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Abstract. Understanding how dominant hydrologic processes and their drivers vary across diverse continental-scale
landscapes is critical for hydrologic modeling and water management applications. Our research addresses this question by
synthesizing large-sample watershed datasets, Caravan and GAGES-II, and developing random forest models to identify
patterns in hydrologic behavior. We assessed dominant processes by examining hydrologic signatures—summary indicators
of watershed behavior derived from hydroclimatic time series and random forest models across 14,146 gauged U.S. watersheds.
The results reveal clear continental-scale gradients in hydrologic processes, including baseflow, overland flow, storage, and
water balance losses. Our map of dominant processes highlights, for example, the transition from baseflow to fast responses
and back to baseflow along the elevation gradient from the Appalachian spine, through the Piedmont, to the Eastern Coastal
Plain; a distinct outer ring around the Great Lakes region; and sharp contrasts between coastal and inland processes in the
West. Variable importance analysis from random forest models show that processes in the western U.S. are primarily controlled
by climate, whereas in the eastern U.S., soil, geology, and topography play larger roles, with distinct human influences apparent
in urban areas. Our estimates of dominant processes and their drivers provide a framework to extend process knowledge from
research watersheds to the continental scale, assess current hydrological understanding, and evaluate hydrological model

structures.

1 Introduction
1.1 Identifying hydrologic processes at large scales

Estimating the contributions of different hydrologic processes to streamflow generation at a continental scale is essential for
flood forecasting and water resources management. Optimal management strategies, including the design of grey and green
infrastructure, differ depending on which processes dominate hydrological response (Oswald et al., 2023; Thompson et al.,
2020), which vary substantially by regional environmental conditions (Bldschl, 2006; Paola et al., 2006; Penna, 2024).
Understanding how water is partitioned, stored, and transported through different parts of the terrestrial systems is a
fundamental question in the hydrologic sciences (Brooks et al., 2015). To simulate a diverse set of processes at large-scale, a
new generation of hydrologic models with flexible and heterogeneous structures has emerged (Clark et al., 2015; Frame et al.,

2025; Johnson et al., 2023). However, despite these technological advances, we still lack an estimate of dominant hydrologic
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processes controlling streamflow generation at continental scales (McMillan et al., 2025; Reinecke et al., 2025). Developing
this understanding is a critical step toward unified hydrologic theory (Sivapalan, 2005) and can provide a blueprint for robust

model development and informed decision making.

Previous efforts to map multiple hydrologic processes at continental scales are scarce. Instead, studies at large scale have
typically focused on one process while others have studied multiple processes for single or small groups of watersheds.
Examples include studies that examined the likelihood of infiltration excess flow occurrence by comparing whether rainfall
intensity exceeds saturated hydraulic conductivity (Buchanan et al., 2018); baseflow indices and their drivers globally (Beck
et al.,, 2013; Xie et al., 2024); and the strength of runoff-storage connectivity using a correlation between anomalies in
streamflow gauge and satellite water storage observations (Fang and Shen, 2017). A study in Alaska shows that the use of
multiple streamflow statistics can help distinguish and assign hydrologic regions (Barnhart et al., 2022). Model-aided studies
have simulated global patterns of multiple indices: water partitioning into green and blue water, streamflow response elasticity
to rainfall, and streamflow flashiness (Ji et al., 2025), U.S.-wide indices for water balance seasonality (Berghuijs et al., 2014).
Another model-based approach has involved inferring hydrologic processes through parameter sensitivity analysis (Hay et al.,
2023). These synthesis studies present promising descriptions of spatial patterns and directions for future progress toward a

holistic understanding of runoff generation mechanisms, which still remains elusive.

Much of the research for generalizing watershed behaviors has focused on summarizing flow regimes (Dettinger and Diaz,
2000; Lane et al., 2017; Lee et al., 2015; Lins, 1997) and predicting shifts in flow regime under future climate (Brunner et al.,
2020; Hodgkins et al., 2024). Many studies cluster streamflow gauges using flow indices targeting general (Almagro et al.,
2024; Ariano and Ali, 2025; Mosley, 1981; Wu et al., 2021), intermittent (Sauquet et al., 2021), or seasonal streamflow patterns
(Dhungel et al., 2016; Haines et al., 1988; Kennard et al., 2010). However, most of these studies aim to define the similarity
of flow regimes rather than the underlying runoff generation processes. Furthermore, the results from clustering approaches

are constrained to gauged locations and lack spatial coherence, making it challenging to extrapolate to ungauged watersheds.

To estimate watershed processes in ungauged locations, hydrologists have conventionally used maps derived from
physiographic datasets. For example, in the United States context, the Environmental Protection Agency’s Ecoregions
(Omernik, 1987, 2004), an ecosystem classification based on the physical and biotic characteristics, is a common reference
when discussing hydrologic processes (Falcone et al., 2010). Other classifications include the United States Geological
Survey’s Water Resources Regions (Seaber et al., 1987) based on streamflow networks, Hydrologic Landscape Regions
(Santhi et al., 2008; Winter, 2001; Wolock, 2003a) based on physiographic and climatic datasets, and the United States
Department of Agriculture’s Hydrologic Soil Groups (Web Soil Survey, 2025) based on soil surveys. Nevertheless,
regionalization based on physiographic data often fails to capture the full variability of watershed behavior (Ali et al., 2012;

Oudin et al., 2008) because hydrologic processes can differ even among physiographically similar watersheds (McMillan et

2



68
69
70

71

72
73
74
75
76
77
78
79
80

81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

al., 2014). Capturing watershed processes at a continental scale calls for a scalable method to draw information from
hydroclimatic datasets. To date, no studies have attempted to develop comprehensive maps of runoff generation processes

based on streamflow observations that can effectively capture watersheds’ functions.

1.2 Hydrologic signatures links to processes

Hydrologic signatures are metrics that quantify hydrologically-relevant dynamics, and offer a promising way to infer watershed
processes with minimal data requirements (McMillan, 2021). Hydrologic signature calculations require only widely-available
datasets, such as streamflow and precipitation, and can be related to various watershed processes, such as runoff generation
and water storage dynamics (McMillan, 2020; Wlostowski et al., 2021). Using hydrologic signatures, expert knowledge, and
landscape characteristics, Fenicia and McDonnell (2022) inferred dominant runoff processes and developed perceptual models
at the regional scale; and Pechlivanidis and Arheimer (2015) mapped process differences at the national scale in India.
Hydrologic signatures can capture the functional streamflow responses to climatic forcings and can discriminate different
processes across landscapes (Araki et al., 2022; Gnann et al., 2020, 202 1a; Janssen and Ameli, 2021). This enables a signature-

based exploration of the relationship between landscape form and function (Bracken et al., 2013; Sivapalan, 2005).

1.3 Predicting hydrologic signatures using watershed attributes

Watershed attributes describe the physical characteristics of watersheds, which can be used to identify the drivers of hydrologic
processes and to transfer hydrological knowledge to ungauged locations (Tarasova et al., 2023). The link between watershed
attributes and signatures of streamflow response can be explored via machine learning approaches on large watershed samples.
Regional and global applications include studies in the U.S. (Addor et al., 2018; Janssen and Ameli, 2021; Wu et al., 2021),
Australia (Trancoso et al., 2017), Zimbabwe (Mazvimavi et al., 2005), Brazil (Almagro et al., 2024), Europe (Kuentz et al.,
2017), and globally (Beck et al., 2015). Across all studies, climate emerged as the primary control on signatures. Non-climatic
factors (i.e., landscape attributes), such as soil, geology, vegetation cover, and topography, had weak or limited predictive
power. However, substantial evidence from field-based studies shows that landscape forms are a primary control of watershed
function (Angermann et al., 2017; Fan et al., 2019; Jackisch et al., 2017; Jefferson et al., 2010; Lohse and Dietrich, 2005;
Pfister et al., 2017; Zimmer and Gannon, 2018).

