some of the most widely used methods in the literature (Sect. ??
:
5): statistical methods70

as in Bowman et al. (2018) or in Ribes et al. (2021), and methods based on linear regression as in Cox et al. (2018).
::::::
Finally,

::
the

:::::::::::
assumptions

:::
are

::::::::::
summarised

:::
and

::::::::
discussed

::::::
(Sect.

::
6).

:

::
In

:::::::
addition

::
to

::::::::
providing

:::
the

:::::::::::
mathematical

:::::::::::::
demonstrations,

:::
the

:::::::::
appendices

::::::
supply

::::
three

::::::::
valuable

:::::::::::
informations.

::
(i)

::
A

::::::::
summary

::
of

:::
the

:::::::::::
mathematical

::::::
results

::
in

::::
Table

:::
A1

::::
and

:::
A2.

:::
(ii)

::
A

::::::
section

::::
that

:::::::
explains

::
all

:::
the

::::
key

::::::::
statistical

:::::::
concepts

:::::
useful

::
to
::::::::::
understand

::
all

:::
the

::::::
details

::
of

:::
the

::::::
article

:::::::::
(appendix

:::
B).

:::
(iii)

::
A
::::
case

::::::
study,

:::::::::
illustrating

:::
the

:::
use

:::
of

:::::::::::
ClimLoco1.0

:::
and

::::::
testing

:::
its

:::::::::
sensitivity

::
to75

::::
some

::::::::::
parameters

::::::::
(appendix

::
I).

::::
The

::::::::
(python)

::::
code

:::
and

::::
data

::::
that

::::::::::
accompagny

:::
the

::::::
article

::
is

::::::::
provided,

::
as

::::
well

::
as

::
a
:::::::::::
user-friendly

:::::
simple

::::::::
example

::
to

:::::::
replicate

::::::::::::
ClimLoco1.0.

Figure 1.
::::::::
Flowchart

:
of
:::
the

:::::
article.

::::::::::
ClimLoco1.0

:
is

:::
built

::
in
::::::::
increasing

:::::::::
complexity

::::::
through

::::
three

::::::
different

:::::::
sections:

::
no

::::::::::
observational

::::::::
constraint

::::
(OC),

:::
the

:::
OC

::::::::
neglecting

:::
the

:::::::::::
observational

:::::
noise,

:::
and

:::::
finally

:::
the

::::
OC

:::::::::
considering

:::
the

::::::::::
observational

:::::
noise.

::::
Each

::::::
section

::
is

::::
also

::::
built

::
in

:::::::
increasing

::::::::::
complexity:

::::::::
neglecting

:::
the

:::::::::
uncertainty

:::
due

::
to

:::
the

::::::
limited

::::::
sample

:::
size

::::::::::
(probability

:::::::
interval),

::::
then

:::::::::
considering

::
it

:::::::::
(confidence

:::::::
interval).
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2 Confidence interval of Y unconstrained

In order to anticipate society’s adaptation and mitigation plans in response to climate change, it may be
:
is
:
necessary to estimate

the value of a future variable called projected variable and denoted Y , e.g. the global temperature in 2100. A common approach80

is to use an ensemble of climate model projections, e.g. CMIP6 (Coupled Model Intercomparison project version 6), which

give different values of Y . Y is therefore a random variable: the dispersion between the climate model projections comes from

the randomness of Y .

To properly estimate the value of Y , this section defines the confidence interval (CI) of Y . It provides a best guess of Y value

(centre of the interval) and an associated uncertainty (width of the interval) at a given confidence level. This section gradually85

builds up the CI of Y in increasing complexity. Firstly, it defines the probability interval (PI) of Y obtained assuming that the

theoretical distribution of Y is known. Secondly, it defines the CI of Y obtained using this distribution estimated
:::::
based on an

ensemble of climate models. These two types of intervals are illustrated and interpreted using a synthetic example.

As stated above, the PI of Y is build using the theoretical distribution of Y . Here, this distribution is assumed to be Gaussian:

Y ∼N (µY ,σ
2
Y ), where µY and σ2

Y are respectively the expectation and variance of Y . The PI of Y is the interval that contains90

Y values with a probability of 1−α:

IP(µY − zσY ≤ Y ≤ µY + zσY ) = 1−α, (1)

where z is the quantile of order 1−α/2 of a distribution N (0,1). For example, the 90% PI (α= 0.1) is obtained with z = 1.65.

In the IPCC, this 90% probability corresponds to the term "very likely", while "likely" stands for the 66% probability, etc.
:::
The

::::
level

::
of

::::::::::
probability,

:::
i.e.

::::::
1−α,

::
is

:
a
::::::

choice
:::
of

:::
the

::::
user.

:
In the following, the PI of Y associated with a probability of 1−α95

described in Eq. (1) is denotedas:

PI1−α(Y ) = [µY ± zσY ] . (2)

In fact, the expectation µY and the standard deviation σY are unknown. The PI described by Eq. (2) is therefore unknown.

However, µY and σY can be estimated from an ensemble of climate model projections
:::::
chosen

:::
by

:::
the

::::
user, for example from

CMIP6. This ensemble of M climate model projections yields a sample of M random variables, denoted (Y1, ...,YM ). These100

random variables are assumed to be independent and to follow the same law as Y , which is assumed to be N (µY ,σ
2
Y ). ::

As

:
a
::::::::
reminder,

:::
all

:::
the

:::::::::::
assumptions

::::
used

::
in

:::
the

::::::
article

:::
are

::::::::::
summarised

::::
and

::::::::
discussed

::::
later

:::
in

:
a
:::::::::
dedicated

::::::
section

:::::
(Sect.

:::
6).

:
The

classical estimators of the expectation µY and variance σ2
Y are:

µ̂Y =
1

M

M∑
i=1

Yi, (3)

σ̂2
Y =

1

M − 1

M∑
i=1

(Yi − µ̂Y )
2. (4)105

The literature usually replaces µY and σY by their estimators µ̂Y and σ̂Y to estimate the PI [µY ± zσY ], which gives the

interval [µ̂Y ± z σ̂Y ]. This interval has no clear statistical meaning. In fact, µ̂Y and σ̂Y are random variables that depend on M ,
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the number of climate models used. The quality of these two estimators affects the quality of the interval. It can be shown (see

appendix C) that using these estimators µ̂Y and σ̂Y , the values of Y are contained in the following interval with a probability

of 1−α:110

IP

(
µ̂Y − tM−1 σ̂Y

√
1+

1

M
≤ Y ≤ µ̂Y + tM−1 σ̂Y

√
1+

1

M

)
= 1−α, (5)

where tM−1 is the quantile of a Student distribution with M −1 degrees of freedom associated with the probability 1−α. For

example, with a confidence level of 90% (α= 0.1), t30 = 1.70 and t5 = 2.02.

A subtle point is that this interval described in Eq. (5) is not a probability interval (PI) but a so called confidence interval

(CI). For example, the 90% PI of Y is an interval that has a 90% probability of containing Y values. It has deterministic bounds115

which frame a random variable. While the
:::
The CI of Y has random bounds, which also frame a random variable. In fact, the CI

of Y described in Eq. (5) has random bounds because µ̂Y and σ̂Y are random variables. Thus, different sample realisations, e.g.

from different ensembles of climate models, will lead to different realisations of this CI. Instead, there
::::
There

:
is a confidence

of 90% that one realisation of the CI contains Y . In other words, out of 100 realisations of the 90% CI, 90 should contain the

value of the random variable Y . This is illustrated in Fig. 2, which shows 100 realisations of this CI of Y (error bars) at a 90%120

confidence level, as well as 100 realisations of Y (red dots). This specific type of CI is also often called a prediction interval.

Figure 2. 100 random realisations of the 90% confidence interval (CI) of Y , CI90%(Y ) described in Eq. (6), and 100 realisations of the

random variable Y (red dots). Each realisation of the CI comes from a sample of M = 10 random realisations of Y . Since the confidence

level is 90%, it is expected that 90 out of 100 CIs realisations contain the realisation of Y , which is the case in this figure. The 10 CIs that

did not contain the realisation of Y are shown in red.

The CI of Y associated with a confidence level of 1−α is then denoted:

CI1−α(Y ) =

[
µ̂Y ± tM−1 σ̂Y

√
1+

1

M

]
. (6)

Now that the CI of Y is defined, it let us
::::::
allows

::
us

::
to study the effect on it of the number of climate models considered ,

:
(M .

Throughout this
:
)
::
on

::::
this

::
CI

:
.
::::::::::
Throughout

:::
the paper, the same synthetic example is used, defined in appendix D. It provides the125
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theoretical PI of Y , which is unknown in reality and estimated by the CI of Y . It also provides one realisation of the CI of

Y using a small (M = 5) sample (Y1, ...,YM ), and another using a large sample (M = 30). These different samples can, for

example, represent different ensembles of climate models (CMIP5, CMIP6, HighResMIP,
::
...). Figure 3 shows the probability

interval of Y , PI1−α(Y ) defined in Eq. (2), and the realisations of the two CI of Y (M = 5 and M = 30), CI1−α(Y ) defined

in Eq. (6). In reality the PI is unknown. This synthetic example allows us to compare the estimates with the truth.130

Figure 3. Synthetic example comparing the 90% probability interval (PI) of Y (left), described in Eq. (2), with two realisations of the 90%

confidence interval (CI) of Y (middle and right), described in Eq. (6). The first realisation is obtained with the small sample of M = 5 climate

models, while the second with the large sample of M = 30. The
::
We

:::::::
compare

::
the

:::::::::
realisations

::
of

:::
CI

:
to
:::

the
:
PI,

:::
the

::::
truth

:::
that is unknown in

reality, it is the truth to compare with. The details of the data simulation are given in appendix D.

There are two important remarks about the CI of Y described in Eq. (6). Firstly, it converges in probability to the PI of Y

described in Eq. (2) as M , the number of climate models considered, increases. Indeed, as M becomes large, the estimates µ̂Y

and σ̂Y (Eq. (3) and Eq. (4)) converge (in probability) to µY and σY , and the Student quantile converges to a Gaussian quantile.

This is illustrated in Fig. 3,
:
by comparing the PI of Y (left error bar) with the realisations of the CI of Y (middle and right error

bars). Indeed, the large sample gives a CI of Y (right interval, at [0.1± 1.9]
::::::::::::::
CI = [0.1± 1.9]) closer to the PI of Y (left interval,135

at [0± 1.6]
::::::::::::
PI = [0± 1.6]) than the small sample (middle interval, at [−0.8± 2.2]

:::::::::::::::
CI = [−0.8± 2.2]). To accurately estimate

both the centre and the width of the CI of Y , which represent the best guess and the uncertainty respectively, it is therefore

necessary to have as large a sample as possible. Secondly, the fewer the models
::
are, the larger the CI of Y

:
is. It is intuitive that

estimating the CI of Y with less data will give a more uncertain result. Indeed, in Eq. (6), the terms tM−1 and
√

1+ 1
M are

larger when M is smaller. These two aspects highlight the importance of having as many climate models as possible. However,140

the climate models considered must be independent and the simulated variables must follow the same distribution as the real

variables, two assumptions necessary for the calculation that are not fully satisfied (Knutti et al., 2017).
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In the literature, the PI of Y , i.e. [µY ± zσY ], is often estimated as the empirical interval [µ̂Y ± z σ̂Y ]. However, as seen pre-

viously, this interval has no statistical basis, whereas CI1−α(Y ) =
[
µ̂Y ± tM−1 σ̂Y

√
1+ 1

M

]
, contains Y value with a given

probability. The relative error of the interval width caused by using the wrong interval [µ̂Y ± z σ̂Y ] instead of the CI is therefore145

quantified as relative error in the width of this wrong interval (zσY ) compared to the width of the CI (tM−1 σ̂Y

√
1+ 1

M ):

E1 =

∣∣∣z− tM−1
√

1+ 1
M

∣∣∣
tM−1

√
1+ 1

M

. (7)

This relative error, which depends on the sample size (M ) and the confidence level (1−α) controlling z and t, is plotted as

a function of these two parameters in Fig. 4. For typical sample sizes of ensembles of climate models, between 5 and 50, the

relative error is between 3% and 30%. For example, with a confidence level of 68% (z = 1, "likely" in IPCC language) and a150

sample size of 20 climate models, the relative error is 5%. Since the width of the interval represents the uncertainty, this means

that the uncertainty is underestimated by 5%, which is even higher for smaller sample sizes or higher confidence levels. This

highlights the importance of using the rigorous formula provided in this article to express uncertainty more accurately.

Figure 4. Uncertainty quantification errors caused by using the wrong interval instead of the correct one, or [µ̂Y ± z σ̂Y ] instead of[
µ̂Y ± tM−1 σ̂Y

√
1+ 1

M

]
. This relative error is described in Eq. 7. The contours correspond to relative errors of 30%, 20%, 10%, 5%

and 3%.
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Without even mentioning observational constraints, this section provides statistically sound formulae for estimating an inter-

val that contains the value of a future variable from the projections of an ensemble of M climate models at a given confidence155

level, using confidence intervals. This brings a rigourous lighting to climate science, where simple mean and standard deviation

are commonly used. The next part applies the same methodology to a linear observational constraint.

3 Confidence interval of Y constrained by a noiseless observation

Observational constraint (OC) methods have been developed to estimate more accurately the value of a projected variable Y .

These methods "constrains" the distribution of Y by a "real-world" observation, denoted x0, of an observable variable X .
::
X160

::::
have

::
to

::
be

::::::
chosen

:::
by

:::
the

::::
user,

:::
as

::::
well

::
as

:::
the

:::::::::::
observational

::::::
dataset

:::::::::
providing

:::
x0. In this section, the real-world observation is

assumed to be noiseless (no observational noise, e.g. due to instrumental errors). This assumption is relaxed in the next section

which defines ClimLoco1.0. The general formulation presented in this article can be applied to the choice of any arbitrary

variables X and Y . The variable Y constrained by the observation x0 of X is written as Y |X = x0.

::
As

:::::::::
mentioned

:::
in

:::
the

:::::::::::
introduction,

:::::
many

::::::
articles

:::
in

:::
the

::::::::
literature

:::
use

:::::::::
univariate

:::
OC

:
,
:::
i.e.

::::
only

::::
one

:::::::::
observable

:::::::
variable

:::
X165

:
is
:::::
used

::
to

::::::::
constrain

::
Y .

:::::
This

:::
can

::
be

:::::
very

:::::::
limiting,

:::::::::
especially

:::::
when

::
Y

:::::::
depends

:::
on

:::::
many

::::::::
processes,

::::::
which

::
is

::::
often

::::
the

::::
case

::
in

::::::
climate

:::::::
science.

