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Abstract. Understanding how dominant hydrologic processes and their drivers vary across diverse continental-scale 10 

landscapes is critical for hydrologic modeling and water management applications. Our research addresses this question by 11 

synthesizing large-sample watershed datasets, Caravan and GAGES-II, and developing random forest models to identify 12 

patterns in hydrologic behavior. We assessed dominant processes by examining hydrologic signatures—summary indicators 13 

of watershed behavior derived from hydroclimatic time series and random forest models across 14,146 gauged U.S. watersheds. 14 

The results reveal clear continental-scale gradients in hydrologic processes, including baseflow, overland flow, storage, and 15 

water balance losses. Our map of dominant processes highlights, for example, the transition from baseflow to fast responses 16 

and back to baseflow along the elevation gradient from the Appalachian spine, through the Piedmont, to the Eastern Coastal 17 

Plain; a distinct outer ring around the Great Lakes region; and sharp contrasts between coastal and inland processes in the 18 

West. Variable importance analysis from random forest models show that processes in the western U.S. are primarily controlled 19 

by climate, whereas in the eastern U.S., soil, geology, and topography play larger roles, with distinct human influences apparent 20 

in urban areas. Our estimates of dominant processes and their drivers provide a framework to extend process knowledge from 21 

research watersheds to the continental scale, assess current hydrological understanding, and evaluate hydrological model 22 

structures. 23 

1 Introduction 24 

1.1 Identifying hydrologic processes at large scales 25 

Estimating the contributions of different hydrologic processes to streamflow generation at a continental scale is essential for 26 

flood forecasting and water resources management. Optimal management strategies, including the design of grey and green 27 

infrastructure, differ depending on which processes dominate hydrological response (Oswald et al., 2023; Thompson et al., 28 

2020), which vary substantially by regional environmental conditions (Blöschl, 2006; Paola et al., 2006; Penna, 2024). 29 

Understanding how water is partitioned, stored, and transported through different parts of the terrestrial systems is a 30 

fundamental question in the hydrologic sciences (Brooks et al., 2015). To simulate a diverse set of processes at large-scale, a 31 

new generation of hydrologic models with flexible and heterogeneous structures has emerged (Clark et al., 2015; Frame et al., 32 

2025; Johnson et al., 2023). However, despite these technological advances, we still lack an estimate of dominant hydrologic 33 
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processes controlling streamflow generation at continental scales (McMillan et al., 2025; Reinecke et al., 2025). Developing 34 

this understanding is a critical step toward unified hydrologic theory (Sivapalan, 2005) and can provide a blueprint for robust 35 

model development and informed decision making.  36 

 37 

Previous efforts to map multiple hydrologic processes at continental scales are scarce. Instead, studies at large scale have 38 

typically focused on one process while others have studied multiple processes for single or small groups of watersheds. 39 

Examples include studies that examined the likelihood of infiltration excess flow occurrence by comparing whether rainfall 40 

intensity exceeds saturated hydraulic conductivity (Buchanan et al., 2018); baseflow indices and their drivers globally (Beck 41 

et al., 2013; Xie et al., 2024); and the strength of runoff-storage connectivity using a correlation between anomalies in 42 

streamflow gauge and satellite water storage observations (Fang and Shen, 2017). A study in Alaska shows that the use of 43 

multiple streamflow statistics can help distinguish and assign hydrologic regions (Barnhart et al., 2022). Model-aided studies 44 

have simulated global patterns of multiple indices: water partitioning into green and blue water, streamflow response elasticity 45 

to rainfall, and streamflow flashiness (Ji et al., 2025), U.S.-wide indices for water balance seasonality (Berghuijs et al., 2014). 46 

Another model-based approach has involved inferring hydrologic processes through parameter sensitivity analysis (Hay et al., 47 

2023). These synthesis studies present promising descriptions of spatial patterns and directions for future progress toward a 48 

holistic understanding of runoff generation mechanisms, which still remains elusive. 49 

 50 

Much of the research for generalizing watershed behaviors has focused on summarizing flow regimes (Dettinger and Diaz, 51 

2000; Lane et al., 2017; Lee et al., 2015; Lins, 1997) and predicting shifts in flow regime under future climate (Brunner et al., 52 

2020; Hodgkins et al., 2024). Many studies cluster streamflow gauges using flow indices targeting general (Almagro et al., 53 

2024; Ariano and Ali, 2025; Mosley, 1981; Wu et al., 2021), intermittent (Sauquet et al., 2021), or seasonal streamflow patterns 54 

