

Seasonal variations and controlling factors of nitrogen

2 fluxes at the sediment-water interface in a semi-enclosed

3 inland sea

- 4 Zhaosen Wu^{1, 2}, Xinyu Guo^{2, *}, Jie Shi^{1, 3}, Xiaokun Ding⁴, Masatoshi Nakakuni^{5, 6},
- 5 Kuninao Tada^{5, 6}
- 6 ¹Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University
- 7 of China, 238 Songling Road, Qingdao 266100, China
- 8 ²Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-Cho, Matsuyama 790-8577,
- 9 Japan
- 3 Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine
- 11 Science and Technology, Qingdao, 266071, China
- 12 ⁴School of Ocean, Yantai University, Yantai, 264005, China
- 13 Faculty of Agriculture, Kagawa University, Ikenobe, Kita, Miki, Kagawa 761-0701, Japan
- 14 6Seto Inland Sea Regional Research Center, Kagawa University, Saiwai, Takamatsu, Kagawa 761-0016,
- 15 Japar

17

16 Corresponding to: Xinyu Guo (guo.xinyu.mz@ehime-u.ac.jp) ORCID: 0000-0002-4832-8625

Abstract. Nitrogen fluxes across the sediment-water interface and nitrogen removal from sediments are essential components of the nitrogen cycle and ecosystem in semi-enclosed inland seas. However, the

20 difficulty in observational sampling hinders the acquisition of continuous data necessary to understand

their seasonal variations and underlying mechanisms. In response to this issue, we have developed a one-

dimensional vertical model of the nitrogen cycle within sediments and used it to reproduce the seasonal

changes of observed nitrogen fluxes in a typical semi-enclosed inland sea and investigate their controlling

factors through sensitivity experiments. Model results indicate that 40% of particulate organic nitrogen (PON) settling into sediments is returned to the bottom water as dissolved inorganic nitrogen (DIN),

26 while 30% is removed via N-loss flux (dinitrogen gas and nitrous oxide). Although PON flux is

27 controlled by PON concentration in the bottom water, DIN and N-loss fluxes show temperature-driven

28 seasonal variations, suggesting a decoupling between nitrogen return and PON input. Additionally,

29 seasonal variations in oxygen penetration depth (OPD), ranging from 1 to 3 mm, also affect nitrogen

30 fluxes. In nitrate-depleted sediments of semi-enclosed seas, the denitrification rate is no longer

31 significantly higher than the anammox rate in the nitrogen removal.

- 32 Keywords: sediment-water interface, semi-enclosed inland sea, nitrogen fluxes, sediment model,
- 33 nitrogen removal

1 Introduction

35

36

37 inland seas, which significantly influences the balance and stability of the ecosystem (Huettel et al., 2014; 38 Zhang et al., 2020; Kalvelage et al., 2013; Thamdrup, 2012). On one hand, the sediment can bury 39 substantial amounts of nitrogen, potentially on par with river inputs (Liu et al., 2021; Han et al., 2021; 40 Lønborg and Markager, 2021). On the other hand, because of remineralization, the sediment 41 continuously releases dissolved inorganic nitrogen (DIN) into the overlying water (Devol, 2015; Boynton 42 et al., 2017; Liu et al., 2012). In the semi-enclosed inland sea, vertical mixing facilitates the contribution 43 of DIN from sediments as a vital nutrient source for primary production because of shallow water depth 44 (Huettel et al., 2014; Yi et al., 2023; Leng et al., 2023; Liu and Yin, 2007; Berelson et al., 2013; Leynaert 45 et al., 2011; Mei Liu et al., 2011). Notably, the sediment serves as the primary anoxic environment in 46 these regions, where key nitrogen removal processes, such as denitrification and anammox, occur. These processes are essential for regulating nitrogen inventories and influencing nutrient structure in these areas. 47 48 Researches indicate that continental shelves, which constitute merely 7.5% of the global seafloor, are responsible for 44% of fixed nitrogen losses (Devol, 2015; Mctigue et al., 2016; Huang et al., 2021; Jäntti 49 50 and Hietanen, 2012; Khalil and Rasmussen, 2012). Furthermore, nitrous oxide, a byproduct of 51 denitrification, is a significant greenhouse gas that contributes to global warming (Wilson et al., 2020; 52 Yang et al., 2022). 53 To clarify the function of the sediment in ecological and environmental changes, it is necessary to 54 conduct a quantitative analysis of nitrogen fluxes at the sediment-water interface in semi-enclosed inland 55 seas, along with their seasonal variations. Direct observation of particulate organic nitrogen (PON) flux 56 at this interface poses challenges due to the influence of resuspension processes. Consequently, numerous 57 studies focused on DIN flux and its seasonal variations primarily through in situ observations, incubation 58 experiments, or estimations based on Fick's law (De Vittor et al., 2012; Mu et al., 2017; Chen et al., 59 2023). For example, studies in the northern Adriatic Sea and the Baltic Sea have demonstrated the same conclusion that DIN flux exhibits seasonal variations, with higher levels in summer and lower levels in 60 61 winter, likely influenced by water temperature (De Vittor et al., 2012; Niemistö et al., 2018). The fluxes 62 of dinitrogen gas and nitrous oxide are mainly accessed through the measurement of denitrification and 63 anammox rates within sediments (Zhang et al., 2018; Rich et al., 2020). A study conducted in the Pearl

Sediments play a crucial role in regulating the storage and removal of nitrogen within semi-enclosed

64

65

66 67

68 69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

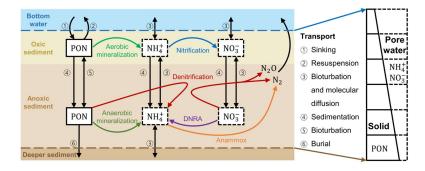
91

92

peak values observed in summer and reduced values in winter (Teng and Lin, 2024). However, the challenges and cost associated with field sampling limit the feasibility of continuous monitoring of these fluxes. Moreover, the direction of DIN flux varies across different regions, with the underlying mechanisms remaining unclear (Mu et al., 2017; De Vittor et al., 2015; Dale et al., 2022; Bohlen et al., 2011; Ratmaya et al., 2022; Zhou et al., 2022). Therefore, identifying the magnitude and direction of nitrogen fluxes at the sediment-water interface in semi-enclosed inland seas, along with their seasonal patterns and underlying controlling mechanisms, is crucial for understanding the contribution of sediments to the aquatic ecosystem in this region. Numerical modeling is a valuable tool for understanding the factors that govern nitrogen fluxes at the sediment-water interface. Typically, nitrogen fluxes at this interface derived from empirical formulas serve as essential boundary conditions for modeling the aquatic nitrogen cycle in semi-enclosed inland seas (Lønborg and Markager, 2021). However, this approach largely overlooks the changes occurring within the sediment and the corresponding flux responses to these alterations. An alternative approach is the implementation of a box model, which investigates nitrogen processes within the sediment. Nonetheless, the box model's treatment of all sediment as a single domain, coupled with its failure to account for the vertical distribution of chemical substances—particularly oxidants such as dissolved oxygen (DO)—limits its capacity to provide a comprehensive understanding of the nitrogen cycling processes within the sediment (Yang et al., 2022). A one-dimensional vertical sediment model addresses this limitation, albeit at the cost of increased complexity and computational demands. This model has demonstrated efficacy in accurately reproducing seasonal variations in nitrogen fluxes at the sedimentwater interface (Radtke et al., 2019; Umlauf et al., 2023). Despite the clear advantages of this modeling approach over empirical formulas and box models, well-validated applications remain relatively scarce. This study focuses on the unclear seasonal variations in the magnitude and direction of nitrogen fluxes at the sediment-water interface in semi-enclosed inland seas, alongside the insufficiently understood underlying mechanisms with controlling factors driving these changes. We developed a one-dimensional vertical sediment model to simulate nitrogen cycling and accurately quantify nitrogen fluxes at the interface. Supported by monthly continuous observations conducted in the sediment of Harima Nada in Japan, a typical semi-enclosed inland sea, we obtained a robust dataset for model validation. The model

River Estuary reported that the denitrification rate in sediments also displayed seasonal variability, with

included in the model.



successfully reproduced the seasonal variations in the concentrations of three nitrogen species within the sediment and nitrogen fluxes at the interface. Additionally, numerical experiments further elucidated the influence of key environmental factors on these seasonal variations. This study aspires to establish a scientific foundation for comprehending the role of sediment nitrogen cycling in influencing the ecological environment of semi-enclosed marine systems. The findings can provide crucial support for offshore environmental remediation and the development of management policies.

2 Materials and Methods

2.1 Model descriptions

Based on the theory of early diagenesis (Berner, 1980), we have developed a biogeochemical model for sediment (Figure 1). This model encompasses two components: solid matter and pore water. The state variables consist of the concentrations of two types of PON (fast-decayed and slow-decayed ones) for the solid matter and the concentrations of NH_4^+ and NO_3^- in the pore water. Additionally, we set a fluff layer at the top of sediment, where the active benthos and material exchange processes with the above water column occur (Lee et al., 2002; Kuhrts et al., 2006; Laima et al., 2002).