Weak predictive power of non-climatic drivers can be attributed to lack of high-resolution, accurate landscape attributes that
describe regionally important processes (Gnann et al., 2021a; Tarasova et al., 2023). For example, wetlands are key regulators
of low flows in the U.S. (Worland et al., 2018) and have been left out of previous studies (Addor et al., 2018). Similarly,
weathering and glaciation have primary impacts on baseflow storage and generation (Neff et al., 2005; Tague and Grant, 2004),
but rock permeability and porosity predictors did not clearly capture the relationship (Wu et al., 2021). Coarse spatial resolution,
or limited quality and consistency of global datasets may reduce their predictive power (Beck et al., 2015; Tarasova et al.,

2023). Regional analysis can mitigate climate influence and elucidate the contribution of non-climatic drivers, such as regional

3
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random forest models that revealed physiographic and anthropogenic controls on flow regimes (Almagro et al., 2024;
Hammond et al., 2021). However, smaller regional sample sizes may limit prediction accuracy if datasets only provide tens of

watersheds per region (Willard et al., 2024).

Lastly, the quality of signatures can compromise data-driven model performance and interpretation for process understanding.
Examples include the sensitivity of flow duration curve slope to measurement errors (McMillan et al., 2017), the sensitivity of
signatures to rating curve uncertainties (Westerberg et al., 2016), lack of process representativeness (McMillan et al., 2022),
and inaccurate parameterization of storm separation algorithms (McMillan et al., 2023). Minimizing the impact of signature

uncertainty is important for differentiating different regional watershed functionalities (Westerberg et al., 2016).

1.4 Aims of the paper

This study presents the first hydrologic processes map for the contiguous United States (CONUS). We synthesized hydrologic
signatures as process indicators, going beyond pattern identification from single signatures. We hypothesize that signature
combinations can represent six key hydrologic processes (McMillan, 2020; McMillan et al., 2022): baseflow and storage,
water balance and seasonal flow variability, and saturation and infiltration excess overland flow. Using random forest models,
we demonstrate the explanatory power of landscape metrics to predict hydrologic signatures and their regional variations, and

thus the underlying processes, across CONUS.

We address the limitations of previous studies in predicting hydrologic signatures. First, we improved the quality of non-
climatic attributes by: (i) incorporating new geological and wetland landscape attributes that have demonstrated strong
connections to baseflow processes (Holt and McMillan, 2025); and (ii) utilizing watershed attributes from GAGES-II datasets
(Falcone, 2011), derived from survey-based and higher-resolution products. Second, we interpret random forests using Shapley
values (Shapley, 1953) following Husic et al. (2025), as well as permutation importance values within a regional model-
building approach, following Hammond et al. (2021), which extends prior work to elucidate the regional contributions of non-
climatic, landscape attributes to hydrologic processes. Furthermore, our work assessed 14,146 U.S. watersheds and was trained
on 10,261 watersheds, nearly ten times more sample watersheds than previous studies; we leverage the Caravan and GAGES-
II—the most extensive open-source large-sample datasets currently available (Falcone, 2011; Kratzert et al., 2023). Third, we
utilize a set of hydrologic signatures proven robust across large-sample watershed studies and have a clear connection to
critical-zone processes (McMillan et al., 2022), with their parameters further tuned to local storm characteristics. With these
improvements, we expand watershed coverage and uncover more detailed spatial patterns of watershed processes than

previously possible, using widely-available hydroclimatic datasets and physiographic attributes.
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2 Data

We used two primary sources of streamgages and watershed attribute data to expand the number of samples: Caravan v1.5
(Kratzert et al., 2023, 2024) and U.S. Geological Survey GAGES-II (Falcone, 2011; Falcone et al., 2010). See Fig. 1 for the
spatial distribution of the study watersheds. Caravan is an open-source dataset of global watersheds; its CONUS subset consists
of 9,234 watersheds sourced from CAMELS-US (Addor et al., 2017) and HYSETS (Arsenault et al., 2020). GAGES-II is a
geospatial dataset of 9,067 watersheds in the United States, selected for their quality to characterize natural and altered flow

regimes.

2.1 Hydroclimatic dataset

We calculated hydrologic signatures listed in Table 1 using daily hydroclimatic timeseries data from watersheds within the
contiguous United States (CONUS). For Caravan watersheds, we used U.S. Geological Survey (USGS) streamflow
measurements paired with daily ERAS-Land forcings provided. For the GAGES-II watersheds, we obtained the USGS
streamflow records (U.S. Geological Survey, 2025) using the dataRetrieval package (DeCicco et al., 2018) and gridMET
forcings from Wieczorek et al. (2023). For calculating infiltration excess overland flow signatures of Wu et al. (2021;
“RC Pint”), we used the hourly precipitation from the North American Land Data Assimilation System 2 (NLDAS-2; Xia et
al., 2012) provided through CAMELSH: a Large-Sample Hourly Hydrometeorological Dataset and Attributes at Watershed-
Scale for CONUS (Tran, 2025; Tran et al., 2025).

2.2 Watershed attributes

We combined watershed attributes from three sources: (1) Caravan, (2) GAGES-II, and (3) geologic age and wetland attributes
(Holt and McM illan, 2025). We added average geologic age and isolated wetland fraction metrics because of their strong link
to baseflow processes, which were missing from previous large-sample analyses (Holt and McMillan, 2025). From the Caravan
and Holt & McMillan (2025) attribute sets, we excluded binary or categorical attributes, monthly climate variables,
uninformative attributes for the CONUS context (e.g., permafrost extent, gross domestic product), and highly correlated
attributes (Spearman's rtho > 0.8 or < -0.8; see Text S1). Where available, Caravan attributes were substituted with GAGES-II

attributes, as described in Section 3.2 and Table S1. Table 2 lists the 23 attributes used in the random forest analysis.

3 Method
3.1 Calculating hydrologic signatures

A total of 12 signatures (four baseflow and groundwater signatures, four water balance and seasonality-related signatures, and

four overland flow signatures) were used to characterize hydrologic dynamics (see Table 1). The signatures were selected
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based on their reliability in representing processes (McMillan et al., 2022). We calculated signatures using the TOSSH toolbox

(Gnann et al., 2021b) and tuned the parameters for event separation for each hydroclimatic region (see Tables S2, S3).

3.2 Training random forest models and predicting hydrologic signatures

We developed random forest models to examine potential drivers of hydrologic processes. Random forest models have been
widely used for this task (Eng and Wolock, 2022; Lapides et al., 2023; Zipper et al., 2021) for their interpretability, relatively
low computational demands, and robustness to multi-collinearity (Addor et al., 2018). For each signature, we constructed a
random forest model to predict its values based on watershed attributes using the caret R package (Kuhn, 2008; R Core Team,
2024). Each model used 500 trees with the optimal number of features randomly resampled at each split, selected by

minimizing root mean squared error (RMSE) through 10-fold cross-validation.

Only quality-controlled observations were used for training. Training on all Caravan watersheds yielded R? < 0.4 for many of
the signatures, so we limited the training samples to the 4,748 Caravan watersheds with streamflow gauge IDs overlapping
with GAGES-II to attain model performance comparable to previous studies (see Text S2). Furthermore, we omitted
watersheds from our training sample with short or incomplete streamflow records or uncertain watershed boundaries. First, we
excluded watersheds with less than 5 years of streamflow observation record, and those with over 30% missing daily data over
the period where streamflow was recorded. Second, we removed watersheds from our analysis with uncertain topographic
boundaries, showing high discrepancies (>25%) in the estimated drainage area between GAGES-II and Caravan datasets. Third,
for overland flow signature analysis, we excluded snow-dominated watersheds (>20% snow fraction of total precipitation);
this is because our overland flow signatures can be heavily influenced by periods with no flow response due to snow or frozen
conditions. When a gauged watershed was present in both datasets, we prioritized CAMELS over HYSETS, and Caravan over
GAGES-IIL This is to ensure the broader applicability of our method across different countries, as Caravan is available at global

scale. This yielded a total 14,403 watersheds for signature analysis (overview in Table S1).

