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Abstract. Macrophysical properties of clouds are influenced by underlying microphysical processes. In practice, there is often

an observational gap in bridging the two. For example, our current understanding of aerosol-cloud interaction and cloud-

climate feedback is hindered by a lack of robust measurements of the distribution of drop sizes within clouds, especially for the

smallest drop sizes. Doppler radar measurements have proven useful in estimating rainfall drop size distributions (DSDs) but

face an intermediate challenge of requiring a correction for the presence of vertical air motion. Recent advances in millimeter5

wave technology have made radar measurements at ever smaller wavelengths possible, allowing for analysis of particle size

dependent scattering effects to back out estimates of vertical winds and thereby DSDs. This work demonstrates a method of

deriving range-resolved DSDs using Doppler spectra at 238 GHz measured by the CloudCube ground-based G-band atmo-

spheric Doppler radar. The observations utilized are of marine boundary layer clouds during March and April 2023 in La

Jolla, CA, USA, taken as part of CloudCube’s participation in the Eastern Pacific Cloud Aerosol Precipitation Experiment10

(EPCAPE) campaign. This method first identifies notches in the velocity spectra and compares them to the theoretical notch

velocities predicted by size dependent backscattering and terminal velocity models to estimate the range-dependent vertical

wind. After removing the vertical wind, binned DSDs are retrieved from the zero-wind spectrum. Bulk properties of the pre-

cipitation are then derived including the number concentration, liquid water content, characteristic drop size, and precipitation

rate. These bulk properties are relatively invariant to the assumptions made in the estimation of the full DSD retrieval, making15

large volumes of such retrievals useful tools in assessing physical models of drizzle.

1 Introduction

Marine boundary layer clouds represent the largest physical source of uncertainty in projections of climate sensitivity (Zelinka

et al., 2020) and are central to understanding the radiative forcing of aerosol-cloud interactions (Bellouin et al., 2020). A

consistent finding is a relationship between the occurrence of precipitation and the mesoscale organization of low clouds (Abel20

et al., 2017; Yamaguchi et al., 2017; Smalley et al., 2022), where a transition from closed cell clouds to open cell clouds is

associated with precipitation onset. Therefore, these cloud transitions are critical in constraining both aerosol-cloud interaction

and cloud-climate feedbacks. A current dilemma in climate projection is the fact that the accuracy of future projections are
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limited by a negative correlation between aerosol-cloud interactions and cloud-climate feedback (Gettelman et al., 2024). This

anti-correlation has been clearly linked to climate model representation of the precipitation formation process (Suzuki et al.,25

2013).

Accurate observations of drizzle and light rain are essential to improve understanding of the microphysical processes in

boundary layer clouds and constrain both the aerosol cloud interactions and the cloud climate feedback. Understanding how the

size distribution of drizzle drops evolves in both time and space can provide insight into coalescence, breakup and evaporation

processes that shape cloud macrophysical properties. Current methods of directly measuring DSDs include using either ground-30

based or airborne disdrometers, devices which directly measure drop sizes. Ground-based disdrometers only measure drops

which fall all the way to the surface and have a limited capability to observe the smallest precipitation drops (Wang and

Bartholomew, 2023). Airborne measurements are more likely to capture data at several elevations, however these measurements

are sparse.

Continuous observations from remote sensing measurements are necessary to fill the gaps in in-situ sampling. Radar is the35

optimal tool for remote observations of drizzle and light rain from ground-based or airborne platforms. The most straightfor-

ward method to derive drizzle parameters is by assuming a reflectivity drizzle-rate (Z-R) relationship (Comstock et al., 2004).

However, in practice Z-R relationships have primarily been used operationally for satellite cloud radar observations where

reliable Doppler observations are not available (Lebsock and L’Ecuyer, 2011; Mroz et al., 2023). The widespread proliferation

of mm-wave Doppler cloud radars enabled a new class of retrieval of drizzle and light rain that combine radar reflectivity and40

Doppler moments. For example, Frisch et al. (1995) combine Ka-band Doppler spectral moments with an assumption of zero

vertical wind and an assumed drop size distribution shape to derive the vertical profile of drizzle parameters. O’Connor et al.

(2005) advanced on this approach by combining W-band Doppler moments with lidar backscatter and a method to correct for

turbulent broadening. This multi-sensor approach has subsequently been used to make novel observations of drizzle in stra-

tocumulus clouds (Ghate and Cadeddu, 2019). Galloway et al. (1999) invert an airborne W-band Doppler spectrum to derive a45

binned drizzle DSD without assuming a DSD shape while retaining the zero mean wind assumption.