(Dhungel et al., 2016; Haines et al., 1988; Kennard et al., 2010). However, most of these studies aim to define the similarity 55 

of flow regimes rather than the underlying runoff generation processes. Furthermore, the results from clustering approaches 56 

are constrained to gauged locations and lack spatial coherence, making it challenging to extrapolate to ungauged watersheds.  57 

 58 

To estimate watershed processes in ungauged locations, hydrologists have conventionally used maps derived from 59 

physiographic datasets. For example, in the United States context, the Environmental Protection Agency’s Ecoregions 60 

(Omernik, 1987, 2004), an ecosystem classification based on the physical and biotic characteristics, is a common reference 61 

when discussing hydrologic processes (Falcone et al., 2010). Other classifications include the United States Geological 62 

Survey’s Water Resources Regions (Seaber et al., 1987) based on streamflow networks, Hydrologic Landscape Regions 63 

(Santhi et al., 2008; Winter, 2001; Wolock, 2003a) based on physiographic and climatic datasets, and the United States 64 

Department of Agriculture’s Hydrologic Soil Groups (Web Soil Survey, 2025) based on soil surveys. Nevertheless, 65 

regionalization based on physiographic data often fails to capture the full variability of watershed behavior (Ali et al., 2012; 66 

Oudin et al., 2008) because hydrologic processes can differ even among physiographically similar watersheds (McMillan et 67 
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al., 2014). Capturing watershed processes at a continental scale calls for a scalable method to draw information from 68 

hydroclimatic datasets. To date, no studies have attempted to develop comprehensive maps of runoff generation processes 69 

based on streamflow observations that can effectively capture watersheds’ functions.  70 

1.2 Hydrologic signatures links to processes 71 

Hydrologic signatures are metrics that quantify hydrologically-relevant dynamics, and offer a promising way to infer watershed 72 

processes with minimal data requirements (McMillan, 2021). Hydrologic signature calculations require only widely-available 73 

datasets, such as streamflow and precipitation, and can be related to various watershed processes, such as runoff generation 74 

and water storage dynamics (McMillan, 2020; Wlostowski et al., 2021). Using hydrologic signatures, expert knowledge, and 75 

landscape characteristics, Fenicia and McDonnell (2022) inferred dominant runoff processes and developed perceptual models 76 

at the regional scale; and Pechlivanidis and Arheimer (2015) mapped process differences at the national scale in India. 77 

Hydrologic signatures can capture the functional streamflow responses to climatic forcings and can discriminate different 78 

processes across landscapes (Araki et al., 2022; Gnann et al., 2020, 2021a; Janssen and Ameli, 2021). This enables a signature-79 

based exploration of the relationship between landscape form and function (Bracken et al., 2013; Sivapalan, 2005).  80 

1.3 Predicting hydrologic signatures using watershed attributes 81 

Watershed attributes describe the physical characteristics of watersheds, which can be used to identify the drivers of hydrologic 82 

processes and to transfer hydrological knowledge to ungauged locations (Tarasova et al., 2023). The link between watershed 83 

attributes and signatures of streamflow response can be explored via machine learning approaches on large watershed samples. 84 

Regional and global applications include studies in the U.S. (Addor et al., 2018; Janssen and Ameli, 2021; Wu et al., 2021), 85 

Australia (Trancoso et al., 2017), Zimbabwe (Mazvimavi et al., 2005), Brazil (Almagro et al., 2024), Europe (Kuentz et al., 86 

2017), and globally (Beck et al., 2015). Across all studies, climate emerged as the primary control on signatures. Non-climatic 87 

factors (i.e., landscape attributes), such as soil, geology, vegetation cover, and topography, had weak or limited predictive 88 

power. However, substantial evidence from field-based studies shows that landscape forms are a primary control of watershed 89 

function (Angermann et al., 2017; Fan et al., 2019; Jackisch et al., 2017; Jefferson et al., 2010; Lohse and Dietrich, 2005; 90 

Pfister et al., 2017; Zimmer and Gannon, 2018).  91 

 92 

Weak predictive power of non-climatic drivers can be attributed to lack of high-resolution, accurate landscape attributes that 93 

describe regionally important processes (Gnann et al., 2021a; Tarasova et al., 2023). For example, wetlands are key regulators 94 

of low flows in the U.S. (Worland et al., 2018) and have been left out of previous studies (Addor et al., 2018). Similarly, 95 

weathering and glaciation have primary impacts on baseflow storage and generation (Neff et al., 2005; Tague and Grant, 2004), 96 

but rock permeability and porosity predictors did not clearly capture the relationship (Wu et al., 2021). Coarse spatial resolution, 97 

or limited quality and consistency of global datasets may reduce their predictive power (Beck et al., 2015; Tarasova et al., 98 