We then used the trained model to predict hydrologic signatures for 3,885 watersheds where observations did not meet data
quality standards. Preliminary experiments showed improved model performance when the watershed attributes were derived
from higher-resolution datasets based on detailed field surveys, such as in GAGES-II and (Holt and McMillan, 2025).

Therefore, we used GAGES-II attributes and when unavailable, used the coarser resolution Caravan attributes (see Table S1).

3.3 Interpretation of hydrologic signatures as process descriptors

We combined signatures calculated from observed streamflow data and predicted with random forest models to develop a
comprehensive map of processes for watersheds across the U.S. (Fig. 1). A bivariate space of hydrologic signatures was used
to infer process dominance. For each selected process, we used the two signatures most strongly related to the process inferred

from previous work (Bolotin and McMillan, 2024; McMillan, 2020; McMillan et al., 2022; Wu et al., 2021). Each signature
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was categorized based on the quantiles of signatures, from low (0-25%), mid-low (25-50%), mid-high (50-75%), to high (75-
100%). When both of the two target signatures had mid-high (50-75%) or high (75-100%) values, we interpreted this as
indicative of process dominance. This bivariate matrix can highlight the complexity of hydrologic processes where two

signatures do not necessarily show the same trends.

The major process hypotheses are as follows (detailed in Table 1): regions with strong baseflow processes would show high
baseflow magnitude (larger BFI) and slow baseflow recession (smaller recession K); regions with large storage capacity and
retention would show high storage magnitude (larger AverageStorage) and more nonlinear recessions (larger Recession
parameter b); regions with large water balance losses would show smaller runoff ratios (smaller 7ota/RR and EventRR);
regions strongly influenced by seasonality in processes (e.g., evapotranspiration, snow) would show variability in the flow
timeseries and recessions (large Recession a seasonality and large variability index); regions with strong overland flow or
stormflow processes would exhibit strong threshold responses to precipitation (large threshold value and high significance,
small p-values); regions dominated by infiltration-excess overland flow would show stronger correlation between flow and
precipitation intensity (RC _Pint> RC Pvol) while regions dominated by saturation-excess overland flow would show stronger

correlation between flow and precipitation volume (RC Pvol > RC Pint).

3.4 Interpretation of process drivers using Shapley values

We quantified feature importance using Shapley values (Shapley, 1953), which provide a robust and consistent measure to
interpret random forest models (Lundberg et al., 2018). Shapley values represent the average marginal contribution of a feature
(i.e., a landscape attribute) to a prediction, given the effects from all combinations of the considered features. Shapley values
allow for local and global interpretation of machine learning model predictions, helping to uncover site-specific and
generalizable linkages between hydrology and landscape features (Husic et al., 2025). We used the interpretable machine

learning (iml) R package (Molnar et al., 2018) to calculate Shapley values over the training data.

To evaluate the regional effects of watershed attributes, we computed summary statistics on Shapley values. Shapley values

JEy " is the Shapley value calculated for an attribute x for a signature y at location i. Summing the Shapley

are site-specific: ¢
values across watershed attributes x at a single location gives the deviation of the predicted signature value y; at location i from
the mean signature value across all sites. To compare effects of a landscape attribute x across sites, we normalize Shapley
values by the total absolute contribution from all attributes at a site i; this gives a metric for the relative contribution of an

attribute x to signature y at site 7 as:

RO = 162017 Y 1627

XEA
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where 4 is the set of all watershed attributes, and | - | denotes the absolute value. To investigate which types of landscape
characteristics are influential, we classified the watershed attributes into five categories (see Table 2), namely, topography,

land-cover, soil & geology, human alteration, and climate.

. N . - 67
Then, the average relative contribution of category & for signature y at location i, R;, , is calculated as:

—Wi 1 ;
R}({J’l) _ Ez RJ(Cy,t)

XECK

, where Cj, is the set of watershed attributes belonging to category &, and K is the number of categories (in our case, five).

3.5 Interpretation of process drivers using permutation importance

To further evaluate locally important watershed attributes, we computed permutation importance, which measures the change
in model performance when a feature (i.e., a landscape attribute) is removed. Prior work has shown that permutation
importance derived from random forest models trained on regional samples is more effective than a continental approach for
identifying physiographic, landscape controls on hydrologic responses, as it allows assessment under consistent climate
conditions (Almagro et al., 2024; Hammond et al., 2021; Holt and McMillan, 2025). Therefore, we calculated permutation
importance as the average changes in mean squared error (MSE), normalized by its standard deviation using the caret R
package (Kuhn, 2008), from random forest models trained on regional watershed samples. Six climate regions were defined
using a Gaussian mixture model in Scikit-learn (Pedregosa et al., 2011) based on relevant Caravan, GAGES-II, and Hammond
et al. (2023) climate attributes (Table S4), and separate random forest models were trained for each region. Fig. S1 shows the

identified climate regions.
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Sources
Caravan (Observed)
GAGES-Il (Observed)

RF (Caravan+GAGES-II
overlap)

RF (Caravan only)
RF (GAGES-II only)

X

Figure 1: Method used to obtain hydrologic signatures. Signatures are derived either from observed data (“Observed”: Caravan
samples, n=7,465; GAGES-II samples, n=2,807; total n=10,261) or predicted using random forest models (“RF”’; n=3,885). Predicted
samples are categorized as: “Caravan+GAGES-II overlap” (present in both the Caravan and GAGES-II datasets; n=618), “Caravan
only” (exclusive to Caravan; n=2,424), and “GAGES-II only” (exclusive to GAGES-II; n=843). State boundaries are indicated by
grey lines.

4 Results
4.1 Mapping dominant processes across the contiguous U.S.

Figures 2 and 3 show the maps of dominant processes derived from the hypotheses outlined in Table 1. Figure 2 presents the
signature of each process hypothesis in a bivariate map. Figure 3 provides a summary, displaying only the selected process
hypothesis when it is deemed dominant (i.e. both signatures are in the mid-high (50-75 %) or high (75-100 %) quantiles).
Together, these maps highlight distinct regional patterns in hydrologic processes across the study area. The following sections
examine these patterns in greater detail by region: the East and South. (Section 4.2.1.), the Midwest and Central (Section 4.2.2.),
and the West and Southwest (Section 4.2.3.).
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Figure 2: Map of dominant processes estimated based on our hypothesis (defined in Table 1 and Section 3.3). Note that when
baseflow and overland flow both occur, their colors are overlaid to give purple hues.
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258 Figure 3: Hydrologic signatures of each process hypothesis, shown in bivariate maps (a—e). See the legend at the bottom for
259 explanation. The high-process quantile from (a) is used to infer “Baseflow” in Figure 2; from (b) to infer “High storage capacity”;
260 from (c) to infer “Water balance losses”; and from (e) to infer “Overland flow.” Panel (f) shows the differences between the two
261 signatures related to infiltration-excess (IE) flow and saturation-excess (SE) flow (i.e., values of RC_Pint minus PC_Pvol). In the
262 overland flow panels (e) and (f), watersheds dominated by snow (i.e., where more than 20% of annual total precipitation falls as
263 snow) are not shown. For the overland flow type pane (f), watersheds are not shown when the correlations between the event runoff
264 coefficient and both rainfall characteristics (i.e., storm rainfall volume and maximum intensity) are negative. For maps of each
265 signature value, see Figures S2 and S3.
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Figure 4: Map of the contiguous United States showing (i) areas described in Section 4.2.1-4.2.3 (East and South, Midwest and
Central, West and Southwest; bolded brown line) (ii) geographical boundaries used for the USGS National Water Availability
Assessment (Qi and Mason, 2023; Stets et al., 2025; Van Metre et al., 2020) (beige line) (iii) topographic and geological features
named in the text (pink annotations).