Figure 1. Physical and biogeochemical processes for nitrogen cycle in the sediment model. Three state variables in the model are PON, NH_4^+ and NO_3^- . PON is a solid substance (enclosed by solid lines), while NH_4^+ and NO_3^- are dissolved substances in the pore water (enclosed by dash lines). The physical processes and biogeochemical processes are denoted by black arrows and colored arrows, respectively. The numbers denote the transport processes

- 114 In the solid part, the fast-decayed and slow-decayed PON are treated with a large and small
- 115 mineralization rate, respectively. Both of them undergo identical vertical transport processes, including
- 116 downward sedimentation driven by gravity and vertical diffusion caused by bioturbation. Their
- mineralization occurring within the sediment provides a flux of NH₄ into the pore water.
- 118 In the pore water, the dissolved NH₄ and NO₃ are transported downward and diffused vertically, as
- 119 corresponding to both bioturbation and molecular diffusion. The biogeochemical processes occurring
- 120 within the pore water include nitrification, denitrification, anammox and dissimilatory nitrate reduction
- 121 to ammonium (DNRA).
- 122 At the sediment-water interface, the exchange of solid matter is controlled by the bottom shear stress.
- 123 The solid matter in the water column sinks into the fluff layer when the bottom stress is below a critical
- 124 value, while resuspension occurs when the bottom stress exceeds this threshold. The exchange fluxes of
- 125 NH₄ and NO₃ at the interface are determined by the product of the diffusion coefficient and their
- 126 concentration gradient between the fluff layer and the overlying water.
- 127 In the deepest layer of sediment, only the slow-decayed PON is allowed to move downward and leave
- 128 the model domain via burial. The exchange flux of NH₄⁺ between the model domain and the underlying
- 129 pore water is calculated by the production of the diffusion coefficient and the concentration gradient
- derived from observations, while the exchange flux of NO_3^- there is set to zero.

131 2.2 Equations and parameters

The equations for the concentrations of solid matter (C_s) and dissolved matter (C_d) are as follows:

133
$$\frac{\partial [(1-\emptyset) \cdot C_s]}{\partial t} = \frac{\partial [(1-\emptyset) \cdot D_B \frac{\partial C_s}{\partial z}]}{\partial z} - \frac{\partial [\omega \cdot (1-\emptyset) \cdot C_s]}{\partial z} + (1-\emptyset) \cdot \sum R_s$$
 (1)

134
$$\frac{\partial [\emptyset \cdot C_d]}{\partial t} = \frac{\partial [\emptyset \cdot (D_B + D_M) \cdot \frac{\partial C_d}{\partial z}]}{\partial z} - \frac{\partial [\omega \cdot \emptyset \cdot C_d]}{\partial z} + \emptyset \cdot \sum R_d$$
 (2)

- 135 Where z is vertical axis for sediment depth, t is time, Ø is the sediment porosity, D_B and D_M are the
- 136 bioturbation coefficient and molecular diffusion coefficient (m² s⁻¹), ω is the sedimentation rate
- 137 (mm yr⁻¹), R_s is the biochemical reaction rate of PON, and R_d is the biochemical reaction rate of
- dissolved matter, including NH₄ and NO₃. Since the sediment type in the study area is muddy, the
- advection of pore water in sandy sediments controlled by pressure is neglected.
- 140 The vertical profile of D_B is expressed as equation (3) (Radtke et al., 2019).

$$D_{B(z)} = \begin{cases} D_{B_{max}}, & 0 < z < z_{max} \\ D_{B_{max}} \cdot \exp\left(-\frac{z - z_{max}}{z_d}\right), & z \ge z_{max} \end{cases}$$
 (3)

- Where z_{max} is the depth down to which the maximum bioturbation coefficient ($D_{B_{max}}$) is applied, z_d is
- 143 the decaying length scale of $D_{B_{max}}$.
- 144 D_M of dissolved matter in the pore water is a function of porosity, and is expressed as follows (Boudreau
- 145 et al., 1998):

146
$$D_{M}(z) = \frac{D_{0}}{1 - 2.02 \ln(\emptyset)}$$
 (4)

- 147 where D_0 is the diffusion coefficient of the dissolved matter in the particle-free liquid (m² s⁻¹).
- 148 The biochemical reactions are expressed in equations (5)-(7). Detailed descriptions of these reactions are
- presented in Table 1 (Soetaert et al., 1996; Capet et al., 2016; Akbarzadeh et al., 2018). These reaction
- 150 equations primarily consider the limitations imposed by DO and temperature on each reaction. Due to
- 151 the lack of parameterization schemes, it is difficult to represent the competition between different
- organisms for the same reaction. Since this is not the focus of this paper, we describe them collectively
- as a unified, generalized concept based on reaction rates. All the related coefficients and parameters are
- listed in Table 2. The sensitivity analysis of the model parameters is shown in Figure S1.

155
$$\sum R_{PON} = -R_{min}^{O_2} - R_{den} - R_{min}^{AM} - R_{DNRA}$$
 (5)

156
$$\sum R_{NHA}^{+} = R_{min}^{O_2} + R_{den} + R_{min}^{AM} + (1 + 0.5 \cdot r_{C:N}) R_{DNRA} - R_{nit} - R_{Ana}$$
 (6)

157
$$\sum R_{NO_3^-} = R_{nit} - 0.5 \cdot r_{C:N} \cdot R_{DNRA} - 0.8 \cdot r_{C:N} \cdot R_{den}$$
 (7)

159 **Table 1.** Reaction formulas and rate expressions.

Process	Formula	Rate expression
Aerobic	$(CH_2O)_x(NH_3)_y(H_3PO_4)_z + xO_2$	$R_{\min}^{O_2} = r_{\min} \cdot PON \cdot Q^{\frac{T-20}{10}}$
mineralization	$\rightarrow yNH_4^+ + xH_2O$	$\cdot \frac{O_2}{O_2 + Ks_{O_2}} \cdot \frac{1}{\sum \lim}$
Denitrification	$(CH_2O)_x(NH_3)_y(H_3PO_4)_z + 0.8xNO_3^-$ $\rightarrow yNH_4^+ + 0.4x(1-\alpha)N_2$ $+ 0.4x\alpha N_2O + 1.4xH_2O$	$\begin{split} R_{den} \\ &= r_{min} \cdot PON \cdot Q^{\frac{T-20}{10}} \\ &\cdot \frac{NO_3^-}{NO_3^- + Ks_{NO_3^-}} \\ &\cdot \left(1 - \frac{O_2}{O_2 + Kin_{O_2}^{Den}}\right) \cdot \frac{1}{\sum lim} \cdot \gamma \end{split}$
Anaerobic mineralization	$(CH_2O)_x(NH_3)_y(H_3PO_4)_z + an oxidant$ $\rightarrow yNH_4^+ + xODU + xH_2O$	R_{\min}^{AM} $= r_{\min} \cdot PON \cdot Q^{\frac{T-20}{10}}$
		$ \cdot \left(1 - \frac{O_2}{O_2 + \operatorname{Kin}_{O_2}^{AM}}\right) $ $ \cdot \left(1 - \frac{\operatorname{NO}_3^-}{\operatorname{NO}_3^- + \operatorname{Kin}_{\operatorname{NO}_3^-}}\right) \cdot \frac{1}{\sum \lim} $
Nitrification	$NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O$	$R_{nit} = r_{nit} \cdot NH_4^+ \cdot \frac{O_2}{O_2 + Ks_{Nit}}$
DNRA	$(CH_2O)_x(NH_3)_y(H_3PO_4)_z + 0.5xNO_3^-$	R_{DNRA}
	$\rightarrow (0.5x + y)NH_4^+$	$= r_{\min} \cdot PON \cdot Q^{\frac{T-20}{10}}$ $\cdot \frac{NO_3^-}{NO_3^- + Ks_{NO_3^-}}$ $\cdot \left(1 - \frac{O_2}{O_2 + Kin_{O_2}^{Den}}\right) \cdot \frac{1}{\sum lim}$ $\cdot (1 - \gamma)$
Anammox	$NH_4^+ + NO_2^- \rightarrow N_2 + 2H_2O$	$\begin{split} R_{Ana} &= r_{Ana} \cdot \frac{NH_{4}^{+}}{NH_{4}^{+} + Ks_{NH_{4}^{+}}} \\ &\cdot \frac{NO_{2}^{-}}{NO_{2}^{-} + Ks_{NO_{2}^{-}}} \\ &\cdot \frac{Kin_{O_{2}}^{Ana}}{O_{2} + Kin_{O_{2}}^{Ana}} \end{split}$

$$160 \qquad \sum \lim = \frac{o_2}{o_2 + \kappa_{O_2}} + \frac{No_3^-}{No_3^- + Ks_{NO_3^-}} \cdot \left(1 - \frac{o_2}{o_2 + \kappa i n_{O_2}^{\text{pen}}}\right) + \left(1 - \frac{o_2}{o_2 + \kappa i n_{O_2}^{\text{AM}}}\right) \cdot \left(1 - \frac{No_3^-}{No_3^- + \kappa i n_{NO_3^-}}\right). \qquad x: y: z = \frac{o_2}{o_2 + \kappa_{O_2}} + \frac{o_2}{No_3^- + \kappa i n_{NO_3^-}} \cdot \frac{o_2}{o_2 + \kappa_{O_2}} + \frac{o_2}{o_2 + \kappa_{O_2}} + \frac{o_2}{o_2 + \kappa_{O_2}} \cdot \frac{o_2}{o_2 + \kappa_{O_2}} \cdot \frac{o_2}{o_2 + \kappa_{O_2}} + \frac{o_2}{o_2 + \kappa_{O_2}} \cdot \frac{o_2}{o_2 + \kappa_{O_2$$

161 C: N: P.

162 **Table 2.** Model parameters.