One common shortfall of the Doppler-based methods mentioned above is the difficulty in accounting for the effect of the

vertical air motion on the mean Doppler. In this respect, Mie scattering in mm-wave radars can be useful in constraining

the vertical air motion when the size of drops is similar to the observing wavelength of a radar system. Specifically, the

backscattering efficiency at a particular observing wavelength contains several peaks and valleys as a function of drop radius,50

as seen in Fig. 1. Lhermitte (1987) first proposed the technique of using full W-band Doppler spectra that show similarly

oscillatory shapes along with information about the theoretical backscattering efficiency in each velocity bin to simultaneously

retrieve information about the vertical air velocity and the rain DSD. The difference between the theoretical and observed

locations of any minima seen in the Doppler spectrum would yield information about vertical air motion in the scene while the

relative heights of any maxima seen in the spectrum would yield information about the DSD of the scattering particles. Kollias55

et al. (2002) demonstrated vertical air motion retrievals derived from W-band Doppler spectrum observations of stratiform

precipitation. Giangrande et al. (2010) first demonstrated the full utility of this technique to analyze W-band Doppler spectra.

This work retrieved measurements of both vertical winds as well as best-fit parameters to a Marshall-Palmer log-linear DSD;
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Figure 1. Backscattering efficiency as a function of particle radius for three different radar bands. The solid lines represent backscattering

calculated with the T-matrix method, which assumes some oblateness of the drops. The dotted lines represent Mie backscattering, which

assumes the drops are spherical. The horizontal dotted lines represents lines of efficiency equal to 0 and 1 for each band. Calculations are

described in Sect. 2.3

however, useful spectra can only be captured at W-band for storms with large droplets greater than ∼0.8 mm. As seen in

Fig. 1, the first backscattering minimum occurs at a larger drop radius for lower observing frequencies. Thus, to be sensitive to60

measurements of drops as small as drizzle (smaller than 0.5 mm), it is necessary to make Doppler spectrum measurements at a

higher frequency. In particular for G-band, the first minimum is located at a small enough radius that its location is insensitive

to the parametrization of the drop aspect ratio, permitting high accuracy quantification of the vertical air motion in all but

the lightest liquid phase precipitation. The utility of G-band observations was theorized by Battaglia et al. (2014) and first

demonstrated by Courtier et al. (2024) in the addition of G-band Doppler spectra to a multi-frequency DSD retrieval.65

This work explores the capability of making retrievals based only on G-band spectra to profile liquid phase precipitation

DSDs in marine boundary layer clouds. This class of precipitation is ideally suited for G-band for two reasons: (1) the prepon-

derance of small drops means that the Mie resonance (or notch) will frequently not be observed in W-band spectra but will be

observed at G-band, and (2) the precipitation liquid water content is small and thus the attenuation from condense water tends

to be small. The later fact means that attenuation correction can be performed without incurring the large errors common in70

rainfall retrievals at attenuating frequencies (Hitschfeld and Bordan, 1954). To demonstrate these capabilities, the paper uses

the first operational data from a deployment of a newly developed G-band Doppler cloud radar to a large field deployment at a

coastal site with frequent marine boundary layer clouds and validates the results against ancillary observations.
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2 Instrument and Data Overview

2.1 CloudCube Instrument75

CloudCube is a modular triple-frequency (Ka-band, W-band, and G-band) atmospheric radar instrument developed at the Jet

Propulsion Laboratory. Its use of both a fully solid state design as well as direct up-/down-conversion between baseband and

RF allows it to have a uniquely compact architecture, ideal for deployment in the field. This paper focuses specifically on

the G-band) channel, currently the only one of CloudCube’s with full Doppler spectral resolution. The observing frequency,

238.8 GHz, was strategically chosen to take advantage of an intersection between an allowed frequency allocation and a trough80

in the atmospheric absorption curve. It also lies close to the limits at which transmit sources of sufficient power are available.

A summary of the instrument parameters are shown in Table 1, and more detail on the instrument can be found in Socuellamos

et al. (2024a).

2.2 EPCAPE Campaign

The data presented in this paper was collected as part of CloudCube’s participation in the Eastern Pacific Cloud Aerosol85

Precipitation Experiment (EPCAPE). The main goal of EPCAPE was to better understand marine stratocumulus clouds and

their effect on Earth’s radiation budget. CloudCube measured cloudy and lightly raining cumulus and drizzling stratocumulus

over several days during March and April 2023 from atop Scripps Pier in La Jolla, CA, stationed adjacent to the US Department

of Energy’s Atmospheric Radiation Measurement Mobile Facility (AMF). Data from all three bands of CloudCube were saved

during this time. Details of the post-processing for the data can be found at Socuellamos et al. (2024c), and the data itself is90

made publicly available in Socuellamos et al. (2023). The majority of the precipitation events during this deployment period

were not observed by CloudCube because at that time the instruments did not have radomes and had to be covered during

periods of surface precipitation to protect the radars.