4.2 Spatial patterns of hydrologic processes inferred from signatures
4.2.1 Region 1: East and South

This section describes the East and South of the U.S. (Fig. 4). This humid region has moderate to high precipitation (1,000-
1,500 mm/yr; calculated based on the 10th and 90th percentiles of sample watershed attributes), with low precipitation
seasonality except in Florida. Temperatures vary widely from snow-dominated areas in the NorthEast to subtropical areas in
Florida, with mean annual temperature ranging from 7-19°C (Fig. S4). The landscape is old with deeply weathered soils and
characterized by predominantly low-lying elevation (mean watershed elevation ranges between 40-600m), though there is a
primary elevation gradient from the Appalachian Mountains and Piedmont to the Eastern coastal plains, with peaks exceeding
1,000m (Fig. S8). In Figure 3, signature values show that these climate and landscape conditions produce slowly-varying,
baseflow-dominated flow regimes and mid-quantile signature values showing a lack of hydrologic extremes. Runoff ratios

(TotalRR and EventRR; Fig. 3c) are moderate or high and seasonal variability in flow and recessions is moderate to low.
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Storage capacity (Avg. Storage) is overall moderate, but recession shapes (Recession Params b) are variable (Fig. 3b). Evidence

for overland flow is weak with saturation excess prevailing when it occurs (Fig. 3e,f).

The gradient along the geographical transect from the Appalachian spine to the Eastern coastal plain is apparent in several
processes. The Appalachians have strong baseflow influence, shown by high baseflow index and slow recessions (Fig. 3a).
Nonlinear recessions (high Recession Parameter b; Fig. 3b) indicate multiple groundwater reservoirs supplying baseflow. In
contrast, the Piedmont has lower baseflows and fast recessions, relating to lower storage, a greater fraction of developed land,
and wide, wet valley bottoms that generate a fast response (Zimmer and Gannon, 2018). The Eastern coastal plain, especially
towards the South, has high baseflow and moderate to slow recessions (Fig. 3a). Linear recessions suggest a single dominant
groundwater reservoir supplying baseflow (Fig. 3b). These characteristics reflect the sandy soils, seasonal flooding and
presence of wetlands atop the coastal plain aquifer (Holt and McMillan, 2025; Hupp, 2000). Lower runoff ratios in the coastal
plains indicate losses to deep groundwater including offshore discharge, especially in Florida’s karst area (Fig. 3c, S6). The
karst area stands out for its high dynamic storage and seasonality in recessions. Saturation excess dominates overland flow in
the Coastal plain (Fig. 3f), although evidence for overland flow is weak (Fig. 3e) in contrast to a previous study (Wieczorek

and LaMotte, 2010) that suggests the Florida panhandle has the highest fraction of saturation excess overland flow in the US.

In inland areas such as the valleys of the Tennessee-Missouri region, baseflow is moderate and recessions are relatively fast
(Fig. 3a). The Gulf Coast region has lower baseflow and faster, linear recessions. Although depth to bedrock is high (Fig. S5),
and these areas overlie semi-consolidated sand aquifers, soils are clay-rich and capable of generating infiltration excess flow
(Miller, 1999; Fig. S6). Infiltration excess flow largely occurs in the narrow ocean margin of the Gulf coast region but does
not extend far inland (Fig. 3f). Exceptions to the area’s fast runoff occur in the Ozark Mountains and the west of the Mississippi

embayment where limited areas of high baseflow and slow recessions occur.

4.2.2 Region 2: MidWest and Central

The landscape of the Midwest and Central region is dominated by the gradient from recently-glaciated, sandy, forested
watersheds of the Great Lakes region, to the poorly-drained, clay-rich but highly developed for agriculture and populated
region of the Souris-Red-Rainy and Midwest regions. Across the Midwest and Central area, mean watershed elevation ranges
from 200 to 700 meters, and mean annual precipitation varies from 500 to 1,000 mm. Moving west into the Central and
Northern High Plain regions, elevation gradually increases, precipitation decreases, and population density decreases (Fig. S8,
S4, S7). The region experiences mean annual temperatures between 6 to 13°C. The absence of major topographic barriers

results in a continental climate characterized by intense thunderstorms in summer and heavy snowfall in winter.

Signature values show that storage capacity is moderate throughout the Midwest (Fig. 3b). Storage in this region is provided

by a moderate snowpack and high depth to bedrock (Fig. S5). Most of the region was previously glaciated, leaving a thick
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layer of glacial drift. The soil texture is graded from coarse and sandy around the Great Lakes to clay-rich further South and
West, forming a distinctive outer ring around the Great Lakes region (Miller and White, 1998; Fig. S6). Following this gradient,
there is very low evidence for overland flow around the Great Lakes, changing to stronger evidence further South-West (Fig.
3e,f). Some occurrence of infiltration excess is consistent with evidence of this process from Midwest agricultural watersheds
(Abban et al., 2014; Davis et al., 2014; Wilson et al., 2012). Streamflow seasonality follows the same gradient (Fig. 3d), with
low seasonality around the Great Lakes where sandy aquifers sustain discharge year-round, and higher seasonality further
SouthWest (Miller and White, 1998; Fig. 3d). A second gradient occurs in the MidWest from West to East, following
precipitation and aridity gradients (Fig. S4). In the west, high aridity leads to high water balance losses to ET and low runoff

coefficients at the annual and event scale (Fig. 3c).

4.2.3 Region 3: West and Southwest

The landscape of the West and Southwest region is dominated by the mountain ranges of the Coastal Ranges, Cascades, Sierra
Nevada and Rocky Mountains, with mean watershed elevation ranging from 400 to over 2,700 meters. Dense populations in
the coastal cities give way to sparsely populated inland areas. The climate exhibits strong gradients. The Pacific Northwest
and Sierra Nevada mountain ranges receive substantial amount of precipitation than interior, with mean annual precipitation
ranging from 460 to over 2,100 mm/yr across the region. The region shows a north-south temperature gradient with coastal
moderation. Mean annual temperature ranges from 2°C in northern and high mountain areas to over 20°C in inland southern
desert regions (Fig. S4). Precipitation patterns follow Mediterranean or semi-arid climates characterized by winter precipitation

peaks and dry summers.

High baseflows with slow recession are prevalent across most of the Western region, where deep snowpacks drive sustained
baseflow processes (Fig. 3a, S5; Barnhart et al., 2016; Tague and Grant, 2009). Inland areas tend to have faster recessions
while retaining high baseflows, while coastal areas - where snow is rare - have lower baseflow while retaining slow recessions.
The Southwest desert contrasts with the rest of the region, having low baseflows and fast recessions typical of the arid or semi-
arid climate with water tables far below the land surface (Goodrich et al., 1997). Storage capacity and retention follow the
same gradient from high in the Pacific Northwest to low in the South-East, but the high storage region is more constrained to
the Rocky, Cascade and Sierra Nevada mountains (Fig. 3b). Water balance patterns contrast the pattern still further, with only
the high mountains having high runoff ratios in contrast to low ratios throughout the remainder of the Western U.S. (Fig. 3c)
Seasonal variability in processes is higher in the South (primarily California) where the seasonal Mediterranean climate pattern

occurs with hot, dry summers and cool, wet winters (Fig. 3d, S5).

Processes in the coastal margin are markedly different from those inland. The moderating influence of the coast is strongly
apparent in storage capacity (Fig. 3b): the northern Coast Ranges have lower average storage compared to high storage inland

areas, while the southern coastal band has higher storage compared to low storage inland areas. Overland flows are strongly
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indicated all along the coast, but more weakly inland (Fig. 3e). Most overland flow favors saturation excess, although inland

watersheds of the Southwest desert show areas of infiltration excess (Fig. 3f).