Parameter	Value	Unit	Description	References
ω	2.6	mm yr ⁻¹	Sedimentation rate	(Ichimi et al., 2005)
$D_{B_{\text{max}}}$	1.15×10 ⁻¹¹	m^2 s ⁻¹	Maximum bioturbation coefficient	(Soetaert et al., 1996)
\mathbf{z}_{max}	0.01	m	Depth down to which the Maximum	(Soetaert et al., 1996)
			bioturbation coefficient is applied	
$\mathbf{z}_{\mathbf{d}}$	0.5	m	Decaying length scale of the	(Soetaert et al., 1996)
			maximum bioturbation coefficient	
$D_0^{NH_4^+}$	0.847	$cm^2 d^{-1}$	The molecular diffusion coefficient	(Soetaert et al., 1996)
			of ammonium in a particle-free	
			solution at 0 °C	
$D_0^{NO_3^-}$	0.845	$cm^2 d^{-1}$	The molecular diffusion coefficient	(Soetaert et al., 1996)
			of nitrate in a particle-free solution	
			at 0 °C	
r_{minf}	2.8×10 ⁻⁹	s^{-1}	Mineralization rate of fast decay	
			organic nitrogen	
r_{mins}	1.05×10 ⁻⁹	s^{-1}	Mineralization rate of slow decay	
			organic nitrogen	
Q	2		Factor for temperature effect on	(Capet et al., 2016)
			mineralization	
Ks_{O_2}	3	μmol L ⁻¹	Half saturation constant of oxygen in	(Soetaert et al., 1996)
			aerobic mineralization	

Ks _{NO₃}	30	μmol L ⁻¹	Half saturation constant of nitrate in	(Soetaert et al., 1996)
			denitrification	
$Kin^{Den}_{O_2}$	10	μmol L ⁻¹	Half saturation constant of oxygen in	(Soetaert et al., 1996)
			denitrification	
γ	95	%	Fraction of total nitrate Reduction	(Akbarzadeh et al.,
			occurring via denitrification	2018)
${\rm Kin}_{{\rm O}_2}^{\rm AM}$	5	μmol L ⁻¹	Half saturation constant of oxygen in	(Soetaert et al., 1996)
			anaerobic mineralization	
$Kin_{NO_3^-}$	5	μmol L ⁻¹	Half saturation constant of nitrate in	(Soetaert et al., 1996)
			anaerobic mineralization	
r_{nit}	20	d ⁻¹	Maximum nitrification rate	(Soetaert et al., 1996)
Ks_{nit}	1	μmol L ⁻¹	Half saturation constant of oxygen in	(Soetaert et al., 1996)
			nitrification	
r_{Ana}	2.3×10 ⁻⁴	mmol m ⁻³	Maximum anammox rate	(Akbarzadeh et al.,
		s ⁻¹		2018)
$\mathrm{Ks}_{\mathrm{NH}_{4}^{+}}$	5	μmol L ⁻¹	Half saturation constant of	(Akbarzadeh et al.,
			ammonium in anammox	2018)
$Ks_{NO_2^-}$	5	μmol L ⁻¹	Half saturation constant of nitrite in	(Akbarzadeh et al.,
			anammox	2018)
$Kin^{Ana}_{O_2}$	8	μmol L ⁻¹	Half saturation constant of oxygen in	(Akbarzadeh et al.,
			anammox	2018)

$\boldsymbol{r}_{\text{C:N}}$	10.2		Ratio of carbon to nitrogen	
α	1	%	Nitrous oxide leakage during	(Akbarzadeh et al.,
			denitrification	2018)
w	2	m s ⁻¹	Sinking rate	(Ding et al., 2020)
τ_{c}	0.06	N m ⁻²	Critical bottom stress	(Ding et al., 2020)
E_{PON}	1×10 ⁻⁸	mmol m ⁻²	Resuspension coefficient	(Ding et al., 2020)
		s ⁻¹		
D_{sur}	7×10 ⁻⁷	$m^2 s^{-1}$	Surface diffusion coefficient	(Radtke et al., 2019)
Δz	3	m	Distance of the diffusion layer at	(Nakakuni et al.,

- 164 Due to the large biomass of benthos and high DO concentrations in the fluff layer, the mineralization
- 165 rate in this layer is set to be 50 times faster than that in the sediment below it (Lee et al., 2002; Kuhrts et
- 166 al., 2006; Laima et al., 2002).
- 167 At the sediment-water interface, the sinking and resuspension of PON depend on the bottom stress. The
- exchange flux (F_s) is expressed as (Wang, 2002):

169
$$F_{s} = \begin{cases} w \cdot C_{s}^{w} \cdot (\frac{\tau}{\tau_{c}} - 1), \ \tau < \tau_{c} \\ E_{s} \cdot (\frac{\tau}{\tau_{c}} - 1), \ \tau \ge \tau_{c} \end{cases}$$
 (8)

- 170 where w is the sinking velocity of particles in the bottom water (m s⁻¹), C_s^w is concentration of PON
- in the bottom water (mmol m⁻³), τ is the bottom stress (N m⁻²), τ_c is the critical bottom stress
- 172 (N m⁻²), E_s is the resuspension rate (mmol m⁻² s⁻¹).
- 173 The exchanges of dissolved matters (NH₄⁺ and NO₃⁻) are mainly through bioturbation and molecular
- diffusion, and the flux (F_d) is expressed as (Boudreau et al., 1998):

$$F_{d} = -D_{sur} \cdot \emptyset \cdot \frac{c_{d}^{w} - c_{d}^{pw}}{\Delta z}$$
 (9)

- where D_{sur} is the surface diffusion coefficient (m² s⁻¹). C_d^w and C_d^{pw} are the concentrations of
- dissolved matter in the bottom water and pore water of fluff layer, respectively (mmol m $^{-3}$). Δz is the
- distance of the diffusion layer at sediment-water interface (m).
- 179 At the bottom of the model domain, the slow-decayed PON is allowed to move out as the burial process
- with a flux (B_s) as (Radtke et al., 2019):

$$181 \quad \mathbf{B}_{\mathbf{s}} = \omega \cdot (1 - \emptyset) \cdot \mathbf{C}_{\mathbf{s}}^{\mathbf{b}} \tag{10}$$

- where superscript of b represents the deepest layer of the model domain.
- 183 The bottom flux of NH_4^+ (B_d) is expressed as:

$$184 B_{d} = -\left(D_{B}^{b} + D_{M}^{b}\right) \cdot \phi \cdot \frac{C_{d}^{b} - C_{d}^{b}}{\Delta z^{b}} (11)$$

- where Cdc is NH4 concentration in the pore water under the deepest layer of the model domain
- $186 \quad (\text{mmol m}^{-3}).$
- 187 **2.3 Study area**
- 188 Harima Nada is situated within Seto Inland Sea, the largest semi-enclosed sea in Japan (Figure 2). It has
- 189 an average water depth of 26 meters and is connected to Osaka Bay and Hiuchi Nada on the eastern and
- 190 western sides, respectively. To the south, it connects to the Pacific Ocean through the Naruto Strait and

Kii Channel (Zhu et al., 2019; Chang et al., 2009). Over the past few decades, the environment of the Seto Inland Sea has undergone significant changes (Ishii et al., 2014; Yamamoto et al., 2021). With the continuous observations of sediments in Harima Nada by our collaborators, we have realized that the DIN input from sediments in this area is comparable to that from rivers, exhibiting notable seasonal variations (Leng et al., 2023; Nakakuni et al., 2024). However, the driving factors and mechanisms behind these seasonal changes remain unclear. Therefore, Harima Nada serves as an excellent study area, and these observational data can provide a sufficient validation to ensure the reliability of model results (Nakakuni et al., 2024). This allows us to analyze the seasonal variations in sediment nitrogen cycling and interfacial nitrogen fluxes, as well as their controlling mechanisms. Additionally, this study lays the groundwork for future exploration of how sediment nitrogen cycling responds to long-term changes in the aquatic environment.

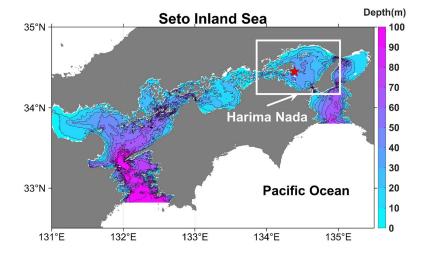


Figure 2. Study area of the Harima Nada, Japan. The red star represents the site where the observational data used in this study were collected.

2.4 Model configurations

Since this study focuses on seasonal changes at the sediment–water interface, the sediment depth in the model was set to 10 cm and uniformly divided into 100 layers.

The initial concentrations of the four state variables were obtained from the core observations in Harima Nada in July 2020 (Nakakuni et al., 2024). Moreover, the observed profile of DO concentration (Sayama

et al., 2002), nitrite (NO₂⁻) concentration, and porosity were also included and always constant in the model as input condition (Figure S2c-e and Text S2).

Monthly observations of bottom water temperature and concentrations of PON, NH₄⁺, and NO₃⁻ from February 2020 to January 2021 were used to prescribe the upper boundary conditions, while NH₄⁺ concentration beneath the model domain from April 2020 to May 2021 served as the bottom boundary conditions (Nakakuni et al., 2024). The bottom stress was derived from a hydrodynamic model for the Seto Inland Sea (Zhu et al., 2019) (Figure 3). Forced by these boundary conditions, the sediment model was calculated for a long time (more than 500 years) to reach a steady-state condition, wherein the input and output fluxes of materials become balanced.

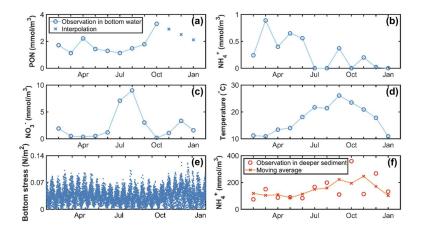


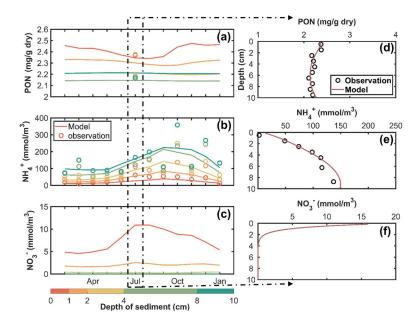
Figure 3. Boundary conditions of the model: (a) PON concentration, (b) NH_4^+ concentration, (c) NO_3^- concentration in the bottom water, (d) bottom water temperature, (e) bottom stress and (f) NH_4^+ concentration in the layer below model domain (10-12 cm). The values of PON concentration in the bottom water from November to January are obtained by linear interpolation. A three-point moving average is applied to NH_4^+ concentrations in (f) to smooth out intra-seasonal fluctuations.