This paper also uses data taken from several ARM instruments to both aid and supplement the presented analysis. Notably,

our retrievals rely upon temperature, pressure, and humidity data profiles collected by radiosondes for the temperature and95

pressure dependent relationships for particle backscattering efficiencies and fall speeds as well as for gasseous attenuation. The

retrievals are validated with the ARM Ka-band radar (KaZR; Kollias et al., 2016, see radar parameters in Table 1) and the 2-D

video disdrometer (VDIS; Wang and Bartholomew, 2023) instruments.

2.3 Scattering Properties

The single scattering properties of liquid precipitation drops are calculated with the T-Matrix method (Mishchenko and Travis,100

1998), using the Python wrapper of Leinonen (2014). The aspect ratio of drops is modeled using the equation b
a = 1.055−

0.0653D where D is the drop diameter in mm, valid in the range 1.5–8 mm (Thurai and Bringi, 2005), and b/a is the axis ratio

of the spheroids. The aspect ratio is equal to one for the smallest drops (smaller than 0.84 mm) for which this formula produces

aspect ratios larger than unity. A look-up-table is created with the drop single scattering properties in one micron increments
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in radius and 1 K increments in temperature. The temperature dependent refractive index is taken from Warren (1984). At the105

CloudCube observing frequency (238 GHz), the first minimum is located at a drop radius of 0.33 mm.

KAZR CloudCube G-band

Frequency (GHz) 34.89 238.8

Transmission type Pulsed FMCW

Pulse width (µs) 0.3 40

Pulse repetition interval (ms) 0.27 0.042

Peak transmit power (W) 100 0.24

Antenna beamwidth (deg) 0.19 0.35

Range resolution (m) 30 10

Unambiguous range (km) 40 6.3

Velocity resolution (ms−1) 0.02 0.06

Nyquist velocity (ms−1) ±7.97 ±7.5

Time resolution (s) 4 0.4

Table 1. Summary of KAZR and CloudCube G-band radar specifications

3 Data Filtering and Minima Finding

CloudCube collected around 51 hours of data over 13 separate days during its campaign. However, only a few instances spread

over two days of this dataset contained spectra resolving at least one backscattering minimum for a sufficient span of elevations

and times to perform robust retrievals. We first start with an automated identification of candidate windows of time for which110

the spectra are of sufficient quality. To begin, the spectra are smoothed in the range direction to filter out the smallest scale of

vertical turbulence, improving the signal to noise in the minima detection. The spectra originally have a range resolution of

10 m, and a 1-D Gaussian blurring kernel is used to smooth to an effective range resolution of 50 m. Following the smoothing

step, each 1-D velocity power spectrum is analyzed to identify any minima.

To discern backscattering minima amid the measurement noise, we search for minima using a smoothed version of each 1-D115

spectrum. The spectrum is smoothed using a Wiener filter and use the difference between the smoothed and original spectra

to estimate random noise. Next we utilize the Python function scipy.find_peaks, which identifies peaks as any points

where its two neighbors are of a lower value – using sign-inverted spectra allows the minima to show up as peaks. To separate

true minima from spurious ones, a few criteria are imposed. We mandate that for true detections, the depth of the minima must

be at least five times the value of the estimated noise. Based on the spacing between successive minima seen in the T-matrix120

backscattering calculation, it is enforced that the spacing between minima found in the spectra must be separated by at least

1.15 m s−1. For sets of minima found with smaller spacings, minima with lower signal to noise ratios (SNRs) are preferentially
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Figure 2. (a): Reflectivity curtain for several minutes of G-band radar data collected on 30 March 2023. The pink line shows the location of

the cloud base, as measured by the ARM laser ceilometer. (b): A full 2-D Doppler spectrum from data collected during the time marked by

the black dotted line in (a). The dashed red line shows the elevation for the example 1-D spectrum on the right. (c): The black line represents

the original measured spectrum whereas the pink line shows the Wiener smoothed spectrum. The thicker dashed vertical lines represent

minima in the spectrum that are considered to be truly correlated with minima in the backscattering function whereas the thin dashed lines

represent other candidate minima the find_peaks function found without enforcing any checks.