4.3 Climate and landscape drivers of hydrologic processes

In this section, we interpret the random forest models to understand which aspects of climate and landscape are most important
in controlling hydrologic processes in different regions of the U.S. Random forest models performed reasonably well (R? >
0.4) for most signatures (Fig. 5), consistent with previous studies using similar model setups (Addor et al., 2018; Beck et al.,
2015; Bolotin and McMillan, 2024; Kuentz et al., 2017). Performance was higher for baseflow, water balance loss, and
seasonality signatures, but lower for overland flow signatures. Figure S9 presents the regional model performances for each

signature.

Figure 6 provides an overview of variable importance results: Figure 6a focuses on spatial patterns, showing the landscape
attribute category that has the strongest contribution to predictions of signatures and processes for each watershed, calculated
using aggregated Shapley values; Figures 6b provides deeper insights into the ranking of landscape attributes, ordered by
permutation importance, for predicting signatures in each region. Figure S10 complements Figure 6a by showing the

importance of landscape attribute categories in each region, based on permutation importance.

Baseflow Water balance Overland flow
signatures & seasonality signatures

Figure 5: Ten-fold cross-validation performance of the random forest model trained on 4,748 CONUS-samples, where gauge IDs
overlapped with Caravan and GAGES-II. Bars show the average R* between observed and predicted signatures, with error bars
representing the standard deviation. See Table 1 for signature names.
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Figure 6: (a) The landscape attribute category that contributes most to hydrologic responses was identified based on the average

relative contribution of each category, E,((y'l) (derived from Shapley values; see Section 3.4). For each watershed, the most important

category k was determined using the median of Eiy'l) across all hydrologic signatures. Results are displayed for the watershed
samples included in the random forest training. Numbers in the legend indicate the frequency that each category was identified as
the most important. (b) Frequency of watershed attributes ranked among the top three most important variables in permutation
importance (IncMSE%) across all signatures in six U.S. climate regions. The x-axis indicates how many times each attribute
appeared in the top three. See Section 3.4 and Table 2 for attribute names.
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4.3.1 Region 1: East and South

In the East and South, a wide variety of landscape attribute categories dominate process predictions, including topography,
soils and geology, climate and human alteration (Fig. 6). Climate attributes dominate in cooler areas in the Northeast and along
the Appalachian spine, while topography attributes dominate on the Eastern coastal plain. Along the Gulf coast, either climate
or soils and geology may dominate. Human alteration attributes dominate clusters of watersheds around cities including New

York, Philadelphia, Washington D.C., Raleigh and Atlanta.

Overall, and particularly for signatures relating to storage and water balance in the East and South Region (7otalRR, RR
seasonality, Event RR, AverageStorage, RecessionParameters_b), the random forest models show that climate drivers are less
important than in the rest of the U.S., and soils and geology land cover drivers are more important (Fig. 6, S10). Human
influence (population density) is a more important driver here than in other regions across most signatures, consistent with
large areas of high population (Fig. S7). For example, highly developed areas of Western Florida have anomalous areas of low

baseflow, as do developed Piedmont areas (Zimmer and Gannon, 2018).

In the NorthEast, across all signatures, the drivers that most often appeared in the top three controls of random forest
performance were Silt fraction, Precipitation, Geologic Age and Population density — representing the effects of geology,
soils, climate and human development (Fig. 6b). Climate characteristics appear more often for signatures related to water
balance and overland flow. In the South, Silt fraction, Aridity, Precipitation and Slope occur most often, representing gradients

in elevation and soils from the Appalachians to the coastal plain and into Florida (Fig.s S6, S8).

4.3.2 Region 2: MidWest and Central

In the Midwest and Central area, a wide variety of landscape attribute categories dominate process predictions, including
topography, soils and geology, climate and human alteration, showing strong spatial patterns (Fig. 6). Soils and geology
attributes dominate in the Great Lakes region, and in the arc of clay-rich soils in the High Plains and Midwest regions (Fig.
S6). A mixture of climate and topography attributes dominate in the Souris-Red-Rainy region. Human alteration attributes

dominate in clusters of watersheds around Chicago, Detroit and Cleveland.

Overall in the Midwest and Central area, the random forest models show that land cover and topography drivers are more
important than in the rest of the U.S., while climate drivers are less important. Across all signatures, the drivers that most often
appeared in the top three controls of random forest performance were Clay fraction, PET, Precipitation and Slope —
representing the effects of soils, climate and topography (Fig. 6). Despite the flat topography of the region, several topographic

attributes appear in the top ten, perhaps reflecting the effect of unusual topographic features such as the driftless area. Land
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cover metrics (wetland, cropland, pasture) were secondary drivers, appearing for signatures related to storage and overland

flow.

The impact of climate is spread between multiple drivers: PET, Precipitation, Low precipitation frequency and Aridity. Climate
drivers in the Midwest and Central area show multiple distinct spatial patterns, with aridity and low precipitation metrics
showing an east-west gradient, temperature and PET having a north-south gradient, and precipitation and seasonality having
a Northwest-Southeast gradient (Fig. S4, S5). Thus, each part of the Midwest and Central area has a unique holistic climate

combination. Climate patterns differ distinctly from the NorthEast-Southwest pattern of the soils and land cover.

4.3.3 Region 3: West and Southwest

In the West, climate attributes dominate process predictions across most watersheds in the Pacific Northwest and Mountain
West (Fig. 6a, S5). Some mountain areas have dominant topographic attributes, and topography drivers are more important in
the Southwest region compared to the wider U.S.. Climate properties that appear most often include Snow fraction,
Precipitation, Aridity and Seasonality (Fig. 6b: regions Pacific Northwest, Southwest, Mountain West). These attributes
describe the primary climatic features of the West and Southwest U.S., which are governed by precipitation and aridity
gradients from North to South, and from coasts to inland (Fig. S4). Inland mountain chains influence flow regimes by providing
spring snowmelt and mountain block recharge, among the many influences of topography on hydrologic processes (Gnann et
al., 2025). These controls are demonstrated by the importance of snow fraction alongside topographic attributes, elevation and
slope. Soil control on runoff process is seen by the importance of clay fraction in the Pacific Northwest, reflecting Oregon’s

common clay soils (Miller and White, 1998).

5 Discussion

This study creates comprehensive maps of hydrologic processes across the contiguous United States by using machine learning
to analyze streamflow signatures from over 10,000 watersheds and connecting these signatures to dominant watershed
processes. The research reveals that climate primarily controls hydrologic processes in the western U.S., while soils and
geology dominate in the Great Lakes region, topography controls processes in the Southeast, and human influences are most
important around large cities across the East. The analysis shows distinct regional patterns in hydrologic processes, with
infiltration excess overland flow dominating the high plains., saturation excess flow prevalent in the valleys of the Tennessee-
Missouri region, and varying baseflow contributions across regions. These process maps provide novel information for
selecting appropriate hydrologic models across large domains and help hydrologists anticipate how watersheds will respond

to environmental changes such as altered climate or land use.
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5.1 New process understanding over large domains

Our results build on previous work to map hydrologic processes and drivers. Our map of baseflow process importance shows
similar patterns to previous studies into baseflow and groundwater contribution to streamflow (Beck et al., 2013; Santhi et al.,
2008; Xie et al., 2024). As with those studies, our approach of using observations and machine learning methods provides finer
detail than can be estimated using statistical interpolation or by hydrologic or climate models. By combining multiple recent
datasets, we increase the number of observations used in our analysis. In our study, we used >10,000 observed watershed data
within CONUS, representing a substantial advancement compared to the >600 to >3000 observation samples used in previous
studies (Addor et al., 2018; Beck et al., 2013, 2015; Janssen and Ameli, 2021; Wu et al., 2021). Our analysis therefore provides
a new benchmark, offering the most comprehensive coverage and highest spatial characterization of hydrologic processes
across the contiguous United States to date. While larger datasets have been analyzed elsewhere, for example, >8,000
watersheds (Santhi et al., 2008), >23,000 watersheds (Xie et al., 2024), those efforts focused exclusively on baseflow index.
Beck et al. (2013) found sometimes differing drivers of baseflow index and recession slope despite their close connection: by
using bivariate plots, we could more clearly highlight regions where patterns of these two signatures diverge. Those areas
include the Pacific Northwest coast with lower baseflow index but slow recessions, and the central high plains with high

baseflow index but fast recessions.