3 Results

226

227

228


229

230

231

3.1 Seasonal variations of the particle and dissolved nitrogen concentrations in the sediment

The monthly concentrations of PON, NH_4^+ and NO_3^- at different layers from 0 to 10 cm in the model domain are shown in Figure 4, alongside the corresponding observed data. The comparison between the model results and the observations, especially for the data in July (Figure 4d-e), suggests a reliable performance of the model.

232233

234

235

236

237

238

242

Figure 4. The seasonal variations of concentrations of (a) PON, (b) NH_4^+ and (c) NO_3^- in different layers in the sediment, the vertical profiles of (d) PON, (e) NH_4^+ and (f) NO_3^- in July. Colors in (a)-(c) represent different depth. In all the panels, lines are model results and circles are the observation data.

The concentration of PON in the sediment was consistently greater in the surface layer compared to the underlying layers (Figure 4a). Its seasonal variation was apparent in the upper 3 cm of sediment and

almost disappears in the layers below 3 cm. In the 0-1 cm layer, PON concentration decreased from a

value of 2.46 mg/g in February to a minimum value of 2.34 mg/g in August, followed by an increase to

a peak concentration of 2.47 mg/g in November. In the deep layer of the sediment (8-10 cm), PON

241 concentration remained around 2.20 mg/g throughout the year.

The NH₄+concentration had a minimum value at the surface and a maximum value at the deepest layer

243 (Figure 4b), which was contrary to the vertical distribution of PON concentrations. The NH₄

concentrations presented significant seasonal variations across entire sediment layers, with the range of variation increasing with depth. For example, the NH₄⁺ concentration in the 0-1 cm layer presented the lowest value of 11.02 mmol m⁻³ in February and the highest value of 38.71 mmol m⁻³ in September; however, the NH₄⁺ concentration in the deep layer of the sediment (8-10 cm) presented the lowest value of 90.97 mmol m⁻³ in April and the highest value of 224.34 mmol m⁻³ in September. Except for the episodic high values observed in the deep sediment layer during autumn, the model successfully reproduced the seasonal variation of NH₄⁺ concentration across all sediment layers, which was characterized by lower levels in winter and spring and elevated levels in summer and autumn.

NO₃⁻ concentration reached its peak at the sediment surface and exhibited a rapid decline to zero at the depth of around 3 cm (Figure 4c and f). Its seasonal variation occurred within the upper 1 cm layer, showing a high value in summer. The maximum concentration in the 0-1 cm layer was 10.91 mmol m⁻³ in July, which was double the minimum concentration of 4.56 mmol m⁻³ in March.

3.2 The flux of PON, DIN and N-loss (N2 and N2O) between bottom water and sediment

PON sank from the bottom water to the sediment throughout the year (Figure 5a). PON flux was high in fall with the maximum value of 2.90 mmol m^{-2} d^{-1} in October and low in spring with the minimum value of 1.07 mmol m^{-2} d^{-1} in May.

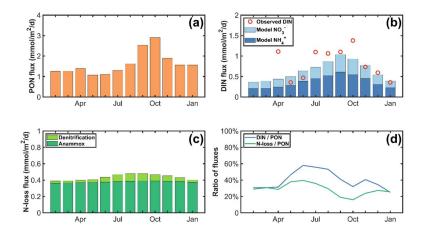


Figure 5. The fluxes of (a) PON, (b) DIN, (c) N-loss (N₂ and N₂O) at the sediment-water interface in the model, and (d) the ratios of DIN and N-loss fluxes to PON flux. The red circles in (b) are the values given by observations.

263 The fluxes of NH₄ and NO₃ was summed up to account the flux of DIN between bottom water and 264 sediment. DIN in the Harima Nada was released from the sediment into the bottom water throughout the year, exhibiting the highest flux of 1.04 mmol m⁻² d⁻¹ in September and the lowest flux of 0.37 mmol m⁻ 265 266 ² d⁻¹ in February (Figure 5b). The DIN flux and its seasonal variation given by the model exhibit a general agreement with observations (Nakakuni et al., 2024), although the model does not capture the observed 267 268 high flux in April. The NH₄ and NO₃ fluxes demonstrated comparable seasonal trends, reaching their respective maxima in September (0.61 and 0.43 mmol m⁻² d⁻¹) and minima in February (0.20 and 0.16 269 270 mmol m⁻² d⁻¹). 271 N-loss is produced through denitrification and anammox inside the sediment, which releases N2 and N2O to the atmosphere. N-loss flux across the sediment-water interface reached its peak of 0.48 mmol m⁻² d⁻¹ 272 273 ¹ in August and the lowest value of 0.39 mmol m⁻² d⁻¹ in February (Figure 5c). The anammox was the main process for producing N2 and contributed a value of around 0.37 mmol m⁻² d⁻¹ to N2 flux, with 274 275 minimal seasonal variation. Conversely, denitrification contributed to a seasonal variation of N-loss flux, 276 reaching a maximum of 0.09 mmol m⁻² d⁻¹ in August and a minimum of 0.03 mmol m⁻² d⁻¹ in March. 277 Although N₂ was the main product of denitrification, the flux of N₂O, a potent greenhouse gas, was not negligible. It varied from 0.3 to 0.9 μ mol m⁻² d⁻¹, with a mean value of 0.55 μ mol m⁻² d⁻¹. 278 279 The ratio of DIN flux to PON flux (RDIN/PON) reflects the fraction of nitrogen that sinks into the sediment 280 and later releases back to the seawater (Figure 5d). RDIN/PON increased from 25% in January to a peak of 281 58% in June, with the annual average of 40%. The ratio of N-loss flux to PON flux (R_{N-loss/PON}) 282 represented the proportion of nitrogen removed from the sediment. The highest value of $R_{N-loss/PON}$ was 283 40% in June while the lowest value was 16% in October. The sum of R_{DIN/PON} and R_{N-loss/PON} ranged from 284 48% in October to 98% in June, with an annual average of 69%. It suggested that around 30% of the 285 PON flux sinking from seawater was retained in the sediment on average, with this retention rate 286 potentially reaching nearly 50% during certain months. 287 3.3 The budgets of PON, NH₄ and NO₃ in the sediment 288 The annual budgets for the three forms of nitrogen in the sediment of Harima Nada are estimated from 289 the model results (Figure 6). The sinking of PON from bottom water was the source of PON in the 290 sediment, quantified at 8.30 g N m⁻² yr⁻¹. Since the primary production in the Harima Nada in 2020 was

estimated to be 41 g N m⁻² yr⁻¹ (Tada, 2021), it could be interpreted that about 20% of the particles produced by primary production sank into the sediment. Within the deeper layers of the sediment, the burial rate of PON was 2.60 g N m⁻² yr⁻¹, representing 31% of the PON flux into the sediment and 6% of the primary production. The rest 5.69 g N m⁻² yr⁻¹ of PON flux into the sediment was mineralized to NH₄, which became the main source of NH₄ in the sediment.

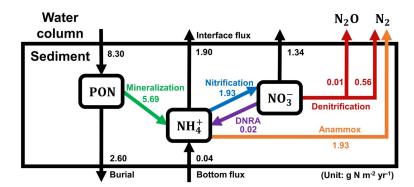
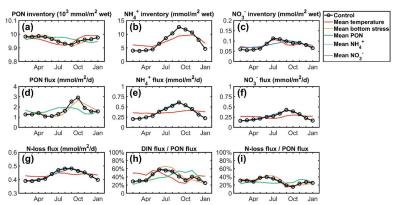


Figure 6. Nitrogen budgets in the sediment model of Harima Nada.

In addition to mineralization, DNRA also produced NH₄⁺ in our model, but its value of 0.02 g N m⁻² yr⁻¹ was two orders of magnitude lower than the amount of mineralization (5.69 g N m⁻² yr⁻¹). And 0.04 g N m⁻² yr⁻¹ of NH₄⁺ was supplied from the deeper sediment located beneath the model domain. Furthermore, NH₄⁺ has three sinks: the nitrification of NH₄⁺ to NO₃⁻ had a rate of 1.93 g N m⁻² yr⁻¹, the anammox of NH₄⁺ to N₂ had a rate of 1.93 g N m⁻² yr⁻¹, and the upward NH₄⁺ flux through the sediment-water interface was quantified at 1.90 g N m⁻² yr⁻¹.

For the NO₃⁻ produced by the nitrification, it mainly had an upward flux of 1.34 g N m⁻² yr⁻¹ at the sediment-water interface and the denitrification of 0.57 g N m⁻² yr⁻¹. The combined effects of denitrification of NO₃⁻ and anammox of NH₄⁺ produced a N-loss flux to the atmosphere amounting to 2.50 g N m⁻² yr⁻¹ (2.49 for N₂ and 0.01 for N₂O). Since this value represented over 30% of PON sinking flux to the sediment, it became an important process for removing nitrogen in the semi-enclosed inland sea.



4 Discussion

4.1 Factors affecting the seasonal variations in the sediment-water fluxes of nitrogen

The model results show that the fluxes of PON, DIN and N-loss between seawater and sediment exhibit apparent seasonal variations. To clarify the factors controlling these seasonal variations, we carried out five sensitivity experiments, in which we removed the seasonal variation of one of the following five variables by substituting its monthly means with its annual mean: PON concentration (PON^{bw}), NH⁺₄ concentration (NH^{+bw}₄), NO⁻₃ concentration (NO⁻₃^{bw}), bottom water temperature, and bottom stress. Figure 7 shows the calculation results of the five sensitivity experiments alongside the results described in Section 3 (referred to "Control" in Figure 7).