filtered out. Our final check is to ensure that we are not erroneously finding points in the noise floor of the spectrum as minima

by ensuring that for true detections there is continuous data for at least 1 m s−1 on each side of the minimum. A demonstration

of this minima retrieval for a single elevation is shown in Fig. 2c. The spectrum in Fig. 2b will be referred to hereafter as125

"the example spectrum" and will be used to demonstrate our methods for the remainder of this paper. To provide context

for this example spectrum, Fig. 2a shows the G-band reflectivity curtain and mark the time at which the example spectrum

was collected. Also shown is the cloud base height as measured by the ARM infrared laser ceilometer (Morris, 2016). This

ceilometer works best in non-precipitating conditions and the presence of drizzle is likely responsible for the sharp variations

in observed base height.130

After all minima have been identified in a single 2-D spectrum, they are classified based on which minimum in the backscat-

tering function they correlate to. The simplest method of doing this would be to draw boundaries of fixed width in velocity

space and assume all points within each section are correlated to the same backscattering notch. However, this requires an a

priori assumption of a mean vertical wind value with relatively low variance across elevation. To mitigate the risk of poor re-

trievals resulting from incorrect initial assumptions, a Gaussian mixture model (GMM) is used to cluster points associated with135

the same backscattering notch. This method assumes that all points in a given data set are drawn from one of N multivariate

Gaussian distributions, each with their own means and covariance matrices. We utilize the Python implementation of GMM in

sklearn.mixture.GaussianMixture. The algorithm initially looks for data points in the 1 m s−1 regions around the

locations of first three theoretical backscattering minima for T = 270 K. The number of components for the GMM to sort data

into is determined by how many of these initial regions have data within them. For example, Fig. 3a, shows a spectrum with140

these divisions overlaid. Since data is present in all three of the divisions, a GMM with three components is used. The initial

locations of the three Gaussian components are decided using the mean elevation and velocity of the data within each division.
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Figure 3. (a): 2-D Doppler spectrum with all identified minima overlaid. The black dashed lines represent the boundaries used to define

the initialization of the classifier. The blue stars represent the means of the points within the boundaries and the colored ellipses represent

the initial covariances in both the height and velocity directions. (b): 2-D Doppler spectrum with all identified minima classified according

to their correlation to notches in the backscattering function. The cyan points are minima that were filtered out as being erroneous and the

ellipses show the probability spaces of the Gaussian mixture model components. (c): vertical winds calculated from the classified minima.

The shape of each Gaussian is initialized by a covariance matrix derived from the standard deviations of the elevations and

velocities of the data. An example of these initial guesses is also shown in Fig. 3a.

The final components are fit by adjusting the parameters of the Gaussians until the likelihood of all points being drawn145

from one of the distributions is maximized. The final classifications are adjusted if necessary by ensuring that each height only

contains one point from each distribution. Any outlier points that have anomolously low likelihoods are masked. An example

of the final distributions can be seen in Fig. 3b. Note the cyan point to the far left of the spectrum that was identified as a

minimum but is masked as an outlier due to being many standard deviations away from any of the three Gaussian components.

4 Vertical Wind Retrieval150

After classifying the minima, the vertical winds are retrieved from their measured locations. The Gaussian component with

the mean velocity closest to zero is assumed to contain the points that correspond to the first backscattering minimum. For

each elevation, the temperature measured by the radiosonde is used to select the correct temperature-dependent backscattering

efficiency function. As the backscattering efficiency is a function of diameter and our spectrum power is a function of velocity,

drop diameters are transformed to drop velocity by assuming that all drops are falling at terminal velocity. For drop diameters155

greater than 100 µm, we linearly interpolate between the data points presented in Gunn and Kinzer (1949) to calculate terminal

velocity. For smaller drops, we use Stokes law, vt = 1
4kD2 (k = 1.19× 108, D in m, vt in m s−1). The effects of air density

are corrected for by multiplying the terminal velocity by a correction factor, C = (ρ0/ρ)m where ρ0 = 1.204 kg m−3 (density

for standard temperature and pressure) and m = 0.375 + (2.5× 10−5)D (Beard, 1985). The air density, ρ, as a function of

7

https://doi.org/10.5194/egusphere-2025-618
Preprint. Discussion started: 7 March 2025
c© Author(s) 2025. CC BY 4.0 License.



elevation is also measured by radiosondes. Once backscattering efficiency is transformed to be a function of velocity, the160

measured minimum value is subtracted from the theoretical value to retrieve vertical wind as a function of height: vwind(h) =

vmeas(h)− vtheo(h). An example of this retrieval using each of the minima is shown in Fig. 3c. The colors of the vertical wind

curves correspond to which color of minima which are used to derive the wind speeds.