::::::::
Therefore,

:::
an

::::::::
important

::::::::::
contribution

::
of

:::
this

::::::
article

::
is

::
to

:::
give

:::
the

::::::::::
formulation

::
in

:
a
::::::::::
multivariate

:::::
form,

:::
i.e.

:::::::
X ∈ Rp

::::
with

:
p
:::
the

:::::::
number

::
of

:::::::::
observable

::::::::
variables.

::::::::
However,

:::
for

:::
the

::::
sake

::
of

::::::
clarity,

::::
only

:::
the

::::::
results

:::
for

:::
the

::::::::
univariate

:::::::::::
formulations

:::
are

::::::::
presented

::
in

:::
the

::::
main

::::
part

::
of

:::
the

::::::
article.

:::
The

:::::::::::
multivariate

::::::::::
formulations

:::
are

:::::
given

::
in

::::::::
appendix

::::
table

::::
A1.

This section gradually builds up the CI of Y |X = x0 in increasing complexity. Firstly, it defines the probability interval (PI)170

of Y obtained using the theoretical distribution of Y |X = x0 by assuming that this distribution is known. Secondly, it defines

the CI of Y |X = x0 obtained using this distribution estimated
:::::
based on an ensemble of climate models. These two types of

intervals are illustrated and interpreted using a synthetic example.

As stated above, the PI of Y |X = x0 is build using the theoretical distribution of Y |X = x0. Here, this distribution is

assumed to be Gaussian: Y |X = x0 ∼N (µY |X=x0
,σ2

Y |X=x0
), where µY |X=x0

and σ2
Y |X=x0

are respectively the expectation175

and variance of Y |X = x0. In the following, the PI of Y |X = x0 associated with a probability of 1−α is denoted as:

PI1−α(Y |X = x0) =
[
µY |X=x0

± zσY |X=x0

]
, (8)

where z is the quantile of order 1−α/2 of a distribution N (0,1). As mentioned in the introduction, many articles in the

literature use univariate OC, i.e. only one observable variable X is used to constrain Y . This can be very limiting, especially

when Y depends on many processes, which is often the case in climate science. Therefore, an important contribution of this180

article is to give the formulation in a multivariate form, i.e. where Y is constrained by several observable variables at the same

time. However, for the sake of clarity, only the results for the univariate formalisations are presented in the main part of the

article. The multivariate formalisations are given in appendix table A1. In order to express the terms µY |X=x0
and σ2

Y |X=x0
in

8



Eq. (8), it is used a linear regression framework
:
is

:::
use:

Y = E[Y |X] + ε,

where E[Y |X] = a0 + a1X , ε∼N (0,σε),
(9)185

and where the coefficients a0 and a1 are the intercept and the slope of the linear regression of Y on X , respectively, and ε is a

random variable representing the regression error with σε its standard deviation. Using this linear regression model, it can be

shown (see the proof in appendix E) that the terms µY |X=x0
and σ2

Y |X=x0
can be expressed as:

µY |X=x0
= a0 + a1x0 (10)

= µY + ρ
σY

σX
(x0 −µX), (11)190

σ2
Y |X=x0

= σ2
ε (12)

= (1− ρ2)σ2
Y , (13)

where µX and µY are the expectations of X and Y , σX and σY are the standard deviations of X and Y , and ρ is the linear

correlation between X and Y . The PI of Y constrained by X = x0 described by Eq. (8) can then be rewritten:

PI1−α(Y |X = x0) = [a0 + a1x0 ± zσε] . (14)195

To illustrate this, it is use the same synthetic case study as before
:
is
:::::
used, detailed in appendix D. The PI of Y constrained is

shown in Fig. 5.a and 5.b (in red), and is compared with the PI of Y unconstrained (in black) in Fig. 5.b. The constraint on Y

has two effects: (a) it changes the best guess (centre of the interval), and (b) it reduces the uncertainty (width of the interval).

(a) When Y is constrained (PI(Y |X = x0)), it has a different best guess (centre of interval) than when it is unconstrained

(PI(Y )). We interpret this in two different ways, using Eq. (10) and Eq. (11). The first equation gives a graphical interpretation:200

the constrained expectation of Y is directly the real-world observation fed into the regression. This is illustrated in Fig. 5.a. The

second equation is useful to understand the correction between the best guess of Y constrained and unconstrained: µY |X=x0
−

µY = ρ σY

σX
(x0−µX). It depends on two terms: the regression slope ρ σY

σX
which depends in particular on the correlation between

X and Y , and the difference between the real-world observation and the theoretical centre of the climate models distribution on

X . It is called here (x0−µX) the theoretical multi-model bias. In other words, the constrained best guess of Y (µY |X=x0
) is a205

corrected version on the unconstrained best guess of Y (µY ), knowing the theoretical multi-model bias of X (x0−µX ) and the

relationship between X and Y (ρ σY

σX
). In the example of Fig. 5.a, there is a positive theoretical multi-model bias associated with

a positive relationship between X and Y , thus a correction to a higher best guess (µY |X=x0
> µY ). Observational constraints

are generally used to reduce uncertainty, but the correction of the best guess between constrained and unconstrained is very

important and should not be forgotten, as it allows to correct the multi-model bias.210

(b) When Y is constrained, it has a lower uncertainty (width of PI(Y |X = x0)) than when it is unconstrained (width of

PI(Y )). We interpret this in two different ways, using Eq. (12) and Eq. (13). The first equation
:::::::
Equation

:::::
(12) provides a graph-

ical interpretation: the uncertainty of Y constrained is directly the regression error. The 90% regression error is represented

9



Figure 5. (a) Example showing the 90% probability interval (PI) of the projected variable Y constrained by the observation x0 of an

observable variable X , as described by Eq. (14). (b) Comparison between the 90% PI of Y constrained (red) and unconstrained (black) as

described by Eq. (14) and Eq. (2) respectively. The values of means, variances etc
:
(
::
etc.

:
)
:
are given in appendix D.

by the red tube
:
in
:

Fig. 5.a. The second equation
:::::::
Equation

::::
(13)

:
expresses the variance of Y (Y |X = x0 ) constrained as the

variance of Y unconstrained multiplied by 1− ρ2, which is between 0 and 1. The uncertainty of Y constrained
::
by

::::::::::
observation215

is therefore smaller than the uncertainty of Y unconstrained: this is the desired reduction in uncertainty. The stronger the cor-

relation between X and Y , the greater the reduction in uncertainty. In the example shown in Fig. 5.b, the strong correlation

(0.85) between X and Y reduces the uncertainty well, the red interval is narrower than the black one.

The use of the PI of Y constrained, PI(Y |X = x0) (described
:::
Eq.

:::
(14), requires knowledge of the theoretical parameters

a0, a1 and σε, which are unknown in reality. To estimate them, it is used an ensemble of M climate models
::::::
chosen

:::
by

:::
the220

::::
user,

:::
e.g.

:::::::
CMIP6,

:::::::::::
HighResMIP,

::
(
::
etc

:
)
:
is
:::::
used. It is written (X1,Y1), ...,(XM ,YM ) as a sample of M pairs of random variables

(X,Y ). They are assumed to be independent and to follow the same law as (X,Y ), which is assumed to be bivariate Gaussian.

This sample allows to define the estimators â0, â1 and σ̂ε of a0, a1 and σε (see formulas in appendix table A2). To estimate

PI(Y |X = x0), one may want to replace the theoretical parameters by the estimated ones, which gives the following interval:

[â0 + â1x0 ± z σ̂ε]. However, as seen in the previous section, this interval has no statistical meaning. Instead, it is shown in225

appendix F that the estimated parameters lead to the following confidence interval (CI) of Y |X = x0:
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CI1−α(Y |X = x0) =

â0 + â1x0 ± tM−2 σ̂ε

√√√√
1+

1

M
+

(x0 − µ̂X)2

M σ̂2
X

 . (15)

The corresponding expression when X is multivariate is given in appendix table A1.
:::
The

::::::::
definition

::
of

:::
the

:::::::::
estimators

:::
are

:::::
given

::
in

:::::::
appendix

:::::
table

:::
A2.

:

To illustrate these mathematical results, Fig. 6 uses the same synthetic case study as before. It shows the realisations of two230

samples (X1,Y1), ...,(XM ,YM ), one of size M = 5, and the other of size M = 30. The realisation of each sample corresponds

to each row. As shown in Fig. 6.a, these two different sample realisations lead to two different realisations of the estimated

linear relationship y = â0 + â1x (red line) and the constrained confidence intervals (red interval). The red shading represents

the CI90%(Y |X = x0) obtained for different positions of the observation x0. Figure 6.b compares the realisations of the CI of

Y unconstrained CI90%(Y ) and constrained CI90%(Y |X = x0), and the PI of Y constrained PI90%(Y |X = x0).235

On the one hand, there are two similarities between the CI of Y constrained (Y |X = x0) and unconstrained (Y ). Firstly,

the CI of Y constrained described by Eq. (15) converges (in probability) to the PI of Y constrained described by Eq. (8) as

the sample size M increases. Consequently, the CI obtained from a large sample (second pannel
::::
panel) is closer to the PI than

the one obtained from a small sample (first pannel
::::
panel), as shown in Fig. 6.b. Secondly, the CI of Y |X = x0 is larger when

the sample size M is smaller, due to the term tM−2

√√√√
1+

1

M
+

(x0 − µ̂X)2

M σ̂2
X

in Eq. (15). To summarise these two similarities240

between the unconstrained and constrained cases,
:
: a larger sample leads to a more correct and precise estimate of Y .

On the other hand, there are two important differences between the CI of Y constrained and unconstrained. Firstly, the centre

of
:::
the CI(Y |X = x0) is the observation fed into the regression, as described in Eq. (15). Using the previous equations, the

difference between the centre (best guess) of the CI of Y constrained and unconstrained can be expressed as µ̂Y |X=x0
− µ̂Y =

â1 (x0 − µ̂X). This correction of the best guess depends on the estimated slope between X and Y , â1, and on what is called245

here the multi-model mean bias at X , (x0 − µ̂X). In other words, the constraint corrects the multi-model bias on Y , knowing

the multi-model bias on X and the relationship between X and Y . This is illustrated in Fig. 6. Secondly, there is a difference

in the square root term between the CI of Y constrained and unconstrained. The CI of Y constrained is larger by the amount

(x0−µ̂X)2/M σ̂2
X . If the observation is far from the samples, this quantity is large, which makes the interval width (uncertainty)

larger. In other words, the linear relationship is more uncertain away from the samples, in unknown territory. Furthermore, the250

latter term is multiplied by 1/M , which means that the linear relationship is more certain when obtained from a large sample

size. This is illustrated in Fig. 6.a on the small sample (first row): the constrained confidence interval grows rapidly as one

move away from the samples (back circles).

In summary, the equations and figures show the two benefits sought in
::::
from

:
OC: there is a correction to the best guess and

a reduction in uncertainty, between the CI of Y unconstrained and constrained. To maximise the reduction in uncertainty, the255

::::
there is a need for as many (independent) climate models as possible.

11



Figure 6. Synthetic example showing, (a) the first column, two realisations of the 90% confidence interval (CI) of Y constrained by the

observation x0 of X , described in Eq. (15). The two realisations come from two different samples (X1,Y1), ...,(XM ,YM ) of size M = 5

and M = 30 (black circles) and correspond to the two rows of the figure. The estimated linear regression and its 90% error are shown as the

red line and shade
::::::
shading, respectively. (b), the second column, compares in red the confidence (middle) and probability (right) intervals of

the constrained Y . The larger sample (second row) gives a better CI than the small one (first row), which is closer to PI. (b) also compares

the CI of Y constrained (middle) and unconstrained (left, in black). The details of the data simulation are given in appendix D. µ̂X and µ̂Y

are the unconstrained means of X and Y , while µ̂Y |X=x0
is the constrained mean of Y . The observation x0 is assumed to be noiseless.

As seen previously, to get a real estimate of the PI of Y constrained, namely [a0 + a1x0 ± zσε], the correct approach is to

use the CI of Y constrained, namely

â0 + â1x0 ± tM−2 σ̂ε

√√√√
1+ 1

M +
(x0 − µ̂X)2

M σ̂2
X

. However, the literature sometimes uses

[â0 + â1x0 ± z σ̂ε], which has no statistical basis. The relative error in the interval width caused by using the wrong one instead

of the correct one is therefore quantified as:260
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E2 =

∣∣∣∣∣∣∣z− tM−2

√√√√
1+ 1

M +
(x0 − µ̂X)2

M σ̂2
X

∣∣∣∣∣∣∣
tM−2

√√√√
1+ 1

M +
(x0 − µ̂X)2

M σ̂2
X

. (16)

This relative error described by Eq. (16) depends on three parameters: (i) the sample size, M , (ii) the confidence level, 1−α,

which controls z and t, and (iii) the standardised real-world observation,
(x0 − µ̂X)2

σ̂2
X

. The relative error is shown in Fig. 7 for

a fixed confidence level of 68%, as a function of M (x-axis) and
(x0 − µ̂X)2

σ̂2
X

(y-axis). With a typical sample size of climate

model ensembles between 5 and 50, the relative error is between 3% and 30%. In other words, using the wrong interval instead265

of the correct one implies an underestimation of the uncertainty between 3% and 30%. For example, using an ensemble of

M = 20 climate models, the error starts at 5% and can easily exceed 10% if the observation is far from the ensemble of climate

models (y-axis). This highlights the need to rigorously consider the performance of the estimators in order to correctly estimate

the uncertainty using the rigorous CI
::::::
defined

::
in

:::
this

::::::
article.

4 ClimLoco1.0270

The previous results were obtained under the assumption that the real-world observation x0 is not noisy. In reality, x0 is affected

by observational noise, which is taken into account in this section, inspired by the theory of measurement error models (Fuller,

2009). Some papers define observational noise as internal variability (e.g. Brunner et al., 2020b), others as measurement error

(e.g. Hall et al., 2019), and others as both (e.g. Ribes et al., 2021). We argue here that both internal variability and measurement

error should be taken into account, as both affect the real-world observation. Let XN be the noisy version of X , linked by the275

noise model defined in Bowman et al. (2018):

XN =X +N , with N ∼N (0,σ2
N ) and N ⊥⊥X, (17)

where N is a random variable representing the observation noise, assumed to be Gaussian, centred and independent of X .