2023). Regional analysis can mitigate climate influence and elucidate the contribution of non-climatic drivers, such as regional 99 
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random forest models that revealed physiographic and anthropogenic controls on flow regimes (Almagro et al., 2024; 100 

Hammond et al., 2021). However, smaller regional sample sizes may limit prediction accuracy if datasets only provide tens of 101 

watersheds per region (Willard et al., 2024).  102 

 103 

Lastly, the quality of signatures can compromise data-driven model performance and interpretation for process understanding. 104 

Examples include the sensitivity of flow duration curve slope to measurement errors (McMillan et al., 2017), the sensitivity of 105 

signatures to rating curve uncertainties (Westerberg et al., 2016), lack of process representativeness (McMillan et al., 2022), 106 

and inaccurate parameterization of storm separation algorithms (McMillan et al., 2023). Minimizing the impact of signature 107 

uncertainty is important for differentiating different regional watershed functionalities (Westerberg et al., 2016).  108 

1.4 Aims of the paper 109 

This study presents the first hydrologic processes map for the contiguous United States (CONUS). We synthesized hydrologic 110 

signatures as process indicators, going beyond pattern identification from single signatures. We hypothesize that signature 111 

combinations can represent six key hydrologic processes (McMillan, 2020; McMillan et al., 2022): baseflow and storage, 112 

water balance and seasonal flow variability, and saturation and infiltration excess overland flow. Using random forest models, 113 

we demonstrate the explanatory power of landscape metrics to predict hydrologic signatures and their regional variations, and 114 

thus the underlying processes, across CONUS. 115 

 116 

We address the limitations of previous studies in predicting hydrologic signatures. First, we improved the quality of non-117 

climatic attributes by: (i) incorporating new geological and wetland landscape attributes that have demonstrated strong 118 

connections to baseflow processes (Holt and McMillan, 2025); and (ii) utilizing watershed attributes from GAGES-II datasets 119 

(Falcone, 2011), derived from survey-based and higher-resolution products. Second, we interpret random forests using Shapley 120 

values (Shapley, 1953) following Husic et al. (2025), as well as permutation importance values within a regional model-121 

building approach, following Hammond et al. (2021), which extends prior work to elucidate the regional contributions of non-122 

climatic, landscape attributes to hydrologic processes. Furthermore, our work assessed 14,146 U.S. watersheds and was trained 123 

on 10,261 watersheds, nearly ten times more sample watersheds than previous studies; we leverage the Caravan and GAGES-124 

II—the most extensive open-source large-sample datasets currently available (Falcone, 2011; Kratzert et al., 2023). Third, we 125 

utilize a set of hydrologic signatures proven robust across large-sample watershed studies and have a clear connection to 126 

critical-zone processes (McMillan et al., 2022), with their parameters further tuned to local storm characteristics. With these 127 

improvements, we expand watershed coverage and uncover more detailed spatial patterns of watershed processes than 128 

previously possible, using widely-available hydroclimatic datasets and physiographic attributes. 129 
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2 Data 130 

We used two primary sources of streamgages and watershed attribute data to expand the number of samples: Caravan v1.5 131 

(Kratzert et al., 2023, 2024) and U.S. Geological Survey GAGES-II (Falcone, 2011; Falcone et al., 2010). See Fig. 1 for the 132 

spatial distribution of the study watersheds. Caravan is an open-source dataset of global watersheds; its CONUS subset consists 133 

of 9,234 watersheds sourced from CAMELS-US (Addor et al., 2017) and HYSETS (Arsenault et al., 2020). GAGES-II is a 134 

geospatial dataset of 9,067 watersheds in the United States, selected for their quality to characterize natural and altered flow 135 

regimes.  136 

2.1 Hydroclimatic dataset 137 

We calculated hydrologic signatures listed in Table 1 using daily hydroclimatic timeseries data from watersheds within the 138 

contiguous United States (CONUS). For Caravan watersheds, we used U.S. Geological Survey (USGS) streamflow 139 

measurements paired with daily ERA5-Land forcings provided. For the GAGES-II watersheds, we obtained the USGS 140 

streamflow records (U.S. Geological Survey, 2025) using the dataRetrieval package (DeCicco et al., 2018) and gridMET 141 

forcings from Wieczorek et al. (2023). For calculating infiltration excess overland flow signatures of Wu et al. (2021; 142 