There are small inconsistencies between wind speeds at the same height calculated from different minima. It is difficult to

determine the exact cause of this inconsistency, but is it likely due to a combination of uncertainty in the Gunn-Kinzer terminal165

velocity relationship and the drop obliquity parametrization are the largest contributors to this discrepancy. For the rest of

the analyses presented in this paper, only the vertical winds derived from the first minimum are considered (corresponding to

the red points in Fig. 3). Recall that the location of the first minimum can be assumed to be insensitive to the drop obliquity

parametrization.

5 Drop Size Distribution Retrieval170

As described in Kollias et al. (2011), the measured Doppler spectra can be described by the equation

S(v + vwind)obs = (A + ϵa)[S(v)Q ∗ g(σv,turb)] + ϵs (1)

where v is the true particle velocity, vwind is the vertical wind speed, A is attenuation, ϵa is the attenuation error, S(v)Q is the

quiet-air spectrum (no turbulence), g(σv,turb) is the convolution kernel that describes spectral broadening due to turbulence,

and ϵs represents error in the measured spectral power. Retrieval of the quiet-air spectrum from the measured spectrum would175

enable measurement the drop size distribution as a function of drop radius, N(r), in units of m−3 m−1, using the relationship

S(v)Q =
λ4

π5|K(λ)|2 σbck(r)N(r)
dr

dvt
(2)

where λ is the observing wavelength in mm, |K(λ)|2 is the squared magnitude of the complex index of refraction of water

at the observing wavelength, and σbck(r) is the backscattering cross section in mm2 as a function of particle size. S(v)Q has

units of mm6m−3(m s−1)−1. As the CloudCube spectra are saved in units of dBZ, the spectra are transformed to linear units180

using the relations dBZ = 10log10(Z/Z0), Z0 = 1 mm6m−3, and Z = S(v)dv.

The radius-resolution of the DSD retrieval is defined by the velocity resolution of CloudCube (0.06 ms−1) and varies

according to dr
dvt

. The radius-resolution varies greatly as a function of drop radius. In the Stokes regime, the resolution starts

off coarse as dr
dvt

is larger. This value decreases in the transition out of the Stokes region but then again increases for bigger

drop sizes. Plots of the terminal velocity relationships as well as the radius resolution at standard temperature and pressure are185

shown in Fig. 4.
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Figure 4. (a): The terminal velocity relationships plotted along with interpolated radius values corresponding to the measured CloudCube

spectrum velocities. The transition between the Stokes law regime and the Gunn-Kinzer interpolated points occurs at a radius of 50µm. (b):

The radius resolution plotted as a function of the radii interpolated from the spectrum velocities.

5.1 Turbulence-free Assumption

To begin with the simplest retrieval scheme, we first assume that spectra were captured in a turbulence-free environment.

Ignoring for now attenuation error as well, the measured spectrum can then be modeled simply as

S(v + vwind)obs = AS(v)Q + ϵs. (3)190

With this simplification, once attenuation is corrected for, the above equation can be inverted to solve for N(r). Calculation

of the spectrum error is carried out according to the analysis presented in the appendix of Hogan et al. (2005). Based on

CloudCube’s observing wavelength and the scale of wind speeds measured both directly by the sondes and calculated from the

spectra, we can assume that each collected Doppler spectrum, which are sampled once every 36 ms, is fully independent from

the previous. Then, the spectrum error can be written as195

ϵs

S
=

√
1
M

(
1 +

2
SNR

+
1

SNR2

)
(4)

where M is the number of averaged samples in our spectra and SNR is the signal to noise of each of the points in the spectrum.

For CloudCube M = 30 spectra were averaged together before saving to disk. For attenuation, both water vapor attenuation and

hydrometeor attenuation should be considered. Elevation dependent water vapor attenuation is derived using the temperature

and relative humidity measured by the radiosondes (Rosenkranz, 1998). As shown in Fig. 5a, the hydrometeor attenuation is200

calculated and accumulated for each elevation where data to retrieve the DSD is available as per:
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RN

Ground

R1

R2

R3

Atot = 0

Atot = A1

Atot = A1 + A2

Atot = A1 + A2 + 
            … + AN-1

(a)

Figure 5. Left: G-band attenuation contributions by both water vapor and hydrometeors. Right: Diagram visualizing how hydrometeor

attenuation is accumulated over elevation.