Its variance σ2
N is assumed to be known. The projected variable Y constrained by the observation xN

0 of XN affected by the

observation noise is denoted Y |XN = xN
0 .280

This section constructs ClimLoco1.0, which is the confidence interval of Y |XN = xN
0 , in increasing complexity, following

the same steps as in the previous two sections. Firstly, it defines the probability interval (PI) of Y |XN = xN
0 obtained using

the theoretical distribution of Y |XN = xN
0 by assuming that the distribution of Y |XN = xN

0 is known. Secondly, it defines

the CI of Y |XN = xN
0 obtained using this distribution estimated

:::::
based on an ensemble of climate models. These two types of

intervals are illustrated and interpreted using a synthetic example. These different steps that construct ClimLoco1.0 are crucial285

to define and understand with rigor the best guess and uncertainty of any variable constrained by a noisy observation.
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Figure 7. Uncertainty quantification error when constraining Y made by using the wrong interval instead of the correct one, i.e.

[â0 + â1x0 ± z σ̂ε] instead of

â0 + âT
1 x0 ± tM−2 σ̂ε

√√√√
1+ 1

M
+

(x0 − µ̂X)2

M σ̂2
X

. This error is described in Eq. (16). The error values are

shown by the contours between 3 and 30%. They are given as a function of the sample size (x-axis) and the distance between the observation

and the multi-model ensemble. The confidence level is fixed at 68% (i.e. z = 1), a value often used in the literature.

As stated above, the PI of Y |XN = xN
0 is build using the theoretical distribution of Y |XN = xN

0 . Here, this distribution is

assumed to be Gaussian: Y |XN = xN
0 ∼N (µY |XN=xN

0
,σ2

Y |XN=xN
0
), where µY |XN=xN

0
and σ2

Y |XN=xN
0

are respectively the

expectation and variance of Y |XN = xN
0 . The following interval is the PI of Y |XN = xN

0 , i.e. it contains Y |XN = xN
0 values

with a probability of 1−α:290

PI1−α(Y |XN = xN
0 ) =

[
µY |XN=xN

0
± zσY |XN=xN

0

]
, (18)

where z is the quantile of order 1−α/2 of a distribution N (0,1). This interval contains realisations of Y with a given confidence

1−α controlling z. To express the parameters µY |XN=xN
0

and σ2
Y |XN=xN

0
, it is used a linear regression framework

:
is

:::::
used, as

in the previous section:

Y = E[Y |XN ] + εN ,

where E[Y |XN ] = b0 + b1X
N , εN ∼N (0,σεN ),

(19)295
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and where b0 and b1 are the intercept and slope of the linear model
::::::::::
respectively, and εN is a random variable representing the

regression error with σεN its standard deviation. This linear regression is the regression of Y on XN . But
:::::::
However,

:
climate

models do not suffer from observational noise (instrumental error and internal variability): they provide realisations of X , not

XN . In fact, climate models do not suffer from instrumental error, but they can be affected by internal variability. However, the

impact of internal variability can be reduced for example by averaging the members of this
:
a

:::::
given climate model (different300

realisations run from different initialisations
:::::
initial

:::::::::
conditions). As climate models provide realisations of X and not XN , it can

be difficult to express the linear coefficients b0 and b1. However, using the model noise described by Eq. (17), which relates

XN to X , it is possible to obtain the expressions of b0 and b1 and hence the expression of µY |XN=xN
0

and σ2
Y |XN=xN

0
. In fact,

it can be shown (see Appendix G) that:

µY |XN=xN
0
= b0 + b1x

N
0 (20)305

= µY + ρ
σY

σX

1

1+1/SNR2
(xN

0 −µX), (21)

σ2
Y |XN=xN

0
= σ2

εN (22)

=

(
1− ρ2

1+1/SNR2

)
σ2
Y , (23)

where ρ is the correlation between X and Y , and SNR= σX/σN is a
:::
the signal-to-noise ratio ,

:
(where X is the signal and

N is the noise
:
). Using correlation and signal-to-noise ratio to express the equations is inspired by Bowman et al. (2018). The310

equations (21) and (23) are very useful because they use parameters related to X , not XN . The parameters b0, b1 and σ2
εN can

thus be computed using the sample of X
:::::
which

:
is
:
noiseless. This formalisation is possible thanks to the theory of measurement

error models Fuller (2009). Using Eq. 20 and Eq. 22, the PI of Y |XN = xN
0 described Eq. 18 can be rewriteas:

PI1−α(Y |XN = xN
0 ) =

[
b0 + b1x

N
0 ± zσεN

]
. (24)

These results are interpreted mathematically and graphically using the same synthetic case study as before, detailed in appendix315

D. Fig. 8.a shows the PI of Y constrained by a noisy observation, PI1−α(Y |XN = xN
0 ) (green interval). It also shows how it is

constructed by plotting the linear regression y = b0+b1x (green line) and its error σεN (green shade
::::::
shading). For comparison,

it also shows the linear regression and its error obtained when the observational noise is neglected, as in the previous section,

in red. Fig. 8.b compares PI1−α(Y |XN = xN
0 ) (green) with the PI of Y constrained by a noiseless observation (red) and

unconstrained (black), respectively PI1−α(Y |X = x0) and PI1−α(Y ).320

The expression of the PI of Y constrained by a noisy observation (PI(Y |XN = xN
0 )) has a form close to that

::
the

:::
one

:
where

the observational noise was neglected,
::
as
:
in the previous section (PI(Y |X = x0)). As before, the expectation of Y constrained

is directly the real-world observation fed into the regression (see Eq. (20)), and the variance of Y constrained is the variance of

the regression error (see Eq. (22)). The constraint corrects the expectation (see Eq. (21)) and reduces the variance (see Eq. (23)).

However, the difference between including or not including the observational noise (difference between green and red in Fig. 8)325

lies in a term called here the attenuation coefficient: 1/(1+1/SNR2). The slope considering the observational noise, b1, is

attenuated compared to the slope neglecting the observational noise, a1: b1 = a1 /(1+1/SNR2). The larger the observational
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Figure 8. (a) Example showing in green the 90% probability interval (PI) of the projected variable Y constrained by the noisy observation

xN
0 , as described by Eq. (24). The green colour corresponds to the case where the observation is noisy, while the red colour corresponds to

the case where the observation is considered noiseless, as in the previous section. (b) Comparison between the 90% PI of Y unconstrained

(black), constrained by a noisy observation (green) and constrained by a noiseless observation (red), corresponding respectively to Eq. (2)

vs. Eq. (24) vs. Eq. (14). The values of means, variances, etc are given in appendix D.

noise, the larger the attenuation. This is illustrated in Fig. 8.a, where the linear relationship is stronger when the observational

noise is neglected (red) than when it is included (green). In this example, there is as much signal as noise (SNR= 1). The

attenuation coefficient is therefore 50%. In reality, depending on the application, the observational noise can be very small,330

although it is difficult to estimate, especially for low frequency internal variability, which can lead to serious overconfidence

(Bonnet et al., 2021). This attenuation coefficient, 1/(1+1/SNR2), weakens both the expectation correction and the variance

reduction, as described in Eq. (21) and Eq. (23) respectively. This highlights the need to account for observational noise,

otherwise the PI of Y constrained will be overconfident with too strong an expectation correction.

The use of the PI of Y |XN = xN
0 described by Eq. (24) requires knowledge of the parameters b0, b1 and σεN , which are335

unknown in reality. As in the previous section, it is used an ensemble of M climate model projections
:
is
:::::
used to estimate them.

The estimators of a0, a1 and σεN are given in appendix table A2. Using them, it is shown in appendix H that the confidence
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interval (CI) of Y constrained by a noisy observation is:

CI1−α(Y |XN = xN
0 ) =

b̂0 + b̂1x
N
0 ± tM−2 σ̂εN

√√√√
1+

1

M
+

(xN
0 − µ̂X)2

M (σ̂2
X +σ2

N )

 . (25)

When X is multivariate, its expression is:340

CI1−α(Y |XN = xN
0 ) =

b̂0 + b̂T1 x0 ± tM−1−p σ̂εN

√
1+

1

M
+(x0 − µ̂X)T

(Σ̂X +ΣN )−1

M
(x0 − µ̂X)

 , (26)

where p is the number of features in X and ΣX and ΣN are the variance-covariance matrices of X and N , respectively. The con-

fidence interval of Y constrained by a noisy observation (CI1−α(Y |XN = xN
0 )) described in Eq. (26) is the statistical model

called "CLimate variable confidence Interval of Multivariate Linear Observational COnstraint" (ClimLoco1.0). To illustrate

these mathematical results, Fig. 9 shows two realisations of ClimLoco1.0, one realisation from the sample (X1,Y1), ...,(XM ,YM )345

of size M = 5 and one realisation from the sample of size M = 30, taken from the same synthetic example as before. In

Fig. 9.a., each sample realisation gives a different realisation of the linear relationship y = b̂0 + b̂1x (green line)and
:
,
:::
and

::
a

::::::::
realisation

:::
of the confidence interval constrained by a noisy observation described in Eq. 25 (green interval). The green shad-

ing represents the CI90%(Y |XN = xN
0 ) obtained for different positions of the observation xN

0 . For comparison, this Fig. 9.a

shows in red the CI90%(Y |X = x0) for different positions of x0 (red shade
:::::::
shading). This enables to compare the difference350

in intervals width and centre if the observational noise is considered or neglected. Fig. 9.b compares the CI of Y : uncon-

strained (CI90%(Y ), in black), constrained by a noiseless observation (CI90%(Y |X = x0), in red) and constrained by a noisy

observation (ClimLoco1. 0, CI90%(Y |XN = xN
0 ), in green).

When comparing the CI of Y constrained by a noisy vs. noiseless observation, green vs. red in Fig. 9.b, it is founded the same

previous conclusions
:::
are

:::::
found as when comparing PI of Y constrained by noisy vs. noiseless observation: there is a decrease of355

reduction in
::
in

:::
the

::::::::
reduction

::
of

:::
the uncertainty (interval width) and of correction of

:
in

:::
the

:::::::::
correction

::
of

:::
the best guess (interval

centre). In other words, observational noise weakens the constraint. When comparing the two rows of Fig. 9, corresponding

::
to a small (first row) and large sample (second row), the large sample leads to narrower CI. The CI is more precise when

estimated on more data. This is visible in all three expressions of the CI discussed in this article with the effect of the term

M . Moreover, this synthetic example uses a strong observational noise (SNR= 1). Combined with a small sample (first row360

of Fig. 9) , this tends to make the CI(Y |XN = xN
0 ) large, which means

:::::::
meaning

::::
that the uncertainty is large. Therefore,

the CI(Y |XN = xN
0 ) is larger than the CI(Y ) in the second row: the constraint has not reduced the uncertainty, which is

surprising. However, this is an extreme case, combining both high observational noise and small sample size. In summary, low

observational noise combined with a high correlation between X and Y leads to a strong constraint, which means a strong

best guess correction (centre of the confidence interval) and a strong uncertainty reduction (width of the confidence interval).365

Uncertainty is also affected by
::
the

:
sample size: the larger the sample size, the greater the uncertainty reduction. The best guess

correction is also affected by the distance between the observation and the multi-model mean (x0− µ̂X ), which is called in this

article the "multi-model bias". The larger the bias, the larger the correction.

17



Figure 9. Synthetic example showing (a) (the first column) two realisations of the confidence interval (CI) of Y constrained by a noisy (re-

spectively noiseless) observation, shown in green (respectively red), given with
:
at
:
a
:
90% confidence

:::
level. The shades correspond

:::::::
shadings

:::::::::
corresponds to the intervals obtained from different positions of the observation. The first (respectively second) row corresponds to a realisa-

tion of a sample of size M = 5 (respectively M = 30). (b), the second column, compares the CIs of Y unconstrained (black) vs. constrained

by a noiseless observation (red) vs. constrained by a noisy observation (green), corresponding respectively to Eq. (6) vs. Eq. (25) vs. Eq. (15).

The details of the data simulation are given in appendix D.

The main contributions of this section are to provide the statistical model ClimLoco1.0, the confidence interval of the pro-

jected variable constrained by a noisy observation, to express and illustrate it graphically as an attenuated linear regression, and370

to highlight the need to take this observational noise into account and to have a sample size as large as possible. Figure 10 is

proposed as an illustrative summary of a comparison of the CI of Y unconstrained, of Y constrained by a noiseless observation,

and of Y constrained by a noisy observation. This figure is built using synthetic data detailed in appendix D.
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Figure 10. Graphical representation of the effect of considering observational noise in a linear observational constraint (OC). (i) In red, the

observational noise is neglected. (ii) In green, the observational noise is considered, which is more rigorous. The green confidence interval

(CI) corresponds to the statistical model ClimLoco1.0 presented in this article. (i) When observational noise is neglected, a linear relationship

is defined between a past observable variable X and a future variable Y using an ensemble of climate models (black circles). The slope and

error of the relationship between X and Y are shown as the red line and shading. A real-world observation of X is then fed into the linear

relationship to obtain the CI of Y constrained (red interval). Compared to the CI of Y unconstrained (black interval), the CI of Y constrained

(red interval) has a reduced uncertainty (interval width) and a corrected best guess (interval centre). The intensity of the best guess correction

(between unconstrained and constrained) depends on the the slope between X and Y , and the difference between the multi-model mean

and the observation (the "multi-model bias"). (ii) However, it does not take into account the uncertainty associated with the real-world

observation. When taken into account, observational noise reduces the slope (green line) of the linear relationship and increases its error

(green shade
::::::
shading). Consequently, the CI of Y constrained by a noisy observation (green interval) has less uncertainty reduction and less

best guess correction than the CI of Y constrained by a noiseless observation (red interval). All three CIs use a 90% confidence level.

5 Discussion
:::::::::::
Comparison

::::
with

:::
the

:::::::::
literature

In this section, the results of this article are compared with those of some of the most widely used approaches in the observa-375

tional constraint literature: (a) Ribes et al. (2021) and Bowman et al. (2018), and (b) Cox et al. (2018).
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(a) Both Ribes et al. (2021) and Bowman et al. (2018) use statistical approaches to constrain Y by real-world observations.

One can demonstrate (not shown here) that these two articles give equivalent expressions of the expectation and variance of

Y |XN = xN
0 . The main difference between them is that the first article considers the variables X and Y as univariate and

the second as multivariate, respectively. It can be found that these articles have the same expressions for the expectation and380

variance of Y |XN = xN
0 as those obtained in Eq. (21) and Eq. (23). This means that the approaches of both Ribes et al. (2021)

and Bowman et al. (2018) are equivalent to using a linear regression model (multivariate and univariate, respectively). Note

that
::
As

::::
seen

::
in

:::
the

::::::::
previous

:::::::
section, this regression is corrected by the observational noise, as seen in the previous section.