“RC_Pint”), we used the hourly precipitation from the North American Land Data Assimilation System 2 (NLDAS-2; Xia et 143 

al., 2012) provided through CAMELSH: a Large-Sample Hourly Hydrometeorological Dataset and Attributes at Watershed-144 

Scale for CONUS (Tran, 2025; Tran et al., 2025).  145 

2.2 Watershed attributes 146 

We combined watershed attributes from three sources: (1) Caravan, (2) GAGES-II, and (3) geologic age and wetland attributes 147 

(Holt and McMillan, 2025). We added average geologic age and isolated wetland fraction metrics because of their strong link 148 

to baseflow processes, which were missing from previous large-sample analyses (Holt and McMillan, 2025). From the Caravan 149 

and Holt & McMillan (2025) attribute sets, we excluded binary or categorical attributes, monthly climate variables, 150 

uninformative attributes for the CONUS context (e.g., permafrost extent, gross domestic product), and highly correlated 151 

attributes (Spearman's rho > 0.8 or < -0.8; see Text S1). Where available, Caravan attributes were substituted with GAGES-II 152 

attributes, as described in Section 3.2 and Table S1. Table 2 lists the 23 attributes used in the random forest analysis.  153 

3 Method 154 

3.1 Calculating hydrologic signatures 155 

A total of 12 signatures (four baseflow and groundwater signatures, four water balance and seasonality-related signatures, and 156 

four overland flow signatures) were used to characterize hydrologic dynamics (see Table 1). The signatures were selected 157 
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based on their reliability in representing processes (McMillan et al., 2022). We calculated signatures using the TOSSH toolbox 158 

(Gnann et al., 2021b) and tuned the parameters for event separation for each hydroclimatic region (see Tables S2, S3). 159 

3.2 Training random forest models and predicting hydrologic signatures 160 

We developed random forest models to examine potential drivers of hydrologic processes.  Random forest models have been 161 

widely used for this task (Eng and Wolock, 2022; Lapides et al., 2023; Zipper et al., 2021) for their interpretability, relatively 162 

low computational demands, and robustness to multi-collinearity (Addor et al., 2018). For each signature, we constructed a 163 

random forest model to predict its values based on watershed attributes using the caret R package (Kuhn, 2008; R Core Team, 164 

2024). Each model used 500 trees with the optimal number of features randomly resampled at each split, selected by 165 

minimizing root mean squared error (RMSE) through 10-fold cross-validation.  166 

 167 

Only quality-controlled observations were used for training. Training on all Caravan watersheds yielded R2 < 0.4 for many of 168 

the signatures, so we limited the training samples to the 4,748 Caravan watersheds with streamflow gauge IDs overlapping 169 

with GAGES-II to attain model performance comparable to previous studies (see Text S2). Furthermore, we omitted 170 

watersheds from our training sample with short or incomplete streamflow records or uncertain watershed boundaries. First, we 171 

excluded watersheds with less than 5 years of streamflow observation record, and those with over 30% missing daily data over 172 

the period where streamflow was recorded. Second, we removed watersheds from our analysis with uncertain topographic 173 

boundaries, showing high discrepancies (>25%) in the estimated drainage area between GAGES-II and Caravan datasets. Third, 174 

for overland flow signature analysis, we excluded snow-dominated watersheds (>20% snow fraction of total precipitation); 175 

this is because our overland flow signatures can be heavily influenced by periods with no flow response due to snow or frozen 176 

conditions. When a gauged watershed was present in both datasets, we prioritized CAMELS over HYSETS, and Caravan over 177 

GAGES-II. This is to ensure the broader applicability of our method across different countries, as Caravan is available at global 178 

scale. This yielded a total 14,403 watersheds for signature analysis (overview in Table S1). 179 

 180 

We then used the trained model to predict hydrologic signatures for 3,885 watersheds where observations did not meet data 181 

quality standards. Preliminary experiments showed improved model performance when the watershed attributes were derived 182 

from higher-resolution datasets based on detailed field surveys, such as in GAGES-II and (Holt and McMillan, 2025). 183 

Therefore, we used GAGES-II attributes and when unavailable, used the coarser resolution Caravan attributes (see Table S1). 184 

3.3 Interpretation of hydrologic signatures as process descriptors 185 

We combined signatures calculated from observed streamflow data and predicted with random forest models to develop a 186 

comprehensive map of processes for watersheds across the U.S. (Fig. 1). A bivariate space of hydrologic signatures was used 187 

to infer process dominance. For each selected process, we used the two signatures most strongly related to the process inferred 188 

from previous work (Bolotin and McMillan, 2024; McMillan, 2020; McMillan et al., 2022; Wu et al., 2021). Each signature 189 
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was categorized based on the quantiles of signatures, from low (0-25%), mid-low (25-50%), mid-high (50-75%), to high (75-190 