Previous studies investigated patterns of overland flow generation across the U.S. using soil maps and rainfall intensity
(Buchanan et al., 2018) streamflow signatures (Wu et al., 2021) and modeling approaches (Wolock, 2003b). Like us, Buchanan
et al. (2018) and Wu et al., (2021) found infiltration excess runoff important throughout the high plains, and saturation excess
in the valleys of the Tennessee-Missouri region, and a mixture of saturation and infiltration excess in the Southwestern U.S..
Substantial overland flow occurs in Southwest chaparral systems (Valeron and Meixner, 2010), and although deep groundwater
tables suggest infiltration excess, we found a mixture of mechanisms. This could be due to incorrect inference: where
magnitude of overland flow is related to storm size rather than intensity, as smaller storms are intercepted by the dense canopy,
signatures may incorrectly assign this runoff to saturation excess flow. However, our results are supported by global studies
that show saturation excess is always more common than infiltration excess even in arid regions, as saturation excess is

generated in riparian zones and topographic convergence areas where water tables are higher (McMillan et al., 2025).

By mapping and categorizing the primary drivers of runoff processes, we can untangle which physical characteristics drive the
hydrologic response in each region. In some areas, there are multiple landscape attributes that could contribute to the response,
for example in the Gulf Coast region the speed of recessions might be reduced by the high depth to bedrock, but increased by
soils with low hydraulic conductivity. We find that silt fraction (soil texture) drives the response, creating fast recessions, with
mapping showing that this is most important along the coastal margin. Our maps of primary drivers based on Shapley values

extend previous work to analyze the drivers of hydrologic signatures. For example, Addor et al. (2018; their Fig. 3) show that
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climate (aridity, seasonality, snow fraction) is the primary driver across most signatures, with topography (elevation, slope)
and land cover (forest, leaf area index) being secondary drivers. Figure 6a similarly shows climate and topography as dominant,
but adds spatial information to show that, for example, climate is dominant in the mountainous western U.S., but soils and
geology dominate the Midwest and much of the Northeastern U.S. Geological age, a recently-proposed attribute to summarize
watershed geology, was often in the top random forest attributes (Holt and McMillan, 2025). This highlights the need and
opportunity for development of new landscape attributes that characterize the subsurface, echoing the call by Tarasova et al.

(2023).

5.2 Informing model selection and evaluation

Our results support hydrological modeling by enabling hydrologists to check whether key processes in a watershed are well-
represented by a candidate model prior to application. A wide range of hydrologic models with differing process
representations, structures and complexities are available (Knoben et al., 2020). Hydrologists must make choices on whether
to include simulations of additional processes such as snowpack or deep groundwater, and the complexity required such as
including energy balance at the land surface. Our maps of hydrologic processes provide a pre-screening tool to match
hydrological models with appropriate process representations to regions. This approach aims to reduce model structural errors
by discouraging use of models ill-suited to the dominant processes (e.g., using a bucket model in overland flow-dominated

regions).

Many previous studies have assessed preferred model structure in individual research watersheds, often using in-depth data
analysis to ensure that modeled processes are consistent with observed processes (e.g. Hrachowitz et al., 2014; Kavetski and
Fenicia, 2011). This study provides a method to support transparent model justification in applied studies without the resources
to conduct model structure investigations, and to upscale model structure decisions to large domains. For example, if selecting
models from the MARRMOT toolbox (Knoben et al., 2020), models for regions of dominant overland flow should include
saturation excess and/or infiltration excess pathways, and models for regions of complex storage and retention should include
multiple parallel groundwater reservoirs. The ability to choose appropriate models for thousands of watersheds is needed for
new, flexible model frameworks such as the U.S. Next-Generation National Water Model Framework (Cosgrove et al., 2024;
Johnson et al., 2023; Ogden et al., 2021). Our observation-based method complements previous large-domain model-based
methods that use analysis of model sensitivities (Markstrom et al., 2016) and performance (Prieto et al., 2021; Spieler et al.,
2020) Therefore, where hydrologists seek to evaluate models against process representation, this study offers an opportunity

to enhance model benchmarking frameworks by adding process realism as a metric.

5.3 Limitations and future work

The hydrologic process maps produced by this study are limited to the contiguous U.S.. Recent streamflow observation datasets

offer the opportunity to extend this method to other regions or globally. Such datasets include the community Caravan dataset
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(Kratzert et al., 2023), and the international dataset of watersheds with limited human influences, Reference Observatory of
Basins for International hydrological climate change detection (ROBIN; Turner et al., 2025). If extending the method globally,
caution is advised with scaling, in order to represent different ranges of signature values in different regions. In this study, we
plotted signature values as quantiles based on the U.S. distribution, but other countries may have very different signature
distributions (McMillan et al., 2022). Therefore, watershed processes that are considered important in a U.S. context, may be
considered less important in a global context. Further, some regions of the U.S. are excluded or poorly represented in the
dominant process maps presented in this paper, due to a low spatial coverage of USGS stream gages. For example, there are
significant gaps in the arid southwest where perennial streamflow is rare (Kiang et al., 2013; Krabbenhoft et al., 2022). In such

regions there is a need for alternative process-mapping methods that do not rely on streamflow records.

A limitation of this study that would become more apparent at a global scale is the quality of precipitation, streamflow, and
attribute data. A previous study noted issues with limited quality and consistency of the global attribute data for soils and
geology that reduced their predictive power (Beck et al., 2015). Continental scales necessitate the use of gridded precipitation
products, but in areas with low density of observations these products may be insufficient to analyze localized, flashy processes
such as infiltration excess flow (McMillan et al., 2023). In small, headwater watersheds, precipitation grid size may be large
compared to watershed area, and headwaters are also underrepresented in streamflow observations (Golden et al., 2025). In
snowy areas, signature values can be compromised because liquid water inputs to the watershed come from snowmelt rather
than directly from precipitation. In our study, we excluded snow-dominated watersheds for signatures related to overland flow,
as these require event-scale surface water input that are particularly affected by frozen or snowmelt conditions. Products such
as NLDAS3 (Case et al., 2025) or surface water inputs considering rain-on-snow and snowmelt (Hammond, 2024; Hammond
and Kampf, 2020) may provide future abilities to estimate overland flow processes in snow areas using estimates of hourly
snow accumulation and melt. While our study used potential evapotranspiration (PET) information in only one signature
(AverageStorage), uncertainty in PET is a major issue of global datasets and needs to be addressed (Clerc-Schwarzenbach et

al., 2024; Destouni and Zarei, 2024) before this approach can be expanded to a variety of (eco)hydrologic processes.

A further limitation is the extent to which continental scale maps of dominant processes can be validated. Large-domain
signature datasets can be evaluated for data quality, for interpolation quality using cross-validation, and compared with
previous datasets. However, it is more difficult to determine how accurately signatures relate to processes over large domains.
Research watersheds offer “ground truth” points at which processes are already well understood (Penna, 2024). Previous
studies used a handful of U.S. critical zone observatory watersheds for evaluation (McMillan et al., 2022). However, the large
number of past and present research watersheds across the globe offer an interesting future opportunity for wider-scale
validation of process mapping techniques (McMillan et al., 2025; Sebestyen et al., 2025). Similarly, validation of process
drivers remains challenging. While Shapley values and permutation importance provide explanatory power for random forest

models, they have some limitations. Both metrics characterize model interactions within a given dataset; therefore, the variety
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of processes covered in the dataset matters, and data or model uncertainties may propagate into the interpretations (Husic,
2025). Shapley values do not capture joint distributional effects among multiple interacting variables (Lundberg and Lee,
2017). Developing an explanatory framework that maximizes both model performance and interpretability remains an ongoing

research area in hydrology (Robert Maier et al., 2024; Willard et al., 2024).