This is an important result for interpreting these methods using linear regression, as is done in our article. Furthermore, an

important caveat to this equivalence is that there is a well-known risk of overfitting when using multivariate linear regression,385

i.e. learning incorrect relationships between features by over-fitting the data. This risk is greater when the number of variables

is large and the number of climate models used to learn the regression is small. The multivariate method developed by Ribes

et al. (2021) therefore presents a risk of overlearning.

Furthermore, the articles by Bowman et al. (2018) and Ribes et al. (2021) only gave the theoretical expressions for the

expectation and variance of Y |XN = xN
0 . These theoretical values are in reality unknown. They did not give details of the390

exact expression of the estimates, which, as previously seen using confidence intervals, leads to a higher uncertainty due to the

limited sample size. This can be neglected when the sample size is very large, but is very important to take into account when

it is small, as shown in the previous section (see Eq. 6). In climate science, sample sizes are usually small (especially if only

considering high resolution models (Bauer et al., 2021)), so
:::
that

:
we argue here that this uncertainty must be included in the

estimates.395

(b) When referring to observational constraints, an often quoted figure comes from Eyring et al. (2019), Box 1. This method

is used in several papers, e.g. Bracegirdle and Stephenson (2012), Brient (2020). Tthis figure is interpreted here using the well-

known paper of Cox et al. (2018). Our approach leads to a different expression of the expectation and variance of Y constrained

by a noisy observation than the approach of Cox et al. (2018), for which we argue our disagreement here. Cox et al. (2018)

studies the distribution of Y using the law of total probability (see Eq. (15) in Cox et al. (2018)). Written differently, using the400

laws of total expectation and variance, the expectation and variance of this distribution can be expressed as:

E[Y ] = E[E[Y |X]], (27)

V(Y ) = E[V[Y |X]] +V[E[Y |X]]. (28)

Using a linear regression between Y and X , noted Y = a0 + a1X + ε, it gives:

E[Y ] = a0 + a1E[X], (29)405

V(Y ) = V(ε)+ a21V(X). (30)
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Cox et al. (2018) assumes that X follows a distribution centered around the observation (E[X] = xN
0 ) and of variance the

observational noise variance (V(X) = σ2
N ). Consequently,

E[Y ] = a0 + a1x
N
0 , (31)

V(Y ) = V(ε)+ a21σ
2
N . (32)410

This corresponds to the figure in Eyring et al. (2019), Box 1: the best guess is directly the observation fed into the regres-

sion (a0 + a1x0), and the total uncertainty is the regression uncertainty (V(ε)) plus the observational uncertainty fed into the

regression (a21σ
2
N ).

We suggest that there are two main problems with this approach. Firstly, Cox et al. (2018) uses two different distributions of

the same variable X , one from the climate models to learn the linear relationship Y = a0 + a1X + ε and one from the noisy415

observation. But the climate models have a different X distribution than the observation: E[X] = µX ̸= xN
0 and V(X) = σ2

X ̸=
σ2
N . The variable X cannot have two different expectations and two different variances, the equations (31) and (32) written

above are incorrect from our point of view. It is necessary to separate the variable X , whose distribution is given by the climate

models, from the variable XN , which is observed from the real-world with an observational noise, as is done in this article.

Secondly, the constrained variable should be noted Y |XN = xN
0 , not just Y . This has a major effect on the resulting equations.420

Indeed, the equations Eq. (29) and Eq. (30) are correct, but do not constrain either the expectation or the variance of Y .

This conclusion is consistent with Hall et al. (2019), who states that "care must be taken to characterise the uncertainty

in the observational values of the X variable. The translation of observed X-values into predicted Y-values is not trivial. It is

certainly not as simple as finding the intersection of the most likely value of observed X and the regression line relating Y to X

and ’reading’ the predicted Y value. Instead, both observed X and predicted Y must be treated statistically." The clarification425

proposed here may help to move into this direction.

:
A
::::

key
::::::
feature

::
of
::::

the
:::::
article

::
is
:::
the

::::
use

::
of

:::::::
multiple

::::::::::
observable

:::::::
variables

:::::::::::::
simultaneously

::::
(i.e.

::
a

::::::::::
multivariate

:::::::::
approach).

::::
The

:::::::::
approaches

::
in

:::
the

::::::::
literature

:::
are

::::::
mainly

:::::::::
univariate.

::::::::
However,

:::
we

::::::::
identified

::::
some

:::::::::::
multivariate

::::::::::
approaches.

::
As

:::::::::
mentioned

::
in

::::
this

::::::
section,

::::::::::::::::
Ribes et al. (2021)

:::
use

:
a
::::::

linear
::::::::::
multivariate

::::::::
approach.

::::
The

:::::
other

::::::::::
approaches

::
in

:::
the

::::::::
literature

:::
are

::::::
mainly

::::::::::
non-linear,

::::
using

:::
the

:::::
large

::::::
amount

::
of

::::::::::
information

::::::::
provided

::
by

:::::::
multiple

::::::::
variables

::
in

:::::
more

:::::::
complex

:::::::::
regression

::::::
models.

::::::::
However,

::::
due

::
to

:::
the430

:::::::::::
non-linearity,

:
it
::
is

:::
not

:::::::
possible

::
to

::::::::
formulate

::
an

::::::::
analytical

:::::::::
expression

::
of

:::
the

:::::::::
confidence

:::::::
interval.

:::
For

::::::::
instance,

:::::::::::::::::
Schlund et al. (2020)

::::::::
constrains

:::::
future

:::::
gross

:::::::
primary

:::::::::
production

:::::
(GPP)

:::::
using

:
a
:::::::::
regression

:::::
model

:::::
based

::
on

:::::::
random

:::::
forest

::::::::::::::
(gradient-boosted

:::::::::
regression

::::
trees)

::::
that

:::::
takes

:::
into

:::::::
account

::::
past

::::
GPP,

:::::::::::
temperature,

:::::::::::
precipitation,

:::
etc.

:::
To

:::::::
estimate

::::::::::
uncertainty,

:::
the

::::::::
non-linear

::::::
model

::
is

::::::
locally

:::::::::::
approximated

::
by

::
a
:::::
linear

::::
one.

6
:::::::::
Discussion

::
of

:::
the

:::::::::::
assumptions435

:::
The

:::::::
different

:::::::::::
assumptions

::::
used

::
to

:::::
obtain

:::::::::::
ClimLoco1.0

:::
are

::
all

::::::::
compiled

::
in

:::
the

::::::::
following

::::
list.

::::::
Climate

:::::::
models

:::
are

:::::::
supposed

::
to
:::
be

::
(i)

:::::::
random

:::
and

::::::::::
independent

::::::::::
realisations

::
of

:::
the

:::::
same

:::
(ii)

::::::::
Gaussian

::::::::::
distributions

:::
as

:::
(iii)

::::::
reality.

::::
(iv)

:::
The

:::::::::::
observations

:::
are

:::::
noisy

:::::::::
realisations

::
of

:::
the

::::::
reality,

::::
with

:::::::
additive

::::::::
Gaussian

:::::
noise,

::::::::::
independent

::
of

:::
X .

:::
Its

:::::::::
covariance

:
is
::::::::
assumed

::
to

::
be

:::::::
known.

:::
One

:::
by

::::
one,
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::
we

:::::
detail

:::::
each

:::::::::
assumption

::::::::
hereafter.

::
If

::::::::
possible,

::
we

::::::::
evaluate

::
its

::::::
impact

:::
on

::
the

::::::
results

::::
and

::::::
provide

::::::
insight

:::
on

::::
how

::
to

::::
deal

::::
with

:
it
::
in

:::
the

::::
next

::::::
version

:::
of

::::::::::
ClimLoco1.0

:
.440

::
(i)

:::::::::::
ClimLoco1.0

:::::::
assumes

::::
that

::::::
climate

:::::::
models

:::
are

::::::::::
independent

:::
and

:::::::
equally

::::::::
plausible.

::::
This

::::::::::
assumption

::
is

::::
used

:::
by

::::
most

::::
OC

:::::::
methods,

::::::
except

:::::
those

:::
that

:::::
assign

:::::::
weights

::
to

::::::
climate

:::::::
models

:::::::::::::::::::::
(e.g. Brunner et al., 2019).

::::::::
However,

:::::::
defining

:::::::::
confidence

::::::::
intervals

::::
using

::::::::
weighted

:::::::
samples

:::::::
without

::::
these

::::::::::
assumptions

::
is

::::::::::
challenging,

::::
and

:::
this

::
is

::
an

::::
area

::
in

:::::
which

:::::::::::
ClimLoco1.0

:::::
could

::
be

:::::::::
improved.

::
In

:::::::::::
ClimLoco1.0,

:::::
these

::::::::::
assumptions

:::::::
virtually

::::
give

:::
too

:::::
much

:::::::::
importance

::
to

:::::::::
dependent

::::::
climate

:::::::
models,

::
as

:
if
:::::
there

::::
were

:::::::::
duplicates

::
in

:::
the

::::
data.

:::::::
Groups

::
of

:::::::::
dependent

::::::
climate

::::::
models

:::
are

::::::
closer

:::::::
together

::
in

:::
the

::::::
(X,Y )

::::::
space,

::
as

:::
we

::::::::
observed

:::
for

::::::
climate

:::::::
models445

::::::::
belonging

::
to

:::
the

:::::
same

::::::
institute

:::
for

::::::::
example.

::::::
Groups

::
of
:::::::
models

:::
that

:::
are

:::::
close

:::::::
together

::::
push

:::
the

:::::
guess

:::::
closer

::
to

:::::
them

:::
and

::::::
reduce

::
the

::::::::::
inter-model

::::::
spread,

::::::::::
introducing

:::
an

:::::::::::::
underestimation

::
of

:::
the

::::::::::
uncertainty.

::
(ii)

::::
The

::::::::::
assumption

::::
that

:::
the

::::::::::
distributions

::::
are

::::::::
Gaussian

::
is

::::::
clearly

:::::::::
recognized

::
as

::::::::::
potentially

:::::::::::
questionable,

::::
e.g.

::
in

:::::
regard

:::
to

:::::::::::
precipitation.

::
If

:::
the

::::::::::
distribution

::
is

:::
not

:::::::
centred,

::::
the

:::::::::
confidence

:::::::
interval

::::::
should

:::
not

:::
be

::::::
centred

::::::
either.

::
If
:::
the

::::::::::
distribution

::::
has

::::::::
significant

::::::
tailed

:::::
areas,

:::
the

:::::
limits

:::
of

:::
the

:::::::::
confidence

:::::::
interval

:::::
must

:::
be

::::::
further

:::::
apart.

::::
The

::::::
greater

:::
the

:::::::::
difference

::::::::
between

:::
the450

:::::::::
distribution

::::
and

::
a

::::::::
Gaussian

::::::::::
distribution,

:::
the

::::
less

::::::::
accurate

:::::::::::
ClimLoco1.0

:::
will

::
be

:::
in

:::::::::
estimating

:::
the

::::::
limits

::
of

:::
the

::::::::::
confidence

:::::::
interval.

::::::::
However,

:::
we

:::
did

:::
not

::::::::
estimate

::::
here

:::::::
whether

::::
this

::::::
impact

::
is

:::::::::
significant

::
or

:::::::::
negligible.

:::
To

:::::::
address

:::
this

:::::
issue

::
in

::::::
future

::::::::::
development

::
of
:::::::::::

ClimLoco1.0
::::
using

::::::::::::
non-Gaussian

:::::::::::
distributions,

:::
we

::::::::::
recommend

:::::::::
employing

:
a
::::::::
bootstrap

:::::::
method

::
to

::::::::::
empirically

:::::
derive

::
a

:::::::::
confidence

:::::::
interval.

::::::::::::
Bootstrapping

::::::::
involves

:::::::::
repeatedly

:::::::::
resampling

:::
the

:::::::
dataset

::::
with

::::::::::
replacement

:::
to

:::::
create

::::::::
different

::::::::::
sub-datasets.

:::::
Each

:::::::::
sub-dataset

::::::
yields

:
a
:::::::
different

:::::::::::
observational

:::::::::
constraint

:::::
result.

:::::
These

:::::::::::
distributions

:::
are

::::
then

::::
used

::
to

:::::::
compute

::
a455

:::::::::
confidence

:::::::
interval.

::::::::
However,

::
in

:::
this

:::::
case,

::
no

::::::::
analytical

:::::::::
expression

::
of

:::
the

:::::::::
confidence

:::::::
interval

:::
can

:::
be

::::::
derived

:::::
since

:::
this

:::::::
remains

::
an

::::::::
empirical

::::::::
approach

:::
(iii)

::
It

::
is

::::::::
necessary

::
to

:::::::
assume

:::
that

:::::::
climate

::::::
models

::::
have

:::
the

:::::
same

:::::::::::
distributions

::
as

::::::
reality;

:::::::::
otherwise,

:::
we

::::::
cannot

:::
use

:::::
them

::
to

::::::
predict

:::
the

:::::
future.

::::::::
However,

:::
as

:::::::::
mentioned

::
in

:::::::::::::::::::
Sanderson et al. (2021),

:::
the

::::::::::
relationship

:::::::
between

::
x
:::
and

::
y
::::::::
emerging

::::
from

:::::::
climate

::::::
models

::::
may

::
be

::::
due

::
to

:::::
shared

::::::
errors

:::
and

::::
may

:::
not

:::::::
actually

:::::
exist.

:::::::::
Therefore,

:::::::
multiple

::::
lines

::
of

::::::::
evidence

::::
must

:::
be

::::
used

::
to

:::::::
validate460

:::
this

::::::::::
relationship

:::::
before

::
it
:::
can

:::
be

::::
used.

::::::::::
Employing

::
an

::::::::
incorrect

::::::::::
relationship

:::
will

::::
lead

::
to

:::
an

:::::::
incorrect

:::::::::
confidence

:::::::
interval.

:

:::
(iv)

::
It

:::::
seems

:::::::::
reasonable

::
to

:::::::
assume

:::
that

:::
the

:::::::::::
observational

:::::
noise

:::
has

::
a
::::::
centred

::::::::::
distribution,

:::
as

:::
we

:::::
expect

:::
the

:::::::::
instrument

:::::
error

:::
and

:::::::
internal

:::::::::
variability

::
to

::
be

::::::::
centred.

::
In

:::::
many

:::::
cases,

::::
the

::::::::::
Gaussianity

::
of

:::
the

::::::::::
distribution

:::
of

:::
the

::::::::::
observations

:::::
may

::::
also

::
be

::
a

:::::::::
reasonable

::::::::::
assumption.

::::
This

::
is

:::::::::::
demonstrated

::
in

:::
our

::::
case

:::::
study

:::::
using

:::::::
HadCrut

::
5

::::
(see

::::
Sect.