Atot(RN ) =
N∑

n=0

∆A(Rn) (5)

Attenuation accumulation is determined by assuming that the DSD stays constant between successive range bins. Then, the

extinction coefficient can be assumed to be constant between R(n) and R(n+1), making the optical depth τ = 2
∫

k(R)dR =

2k∆R (the factor of 2 accounts for the round trip distance made by a radar echo). To find k, the extinction coefficient, we need205

to integrate over extinction contributions from all particle sizes in the measured DSD: k =
∫

k(r)dr =
∫

N(r)σext(r)dr. Here,

σext(r) represents the extinction cross section of the particles, which is computed from the procedures described in Sec. 2.3.

Then, the incremental attenuation contribution is determined by

∆A(Rn)(in dB) = 10log10(e
−τ ) = 10log10(e

−2k∆R) (6)

The relative importance of each of these attenuation contributions at G-band is shown in Fig. 5b. Because the precipitation210

in this case is light, the attenuation is dominated by the water vapor.Fig. 6a shows the 2-D DSD retrieved from the example

spectrum. There are lines of increased particle number density coinciding with the radii where backscattering minima occur.

These are likely unwanted artifacts in the retrieval due to some combination of not taking into account turbulence, errors in the

radius-terminal velocity relationship, or errors in the radius-backscattering efficiency relationship. To retrieve a 2-D DSD that

mitigates these artifacts without a robust knowledge of the sources and magnitude of error, we implement a forward modeling215

approach.

5.2 Forward Modeling of Turbulent Spectrum

The forward modeling approach attempts to retrieves a vector that best represents the DSD. The model first uses an initial vector

N that represents the DSD to create an idealized spectrum using Equation 2. A log-linear best fit is used to the DSD calculated
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Figure 6. (a): DSD for each elevation calculated with the no turbulence assumption. Grey dotted lines represent particle radii that are at

minima in the backscattering efficiency. (b): The pink curve shows the DSD at 1 km with the shaded region representing the 1σ instrument

error, ϵs. The vertical dotted lines represent the backscattering minima and the black dashed curve represents the limiting DSD values that

CloudCube would have been able to detect at this elevation. CloudCube’s sensitivity is -50 dBZ at 1 km.

Initialize vector N 
that represents 
DSD in each bin

Use N to 
calculate a 
spectrum

Smooth the spectrum with 
a blurring kernel to 
represent turbulence, Scalc

Calculate 
output of 
cost function 

Iteratively find N 
which minimizes 
cost function

11

Figure 7. Block diagram explaining basic steps of forward model

under the turbulence-free assumption to initialize. Then, this spectrum is smoothed with a blurring kernel that represents the220

effect of the turbulence to compute a spectrum that can be best compared with the measured spectrum. We minimize a loss

function to find the most likely vector N . A diagram of this is depicted in Fig. 7.

Our forward model needs an estimate of the turbulence scale at every height. To do this, the framework described in

O’Connor et al. (2010), which uses large scale turbulence to estimate smaller scale turbulence as such, is utilized:

σ2
v,turb = σ2

v,air

(
L

2/3
small

L
2/3
large−L

2/3
small

)
(7)225

The term σ2
v,air is the variance in the vertical wind speeds while the terms Lsmall and Llarge represents the small and

large length scales of the turbulence, respectively. The L terms are dependent on the horizontal wind in the sight-line of the

observation (U ), the range of interest (R), the beamwidth of the radar (θ), and the turbulence timescale ( t):

L = Ut + 2Rsin
(

θ

2

)
(8)
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Figure 8. (a): Depiction of how the vertical wind varies with time for a few different elevations. The dotted lines represent ±0.25 m s−1 for

each elevation. Plots of the (b) horizontal wind speeds measured by the sondes and (c) the final calculated turbulence velocity

The short timescale, tsmall is the time between successive spectra (1.13 s for CloudCube). The long timescale tlarge is the230

total time over which the variance of the vertical winds are calculated. The variation of the vertical winds in the time vicinity

of the example spectrum is shown in Fig. 8a. This figure also shows the horizontal wind speeds captured by the sondes at the

same time as the example spectrum and the final turbulence derived from those values. Tthe turbulence scale is very similar to

the velocity resolution of the spectra, so smoothing will have a relatively small effect on the DSD retrieval.

The most obvious choice of loss function for our forward model would be least squares. However, as we noted in the previous235

section, factors beyond turbulence correction are leading to unphysical artifacts in the retrieved DSDs. One way to retrieve a

smooth DSD would be to impose a functional form for the DSD such as the modified gamma distribution (Deirmendjian,

1969). We take another approach. To encourage the retrieval of smoother and more physically realistic DSDs, we utilize a

regularized least squares loss function:

L =
∑[

(Scalc,i−Smeas,i)2

ϵ2s,i

+ λ(Ni+1−Ni)2
]

(9)240

The first part of the loss function is a classic least squares loss. The second term represents the regularization. We use the total

squared variation (TSV) regularizer, represented by (Ni+1−Ni)2. This regularizer was first introduced by Kuramochi et al.