The concentration of PON^{bw} and the bottom water temperature significantly influence the seasonal variation of PON inventory in the sediment (Figure 7a). Sinking of PON^{bw} serves as the source of PON in the sediment, while variations in bottom water temperature can change the mineralization rate in the sediment (Figure S3a and Text S3). Although these seasonal variations can directly impact the PON inventory, the extent of seasonal variation in PON inventory is relatively minor, with its value being more than two orders of magnitude smaller than the overall PON inventory.

Figure 7. Comparisons of the model results among six calculations (five sensitivity experiments and one control run). The sensitivity experiments include the cases removing the seasonal variations of PON concentration (green line, "Mean PON"), NH₄⁺ concentration (light blue, "Mean NH₄⁺"), NO₃⁻ concentration (dark blue, "Mean NO₃"), and water temperature (red line, "Mean temperature") in the overlying water, as well as of the bottom stress (orange line, "Mean bottom stress"). (a) PON inventory; (b) NH₄⁺ inventory; (c) NO₃⁻ inventory; (d) PON flux; (e) NH₄⁺ flux; (f) NO₃⁻ flux; (g) N-loss flux; (h) ratio of DIN flux to PON flux; (i) ratio of N-loss flux to PON flux.

332 Among the 5 factors, only the bottom water temperature is responsible for the seasonal variations of 333 NH₄ inventory (Figure 7b) as it affects the mineralization rate that produces NH₄ in the sediment (Figure S3 and Text S3). The seasonal variation of NO₃ inventory is mainly controlled by NO₃-bw 334 instead of bottom water temperature (Figure 7c). When the concentration of NO₃^{-bw} is fixed at its annual 335 mean, a decrease in concentration enhances an increase in NO₃ flux from the sediment to the overlying 336 337 water (Figure 7f), leading to a corresponding decline in NO₃ inventory (Figure S4 and Text S4). The seasonal variation in concentration of PONbw is the main factor deciding the seasonal variation of 338 339 PON flux across the interface between the bottom water and sediment (Figure 7d). High concentration of PONbw leads to an increased sinking flux of PON from seawater to sediment. With the annual 340 average value of PONbw concentration as the input condition, the peak PON flux from the seawater to 341 342 sediment in October disappears (Figure 3a). In such a case, an inverse seasonal relationship can be 343 discerned between PON flux (the green line in Figure 7d) and bottom stress (Figure 3e). The rise in 344 bottom stress during the spring and winter induces the resuspension of PON at the sediment-water 345 interface, thereby diminishing the downward PON flux. 346 The bottom water temperature controls not only the seasonal variations of NH₄⁺ inventory in the sediment (Figure 7b) but also that of NH₄ flux from the sediment to the bottom water (Figure 7e). This 347 is because NH₄⁺ concentration in the sediment is much higher than the concentration of NH₄^{+bw}, and its 348 349 variation directly determines the change of NH₄⁺ flux (Figure 3b and Figure 4b). Since NH₄⁺ is the sole 350 source of NO₃ in the sediment by nitrification (Figure 6 and Figure S3b), NO₃ flux is consequently 351 controlled by the bottom water temperature (Figure 7f). As a combination of NH₄⁺ flux and NO₃⁻ flux, 352 the seasonal variation of DIN flux is also controlled by the bottom water temperature, which is consistent 353 with the conclusion suggested from field studies (Nakakuni et al., 2024). 354 The differences in the factors controlling the seasonal variation of PON and DIN fluxes indicate that a 355 large PON flux into the sediment does not necessarily lead to a corresponding increase in DIN flux from 356 the sediment to the bottom water. This suggests that estimating the DIN flux by using reflective boundary conditions based only on the concentration of PONbw, or relying on empirical formulations that neglect 357 358 bottom water temperature, may lead to considerable inaccuracies in the representing of the seasonal 359 variation in DIN flux.

361 inventories of NH₄ and NO₃ in the sediment. Our calculation shows that the seasonal variation in Nloss flux mainly depends on the bottom water temperature and NO₃^{-bw} (Figure 7g). Since anammox is 362 the dominant process for producing N_2 in the sediment, the bottom temperature, rather than NO_3^{-bw} , has 363 a greater impact on the seasonal variation of N-loss flux. 364 365 R_{DIN/PON} and R_{N-loss/PON} are two important parameters for comprehending the nitrogen cycle in the semienclosed inland sea. The seasonal variation of $R_{\text{DIN/PON}}$ is likely controlled by PON^{bw} and bottom 366 temperature (Figure 7h). The annual mean of bottom temperature appears to advance the peak of R_{DIN/PON}, 367 whereas the annual mean of PONbw delays this peak. Conversely, R_{N-loss/PON} is only affected by PONbw 368 (Figure 7i). The absence of an effect from bottom temperature effect on R_{N-loss/PON} is caused by the 369 370 relatively smaller range of N-loss flux compared to PON flux. 371 4.2 Influences of the DO profiles on nitrogen cycle in the sediment 372 The availability of DO has an important impact on the nitrogen cycle in the pore water. The DO 373 concentration has a maximum value at the top of the pore water and diminishes with increasing depths 374 (Devol, 2015). Consequently, the vertical profile of DO concentration in the sediment is characterized 375 by a surface maximum concentration (DO_{max}) and the oxygen penetration depth (OPD). To assess the 376 sensitivity of our model results to the specified DO concentration in the sediment, we conducted two 377 groups of numerical experiments to clarify the effects of DOmax (GROUP I) and OPD (GROUP II) on 378 the nitrogen cycle in the sediment. 379 According to the observed data obtained from the Ministry of the Environment of Japan (https://water-380 pub.env.go.jp/water-pub/mizu-site/mizu/kouiki/dataMap.asp), the average concentration of DO in the 381 bottom water in the Seto Inland Sea ranged from 429 to 714 mmol m⁻³ in the past 40 years, which is far 382 beyond the DO concentration in the fluff layer as the input data (84 mmol m⁻³). Therefore, in GROUP I of the numerical experiments, DO_{max} was varied within the range of 60-140 mmol m^{-3} , while OPD was 383 384 maintained at a constant value of 2 mm. The model results showed that there were no significant changes 385 in the nitrogen inventories of the three types of nitrogen or their fluxes at the sediment-water interface 386 (figures not given). The reason is that DO is not a limiting factor for nitrogen cycle within the aerobic 387 zone of the upper 3 mm of sediment when DO_{max} is maintained between 60-140 mmol m⁻³.

N-loss occurs through denitrification and anammox, and is consequently closely associated with the

389

390

391

392

393

394

395

396

397

398

399

400

401

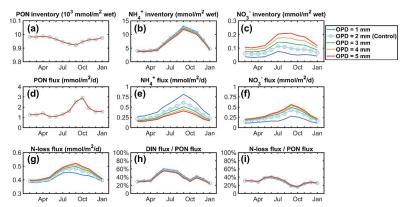
402

403

404

405

406


407

408

It has been reported that the OPD in inland sediment can reach around 5 mm (Dale et al., 2011). In the five simulations of GROUP II, OPD was changed from 1 to 5 mm in 1 mm increments, while DO_{max} was maintained at a constant level of 80 mmol m⁻³. The vertical profiles of DO concentration were derived through exponential fitting. The model results indicated that OPD has clear influences on NO₃ inventory, NH₄⁺ flux, NO₃⁻ flux and N-loss flux (Figures 8c, e, f, g). An increase of OPD facilitates the occurrence of nitrification in an expanded aerobic zone, leading to a greater conversion of NH₄⁺ to NO₃⁻. Since NH₄⁺ mainly remains in the deeper sediment layers (Figure 4b), nitrification occurring in the surface sediment has a minimal impact on NH₄ inventory (Figure 8b). However, it can significantly reduce NH₄⁺ flux at the sediment-water interface (Figure 8e). NO₃⁻ inventory in the sediment increases by 218% as OPD rises from 1 to 5 mm (Figure 8c). The increase in NO₃ inventory subsequently enhances both NO₃ flux and denitrification, resulting in a higher N-loss flux (Figures 8f and g). However, there is minimal difference in the NH₄, NO₃, and N-loss fluxes among the cases with OPD values of 3, 4, and 5 mm, indicating that beyond a certain critical threshold, the influence of OPD on these fluxes becomes negligible. Therefore, if the OPD exhibits seasonal variation between 1 and 3 mm, it will have a significant impact on the seasonal variation of nitrogen fluxes; if the OPD remains consistently deeper than 3 mm, its impact is less pronounced. Moreover, since an increase in OPD has opposing effects on NH₄ and NO₃ fluxes, its overall influence on DIN flux is minimal.

Figure 8. The effect of OPD depth on the nitrogen cycle in sediment: (a) PON inventory; (b) NH₄⁺ inventory; (c) NO₃⁻ inventory; (d) PON flux; (e) NH₄⁺ flux; (f) NO₃⁻ flux; (g) N-loss flux; (h) ratio of DIN flux to PON flux; (i) ratio of N-loss to PON flux.

409

4.3 Comparisons with other coastal seas

Numerous studies have evaluated the nitrogen fluxes at the sediment-water interface, yielding varying conclusions (Zhou et al., 2017; Sun et al., 2021; Canion et al., 2014; Lin et al., 2017; De Vittor et al., 2012; Mu et al., 2017; Rich et al., 2020; Dale et al., 2022; Bohlen et al., 2011; Ratmaya et al., 2022; Zhou et al., 2022). In this subsection, we compare the fluxes of NH₄⁺, NO₃⁻ and N-loss calculated by our sediment model with the values reported in these studies for different coastal seas (Table 3).

Table 3. Benthic fluxes (mmol m⁻² d⁻¹) reported in some regions; positive values represent the release from sediment
 to water.