::
I).

:::::::::
Assuming

::::
that

::
the

::::::::::::
observational

::::
noise

::
is
::::::::::
independent

:::
of

:::
the

::::::
climate

::::::
model

::::::::::
distribution

:
is
::::

also
::::::::::
reasonable,

:::::
since

:::
the

::::::::::
instrumental

:::::
error

:::
and

:::::::::
real-world

:::::::
internal465

::::::::
variability

:::
are

:::
not

::::::
related

:::
to

::::::
climate

:::::::
models.

::::::::
However,

:::
by

::::::::
assuming

::::
that

:::
the

:::::::::
covariance

::
of

:::
the

:::::::::::
observational

:::::
noise

::
is
:::::::
known,

::
we

:::::::
neglect

:::
the

:::::::::
uncertainty

::::::
arising

:::::
from

::
its

::::::::::
estimation.

::
In

:::
our

::::
case

:::::
study,

:::
we

:::
use

::::::::
HadCrut

:
5
:::
to

:::::::
estimate

:::
the

:::::::::
covariance

::::::
matrix

::
of

:::
the

:::::::::::
observational

:::::
noise.

:::
As

:
it
::::::::
provides

:::
200

::::::::
ensemble

:::::::::
members,

::
the

:::::::::
estimation

:::::
error

::
of

:::
the

:::::::::
covariance

::::::
matrix

:::::
should

:::
be

::::
very

:::
low.

:::::::
Finally,

:::::::
internal

::::::::
variability

::
is
::::
only

::::::::::
considered

:::
for

::::::::::
observations

::
in
:::::::::::

ClimLoco1.0
:
,
::::
even

::::::
though

::
it
::
is

::::
also

::::::
present

::
in

:::::::
climate

::::::
models.

::::::::::
Depending

::
on

::::
the

::::::
climate

:::::::
variable

:::::
used,

::::
this

:::::
could

:::::::
increase

:::
the

::::::::::
uncertainty

:::::::
slightly.

::::
One

::::::::
promising

::::::::
approach

::
is
:::

to470

:::::::
consider

:::
the

:::::::::
distribution

:::
of

:::::
values

:::::
from

::::
each

::::::
climate

::::::
model,

::
as

:::::::
outlined

::
in

::::::::::::::::
Olson et al. (2018).

:
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7 Conclusions

A confidence interval of future climate, i.e. a best guess of future climate with uncertainty given at a confidence level, can be

obtained from an ensemble of climate model projections. However, the large dispersion between climate model projections

makes this interval large, and consequently the future climate very uncertain. To refine it, methods called observational con-475

straints (OC) combine climate model projections with some real-world observations (cf IPCC 2021). These methods are now

increasingly used (O’Reilly et al., 2024), even by potential stakeholders at the national level (e.g. Ribes et al., 2022). They

therefore deserve to be rigorously described in their assumptions and mathematical description. However, there are many chal-

lenges in dealing with the literature of OC. There is a wide variety of OC methods, which are sometimes difficult to reproduce

and may lack mathematical details, which are usually limited to the use of a single variable observable to contrain, and which480

do not strictly use confidence intervals, which are essential to correctly define uncertainty.

To address these challenges, this article proposes a new (1.0) statistical method called ClimLoco, which stands for "CLimate

variable confidence Interval of Multivariate Linear Observational COnstraint". ClimLoco1.0 describes the confidence interval

of a projected variable constrained by a noisy observation using a multivariate linear
::::
linear

:::::::::::
multivariate framework. It is

inspired by the theory of measurement error models from Fuller (2009). We found that constraining a projected variable have485

two effects: it corrects the best guess of the projected variable depending to the multi-model bias (difference between the

multi-model mean and the real-world observation) and reduces the associated uncertainty.

Compared to the literature, ClimLoco1.0 allows a more rigorous expression of uncertainty thanks to the use of confidence

intervals. This takes into account the quality of the estimators of the best guess and the uncertainty of a projected variable,

which depends in particular on the number of climate models used. We have therefore emphasised the need to have as large an490

ensemble of models as possible
:
, in order to obtain the most accurate estimates. In addition, ClimLoco1.0 takes into account the

observational noise in a rigorous framework, which is important to correctly estimate the uncertainty. We find a new graphical

interpretation ,
:
(cf .

:
Fig. 10), of the effect of observational noise, which weakens the constraint (less reduction of uncertainty

and less change in the best guess). This article is intended to be didactic, building the statistical model ClimLoco1.0 step

by step, from the unconstrained case to the case constrained by noisy observations, and illustrating each step with univariate495

examples.

In addition, the results are compared with some of the most commonly used methods in the literature: "statistical" methods

(e.g. Bowman et al., 2018; Ribes et al., 2021), "linear regression" methods (e.g. Cox et al., 2018). There are strong similarities

between the statistical methods of Bowman et al. (2018) and Ribes et al. (2021) and the multivariate linear regression OC

developed in this article. We argue that there is an equivalence between their methods and a multiple linear regression. This500

implies that the methods are subject to the risk of overfitting (i.e. learning incorrect relationships between features by over-

fitting the data). The use of methods to limit overfitting, such as ridge regression, seems to be a promising perspective in this

respect. However, since Bowman et al. (2018) and Ribes et al. (2021) did not use confidence intervals, they neglect the quality

of the estimators, which depends on the number of climate models considered. They therefore underestimate the uncertainty.

There is a major discrepancy between our method and that of Cox et al. (2018), which is now largely used for linear regression505
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OCs. We highlight problems in the underlying mathematics, and propose a new figure (Fig. 10), which may be more appropriate

than Fig. 1 from Eyring et al. (2019), to describe exactly how linear OC works in a geometric sense.

The statistical model ClimLoco1.0 is an effort to better account for uncertainties and bring more clarity to OC methods.

However, there are still some challenges to overcome, which are interesting perspectives to build more advanced versions

of
:::
e.g.

::::::::::
considering

::::::::::::
non-Gaussian

:::::::::::
distributions,

:::::::::::
dependence

:::::::
between

:::::::
climate

:::::::
models,

:::::::::
non-linear

:::::::::
regression,

:::
etc

:
.
::::::
These

:::
are510

::::::::
interesting

:::::::::::
perspectives

::
to

:::::
build

::::
more

::::::::
advanced

::::::::
versions

::
of ClimLoco1.0. Firstly, ClimLoco1.0 allows the internal variability

of the observations to be considered as a source of noise. However, the current version 1.0 is not able to take into account

the internal variability present in climate models. This leads to an underestimation of the uncertainty, the intensity of which

depends on the variable considered. The inspiration of Olson et al. (2018), which considers not only a value but a distribution

from each climate model, seems to be a promising perspective. Secondly, ClimLoco1.0 assumes that climate models are515

independent and equally plausible. These (false) assumptions are refuted by methods that assign weights to climate models,

e.g. Brunner et al. (2019). These methods are often used in the literature on
::::::
Finally,

::::::
finding

:::::::::::
equivalences

:::::::
between OC methods,

but defining confidence intervals without the assumptions of independence and equal plausibility using weighted samples is

a challenge that ClimLoco1.0 could improve. Thirdly, in this article, we have established an equivalence between methods

sometimes called "Bayesian" (Bowman et al., 2018; Ribes et al., 2021) and multiple linear regression. Finding equivalences520

between other OC methods,
:::
as

::::::::
performed

:::::
here, can be very useful to bring more clarity to the large literature of OC methods.

For example, Karpechko et al. (2013) succeeded in converting a linear regression into climate model weights, but neglected

the observational noise. Finally,

::
As

:::
an

::::::::
extension

:::
of

:::
this

::::::
article,

::::
the

::::::::
appendix

:
I
:::::::::
illustrates

:::
the

:::
use

:::
of ClimLoco1.0 can be improved in many other ways:

removing the assumption that variables have a Gaussian distribution, constraining several variables at the same time, etc. This525

article presents the first version of ClimLoco1.0 which might be open to even further lines of improvements. We believe this

might help to refine the future projection estimates and lead to better adaptation plans
::
in

::
a

:::
real

::::
case

:::::
study,

::::
and

:::::::
perform

:::::
some

::::::::
sensitivity

:::::
tests.

::::
You

:::
can

::::
find

:::::::
attached

::
to

:::
this

::::::
article

:::
the

:::::::
(python)

:::::
code

:::
and

:::::
data,

::
as

::::
well

::
as

::
a

::::::::::
user-friendly

::::::
simple

::::::::
example

::
to

:::::::
replicate

:::::::::::
ClimLoco1.0.

Code and data availability. The package containing the data and python code (jupyter notebooks) of ClimLoco1.0 is available under530

https://doi.org/10.5281/zenodo.14679875 (Portmann, 2025) (last access: 19/06/2025). It contains a notebook with a user-friendly example, a

notebook producing the figures of the main article, and a notebook producing the case study (in the apprendix).

Appendix A: Summary

Appendix B:
:::
Key

:::::::::
statistical

::::::::
concepts

::::
This

::::::
section

:::::::
outlines

:::
the

:::
key

::::::::
statistical

::::::::
concepts

:::::::
required

::
to
:::::

grasp
:::
the

:::::::::::
construction

::
of

:::::::::::
ClimLoco1.0

:
.
:::
The

:::::::::::::
demonstrations

::::
and535

:::::::
formulas

:::
can

:::
be

:::::
found

::
in

:::
the

::::::
article.
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Y unconstrained

CI1−α(Y )

[
µ̂Y ± tM−1 σ̂Y

√
1+ 1

M

]
Y constrained by a

noiseless observation

CI1−α(Y |X = x0)

[
â0 + â1x0 ± tM−2 σ̂ε

√
1+ 1

M
+ (x0−µ̂X )2

Mσ̂2
X

]
if X ∈ R

[
â0 + âT

1 x0 ± tM−1−p σ̂ε

√
1+ 1

M
+(x0 − µ̂X)T

Σ̂−1
X
M

(x0 − µ̂X)

]
if X ∈ Rp

Y constrained by a

noisy observation

CI1−α(Y |XN = xN
0 )

[
b̂0 + b̂1x0 ± tM−2 σ̂εN

√
1+ 1

M
+ (x0−µ̂X )2

M(σ̂2
X

+σ2
N

)

]
if X ∈ R

[
b̂0 + b̂T1 x0 ± tM−1−p σ̂εN

√
1+ 1

M
+(x0 − µ̂X)T (Σ̂X+ΣN )−1

M
(x0 − µ̂X)

]
if X ∈ Rp

Table A1. Confidence intervals (CI) of Y unconstrained, constrained by a noiseless observation, and constrained by a noisy observation. It

is given, within each case, the results both when X is univariate (X ∈ IR) and when X is multivariate (X ∈ IRp). Since the first case does

not depend on X , it is the same whether X is univariate or multivariate. The different estimators are listed in the table A2 and described in

the main part of the article.

::
Y

::
is

:
a
::::::::

variable
:::::::::::
representing,

:::
for

::::::::
example,

:::
the

::::::
global

:::::
mean

::::::
surface

:::
air

:::::::::::
temperature

:::::::
(GSAT)

::
in

:::::
2100.

:::
Its

::::::
actual

:::::
value

::
is

::::::::
unknown,

:::
but

:::
we

::::::
assume

::::
that

::
its

::::::::::
distribution

::
—

::::
also

::::::
known

::
as

:
a
:::::::::
probability

:::::::
density

:::::::
function

:::::
(PDF)

:::
—

:
is
:::::::
known.

:::
For

::::::::
example,

:
Y
::::

can
::::::
follow

:
a
::::::::
Gaussian

:::::
PDF,

::
as

:::::::::
illustrated

::
in

::::
Fig.

::::
B1.a.

:::
Y

::
is

:::::
called

::
a

::::::
random

:::::::
variable

:::::::
because

::
it
:::::
takes

::::::
random

::::::
values

::::
that

:::::
follow

:::
the

::::::::::
probability

::::
given

:::
by

:::
its

::::
PDF.

:::::
These

:::::::
random

::::::
values

:::
are

:::::
called

::::::::::
realisations

::
of

:::
Y .

::::
This

::::
PDF

:::
can

:::
be

::::
used

::
to

::::::::
compute540

:
a
:::::::::
probability

:::::::
interval,

:::
i.e.

:::
an

:::::::
interval

:::::::::
containing

:::
the

:::::
actual

:::::
value

::
of

::
Y

:::::
with

:
a
:::::
given

::::::::::
probability.

:::
The

:::::
90%

:::::::::
probability

:::::::
interval

::
of

::
Y

::
is

:::::
shown

:::
in

:::
Fig.

:::::
B1.a,

:::::
where

::
a
:::::::::
probability

:::::
level

::
of

::::
90%

::::::::::
corresponds

::
to

:::::
90%

::
of

:::
the

::::
area

:::::
under

:::
the

::::
PDF

::::::
(shown

::
in
::::::

grey).

::
In

:::
this

::::::::
example,

:::
the

::::::
GSAT

:::::::
anomaly

::
in

:::::
2100

::
is

::
in

:::
the

:::::::
interval [

:::
2.9,

:::
4.1

:::
°C]

::::
with

:
a
::::::::::
probability

::
of

:::::
90%.

:::
The

::::::::::
probability

:::::
level,

::::::
denoted

:::::
1−α

::
in
::::
our

::::::
article,

:
is
::
a
::::::::::::
user-selectable

:::::::::
parameter.

::
A

::::::
higher

:::::::::
probability

::::
level

::::::
would

::::
give

:
a
:::::
wider

:::::::
interval

::
as

::::
there

::
is
::
a

::::::
greater

::::::
chance

:::
that

::
it

:::
will

:::::::
contain

::
the

::::::
actual

:::::
value.

::
It

:
is
::::::::
common

::
to

:::
use

:
a
::::::::::
probability

::::
level

::
of

:::::
68%,

::
as

:::
this

::::::::::
corresponds

::
to

::
±
::::
one545

:::::::
standard

::::::::
deviation

:::
for

:
a
::::::::
Gaussian

::::
PDF.

:

::::::::
However,

::
in

:
a
:::
real

:::::
case,

:::
the

:::::::::
parameters

::
of

:::
the

::::
PDF

::
of

::
Y
:::
are

:::::::::
unknown.

::
In

::::::
climate

:::::::
science,

:::
we

:::
use

::::::
climate

:::::::
models

::
to

:::::::
estimate

::::
these

::::::::::
parameters.