(2018) as a way to enforce smoothness in 2-D imaging retrievals. The same principle applies to 1-D vectors, as penalizing the

squared difference between adjacent points in a DSD favors a smoothly varying vector. The term λ represents the regularizer

weight, which determines how strictly we want to enforce vector smoothness. A large amount of regularization, meaning a245

larger value for λ, will retrieve highly smoothed DSD vectors. We show a demonstration of this in Fig. 9.

We see that the pink curve (representing the highest amount of regularization we explored) produces a very smooth DSD

and in turn a very smooth final spectrum. In Fig. 10, we show a regularized 2-D DSD for the example spectrum. Compared to
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Figure 9. (a): DSDs retrieved a single elevation from the example 2-D spectrum using 5 different regularizer weights. The grey curves

plotted underneath the colored plots show the DSD computed from the turbulence-free assumption for comparison. The dotted vertical lines

represent particle radii that are at minima in the backscattering efficiency. (b): The smoothed spectra derived from each of the DSDs. The

grey curves underneath show the measured spectrum. The errors shown here are derived using the covariance matrix produced from the fit.

For now we only consider the variance of individual point and ignore correlations between neighboring points.

Figure 10. DSD for each elevation calculated using an RML forward model and taking into account turbulent broadening. Grey dotted lines

represent particle radii that are at minima in the backscattering efficiency.

the turbulence-free DSD retrieval, we see a significant reduction in sharp gradients, though they are not completely eliminated.

A primary issue with using regularized least squares, however, is that we currently have no way to validate our choices of250

regularization. Without any ground truth data to train for the correct regularizer weight, we can only place confidence on the

general shape and statistical properties derived from the DSD.
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Figure 11. (a): Ka-band reflectivity for each elevation calculated using the retrieved regularized DSD plotted with the Ka-band data collected

by the ARM KaZR instrument. (b): Comparison between the lowest elevation DSDs retrieved from the G-band spectra (dashed lines) and

DSDs measured by the VDIS at the same time (solid line).

6 Discussion

6.1 Validation with Co-observing Instruments

To understand the accuracy of our DSD retrievals, we utilize data from both the ARM KaZR and VDIS instruments. Using255

the DSD depicted in Fig. 10 along with Equation 2, we can calculate a predicted Ka-band spectrum for each elevation. We

use T-matrix scattering coefficients at Ka-band to calculate both the backscattering and extinction cross-sections. We correct

for water vapor and hydrometeor attenuation in our theoretical spectrum before integrating across velocity to compute a single

reflectivity value for each elevation. This reflectivity can be directly compared to the reflectivity measured by KaZR, as shown

in Fig. 11a. We can see that for the example spectrum, the predicted Ka-band reflectivity matches the KaZR fairly well, gener-260

ally within a few dB. The presence of larger drops, which G-band instruments are not as sensitive to but Ka-band instruments

are, may be affecting the accuracy of the predicted Ka-band reflectivity. Uncertainties in the hydrometeor attenuation also

increase with elevation, potentially leading in higher inaccuracies in the Ka-band predictions as well. Finally, specific choices

of regularization may also affect the consistency between the predicted and observed Ka-band reflectivity. Still, the general

consistency between the two curves gives us some confidence in the quality of our retrievals.265

We can use also direct measurements of the DSD taken by VDIS and compare it to the lowest elevation retrieved DSD

we have available for the same time. The video disdrometer measures number densities in 0.1 mm radius increments, with a

limiting drop size of 0.05 mm. However, the accuracy of the VDIS measurements below 0.1 mm is reduced due to the instrument

struggling more to distinguish between smaller drop sizes. Additionally, the VDIS only saves data in 1 minute increments, and
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Figure 12. Visualization of estimation uncertainty of precipitation properties due to errors in the vertical wind retrieval as well as due to

choices of regularization in the DSD retrieval. The solid lines represent parameters derived with the winds shown in Fig. 3 and with a

regularizer weight of λ = 104. The dashed line shows properties derived with the same winds but with very little regularization, λ = 1. The

shaded region represents properties retrieved with λ = 104, but assuming a ±0.12 m s−1 deviation from the measured vertical wind. This

represents two spectrum bins away from the best estimate.