Flux	Value		Location	References
NH ₄ ⁺	1.53	to 1.62	Northern Adriatic Sea	(De Vittor et al., 2012)
	0.16	to 1.39	Mauritanian upwelling region	(Dale et al., 2022)
	0.12	to 5.3	Vilaine Bay	(Ratmaya et al., 2022)
	-0.1077	to 0.219	Areas off eastern Taiwan	(Zhou et al., 2017)
	-0.71	to 0.14	Bohai Bay	(Mu et al., 2017)
	-0.1	to 0.066	Yellow Sea and East China Sea	(Zhou et al., 2022)
	0	to 4	Peruvian upwelling region	(Bohlen et al., 2011)
	0.0867	to 0.4722	Taranto Gulf	(De Vittor et al., 2015)
	0.22	to 0.63	Harima Nada	This study
NO ₃	-0.46	to -0.26	Northern Adriatic Sea	(De Vittor et al., 2012)
	-3	to -0.1	Mauritanian upwelling region	(Dale et al., 2022)
	-0.62	to 0.46	Vilaine Bay	(Ratmaya et al., 2022)
	-0.241	to 0.00005	Areas off eastern Taiwan	(Zhou et al., 2017)
	1.43	to 2.26	Bohai Bay	(Mu et al., 2017)
	-3.43	to 0.082	Yellow Sea and East China Sea	(Zhou et al., 2022)
	-3.8	to -0.3	Peruvian upwelling region	(Bohlen et al., 2011)
	4.8	to 8.8	Taranto Gulf	(De Vittor et al., 2015)
	0.17	to 0.43	Harima Nada	This study
N_2	2.7	to 544.3	Chinese marginal seas	(Sun et al., 2021)

28.70	to 420.49	East China Sea	(Lin et al., 2017)
0.2	to 2.8	Arctic shelf	(Canion et al., 2014)
1322.4	to 2683.2	Peru margin	(Rich et al., 2020)
0.40	to 0.48	Harima Nada	This study

419 NH₄⁺ is released from the sediment to the bottom water in our study area. It is commonly observed and 420 has been reported in other coastal regions, including Northern Adriatic Sea (De Vittor et al., 2012), 421 Vilaine Bay (Ratmaya et al., 2022) and Eastern Taiwan (Zhou et al., 2017). The difference between our 422 study area and these coastal waters is that the sediment in our region also serves as a source of NO₃ for 423 the overlying seawater. The NO₃ concentrations observed in the bottom water of Harima Nada were not 424 always higher than that in the pore water. Consequently, NO₃ produced by nitrification in the sediment 425 can be released into the water column. In contrast, in areas such as the offshore of eastern Taiwan, the 426 sediment continuously absorbs NO₃ from the overlying water because of the lower concentration of 427 NO₃ in the pore water compared to the overlying water (Zhou et al., 2017). 428 The N-loss flux is an important sink of nitrogen in the sediment of the Harima Nada, constituting about 429 30% of the sinking flux of PON into the sediment. The flux of N₂ estimated in our study is about one to 430 two orders of magnitude smaller than the values reported in other areas such as the East China Sea and 431 Arctic shelf. This discrepancy may be attributed to higher bacterial activity in those areas or to elevated 432 concentrations of organic matter and NO₃ in the sediment (Sun et al., 2021; Canion et al., 2014; Lin et 433 al., 2017; Rich et al., 2020). 434 Our results indicate that the anammox rate is approximately three times greater than the denitrification 435 rate. However, some previous studies reported that anammox contributes a smaller N2 flux compared to 436 denitrification (Teng and Lin, 2024; Dalsgaard et al., 2005). The first reason for this difference is the 437 lower maximum NO₃ concentration or shallower NO₃ penetration in Harima Nada sediments, which 438 leads to a denitrification rate lower than that in those regions. In addition, the low concentration of NH4 439 in the sediment of those regions, even as the same scale as the NO₃ concentration, limits the rate of 440 anammox and reduces the contribution to N2. In contrast, NH4 concentration in the sediment in this 441 study was significantly higher than NO₃ concentration, thereby enhancing the potential rate of 442 anammox (Canion et al., 2014; Rich et al., 2020). Another reason is that the sediment thickness utilized 443 in our model was set at 10 cm, whereas most conventional observations sampled only the surface 444 sediment, potentially underestimating the contribution of anammox in deeper layers. Usually, NH₄+ 445 concentrations in pore water are much lower in the surface layer compared to deeper layers, resulting in 446 a reduced anammox reaction rate in the 0-5 cm layer relative to the 5-10 cm layer. When concentrating 447 on the upper 5 cm of sediment, our model results suggest that the anammox rate constitutes a smaller

448 proportion of N₂, accounting for less than 50% in summer (Figure S5 and Text S5), which is consistent

This study developed a one-dimensional vertical sediment model to investigate the seasonal variations

with some observations (Teng and Lin, 2024; Dalsgaard et al., 2005).

5 Conclusions

450

451

452

453

454

455

456

457

458 459

460

461

462463

464

465 466

467

468

469

470

471

472

473

474 475 in the direction and magnitude of nitrogen fluxes at the sediment-water interface in semi-enclosed inland seas, and to reveal the controlling mechanisms of various environmental factors on these variations. Utilizing continuous observational data from a typical semi-enclosed inland sea for validation, we found that the flux of PON settling from the bottom water to the sediment is the main source of nitrogen in the sediment, with its seasonal variation governed by the PON concentration in the bottom water. Due to the regeneration of a substantial amount of NH₄⁺ in the sediment, NH₄⁺ is continuously released from the sediment to the overlying water, with its seasonal variation being temperature-controlled. Temperature influences the mineralization rate, which subsequently affects NH⁺₄ flux through NH⁺₄ inventory in the sediment. NO₃ flux at the interface is directed upward in an oligotrophic water column, and its seasonal variation is also temperature-controlled. The influence of temperature over NH₄ inventory in the sediment is transmitted to NO₃ inventory through nitrification, thereby affecting NO₃ flux. This results in the seasonal variation of DIN flux returning from the sediment to the water being unrelated to the PON flux, as these two are controlled by different environmental factors with distinct seasonal patterns. This finding suggests that neglecting to consider bottom water temperature and PON concentration in reflective boundary conditions or empirical formulas may lead to varying degrees of misestimation when calculating the seasonal variation of DIN flux at the sediment-water interface. The rate of nitrogen removal in sediments with low nitrate levels, possibly found in oligotrophic environments, is primarily controlled by anammox. Moreover, traditional observations are limited by the sampling depth of sediments, which may result in an underestimation of the contribution of anammox in deeper sediment layers. Our findings indicate that the maximum concentration of DO in sediments, which ranged from 60 to 140 mmol m-3, has a negligible impact on sediment nitrogen cycling. However, seasonal variations in oxygen penetration depth, which ranges from 1 to 3 mm, can significantly influence nitrogen fluxes at the sediment-water interface. In addition, this model is mainly suited for semi-enclosed

477

478

479

480

481

482

483 484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

inland seas dominated by muddy sediments and does not account for the advection of pore water flow in sandy sediments. In practice, this process can be incorporated by adjusting the vertical velocity in the solute transport equation. Overall, this model can be widely applied to investigate nitrogen cyclingrelated issues in nearshore muddy sediments. Moreover, by investigating the seasonal variations of nitrogen cycling in semi-enclosed inland sea sediments and their controlling factors, it can provide a basis for governance and management support for environmental issues such as coastal eutrophication. In future research, we will expand upon this study by integrating it with long-term observational data to investigate the effects of prolonged changes in aquatic environments, such as eutrophication and seawater warming, on sediment nitrogen cycling and nitrogen flux at the sediment-water interface. Code, data, or code and data availability The source code of the numerical model used in this study is available on request. Please contact the corresponding author. **Author contributions** Zhaosen Wu: conceptualization, methodology, software, validation, visualization, writing (original draft preparation). Xinyu Guo: formal analysis, methodology, resources, supervision, writing (review and editing). Jie Shi: supervision, writing (review and editing). Xiaokun Ding: methodology, software. Masatoshi Nakakuni: data curation, investigation, resources. Kuninao Tada: data curation, investigation, resources. **Competing interests** The authors declare that they have no conflict of interest.

500 **Supporting Information** 501 Supporting Information is available free of charge at the Biogeosciences website. 502 503 Acknowledgement 504 This research was performed by the Environment Research and Technology Development Fund 505 (JPMEERF20255002) of the Environmental Restoration and Conservation Agency Provided by the Ministry of Environment of Japan. We thank Dr. Akihiko Morimoto and Dr. Naoki Yoshie who worked 506 507 in the Center for Marine Environmental Studies, Ehime University, Japan and provided valuable suggestions for our research. Z. Wu thanks the China Scholarship Council (CSC) and the Ministry of 508 509 Education, Culture, Sports, Science and Technology, Japan (MEXT) for a project on Joint 510 Usage/Research Center, Leading Academia in Marine and Environmental Research (LaMer) for 511 supporting his study in Japan. 512 513