:::::
Each

:::::::
climate

:::::
model

:::::::::
simulates

:::
Y ,

:::::::::
producing

:
a
:::::::

variable
::::::

called
:::
Yi.::::::::

Running
::
a

::::::
climate

::::::
model

::::::::
produces

::
a

:::::::::
realisation,

:::::::
denoted

::
yi.:::::::::

Assuming
:::
that

::::
each

:::
Yi ::::::

follows
:::
the

:::::
same

::::
PDF

::
as

::
Y ,

:::
the

:::
M

::::::
climate

::::::
models

:::::
yield

:
a
::::::
sample

:::
of

::
M

:::::::
random

::::::::
variables,

:::::::
denoted

::
by

:::::::::::
(Y1, ...,YM ).

::::
The

:::::::::
realisation

:::
of

:::
this

:::::::
sample

::
is

:::::::
denoted

::
as

:::::::::::
(y1, ...,yM ).

::::
The

::::::::::
expectation

:::
and

::::::::
standard550

:::::::
deviation

::::
can

::
be

:::::::::
estimated

:::::
using

:::
this

:::::::
sample

::
to

:::::::
estimate

:::
the

:::::
PDF.

::::::::
However,

:::
the

:::::::::
estimators

:::
of

:::
the

::::::::::
expectation

:::
and

::::::::
standard

:::::::
deviation

:::::::::
introduce

:::::
errors

::::
due

::
to

:::
the

::::::
limited

:::::::
sample

:::
size

:::::
(M ).

:::::::::
Therefore,

:::
we

::::::
cannot

::::::
simply

::::
take

:::
the

::::::::::
probability

::::::
interval

:::
of

:::
this

::::::::
estimated

::::
PDF

:::
as

::
is

:::::
often

::::
seen

::
in

:::
the

::::::::
literature.

::::::
When

::::
these

::::::
errors

:::
are

::::::::::
considered,

:::
the

:::::::
resulting

:::::::
interval

::
is

:::::
wider

::::
and

::
is

::::::::
associated

::::
with

::
a
::::::::
Student’s

:::::::::::
t-distribution

::::
with

::::::
M − 1

:::::::
degrees

::
of

::::::::
freedom.

::::
The

::::::
number

:::
of

::::::
degrees

:::
of

:::::::
freedom

::
of

::
a

::::::::
Student’s

::::::::::
t-distribution

:::::::
controls

:::
its

:::::
shape,

:::::::
making

:
it
::::::
closer

::
to

:
a
::::::::
Gaussian

::::
PDF

:::::
when

::
it

:
is
:::::
small

::::
and

::::
with

:
a
::::::
higher

:::::
spread

:::::
when

::
it
::
is

:::::
large.555

::
As

::::::::
different

:::::::::
realisations

:::
of

:::
the

::::::
sample

::::
give

::::::::
different

::::::::
intervals,

:::
the

::::
term

::::::::::
"confidence

::::::::
interval"

::
is

::::
used

::::::
instead

::
of
:::::::::::

"probability
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X univariate X multivariate

µ̂Y = 1
M

∑M
i=1Yi

µ̂X = 1
M

∑M
i=1Xi

σ̂2
Y = 1

M−1

∑M
i=1(Yi − µ̂Y )2

σ̂2
X = 1

M−1

∑M
i=1(Xi − µ̂X)2 Σ̂X = 1

M−1

∑M
i=1(Xi − µ̂X)T (Xi − µ̂X)

â0 = µ̂Y − âT
1 µ̂X

â1 = ˆCov(Y,X)/σ̂2
X âT

1 = Σ̂Y XΣ̂−1
X

ˆCov(Y,X) = Σ̂Y X = 1
M−1

∑M
i=1(Yi − µ̂Y )(Xi − µ̂X)T

σ̂2
ε = 1

M−1

∑M
i=1(Yi − â0 − âT

1 Xi)
2

b̂0 = µ̂Y − b̂T1 µ̂X

b̂1 = ˆCov(Y,X)/(σ̂2
X +σ2

N ) b̂1 = Σ̂Y X(Σ̂X +ΣN )−1

σ̂2
εN = 1

M−1

∑M
i=1(Yi − b̂0 − b̂1Xi)

2 + b̂21σ
2
N σ̂2

εN = 1
M−1

∑M
i=1(Yi − b̂0 − b̂T1 Xi)

2 + b̂T1 ΣN b̂1

Table A2. Estimators
::::::::
Definition

::
of

:::
the

::::::::
estimators used in this article, given when X is univariate (X ∈ IR) and when X is multivariate

(X ∈ IRp).

:::::::
interval".

::
A
:::::::::
confidence

:::::::
interval

::
is

:::::::::
sometimes

:::
also

::::::
called

:
a
::::::::
prediction

:::::::
interval.

::::::
Using

::
the

::::::::
previous

:::::::
example

::
of

:::
the

::::
2100

::::::::
anomaly

::
of

::::::
GSAT,

::
the

:::::
90%

:::::::::
confidence

::::::
interval

::
is
:
[
:::
2.8,

:::
4.2

:::
°C],

::
as

:::::::::
illustrated

::
in

::::
Fig.

::::
B1.b.

:

::
To

::::::
obtain

:
a
::::::
refined

:::::::
interval,

:::
we

:::
can

:::
use

:::
the

::::
PDF

::
of
:::
Y

::::
given

:::
the

::::::::::
observation

:::
x0 ::

of
:
a
:::::::
random

:::::::
variable

::
X ,

:::::::
denoted

::::::::::
Y |X = x0.

::
As

::::::
before,

:::
the

::::::::::
parameters

::
of

:::
the

::::
PDF

:::
of

:::::::::
Y |X = x0 :::

are
::::::::
unknown

:::
but

:::
can

::
be

:::::::::
estimated

:::::
using

:
a
::::::
sample

:::
of

::::::
climate

:::::::
models.

:::
As560

:::::::::::
demonstrated

::
in

:::
this

::::::
article,

::::
this

:::
can

:::
be

:::::::::
represented

:::
by

:
a
::::::
linear

::::::::::
relationship

:::::::
between

::
X

::::
and

::
Y :

:::::::::::::::::
Y = a0 + a1X + ε,

:::::
where

:::
a0

:
is
:::
the

:::::::::
intercept,

::
a1:::

the
::::::
slope,

:::
and

::
ε

:::
the

::::::::
regression

:::::
error.

::::
The

:::::::::
confidence

:::::::
interval

::::
and

:::
the

:::::
linear

::::::::::
relationship

:::
are

:::::::::
illustrated

::
in

:::
Fig.

:::::
B1.c,

:::::
using

:::
the

::::
same

::::::::
example

::
as

::::::
before.

::
In

::::
this

:::::::
example,

:::
the

:::::
90%

:::::::::
confidence

::::::
interval

:::
of

:::::::::
Y |X = x0 ::

is [
:::
3.0,

:::
3.7

::
°C]

:
.
::::
This

:
is
:::::::
smaller

::::
than

:::
the

:::::::::
confidence

::::::
interval

::
of

:::
Y

:::::
thanks

::
to

:::
the

:::::::::
additional

::::::::::
information

:::::::
provided

:::
by

:::
the

:::::::::
observation

:::
x0.

:::::::
Finally,

:::::
when
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Figure B1.
::::::
Example

::
of

::
a

:::
90%

:::::::::
probability

:::
and

::::::::
confidence

::::::
interval

::
of
:::
Y

:
(a
::::

and
::
b),

::
as

::::
well

::
as

:
a
:::::::::
confidence

::::::
interval

::
of

::::::::
Y |X = x0:::

(c).
::
Y

::
is

::
the

:::::
global

::::
mean

::::::
surface

::
air

:::::::::
temperature

:::::::
(GSAT),

:::::::
averaged

::::
over

::
the

:::::
period

:::::::::
2081–2100

:::
and

:::::::
expressed

::
in

::::::
degrees

::::::
Celsius

::::
(°C).

::
X

:
is
:::
the

:::::
GSAT

::::::
average

:
in
:::::::::
2015–2024,

::::
also

::
in

::
°C.

::::::
Fifteen

::::::
climate

:::::
models

:::
are

::::::::
considered

::::
here.

:::
For

::::
more

::::::::::
information,

::
see

::::
Sect.

::
I.

:
X
::

is
:::::::::::
multivariate,

:::
this

::
is
:::::::::
equivalent

::
to

::::::::::
multivariate

::::::
linear

:::::::::
regression:

:::::::::::::::::
Y = a0 + aT1 X + ε,

:::::
where

:::
a1 ::

is
:
a
::::::::::::
p-dimensional

::::::
vector565

:::
and

::
X

::
is

::::::
matrix

::::
with

:
p
::::::::
columns

::::
(and

::
M

::::::
rows),

::::
with

:
p
::::::::
denoting

:::
the

::::::
number

:::
of

::::::::
variables.
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Appendix C: Confidence interval of Y

The goal of this appendix is to find the confidence interval of Y . In this purpose, it is assumed that Y follows a Gaussian

distribution: Y ∼N (µY ,σ
2
Y ). To estimate µY and σ2

Y , it is used a sample of M random variables, denoted (Y1, ...,YM ), given

by an ensemble of M climate models. These random variables are assumed to be independent and to follow the same law as

Y . The expectation and variance classical estimators are:

µ̂Y =
1

M

M∑
i=1

Yi and σ̂2
Y =

1

M − 1

M∑
i=1

(Yi − µ̂Y )
2.

On the one hand, E[µ̂Y ] =
1

M

M∑
i=1

E[Yi] =
1

M

M∑
i=1

µY = µY

and V ar(µ̂Y ) =
1

M2

M∑
i=1

V ar(Yi) =
1

M2

M∑
i=1

σ2
Y =

σ2
Y

M

=⇒ µ̂Y ∼N (µY ,
σ2
Y

M
)570

=⇒ Y − µ̂Y ∼N (0,σ2
Y (1+

1

M
))

=⇒ Y − µ̂Y

σY

√
1+ 1

M

∼N (0,1)

On the other hand, σ̂2
Y =

1

M − 1

M∑
i=1

(Yi − µ̂Y )
2

=⇒ (M − 1)
σ̂2
Y

σ2
Y

=

M∑
i=1

(Yi − µ̂Y )
2

σ2
Y

575

As
(Yi − µ̂Y )

σY
∼N (0,1)

then (M − 1)
σ̂2
Y

σ2
Y

∼ χ2(M − 1)

Or


U ∼N (0,1)

V ∼ χ2(n)

U ⊥⊥ V

=⇒
U√
V/n

∼ St(n),

With ⊥⊥ the sign of independence, and St(n) the student distribution with n degrees of freedom. Consequently, by noting580

U =
Y − µ̂Y

σε

√
1+ 1

M

and V = (M − 1)
σ̂2
Y

σ2
Y

, this implies that:
U√

V/(M − 1)
=

Y − µ̂Y

σ̂Y

√
1+ 1

M

∼ St(M − 1).
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The confidence interval is thus:
[
µ̂Y ± tM−1 σ̂Y

√
1+ 1

M

]
, where tM−1 is the quantile of a Student with M − 1 degrees of

freedom.

Appendix D: Simulation of the synthetic example

To illustrate the mathematical results, it is used the same synthetic example throughout the article. It is simulated two different585

realisations coming from two samples (X1,Y1), ...,(XM ,YM ), one with M = 30 and the other with M = 5. The random

variables X and Y have a centred reduced normal distribution (µX = µY = 0, σX = σY = 1). The correlation between X and

Y is chosen as ρ= 0.85. The linear relation between Y and X is therefore defined by Y = a0 + a1X + ε with a0 = 0 and

a1 = 0.85. It is simulated a realisation of the sample (X1, ...,XM ) and a realisation of the sample (ε1, ...,εM ) with M = 30

values. Then a sample of (Y1, ...,YM ) is obtained using the relation Y = a0 + a1X + ε. This gives the realisation of the first590

sample of size M = 30. The realisation of the second sample of size M = 5 is obtained by taking the first 5 values. For the

observation, it is used the value x0 = 2.2 and the observational noise standard deviation is chosen as σN = σX = 1 (a signal-

to-noise ratio of 1). For the sake of the illustration, the figure 10 uses the same data with two different parameters: x0 = 3 and

ρ= 0.9.

Appendix E: Probability interval of Y |X = x0595

The goal of this section is to find the probability interval (PI) of Y constrained by the observation x0 of X . It is denoted

PI1−α(Y |X = x0), and contains the values of Y |X = x0 with a given probability 1−α. To obtain this interval, it is used the

following Gaussian assumption: Y |X = x0 ∼N (µY |X=x0
,σ2

Y |X=x0
). Under this assumption, the PI of Y constrained can be

written as:

PI1−α(Y |X = x0) = [µY |X=x0
± zσY |X=x0

] (E1)600

where z is the quantile of order 1−α/2 of a centred reduced normal distribution. To obtain the expressions of the parameters

µY |X=x0
and σY |X=x0

, it is used a multiple linear regression framework:

Y = E[Y |X] + ε

with E[Y |X] = a0 + aT1 X
(E2)

with Y ∈ IR, X ∈ IRp, a0 ∈ IR and a1 ∈ IRp the coefficients of the regression of Y on X , and ε ∈ IR the regression error. Using

the latter equation, it is established (solution of the least square) that ε⊥⊥X,E[ε] = 0, aT1 =ΣY XΣ−1
X and a0 = µY −aT1 µX .605

The terms µY |X=x0
= E[Y |X = x0] and σ2

Y |X=x0
= V(Y |X = x0) are then expressed using this multiple linear regression.
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E[Y |X = x0] = a0 + aT1 x0 (E3)

= µY + aT1 (x0 −µX) because a0 = µY − aT1 µX

=⇒ E[Y |X = x0] = µY +ΣY XΣ−1
X (x0 −µX) because aT1 =ΣY XΣ−1

X

610

V(Y |X = x0) = V((a0 + aT1 X + ε)|X = x0)

= V(ε|X = x0)

=⇒ V(Y |X = x0) = V(ε) because ε⊥⊥X

= V(Y − a0 − aT1 X)

= V(Y )+V(−aT1 X)+ 2Cov(Y,−aT1 X)615

= V(Y )+ aT1 V(X)a− 2Cov(Y,X)a

= σ2
Y + aT1 ΣXa− 2ΣY Xa

= σ2
Y +ΣY XΣ−1

X ΣXΣ−1
X ΣXY − 2ΣY XΣ−1

X ΣXY because aT1 =ΣY XΣ−1
X

=⇒ V(Y |X = x0) = σ2
Y −ΣY XΣ−1

X ΣXY

When X is univariate (p= 1), the results can be written:620

E[Y |X = x0] = µY + ρ
σY

σX
(x0 −µX)

V(Y |X = x0) = (1− ρ2)σ2
Y

With ρ= Cov(Y,X)
σX σY

the correlation between X and Y . The PI can consequently be noted:

PI1−α(Y |X = x0) =
[
a0 + aT1 x0 ± zσε

]
or else:

PI1−α(Y |X = x0) =

[
µY +ΣY XΣ−1

X (x0 −µX)± z
√
σ2
Y −ΣY XΣ−1

X ΣXY

]

Appendix F: Confidence interval of Y |X = x0

The goal of this appendix is to find the confidence interval of Y given an observation x0 of X , named CI(Y |X = x0), using an

ensemble of M climate models. This ensemble yields a sample of M pairs of random variables, denoted (X1,Y1), ...,(XM ,YM ).625

They are assumed to be independent and to follow the same law as (X,Y ), which is assumed to be Gaussian. The relationship

between X and Y is assumed to be linear:

Y = E[Y |X] + ε

with E[Y |X] = a0 + aT1 X
(F1)
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With Y ∈ IR, X ∈ IRp. a0 ∈ IR and a1 ∈ IRp the coefficients of the regression of Y on X , and ε ∈ IR the regression error.