5 Conclusion

A fundamental question in hydrology is how hydrologic processes are organized over large scales, and how they are controlled
by climate and landscape (Bloschl et al., 2019). In this study, we contribute towards answering this question by mapping
hydrologic processes and their drivers across the contiguous U.S.. Our approach used hydrologic signatures to describe
streamflow dynamics, and connected these dynamics to dominant processes in the associated watersheds using established
relationships between signatures and watershed processes. We analyzed 14,146 gauged U.S. watersheds; our map of processes
was based on observational data from 10,261 gauged sites and extended using random forest predictions to an additional 3,885
watersheds with insufficient record length or completeness. Our method enables knowledge transfer from gauged basins with

well-established conceptual models to ungauged or poorly instrumented watersheds.

Our results comprise maps of hydrologic process importance across the contiguous U.S., including baseflow, overland flow,
water storage, seasonal variation and water balance processes. Using interpretable machine learning methods, we create maps
of process drivers that explain which climate and landscape attributes are dominant in controlling hydrologic processes in each
watershed and each region. We find clear patterns at the continental scale, such that processes most strongly relate to climate
in the western U.S., to soils and geology in the Great Lakes region, to topography in the Southeast, and to human influences

around large cities, especially in the Northeast.

Our findings extend and generalize process understanding from research watersheds to large domains, revealing regional
heterogeneity within broader physiographic provinces that are often treated as hydrologically uniform. Hydrologic process
maps provide essential support for new, large-domain model frameworks that must select model structure across thousands of
watersheds. These maps enable hydrologists to select models that adequately represent the dominant processes of a watershed.
Identification of dominant processes in each region further enables hydrologists to anticipate streamflow response to
environmental change, by identifying which processes are most sensitive to shifts in driving variables. Such analysis has the
potential to support scenario testing for future land use or climate, to guide selection of green and grey infrastructure compatible
with dominant processes, and to inform risk assessments for regions prone to flash flooding, streamflow depletion, or altered

seasonal flow regimes.
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Code availability

Code used for analysis is available via Zenodo at (The Zenodo link will be made available following the revision and upon
completion of the publication-ready version) and as a continuously updated version via GitHub at

https://github.com/RY4GIT/signature-prediction. Code used to calculate geologic and wetland attributes (Holt and McMillan,

2025) is deposited in Zenodo at (The Zenodo link will be made available following the revision and upon completion of the
publication-ready version) and as a continuosly updated version via GitHub

at https:/github.com/RY4GIT/Wetland_GeologicAge Attributes. Caravan attributes for GAGES-II only watersheds were

calculated using https://github.com/kratzert/Caravan (Kratzert et al., 2023). Hydrologic signatures are calculated using
https://github.com/RY4GIT/TOSSH, which modified the original TOSSH toolbox https://github.com/TOSSHtoolbox/TOSSH
(Gnann et al., 2021b).

Data availability

The hydrologic signature datasets, derived from observed data and predicted using random forest models, are deposited at (7he
Hydroshare link will be made available following the revision and upon completion of the publication-ready version). The

Caravan Version 1.5 dataset is available at https://doi.org/10.5281/zenodo.10968468 (Kratzert et al., 2024), which contains

streamflow, meteorological data, watershed boundaries and attributes. GAGES-II attributes are available at
https://www.sciencebase.gov/catalog/item/631405bbd34e36012efa304a (Falcone, 2011), and time series of meteorological
data for GAGES-II locations are available from https://www.sciencebase.gov/catalog/item/64134069d34eb496d1ce3c6f
(Wieczorek et al., 2023) and https://www.sciencebase.gov/catalog/item/6494515fd34ef77fcb014eb0 (Hammond, 2024).
CAMELSH hourly NLDAS  forcings are available at  https://doi.org/10.5281/zenodo.15066778 and
https://doi.org/10.5281/zenodo.15070091 (Tran et al., 2025).
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Table 1: Hydrologic signatures used for building process hypotheses. The signature descriptions are adapted from

(McMillan et al., 2022).

Hydrologic processes and Relationship between Signature Unit | Description
signature hypothesis the signature values
and process strength

Baseflow Positive BFI - Baseflow index (BFI) represents baseflow
proportion and residence time (Bulygina et al.,

We hypothesize that a larger 2009; Yilmaz et al., 2008). Calculated as mean

baseflow magnitude (i.e., baseflow divided by mean streamflow. Hydrograph

higher BFI) and a slower separation is implemented to obtain baseflow

recession rate (i.e., lower fraction using the UKIH smoothed minima method

BaseflowRecessionK) indicate (UKIH, 1980).

a stronger baseflow process.

Negative BaseflowRece | 1/d Represents groundwater influence and longer
ssionK subsurface flow paths (Safeeq et al., 2013).

Calculated as an exponential recession constant K
fitted to the master recession curve derived from
adaptive matching strip method.

High storage capacity Positive AverageStora | mm Represents average magnitude of watershed storage

ge (Peters and Aulenbach, 2011). Derived from

We hypothesize that larger average baseflow and storage-discharge

storage (i.e., higher relationship. Uses a simple water balance model to

AverageStorage) and more calculate changes in storage, then finds the

nonlinear recession behavior relationship between storage and discharge, and

(i.e., higher then estimates average storage from average

RecessionParameters_b) baseflow.

indicate a greater storage

capacity and the involvement | Positive RecessionPar | - The nonlinearity indicates the contributions of

of multiple storages. ameters_b multiple storages (Clark et al., 2009; Tallaksen,
1995). Recession analysis parameters approximate
storage-discharge relationship. Fits a line to the
dQ/dt-Q relationship in log-log space for each
individual recession and returns the median slope. b
is a shape parameter representing the degree of
nonlinearity.

Water balance losses Negative TotalRR - Total runoff ratio (RR) infer evapotranspiration or
other flow bypassing gauge (Safeeq and Hunsaker,

We hypothesize that a smaller 2016). Calculated as mean streamflow divided by

runoff ratio (Q:P ratio) at both mean precipitation.

interannual and event scales

(i.e., lower TotalRR and Negative EventRR - Event runoff ratio (RR) infer rapid vertical drainage

EventRR) indicates greater
water balance losses due to
evapotranspiration, deep
drainage to groundwater, or
some other processes.

of water to groundwater (Noguchi et al., 1997).
Calculated as an average of runoff ratios
(streamflow divided by

precipitation) from all identified storm events.
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Seasonal variability Positive Recession_a_ Seasonal variation in the recession “a” parameter
Seasonality reflects the impact of evapotranspiration on water
We hypothesize that greater storage (Shaw and Riha, 2012). Calculated as the
flow variability, both in difference between the maximum and minimum
general patterns (i.e., higher monthly median values of the y-intercept (“a”
Variability Index) and in parameter) in the dQ/dt—Q relationship in log-log
seasonal patterns (i.e., higher space, assuming a slope of 2.
Recession_a_Seasonality),
indicates a stronger influence | Positive VariabilityInd High variability index shows lower water storage
of seasonal evapotranspiration ex (Estrany et al., 2010). Calculated as the standard
patterns on water storage. deviation of log-transformed discharge values
determined at 10% intervals from 10% to 90% of
the cumulative frequency distribution (flow
duration curve).
Overland flow Negative (Values Average of Significant values (<0.05) imply infiltration excess
outside the range 0 < IE thresh_sig (IE) or saturation excess (SE) occurs (Ali et al.,
We hypothesized that a strong | P-value < 0.05 are nif and 2013; McGrath et al., 2007). p-value was calculated

threshold relationship between
quickflow and precipitation
characteristics (i.e., high
significance and higher
threshold values) suggests a

deemed insignificant
and clipped out.
Within the range, the
smaller P-value is, the
more significant the