514 References

- 515 Akbarzadeh, Z., Laverman, A. M., Rezanezhad, F., Raimonet, M., Viollier, E., Shafei, B., and Van
- 516 Cappellen, P.: Benthic nitrite exchanges in the Seine River (France): An early diagenetic modeling
- analysis, Sci Total Environ, 628-629, 580-593, 10.1016/j.scitotenv.2018.01.319, 2018.
- 518 Berelson, W. M., McManus, J., Severmann, S., and Reimers, C. E.: Benthic flux of oxygen and nutrients
- 519 across Oregon/California shelf sediments, Cont. Shelf Res., 55, 66-75, 10.1016/j.csr.2013.01.009, 2013.
- 520 Berner, R.: Early diagenesis: a theoretical approach: Princeton, 1980.
- 521 Bohlen, L., Dale, A. W., Sommer, S., Mosch, T., Hensen, C., Noffke, A., Scholz, F., and Wallmann, K.:
- 522 Benthic nitrogen cycling traversing the Peruvian oxygen minimum zone, Geochim. Cosmochim. Acta,
- 523 75, 6094-6111, 10.1016/j.gca.2011.08.010, 2011.
- 524 Boudreau, B. P., Mucci, A., Sundby, B., Luther, G. W., and Silverberg, N.: Comparative diagenesis at
- 525 three sites on the Canadian continental margin, J. Mar. Res., 56, 1259-1284,
- 526 10.1357/002224098765093634, 1998.
- Boynton, W. R., Ceballos, M. A. C., Bailey, E. M., Hodgkins, C. L. S., Humphrey, J. L., and Testa, J.
- 528 M.: Oxygen and Nutrient Exchanges at the Sediment-Water Interface: a Global Synthesis and Critique
- 529 of Estuarine and Coastal Data, Estuaries Coasts, 41, 301-333, 10.1007/s12237-017-0275-5, 2017.
- 530 Canion, A., Overholt, W. A., Kostka, J. E., Huettel, M., Lavik, G., and Kuypers, M. M.: Temperature
- 531 response of denitrification and anaerobic ammonium oxidation rates and microbial community structure
- in Arctic fjord sediments, Environ Microbiol, 16, 3331-3344, 10.1111/1462-2920.12593, 2014.
- 533 Capet, A., Meysman, F. J. R., Akoumianaki, I., Soetaert, K., and Grégoire, M.: Integrating sediment
- 534 biogeochemistry into 3D oceanic models: A study of benthic-pelagic coupling in the Black Sea, Ocean
- 535 Modelling, 101, 83-100, 10.1016/j.ocemod.2016.03.006, 2016.
- 536 Chang, P.-H., Guo, X., and Takeoka, H.: A numerical study of the seasonal circulation in the Seto Inland
- 537 Sea, Japan, Journal of Oceanography, 65, 721-736, 10.1007/s10872-009-0062-4, 2009.
- 538 Chen, S., Gao, D., Zhang, J., Zheng, Y., Li, X., Dong, H., Yin, G., Han, P., Liang, X., Liu, M., Müller,
- 539 C., and Hou, L.: Gross nitrogen transformations in intertidal sediments of the Yangtze Estuary:
- 540 Distribution patterns and environmental controls, Geoderma, 429, 10.1016/j.geoderma.2022.116233,
- 541 2023.

- 542 Dale, A. W., Clemens, D., Dähnke, K., Korth, F., Wankel, S. D., Schroller-Lomnitz, U., Wallmann, K.,
- 543 and Sommer, S.: Nitrogen cycling in sediments on the NW African margin inferred from N and O
- isotopes in benthic chambers, Frontiers in Marine Science, 9, 10.3389/fmars.2022.902062, 2022.
- 545 Dale, A. W., Sommer, S., Bohlen, L., Treude, T., Bertics, V. J., Bange, H. W., Pfannkuche, O., Schorp,
- 546 T., Mattsdotter, M., and Wallmann, K.: Rates and regulation of nitrogen cycling in seasonally hypoxic
- 547 sediments during winter (Boknis Eck, SW Baltic Sea): Sensitivity to environmental variables, Estuar.
- 548 Coast. Shelf Sci., 95, 14-28, 10.1016/j.ecss.2011.05.016, 2011.
- 549 Dalsgaard, T., Thamdrup, B., and Canfield, D. E.: Anaerobic ammonium oxidation (anammox) in the
- marine environment, Research in microbiology, 156, 457-464, 2005.
- 551 De Vittor, C., Relitti, F., Kralj, M., Covelli, S., and Emili, A.: Oxygen, carbon, and nutrient exchanges
- at the sediment-water interface in the Mar Piccolo of Taranto (Ionian Sea, southern Italy), Environmental
- 553 Science and Pollution Research, 23, 12566-12581, 10.1007/s11356-015-4999-0, 2015.
- 554 De Vittor, C., Faganeli, J., Emili, A., Covelli, S., Predonzani, S., and Acquavita, A.: Benthic fluxes of
- 555 oxygen, carbon and nutrients in the Marano and Grado Lagoon (northern Adriatic Sea, Italy), Estuarine,
- 556 Coastal and Shelf Science, 113, 57-70, 10.1016/j.ecss.2012.03.031, 2012.
- 557 Devol, A. H.: Denitrification, Anammox, and N2 Production in Marine Sediments, Annu. Rev. Mar. Sci.,
- 558 7, 403-423, 10.1146/annurev-marine-010213-135040, 2015.
- 559 Ding, X., Guo, X., Zhang, C., Yao, X., Liu, S., Shi, J., Luo, C., Yu, X., Yu, Y., and Gao, H.: Water
- 560 conservancy project on the Yellow River modifies the seasonal variation of Chlorophyll-a in the Bohai
- 561 Sea, Chemosphere, 254, 126846, 10.1016/j.chemosphere.2020.126846, 2020.
- Han, A., Kao, S. J., Lin, W., Lin, Q., Han, L., Zou, W., Tan, E., Lai, Y., Ding, G., and Lin, H.: Nutrient
- 563 Budget and Biogeochemical Dynamics in Sansha Bay, China: A Coastal Bay Affected by Intensive
- Mariculture, Journal of Geophysical Research: Biogeosciences, 126, 10.1029/2020jg006220, 2021.
- 565 Huang, F., Lin, X., Hu, W., Zeng, F., He, L., and Yin, K.: Nitrogen cycling processes in sediments of the
- Pearl River Estuary: Spatial variations, controlling factors, and environmental implications, CATENA,
- 567 206, 105545, https://doi.org/10.1016/j.catena.2021.105545, 2021.
- 568 Huettel, M., Berg, P., and Kostka, J. E.: Benthic Exchange and Biogeochemical Cycling in Permeable
- 569 Sediments, Annu. Rev. Mar. Sci., 6, 23-51, 10.1146/annurev-marine-051413-012706, 2014.

- 570 Ichimi, K., Tada, K., and Montani, S.: The phytoplankton assemblage of the past and present in the Seto
- Inland Sea-the expectation from sediment core samples, Aquabiology, 27, 214~221, 2005.
- 572 Ishii, D., Yanagi, T., and Sasakura, S.: Long-term trends in the occurrence of red tides in the Seto Inland
- 573 Sea, Japan, Oceanography in Japan, 23, 217-236, 10.5928/kaiyou.23.6_217, 2014.
- 574 Jäntti, H. and Hietanen, S.: The Effects of Hypoxia on Sediment Nitrogen Cycling in the Baltic Sea,
- 575 Ambio, 41, 161-169, 10.1007/s13280-011-0233-6, 2012.
- 576 Kalvelage, T., Lavik, G., Lam, P., Contreras, S., Arteaga, L., Löscher, C. R., Oschlies, A., Paulmier, A.,
- 577 Stramma, L., and Kuypers, M. M. M.: Nitrogen cycling driven by organic matter export in the South
- Pacific oxygen minimum zone, Nature Geoscience, 6, 228-234, 10.1038/ngeo1739, 2013.
- 579 Khalil, M. A. K. and Rasmussen, R. A.: The global sources of nitrous oxide, Journal of Geophysical
- 580 Research: Atmospheres, 97, 14651-14660, 10.1029/92jd01222, 2012.
- 581 Kuhrts, C., Seifert, T., and Fennel, W.: Modeling Transport of Fluff Layer Material in the Baltic Sea,
- 582 Hydrobiologia, 554, 25-30, 10.1007/s10750-005-1003-x, 2006.
- 583 Laima, M., Maksymowska-Brossard, D., Sauriau, P.-G., Richard, P., Girard, M., Gouleau, D., and
- 584 Joassard, L.: Fluff deposition on intertidal sediments: effects on benthic biota, ammonium fluxes and
- 585 nitrification rates, Biogeochemistry, 61, 115-133, 10.1023/a:1020264414924, 2002.
- 586 Lee, J.-Y., Tett, P., Jones, K., Jones, S., Luyten, P., Smith, C., and Wild-Allen, K.: The PROWQM
- 587 physical-biological model with benthic-pelagic coupling applied to the northern North Sea, J. Sea Res.,
- 588 48, 287-331, https://doi.org/10.1016/S1385-1101(02)00182-X, 2002.
- 589 Leng, Q., Guo, X., Zhu, J., and Morimoto, A.: Contribution of the open ocean to the nutrient and
- 590 phytoplankton inventory in a semi-enclosed coastal sea, Biogeosciences, 20, 4323-4338, 10.5194/bg-20-
- 591 4323-2023, 2023.
- 592 Leynaert, A., Longphuirt, S. N., An, S., Lim, J.-H., Claquin, P., Grall, J., Kwon, B. O., and Koh, C. H.:
- 593 Tidal variability in benthic silicic acid fluxes and microphytobenthos uptake in intertidal sediment,
- 594 Estuarine, Coastal and Shelf Science, 95, 59-66, 10.1016/j.ecss.2011.08.005, 2011.
- Lin, X., Liu, M., Hou, L., Gao, D., Li, X., Lu, K., and Gao, J.: Nitrogen Losses in Sediments of the East
- 596 China Sea: Spatiotemporal Variations, Controlling Factors, and Environmental Implications, Journal of
- 597 Geophysical Research: Biogeosciences, 122, 2699-2715, 10.1002/2017jg004036, 2017.