It is used the estimators of a0, a1,etc detailed in table A2. The properties of the estimators â0 and â1 are well established:630

E[â0] = a0, E[â1] = a1, V(â0) = σ2
ε

M (1+ µ̂T
XΣ̂−1

X µ̂X), V(â1) = σ2
ε

M Σ̂−1
X , and Cov(â0, â1) =−σ2

ε

M µ̂T
XΣ̂−1

X .

On the one hand, E[µ̂Y |X=x0
] = E[â0 + âT1 x0]

= a0 + aT1 x0

and V ar(µ̂Y |X=x0
) = V ar(â0 + âT1 x0)

= V ar(â0)+V ar(âT1 x0)+ 2Cov(â0, â
T
1 x0)635

=
σ2
ε

M
(1+ µ̂T

XΣ̂−1
X µ̂X)+xT

0

σ2
ε

M
Σ̂−1

X x0 − 2
σ2
ε

M
µ̂T
XΣ̂−1

X x0

=
σ2
ε

M
[(1+ µ̂T

XΣ̂−1
X µ̂X)+xT

0 Σ̂
−1
X x0 − 2µ̂T

XΣ̂−1
X x0]

=
σ2
ε

M
(1+ (x0 − µ̂X)T Σ̂−1

X (x0 − µ̂X))

=⇒ µ̂Y |X=x0
∼N (a0 + aT1 x0,

σ2
ε

M
(1+ (x0 − µ̂X)T Σ̂−1

X (x0 − µ̂X)))

Or Y |X=x0 ∼N (a0 + aT1 x0,σ
2
ε)640

=⇒ Y |X=x0
− µ̂Y |X=x0

∼N (0,σ2
ε(1+

1

M
+(x0 − µ̂X)T

Σ̂−1
X

M
(x0 − µ̂X)))

=⇒ U ∼N (0,1) with U =
Y |X=x0

− µ̂Y |X=x0

σε

√
1+ 1

M +(x0 − µ̂X)T
Σ̂−1

X

M (x0 − µ̂X)

On the other hand, noting V = (M − 1− p)
σ̂2
ε

σ2
ε

=

M∑
1=1

(Yi − â0 − âT1 Xi)
2

σ2
ε

645

As
Yi − â0 − âT1 Xi

σε
∼N (0,1)

Then V ∼ χ2(M − 1− p)

Or


U ∼N (0,1)

V ∼ χ2(n)

U ⊥⊥ V

=⇒
U√
V/n

∼ St(n),

650
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=⇒
U√

V/(M − 1)
=

Y |X=x0 − µ̂Y |X=x0

σ̂ε

√
1+ 1

M +(x0 − µ̂X)T
Σ̂−1

X

M (x0 − µ̂X)

∼ St(M−1−p). The confidence interval of Y constrained

is consequently:

CI1−α(Y |X = x0) =

µ̂Y |X=x0
± tM−1−p σ̂ε

√
1+

1

M
+(x0 − µ̂X)T

Σ̂−1
X

M
(x0 − µ̂X)


In univariate (p= 1), this gives: CI1−α(Y |X = x0) =

[
µ̂Y |X=x0

± tM−2 σ̂ε

√
1+ 1

M + (x0−µ̂X)2

M σ̂2
X

]

Appendix G: Probability interval of Y |XN = xN
0

The goal of this section is to find the probability interval (PI) of Y constrained by the noisy observation xN
0 of XN . It is

denoted PI1−α(Y |XN = xN
0 ), and contains the values of Y |XN = xN

0 with a given probability 1−α. To obtain this interval,

it is used the following Gaussian assumption: Y |XN = xN
0 ∼N (µY |XN=xN

0
,σ2

Y |XN=xN
0
). Under this assumption, the PI of

Y constrained can be written as:

PI1−α(Y |X = x0) =
[
µY |XN=xN

0
± zσY |XN=xN

0

]
,

where z is the quantile of order 1−α/2 of a centred reduced normal distribution. To obtain the expressions of the parameters

µY |XN=xN
0

and σY |XN=xN
0

, it is used a multiple linear regression framework:

Y = E[Y |XN ] + εN ,

with E[Y |XN ] = b0 + bT1 X
N ,

(G1)655

with Y ∈ IR, XN ∈ IRp, b0 ∈ IR and b1 ∈ IRp the coefficients of the regression of Y on XN , and εN ∈ IR the regression error.

Using the same methodology than in the section E, it can demonstrate that:

E[Y |XN = xN
0 ] = b0 + bT1 x

N
0

= µY +ΣY XNΣ−1
XN (x0 −µX)

V(Y |XN = xN
0 ) = V(εN )660

= σ2
Y −ΣY XNΣ−1

XNΣXNY

To link XN and X , the noisy and noiseless versions of X , it is used the noise model defined in Bowman et al. (2018):

XN =X +N , with N ∼N (0,ΣN )

As the observational noise N is unrelated to the climate models, N is independent of X and Y . Consequently, ΣXN =ΣX+ΣN

and ΣY XN = Cov(Y,X +N) = Cov(Y,X) = ΣY X . Thus, the previous equations can be written:665

E[Y |XN = x0] = µY +ΣY X(ΣX +ΣN )−1(xN
0 −µX)

V(Y |XN = x0) = σ2
Y −ΣY X(ΣX +ΣN )−1ΣXY
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In univariate (p= 1), this gives:

E[Y |XN = x0] = µY +
Cov(Y,X)

σ2
X +σ2

N

(xN
0 −µX)

V(Y |XN = x0) = σ2
Y − Cov2(Y,X)

σ2
X +σ2

N

670

Using the correlation ρ= Cov(Y,X)
σX σY

and the signal to noise ratio SNR= σX

σN
, this gives:

µY |XN=xN
0
= µY + ρ

σY

σX

1

1+1/SNR2
(xN

0 −µX)

σ2
Y |XN=xN

0
= (1− ρ2

1+1/SNR2
)σ2

Y

The prediction interval of Y constrained by a noisy observation can thus be written as:

PI1−α(Y |XN = xN
0 ) =

[
b0 + bT1 x0 ± zσεN

]
or else:

PI1−α(Y |XN = xN
0 ) =

[
µY +ΣY X(ΣX +ΣN )−1(x0 −µX)± z

√
σ2
Y −ΣY X(ΣX +ΣN )−1ΣXY

]

Appendix H: Confidence interval of Y |XN = xN
0

The goal of this appendix is to find the confidence interval of Y given an observation xN
0 of XN , CI(Y |XN = xN

0 ), using an675

ensemble of M climate models. This ensemble yields a sample of M pairs of random variables, denoted (X1,Y1), ...,(XM ,YM ).

They are assumed to be independent and to follow the same law as (X,Y ), which is assumed to be Gaussian. The relationship

between XN and Y is assumed to be linear:

Y = E[Y |XN ] + εN

with E[Y |XN ] = b0 + bT1 X
N

(H1)

With Y ∈ IR, XN ∈ IRp. b0 ∈ IR and b1 ∈ IRp the coefficients of the regression of Y on XN , and εN ∈ IR the regression680

error. Based on the same methodology than previously F, the confidence interval of Y constrained by a noisy observation is:

CI1−α(Y |XN = xN
0 ) =

b̂0 + b̂T1 x0 ± tM−1−p σ̂εN

√
1+

1

M
+(x0 − µ̂XN )T

Σ−1
XN

M
(x0 − µ̂XN )


Using the noise model that link XN to X (Bowman et al., 2018): XN =X +N , with N ∼N (0,ΣN ) and N ⊥⊥X , then

µ̂XN = µ̂X and Σ−1
XN =Σ−1

X +Σ−1
N . The confidence interval of Y |XN = xN

0 can therefore be written:

CI1−α(Y |XN = xN
0 ) =

[
b̂0 + b̂T1 x0 ± tM−1−p σ̂εN

√
1+

1

M
+(x0 − µ̂X)T

(ΣX +ΣN )−1

M
(x0 − µ̂X)

]
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The estimators of b0, b1, etc are detailed in table A2. In univariate (p= 1), the confidence interval of Y |XN = xN
0 can be

written:

CI1−α(Y |XN = xN
0 ) =

b̂0 + b̂T1 x0 ± tM−2 σ̂εN

√√√√
1+

1

M
+

(x0 − µ̂X)2

M (σ̂2
X +σ2

N )


Appendix I:

::::
Case

::::::
study

:::
and

:::::::::
sensitivity

:::::
tests

::::::::::
ClimLoco1.0

:
is

::::
used

::::
here

::
to

::::::::
constrain

::
the

::::::
future

:::::::::
(2081-2100

::::::
mean)

:::::
global

:::::
mean

::::::
surface

::
air

::::::::::
temperature

::::::::
(GSAT).

:::
This

:::::::::::
demonstrates

:::
how

::::::::::::
ClimLoco1.0

:::
can

:::
be

::::
used,

::::::
which

::::::
should

:::::
make

::
it
:::::
easier

:::
to

::::::::::
understand,

::::::::
replicate,

:::
and

::::::
adapt.

::
It

::
is

::::
also

::::
used

:::
to

:::::::
perform685

::::::::
sensitivity

::::
and

::::::::::
comparison

::::
tests.

:::
(1)

::::
The

:::::::::
sensitivity

::
of

:::
the

::::::
results

::
to

:::
the

::::::
choice

::
of

::::::::
observed

:::::::
variable

::
is
::::::
tested,

::
as

::::
well

:::
as

:::
the

::::
value

:::
of

:::::
using

:::::::
multiple

::::::::
observed

::::::::
variables.

:::
(2)

::::
The

::::::
results

::
of

:::::::::::
ClimLoco1.0

::
are

:::::::::
compared

::
to

:::::
those

::
of

::::
two

:::::::
methods

:::::
from

:::
the

::::::::
literature.

:::
(3)

:::
The

::::::::::
assumption

:::
that

:::
the

:::::::::::
distributions

:::
are

:::::::
Gaussian

::
is
::::::
tested.

I1
:::::::::
Sensitivity

::
to

:::
the

::::::
choice

::
of

:::
the

::::::::
observed

::::::::::
variable(s)

::
In

::::
order

::
to

::::::::
constrain

:::
the

:::::::
variable

::
Y ,

:::
the

::::
user

::::
must

:::::
select

::::
one

::
or

::::
more

::::::::::
observable

:::::::
variables

:::
X .

::::
This

::::::
section

::::::::
compares

:::
the

::::::
results690

::
of

::::::::::
ClimLoco1.0

::::
when

:::::::::::
constraining

::
Y ,

:::
the

:::::::::
2081-2100

:::::
mean

:::::
global

:::::
mean

::::::
surface

:::
air

::::::::::
temperature

:::::::
(GSAT),

::::::
relative

::
to

::::::::::
1850-1900,

::
by

::::
three

::::::::
different

:::
sets

::
of
::::::::
observed

::::::::
variables:

:

1.
:::
X1 ::

the
::::::::::
2015-2024

::::
mean

:::
of

::::::
GSAT,

::::::
relative

::
to

::::::::::
1850-1900,

2.
:::
X2 ::

the
::::::::::
1970-2014

::::
trend

::
of

::::::
GSAT,

:::::::
relative

::
to

:::::::::
1850-1900,

:

3.
::::::::::::
X = (X1,X2).:695

:::
We

:::
use

::
the

::::::::::
projections

::
of

::
32

::::::
CMIP6

:::::::
climate

::::::
models,

:::::
using

:::
the

::::::::
SSP2-4.5

:::::::
scenario.

::::
The

::::::::::
observations

:::
are

:::::
taken

::::
from

:::::::::::
HadCRUT5,

:::::
which

:::::::
provides

::::
200

::::::::
members.

:::
The

::::::::::::
corresponding

:::::
code

:::
and

::::
data

:::
are

:::::::
provided

::::
with

:::
the

::::::
article

:::
(see

:::::
"code

::::
and

:::
data

::::::::::::
availability").

:::
The

:::::::
periods

:::::::::
2015-2024

:::
for

:::
the

:::::
mean

:::
and

::::::::::
1970-2014

:::
for

:::
the

:::::
trend

::::
have

::::
been

:::::::
chosen

::::::
because

:::::
they

:::::::
produce

::::
high

::::::::::
inter-model

:::::::::
correlations

::::
with

:::
Y .

:

:::
Fig.

::
I1
:::::::::

illustrates
:::
the

::::
first

:::
two

::::::
cases.

::::
The

:::::
values

:::
of

:::
the

::::
90%

:::::::::
confidence

::::::::
intervals

:::::::
obtained

:::
in

:::
the

::::
three

:::::
cases

:::
are

::::::
given

::
in700

::::
Table

:::
I1.

:

::::::::
Compared

::
to
::::

the
::::
case

::::
with

::
no

::::::::::
constraints,

::::
both

:::
X1::::

and
:::
X2:::::

helps
::
to

::::::
reduce

:::
the

:::::::::
uncertainty

:::
by

::::::::::
respectively

::::
37%

::::
and

:::::
26%,

::::::::::
respectively

:::
(see

:::::
Table

::::
I1),

:::
due

::
to
:::::

their
::::
high

::::::::::
inter-model

::::::::::
correlations

::::
with

::
Y

:::::
(0.78

:::
and

:::::
0.68,

:::::::::::
respectively).

::::
The

:::::::::
difference

::
in

:::::::::
uncertainty

::::::::
reduction

::
is

::::::
mainly

:::
due

::
to

:::
the

:::::::::
difference

::
in

:::::::::
correlation.

:::::
There

::
is
::::
also

:
a
:::::::::
difference

::
in

:::
the

:::::::::
constrained

:::::
guess

::::::::
obtained

::::
using

:::
X1:::

or
:::
X2.