SE _thresh_si
gnif

for the significance of a non-zero change in slope
above and below a threshold in a relationship of
event quickflow volume versus event maximum
precipitation intensity (for IE) or event total
precipitation volume (for SE).

more dominant overland flow | threshold is)
process.
Positive Average of Indicates rainfall intensity or event precipitation
IE thresh depth required to generate infiltration excess or
and saturation excess, respectively (Ali et al., 2013;
SE _thresh McGrath et al., 2007). Value of the threshold
identified in the IE/SE _thresh_signif signature. The
“broken-stick” model was fit to the relationship
between quickflow vs. precipitation characteristics.
Overland flow type Positive relationship RC _Pvol Indicates stormflow processes sensitive to rainfall
with infiltration excess intensity, for example, infiltration excess
We hypothesized that the overland flow (Hortonian) overland flow (Wu et al., 2021).
relative strength in infiltration Calculated as the Spearman correlation coefficients
vs. saturation of excess between event runoff coefficient and event
overland flow (i.e., differences maximum rainfall intensity. As pe (Wuetal.,,
in RC Pvol and RC_Pint) 2021), event maximum rainfall intensity is
indicate the prevalence of calculated as the multiplication of daily rainfall
either overland flow (mm/day) from original climate forcings (i.e.,
mechanisms. ERAS for Caravan, gridMET for GAGES-II)
multiplied by the fraction of maximum rainfall
Exclude watersheds where intensity from CAMELSH hourly NLDAS forcings.
event runoff coefficient has
negative relationships with Positive relationship RC Pint Indicates stormflow processes sensitive to rainfall

storm characteristics (i.e.,
RC Pvol <0 and RC Pint <
0).

with saturation excess
overland flow

volume, for example, saturation excess overland
flow, subsurface stormflow, and groundwater flow
(Wu et al., 2021). Calculated as the Spearman
correlation coefficients between event runoff
coefficient and rainfall volume.
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Table 2: Landscape attributes used in training the random forest model. Descriptions are adapted from (Falcone, 2011;

Falcone et al., 2010; Holt and McMillan, 2025; Kratzert et al., 2023; Linke et al., 2019). For predictions, when certain

attributes are unavailable, equivalent attributes are substituted (e.g., Caravan equivalents are used when predicting signatures

for watershed samples available only in Caravan). The combinations are detailed in Table S1. An asterisk (*) in the unit

column indicates that the landscape attribute unit from GAGES-II was converted to the Caravan equivalent (Fig. S11 shows

the comparison).

Category Attribute Description Unit Original Source Dataset Caravan
Name Source Equivalent
Physiography | ELEV_MEA | Mean watershed elevation meters | USGS 100m National GAGES-II ele mt sav
N_M_BASIN Elevation Dataset (Gesch
etal., 2018)
Physiography | DRAIN_SQ Watershed drainage area km? Multiple sources, while GAGES-II area
KM the majority derived
from NHDPlus (U.S.
Environmental
Protection Agency,
2008) (see original
USGS, 2011 report on
GAGES-II)
Physiography | SLOPE PCT | Mean watershed slope, % USGS 100m resolution GAGES-II slp_dg_sav
percent National Elevation
Dataset (Gesch et al.,
2018)
Land Cover FORESTNL | Forest extent % area | NLCDO06 for most GAGES-II for pc_sse
CDO06 regions; NLCDO1 for
Alaska, Hawaii, and
Land Cover CROPSNLC | Cultivated Crops extent % area | Puerto Rico (Yangetal., | GAGES-II crp_pc_sse
D06 2018)
Land Cover PASTUREN | Pasture/Hay extent % area GAGES-II pst_pc_sse
LCD06
Land Cover PCT_IRRIG | Irrigated agriculture extent % area | Based on 250m MODIS | GAGES-II ire_pc_sse
AG datasets, USGS MIrAD-
US (Shrestha et al.,
2019)
Land Cover PADCATI_ | Percent of watershed % area | Protected Areas GAGES-II pac_pc_sse
AND 2 designated as Protected Area | * Database (United States

Category 1 and 2

Geological Survey,
2024)
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Land Cover isowet areafr | Isolated wetland area - National Wetlands Holt and N/A
ac fraction (Holt, 2024) Inventory (Lane and McMillan,
D’ Amico, 2016) 2025
Soils & CLAYAVE Average clay content % STATSGO (United GAGES-II cly_pc_sav
Geology States Department of
Agriculture et al., 2008)
Soils & SILTAVE Average silt content % GAGES-II slt_pc_sav
Geology
Soils & soc_th sav Organic carbon content in tonnes/ Caravan/Hydr | N/A
Geology soil hectare oAtlas
Soils & kar_pc_sse Karst area extent % area | Rock Outcrops v3.0 Caravan/Hydr | N/A
Geology (Williams and Ford, oAtlas
2006)
Soils & geol _weighte | Area-weighted average of ma The USGS State Holt and N/A
Geology d_ave age m | geologic age Geologic Map McMillan,
a Compilation (Horton et 2025
al., 2017)
Anthropogenic | PDEN_2000_ | Population density in the persons | 2000 Census block data GAGES-II ppd_pk_sav
BLOCK watershed /km? regridded to 100m
Climate P_mm_day Mean annual precipitation mm/da | 800m PRISM data GAGES-II p_mean
(1971-2000). The unit was y*
converted from the original
variable
“PPTAVG_BASIN” in
cm/year to mm/day.
Climate PET mm_da | Mean annual potential mm/da | Monthly air temperature | GAGES-II pet mean FA
y evapotranspiration rate y* from 30-year (1961- O PM
estimated from mean 1990) PRISM
monthly air temperature and
latitude using Hamon (1961)
equation. The unit was
converted from the original
variable “PET” in mm/year
to mm/day.
Climate ARIDITY G | Aridity index, ratio of mean | - Calculated from GAGES-II aridity FAO
AGES2 PET and mean precipitation PPTAVG BASIN and PM
PET in GAGES-II
attributes
Climate SNOW_PCT | Mean snow percent of total -k McCabe and Wolock GAGES-II frac_snow
_PRECIP precipitation estimate (1901- (submitted, 2008), 1km

2000)

grid

28




620

621
622
623
624
625
626
627
628
629
630
631
632
633
634

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

Climate seasonality F | Moisture index seasonality - ERA-5 (Mufioz Sabater, | Caravan/ERA- | N/A
AO_PM in range [0, 2] (Knoben et 2019); The FAO 5
al., 2018), where 0 indicates Penman—Monteith
no change in the water or equation (Allen et al.,
energy budget throughout 1998; Shalev and
the year, and 2 indicates a Kratzert, 2024) is used to
transition from fully arid to calculate Potential
fully humid conditions. The Evapotranspiration
moisture index is calculated (PET)
as the normalized aridity
index at the monthly scale.
Climate high prec_fre | Frequency of high - ERA-5 (Mufioz Sabater, | Caravan/ERA- | N/A
q precipitation days, 2019) 5
where precipitation
25 times mean daily
precipitation
Climate low_prec_fre | Frequency of low - ERA-5 (Mufioz Sabater, | Caravan/ERA- | N/A
q precipitation days, where 2019) 5
precipitation <I mm/day
Climate low_prec_dur | Average duration of low day ERA-5 (Mufioz Sabater, | Caravan/ERA- | N/A
precipitation events (number 2019) 5
of consecutive days where
precipitation <1 mm/day)
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