- 598 Liu, H. and Yin, B.: Annual cycle of carbon, nitrogen and phosphorus in the Bohai Sea: A model study,
- 599 Cont. Shelf Res., 27, 1399-1407, 10.1016/j.csr.2007.01.015, 2007.
- 600 Liu, S. M., Li, L. W., Zhang, G. L., Liu, Z., Yu, Z., and Ren, J. L.: Impacts of human activities on nutrient
- transports in the Huanghe (Yellow River) estuary, Journal of Hydrology, 430-431, 103-110,
- 602 10.1016/j.jhydrol.2012.02.005, 2012.
- 603 Liu, X., Stock, C. A., Dunne, J. P., Lee, M., Shevliakova, E., Malyshev, S., and Milly, P. C. D.: Simulated
- 604 Global Coastal Ecosystem Responses to a Half-Century Increase in River Nitrogen Loads, Geophysical
- Research Letters, 48, e2021GL094367, https://doi.org/10.1029/2021GL094367, 2021.
- 606 Lønborg, C. and Markager, S.: Nitrogen in the Baltic Sea: Long-term trends, a budget and decadal time
- 607 lags in responses to declining inputs, Estuarine, Coastal and Shelf Science, 261, 107529,
- 608 https://doi.org/10.1016/j.ecss.2021.107529, 2021.
- 609 McTigue, N. D., Gardner, W. S., Dunton, K. H., and Hardison, A. K.: Biotic and abiotic controls on co-
- 610 occurring nitrogen cycling processes in shallow Arctic shelf sediments, Nature Communications, 7,
- 611 13145, 10.1038/ncomms13145, 2016.
- Mei Liu, S., Wei Li, L., and Zhang, Z.: Inventory of nutrients in the Bohai, Cont. Shelf Res., 31, 1790-
- 613 1797, 10.1016/j.csr.2011.08.004, 2011.
- 614 Mu, D., Yuan, D., Feng, H., Xing, F., Teo, F. Y., and Li, S.: Nutrient fluxes across sediment-water
- 615 interface in Bohai Bay Coastal Zone, China, Mar. Pollut. Bull., 114, 705-714,
- 616 10.1016/j.marpolbul.2016.10.056, 2017.
- 617 Nakakuni, M., Yamaguchi, H., Ichimi, K., and Tada, K.: Seasonal variation in pore water nutrients and
- their fluxes from the bottom sediments in Harima Nada, Seto Inland Sea, Journal of Oceanography, 80,
- 619 219-232, 10.1007/s10872-024-00719-7, 2024.
- 620 Niemistö, J., Kononets, M., Ekeroth, N., Tallberg, P., Tengberg, A., and Hall, P. O. J.: Benthic fluxes of
- 621 oxygen and inorganic nutrients in the archipelago of Gulf of Finland, Baltic Sea Effects of sediment
- resuspension measured in situ, J. Sea Res., 135, 95-106, 10.1016/j.seares.2018.02.006, 2018.
- Radtke, H., Lipka, M., Bunke, D., Morys, C., Woelfel, J., Cahill, B., Böttcher, M. E., Forster, S., Leipe,
- 624 T., Rehder, G., and Neumann, T.: Ecological ReGional Ocean Model with vertically resolved sediments
- 625 (ERGOM SED 1.0): coupling benthic and pelagic biogeochemistry of the south-western Baltic Sea,
- 626 Geoscientific Model Development, 12, 275-320, 10.5194/gmd-12-275-2019, 2019.

- 627 Ratmaya, W., Laverman, A. M., Rabouille, C., Akbarzadeh, Z., Andrieux-Loyer, F., Barillé, L., Barillé,
- 628 A.-L., Le Merrer, Y., and Souchu, P.: Temporal and spatial variations in benthic nitrogen cycling in a
- 629 temperate macro-tidal coastal ecosystem: Observation and modeling, Cont. Shelf Res., 235,
- 630 10.1016/j.csr.2022.104649, 2022.
- 631 Rich, J. J., Arevalo, P., Chang, B. X., Devol, A. H., and Ward, B. B.: Anaerobic ammonium oxidation
- 632 (anammox) and denitrification in Peru margin sediments, J. Mar. Syst., 207
- 633 10.1016/j.jmarsys.2018.09.007, 2020.
- 634 Sayama, M., Sohma, A., and Takasugi, Y.: Experimental analysis of the effect of flow velocity on oxygen
- dynamics near the water-sediment interface in a coastal zone., Proceedings of Coastal Engineering, 49,
- 636 996-1000, 10.2208/proce1989.49.996, 2002.
- 637 Soetaert, K., Herman, P. M. J., and Middelburg, J. J.: A model of early diagenetic processes from the
- 638 shelf to abyssal depths, Geochim. Cosmochim. Acta, 60, 1019-1040, 10.1016/0016-7037(96)00013-0,
- 639 1996.
- 640 Sun, L., Wang, C., Yu, H., Liu, D., Houlton, B. Z., Wang, S., Zeng, X., Bai, E., Fang, Y., and Jia, Y.:
- 641 Biotic and Abiotic Controls on Dinitrogen Production in Coastal Sediments, Glob. Biogeochem. Cycle,
- 642 35, 10.1029/2021gb007069, 2021.
- 643 Tada, K.: Primary Production, Nutrients and Nutrient Release from Bottom Sediments in Coastal Water,
- Journal of Water Environment Society of Japan, 44, 137-141, 2021.
- 645 Teng, Z. and Lin, X.: Sediment nitrates reduction processes affected by non-native Sonneratia apetala
- plantation in South China, Sci. Total Environ., 906, 167523, 2024.
- Thamdrup, B.: New Pathways and Processes in the Global Nitrogen Cycle, Annual Review of Ecology,
- Evolution, and Systematics, 43, 407-428, 10.1146/annurev-ecolsys-102710-145048, 2012.
- 649 Umlauf, L., Klingbeil, K., Radtke, H., Schwefel, R., Bruggeman, J., and Holtermann, P.: Hydrodynamic
- 650 Control of Sediment-Water Fluxes: Consistent Parameterization and Impact in Coupled Benthic-Pelagic
- Models, Journal of Geophysical Research: Oceans, 128, 10.1029/2023jc019651, 2023.
- Wang, X. H.: Tide-Induced Sediment Resuspension and the Bottom Boundary Layer in an Idealized
- Estuary with a Muddy Bed, Journal of Physical Oceanography, 32, 3113-3131, 10.1175/1520-
- 654 0485(2002)032<3113:Tisrat>2.0.Co;2, 2002.

- 655 Wilson, S. T., Al-Haj, A. N., Bourbonnais, A., Frey, C., Fulweiler, R. W., Kessler, J. D., Marchant, H.
- 656 K., Milucka, J., Ray, N. E., Suntharalingam, P., Thornton, B. F., Upstill-Goddard, R. C., Weber, T. S.,
- 657 Arévalo-Martínez, D. L., Bange, H. W., Benway, H. M., Bianchi, D., Borges, A. V., Chang, B. X., Crill,
- 658 P. M., del Valle, D. A., Farías, L., Joye, S. B., Kock, A., Labidi, J., Manning, C. C., Pohlman, J. W.,
- 659 Rehder, G., Sparrow, K. J., Tortell, P. D., Treude, T., Valentine, D. L., Ward, B. B., Yang, S., and
- 660 Yurganov, L. N.: Ideas and perspectives: A strategic assessment of methane and nitrous oxide
- 661 measurements in the marine environment, Biogeosciences, 17, 5809-5828, 10.5194/bg-17-5809-2020,
- 662 2020.
- 663 Yamamoto, T., Orimoto, K., Asaoka, S., Yamamoto, H., and Onodera, S.-i.: A Conflict between the
- 664 Legacy of Eutrophication and Cultural Oligotrophication in Hiroshima Bay, Oceans, 2, 546-565,
- 665 10.3390/oceans2030031, 2021.
- 666 Yang, J.-Y. T., Hsu, T.-C., Tan, E., Lee, K., Krom, M. D., Kang, S., Dai, M., Hsiao, S. S.-Y., Yan, X.,
- 667 and Zou, W.: Sedimentary processes dominate nitrous oxide production and emission in the hypoxic
- zone off the Changjiang River estuary, Sci. Total Environ., 827, 154042, 2022.
- 669 Yi, Y., Gao, Y., Wu, X., Jia, W., and Liu, Q.: Modeling the effect of artificial flow and sediment flux on
- the environment and plankton of an estuary, International Journal of Sediment Research, 38, 335-348,
- 671 https://doi.org/10.1016/j.ijsrc.2023.02.001, 2023.
- 672 Zhang, X., Ward, B. B., and Sigman, D. M.: Global Nitrogen Cycle: Critical Enzymes, Organisms, and
- 673 Processes for Nitrogen Budgets and Dynamics, Chem Rev, 120, 5308-5351,
- 674 10.1021/acs.chemrev.9b00613, 2020.
- Zhang, X., Zhang, Q., Yang, A., Hou, L., Zheng, Y., Zhai, W., and Gong, J.: Incorporation of microbial
- 676 functional traits in biogeochemistry models provides better estimations of benthic denitrification and
- 677 anammox rates in coastal oceans, Journal of Geophysical Research: Biogeosciences, 123, 3331-3352,
- 678 2018.
- 679 Zhou, F., Gao, X., Zhang, Y., Yuan, H., Song, J., Liu, K., Yang, B., and Zhuang, W.: Potential mobility
- of inorganic nutrients and its controls at the sediment-water interface in the main path of Kuroshio
- 681 Current off eastern Taiwan, Mar Pollut Bull, 119, 270-276, 10.1016/j.marpolbul.2017.04.002, 2017.

682	Zhou, N., Zhang, G. L., and Liu, S. M.: Nutrient exchanges at the sediment-water interface and the
683	responses to environmental changes in the Yellow Sea and East China Sea, Mar Pollut Bull, 176, 113420,
684	10.1016/j.marpolbul.2022.113420, 2022.
685	Zhu, J., Guo, X., Shi, J., and Gao, H.: Dilution characteristics of riverine input contaminants in the Seto
686	Inland Sea, Mar. Pollut. Bull., 141, 91-103, 10.1016/j.marpolbul.2019.02.029, 2019.
687	
688	