:::::
This

::
is

:::
due

::
to

:::
the

:::::::::
difference

:::::::
between

:::
the

::::::::::
observation

::::
and

::::::::::
multi-model

::::::
mean,

:::::
which

::
is

:::::::
smaller

:::
for

:::
X1 ::::

than705

::
for

::::
X2,

:::
see

::::
Fig.

:::
I1.

::
In

:::::::::
summary,

:::::::::::
ClimLoco1.0

::
is

:::::::
sensitive

:::
to

:::
the

::::::
choice

::
of

:::
X .

::::
This

:::::::::
influences

:::
the

::::::
results

:::::::::
depending

:::
on

:::
the

:::::::::
correlation

:::::::
between

::
X

::::
and

::
Y ,

::
as

::::
well

::
as

:::
the

:::::::::
difference

:::::::
between

:::
the

::::::::::
multi-model

:::::
mean

::::
and

:::
the

:::::::::
observation

:::
of

::
X .

:

34



Figure I1.
::::::::
Illustration

::
of
:::::::

different
::::::::
constraints

:::
on

:::
the

:::::
future

:::::
global

::::
mean

::::::
surface

::
air

::::::::::
temperature

::::::
(GSAT).

:::
Y ,

:::
the

:::::
GSAT

::::::::
2081-2100

:::::
mean

:::::::
anomaly,

:
is
:::::

either
:::
(a)

:::::::::::
unconstrained,

::
(b)

:::::::::
constrained

:::
by

::
the

::::::
GSAT

::::::::
2015-2024

::::
mean

::::::::
anomaly,

::
or

::
(c)

:::::::::
constrained

::
by

:::
the

:::::
GSAT

:::::::::
1970-2014

::::
trend

:::::::
anomaly.

:::
The

::::::::
confidence

:::::::
intervals

::
are

::::::::
displayed

:::
with

::
a
::::::::
confidence

::::
level

::
of

::::
90%.

:::
90%

:::::::::
confidence

::::::
interval

::
of

::
Y

:::::::::
Uncertainty

:::::::
reduction

:::::::::::
Unconstrained

::::::::
3.05± 1.17

: :
0

:
%
:

:::::::::
Constrained

::
by

:::
X1 ::::::::

3.01± 0.74
: ::

37
::
%

:::::::::
Constrained

::
by

:::
X2 ::::::::

2.84± 0.86
: ::

26
::
%

:::::::::
Constrained

::
by

:::
X1:::

and
:::
X2 ::::::::

2.91± 0.66
: ::

44
::
%

Table I1.
:::::::::
ClimLoco1.0

::::
results

:::::
using

:::::::
different

::::::
choices

::
of

::
X

::
to
:::::::
constrain

:::
Y,

:::
the

::::
mean

:::::::
anomaly

::
of

:::::
GSAT

:::
for

:::
the

:::::
period

:::::::::
2081–2100.

::::
The

:::::::
reference

:::::
period

:
is
:::::::::
1850–1900.

:::
X1::

is
:::
the

::::
mean

:::::::
anomaly

:
of
:::::

GSAT
:::
for

:::
the

:::::
period

:::::::::
2015–2024.

::
X2::

is
:::
the

::::::::
1970–2014

::::
trend

:::::::
anomaly

::
of

:::::
GSAT.

:::::
Using

::::
both

:::
X1 :::

and
:::
X2::

to
:::::::::
constraint

::
Y

:::::
results

::
in

:::
an

::::
even

:::::::
stronger

:::::::::
uncertainty

::::::::
reduction

::::::
(44%)

:::
and

:::
the

::::::::::
constrained

::::
guess

::::
lies

:::::::
between

::::
those

::::::::
obtained

:::::
using

::::
only

:::
X1 :::

and
:::
X2::::::::::

individually.
::::
This

:::::::::
illustrates

:::
the

::::::::
advantage

::
of

:::::
using

:
a
::::::::::
multivariate

:::::::::
approach:

:::
the

::::::::
additional

::::::::::
information

::::::
gained

::::
helps

::
to
::::::
reduce

::::::::::
uncertainty

::::::
further

:::
and

::::::
obtain

:
a
:::::
more

:::::::
balanced

:::::
result

:::
by

:::::::::
considering

:::::
more

::::
data.

:
710
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I2
::::::::::
Comparison

:::::
with

:::
the

::::::::
literature

:::
The

:::::
main

:::
part

:::
of

:::
the

:::::
article

:::::::::
compares

:::
two

:::::
types

::
of

::::::::
approach

::
to

:::::::::::
ClimLoco1.0

::::
from

:
a
::::::::::::
mathematical

::::
point

:::
of

::::
view.

::::
The

::::
first

::
is

:::::
based

::
on

:::
the

:::::
work

::
of

:::::::::::::::::::
Bowman et al. (2018)

:::
and

:::
the

::::::
second

::
on

::::
that

::
of

::::::::::::::
Cox et al. (2018)

:
.
:::
We

::::::::
compare

:::::::::::
ClimLoco1.0

:::
and

:::::
these

:::
two

:::::::
methods

:::::
when

:::
Y

::
is

::::::::::
constrained

::
by

::::
X1 ::::

(see
:::
the

:::::::
previous

::::::::
section).

::::
The

:::::::
resulting

::::::::::
confidence

:::::::
intervals

:::
are

::::::
shown

:::
in

:::
the

:::
first

::::
row

::
of

:::::
Table

:::
I2.

:::::::
Because

:::::
there

:::
are

:::::
many

:::::::
climate

::::::
models

:::
and

::
a
::::
high

:::::::::::::
signal-to-noise

::::
ratio

::::
(i.e.

:::
low

::::::::::::
observational

::::::
noise),715

::::
there

:::
are

::::
few

:::::::::
differences

::::::::
between

:::
the

::::
three

:::::::
results.

:::
To

::::::::::
demonstrate

:::
the

::::::::::
advantages

::
of

:::
our

:::::::
method

::
of

:::::::::
rigorously

::::::::::
accounting

::
for

::::::::::
uncertainty

::::::
arising

::::
from

:::
the

:::::::
limited

::::::
number

:::
of

::::::
climate

::::::
models

::::
and

:::::::::::
observational

:::::
noise,

:::
we

::::::
reduce

:::
the

:::::::
number

::
of

:::::::
climate

::::::
models

:::::::::
considered

:::::::
(second

::::
row)

:::
and

:::::::
increase

:::
the

:::::::::::
observational

:::::
noise

:::::
(third

:::::
row).

::::::::::
ClimLoco1.0

:::::::
Bowman

::::::
method

:::
Cox

::::::
method

:

::
32

::::::
climate

:::::
models

::::::::
SNR=7.6

::::::::
3.09± 0.79

:::::::::
3.09± 0.75

::::::::
3.09± 0.76

:
5

:::::
climate

::::::
models

:::::::
SNR=7.6

: ::::::::
3.21± 0.90

:::::::::
3.21± 0.56

::::::::
3.23± 0.62

::
32

::::::
climate

:::::
models

::::::::
SNR=1.0

::::::::
3.13± 1.16

:::::::::
3.13± 1.11

::::::::
3.09± 8.76

Table I2.
:::
The

::::
90%

::::::::
confidence

::::::
interval

::
of

::
Y,

:::
the

::::
mean

:::::::
anomaly

::
of

:::::
GSAT

::::::
between

::::
2081

:::
and

:::::
2100,

::
is

::::::::
constrained

:::
by

:::
X1,

:::
the

::::
mean

:::::::
anomaly

:
of
:::::

GSAT
:::::::
between

::::
2015

:::
and

::::
2024.

::::
The

:::::::
reference

:::::
period

:
is
:::::::::
1850–1900.

:::
The

:::::::
columns

::::::::
correspond

::
to

:::
the

:::::
various

:::::::
methods

:::::::
employed

::
to
:::::::
estimate

::
the

::::::::
confidence

:::::::
interval.

:::
The

:::
first

:::
row

::::
was

::::::
obtained

::::
using

:::
the

::::::
original

::::
data.

:::
The

::::::
second

:::
row

:::
uses

:
a
:::::
subset

::
of

:::
five

::::::
climate

::::::
models

::::::
selected

::::
from

::
the

::::::
original

:::
32.

:::
The

::::
third

:::
row

:::::::
virtually

:::::::
increases

::
the

::::::
amount

::
of

::::::::::
observational

:::::
noise

::::::
variance

:::
(by

::::::::
decreasing

:::
the

:::::::::::
signal-to-noise

::::
ratio,

:::::
SNR).

::::::::
Compared

::
to
:::::::::::

ClimLoco1.0
:
,
::::::::::::::::::
Bowman et al. (2018)

::::::
method

:::::
does

:::
not

:::::::
consider

:::::::::::
uncertainties

::::::
arising

:::::
from

:::
the

::::::
limited

:::::::
number

::
of

::::::
climate

:::::::
models.

::::::::::::
Consequently,

::
its

::::
total

::::::::::
uncertainty

:
is
::::::
always

:::::
lower

::::
that

:::
the

::::
total

:::::::::
uncertainty

::
in
:::::::::::
ClimLoco1.0

::::::
(column

::
1
::
vs

::
2720

::
in

::::
Table

::::
I2),

::::::::
especially

:::::
when

:::::
there

:::
are

:::
few

::::::
climate

:::::::
models

::::::
(second

:::::
row).

:

:::::
When

:::
the

:::::::::::
observational

:::::
noise

::
is
:::

10
:::::
times

::::::::
stronger

::::
than

:::
the

::::::::::
inter-model

::::::
spread

::::::::::
(SNR=0.1),

::
as

:::
in

:::
the

::::
third

::::
row

:::
of

:::::
Table

::
I2,

:::
the

::::::::::
observation

::
is

::::
very

::::::
poorly

::::
used

::
in
:::::::::::

ClimLoco1.0
:
.
::::::
Indeed,

::::
the

:::::::::
constrained

:::::
result

::
is
::::
very

:::::
close

::
to

:::
the

::::::::::::
unconstrained

::::
one

::::::::::
(3.13± 1.16

::
vs

:::::::::::
3.05± 1.17,

:::::::::::
respectively).

::::
The

:::::::::
constraint

::
is

:::::::::
attenuated

::
by

:::
the

::::::::::::
observational

:::::
noise,

::
as

:::::::::
explained

::
in

:::
the

:::::
main

:::
text

:::::
Sect.

::
4.

:::
The

:::::::
method

::::
from

:::::::::::::::
Cox et al. (2018)

::::
does

:::
not

::::::::
attenuate

:::
the

::::::::
constraint

:::
by

:::
the

:::::::::::
observational

::::::
noise.

::
It

::::::::
considers

:::
the725

:::::::::
observation

:::
the

:::::
same

::::::::
regardless

:::
of

::::::
whether

::
it
::
is

::
of

:::::
good

::
or

:::
bad

:::::::
quality.

::
In

:::
this

::::
high

::::::::::::::::
observational-noise

:::::
case,

:
it
:::::
result

::
in

::
a
::::
very

:::::
strong

::::::::::
uncertainty

::::::::::::
(3.09± 8.76).

:

::
To

::::::::::
summarise,

::::
this

:::
test

:::::::::
illustrates

::::
what

::
is
::::::::::::
demonstrated

::
in

:::
the

::::::::::::
mathematical

::::::::::
comparison

::
of

::::::::
methods,

:::::
Sect.

::
5.

::::::
When

:::
the

::::::
number

::
of

:::::::
climate

::::::
models

::
is

:::
low

::::::
and/or

:::
the

:::::::::::
observational

:::::
noise

::
is

::::
high,

::
it

::
is

::::::::
important

::
to

:::::::::
rigorously

:::::::
consider

:::
the

:::::::::::
uncertainties

:::::
arising

:::::
from

::::
these

::::
two

:::::::
sources.730

I3
:::
Test

::
if

:::
the

:::::::::::
distributions

::::
are

::::::::
Gaussian

:::
One

::
of
:::
the

:::::::::::
assumptions

::::
used

::
in

:::
the

:::::
article

::
is
::::
that

:::
the

::::::::::
distributions

:::
are

::::::::
Gaussian.

::::::
Figure

::
I2

::::::
shows

::
the

:::::::
density

:::::::::
histograms

:::
for

:::
the

:::::::::
realisations

::
of

::::
X1,

:::
X2 :::

and
:::
Y .

:::::
These

:::
are

::::::::
compared

::
to

::::::::
Gaussian

:::::::::::
distributions

::::
with

::
the

:::::
same

:::::
mean

:::
and

::::::::
variance.

:::
The

::::::::::
histograms

::
of

:::
the

:::
200

::::::::
members

::
of

:::::::::
HadCRUT

::
5

::
are

:::::
close

::
to

::::::::
Gaussian

::::::::::
distributions

:::
for

:::::
these

::::::::
variables.

::::::::
However,

:::
this

::
is

:::
not

:::
the

::::
case

:::
for

:::
the
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:::::::::
histograms

::
of

::::::
climate

:::::::
models.

::::
The

::::::::
Gaussian

:::::::::
assumption

::::
does

:::
not

::::::
appear

::
to
:::
be

::::::
verified

:::::
here,

:::::::
resulting

::
in
:::::::::
deformed

:::::::::
confidence735

:::::::
intervals.

:::::::::
Improving

:::::::::
ClimLoco

::
to

:::::
enable

::::::::::::
consideration

::
of

::::
other

:::::::::::
distributions

::
is

:
a
:::::::::
promising

::::::::::
perspective.

Figure I2.
:::::::::
Comparison

:::::::
between

::
the

:::::::::
histograms

:::
and

:::::::
Gaussian

::::::::::
distributions

::
on

:::::::
different

:::::::
variables.

::
Y
::

is
:::
the

::::::::
2081-2100

:::::
mean

::
of

:::
the

:::::
GSAT

:::::::
anomaly.

:::
The

:::::::
reference

:::::
period

:
is
:::::::::
1850-1900.

:::
X1 :

is
:::
the

::::::::
2015-2024

::::
mean

::
of

:::::
GSAT

:::::::
anomaly.

:::
X2 :

is
:::
the

::::::::
1970-2014

::::
trend

::
of

:::::
GSAT

:::::::
anomaly.

:::
The

:::
blue

::::::::
histograms

:::::
show

::
the

::::::
results

::::
from

::
the

:::
32

:::::
climate

::::::
models.

::::
The

::::
green

:::::::::
histograms

::::
show

:::
the

:::::
results

::::
from

:::
200

:::::::
members

::
of

:::
the

:::::::::
HadCRUT5

::::::::
reanalysis.
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