unfortunately we only have a few minutes of data for which DSDs are able to be retrieved in the times adjacent to the example270

spectrum. Thus, there are only two coincident times between the CloudCube measurements and the VDIS measurements,

plotted in Fig. 11. Again, we see a generally good consistency between the retrieved DSD and the VDIS measured DSD, with

discrepancies being the highest at the smallest drop sizes. We also note that because of the significant fall time of the small

droplets from the lowest DSD elevation (typically around 50 m) to the ground, comparing measurements with the same time

stamps is perhaps comparing slightly different drop populations. However, with a very limited amount of G-band data of good275

enough quality to retrieve DSDs (typically only on the order of a few minutes), and the slow sampling time of the VDIS, it is

challenging to compare measurements with a sufficient lag time to account for the fall time.

6.2 Estimating Bulk Precipitation Properties

As we have noted above there are uncertainties in the binned DSDs related to the assumptions used in their derivation which

cause some rippling in the DSD shape. Nevertheless our primary goal is to derive bulk properties of the DSDs, which are easier280

to use and also more robust to uncertainties. Here we derive four bulk properties of the distribution. Fig. 12 shows the plots

of mass-weighted mean radius, total number density, liquid water content, and precipitation rate derived from the DSD of the

example spectrum. Mass-weighted mean radius, Rm, is calculated as

Rm =
∫

N(R)M(R)RdR∫
N(R)M(R)dR

(10)
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Figure 13. Compilation of statistics possible to be calculated from DSDs retrieved shown for 5 G-band spectra spaced 35 seconds. Gaps in

the DSD are due to minima corresponding to the first backscattering minimum not being available at that elevation. Especially in the bottom

row, this can be seen for elevations where the minimum is actually below the noise floor and is therefore not detected by our algorithm.
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where M(R) = (4/3)ρwR3 is the mass of a water droplet with radius R. The total number density is simply calculated as285

Ntot =
∫

N(R)dR, the liquid water content is calculated as LWC =
∫

N(R)M(R)dR, and the precipitation rate is calcu-

lated as P =
∫

N(R)V (R)v(r)dR. Profiles of these properties are shown for the lowest and highest explored values of the

regularization weight, λ, as well as for ±0.12 m s−1 err in the vertical wind speed (representing ±two bins in the measured

Doppler spectrum). We see that while these errors may affect the details of the binned DSDs, the bulk precipitation properties

are relatively insensitive to choice of regularization weight and fairly robust to vertical air motion uncertainties.290

Figure 13 shows the plots of these precipitation properties derived from the DSDs of five different spectra, spaced 35 seconds

apart. This figure highlights the rapid timescale of variability present in these drizzling systems. Coarse sampling times in

measurements of the precipitation properties are at risk for missing important details in the cloud and precipitation processes.

7 Conclusions

We have presented a retrieval methodology to derive the vertical wind and the precipitation DSD in light rainfall from a295

nadir pointing G-band Doppler spectrum. This work extends the methods developed for W-band to lighter rainfall than has

been possible to date. The G-band retrievals work well for light precipitation because the first Mie notch occurs near a radius

334 microns, thereby enabling accurate estimation of the wind speed for very light precipitation rates. Furthermore the precipi-

tation water contents are very small so the attenuation from condensed water is insignificant relative to the gaseous attenuation.

As pointed out by Courtier et al. (2024), the method demonstrated here would optimally be combined with multi-frequency300

W- and K-band Doppler spectra (e.g. Tridon and Battaglia, 2015) to seamlessly extend from the lightest to heavy precipitation

events.

There are residual uncertainties in the binned DSD due to inaccuracies in the droplet fall velocity and drop obliquity re-

lationships, which appear as ripples near the location in the spectrum where Mie notches are present. Nevertheless, the bulk

statistics of the DSD, such as the water content, number concentration, precipitation rate, and mass weighted mean size are305

relatively robustly derived.

With the growing number of G-band radar observations (including CloudCube G-band’s ongoing participation in the Cloud

And Precipitation Experiment at kennaook) the Doppler-spectral retrieval method offers the potential to provide unprecedented

observations of profiles of light rainfall and drizzle in stratocumulus and shallow cumulus clouds relative to approaches centered

on the radar reflectivity.310

The CloudCube G-band Doppler spectra described in this article are provided in netCDF format in the file titled Cloud-

Cube_EPCAPE_Gband_Spectra.zip at https://doi.org/10.5281/zenodo.10076227 (Socuellamos et al., 2024b).

The data captured by ARM instruments (KaZR, VDIS, laser ceilometer) that were used in this article can be found at the

following link: https://www.arm.gov/research/campaigns/amf2023epcape315
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