100%). When both of the two target signatures had mid-high (50-75%) or high (75-100%) values, we interpreted this as 191 

indicative of process dominance. This bivariate matrix can highlight the complexity of hydrologic processes where two 192 

signatures do not necessarily show the same trends.  193 

 194 

The major process hypotheses are as follows (detailed in Table 1): regions with strong baseflow processes would show high 195 

baseflow magnitude (larger BFI) and slow baseflow recession (smaller recession K); regions with large storage capacity and 196 

retention would show high storage magnitude (larger AverageStorage) and more nonlinear recessions (larger Recession 197 

parameter b); regions with large water balance losses would show smaller runoff ratios (smaller TotalRR and EventRR); 198 

regions strongly influenced by seasonality in processes (e.g., evapotranspiration, snow) would show variability in the flow 199 

timeseries and recessions (large Recession a seasonality and large variability index); regions with strong overland flow or 200 

stormflow processes would exhibit strong threshold responses to precipitation (large threshold value and high significance, 201 

small p-values); regions dominated by infiltration-excess overland flow would show stronger correlation between flow and 202 

precipitation intensity (RC_Pint > RC_Pvol) while regions dominated by saturation-excess overland flow would show stronger 203 

correlation between flow and precipitation volume (RC_Pvol > RC_Pint).  204 

3.4 Interpretation of process drivers using Shapley values 205 

We quantified feature importance using Shapley values (Shapley, 1953), which provide a robust and consistent measure to 206 

interpret random forest models (Lundberg et al., 2018). Shapley values represent the average marginal contribution of a feature 207 

(i.e., a landscape attribute) to a prediction, given the effects from all combinations of the considered features. Shapley values 208 

allow for local and global interpretation of machine learning model predictions, helping to uncover site-specific and 209 

generalizable linkages between hydrology and landscape features (Husic et al., 2025). We used the interpretable machine 210 

learning (iml) R package (Molnar et al., 2018) to calculate Shapley values over the training data.  211 

 212 

To evaluate the regional effects of watershed attributes, we computed summary statistics on Shapley values. Shapley values 213 

are site-specific: 𝜙𝑥
(𝑦,𝑖)

 is the Shapley value calculated for an attribute x for a signature y at location i. Summing the Shapley 214 

values across watershed attributes x at a single location gives the deviation of the predicted signature value yi at location i from 215 

the mean signature value across all sites. To compare effects of a landscape attribute x across sites, we normalize Shapley 216 

values by the total absolute contribution from all attributes at a site i; this gives a metric for the relative contribution of an 217 

attribute x to signature y at site i as:  218 

𝑅𝑥
(𝑦,𝑖)

= |𝜙𝑥
(𝑦,𝑖)

|/ ∑ |𝜙𝑥
(𝑦,𝑖)

|
x∈𝐴

 219 
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where A is the set of all watershed attributes, and | ∙ | denotes the absolute value. To investigate which types of landscape 220 

characteristics are influential, we classified the watershed attributes into five categories (see Table 2), namely, topography, 221 

land-cover, soil & geology, human alteration, and climate.  222 

 223 

Then, the average relative contribution of category k for signature y at location i, 𝑅𝑘

(𝑦,𝑖)
, is calculated as:  224 

𝑅𝑘

(𝑦,𝑖)
 =  

1

𝐾
∑ 𝑅𝑥

(𝑦,𝑖)

𝑥∈𝐶𝑘

 225 

, where 𝐶𝑘 is the set of watershed attributes belonging to category k, and  𝐾 is the number of categories (in our case, five). 226 

3.5 Interpretation of process drivers using permutation importance 227 

To further evaluate locally important watershed attributes, we computed permutation importance, which measures the change 228 

in model performance when a feature (i.e., a landscape attribute) is removed. Prior work has shown that permutation 229 

importance derived from random forest models trained on regional samples is more effective than a continental approach for 230 

identifying physiographic, landscape controls on hydrologic responses, as it allows assessment under consistent climate 231 

conditions (Almagro et al., 2024; Hammond et al., 2021; Holt and McMillan, 2025). Therefore, we calculated permutation 232 

importance as the average changes in mean squared error (MSE), normalized by its standard deviation using the caret R 233 

package (Kuhn, 2008), from random forest models trained on regional watershed samples. Six climate regions were defined 234 

using a Gaussian mixture model in Scikit-learn (Pedregosa et al., 2011) based on relevant Caravan, GAGES-II, and Hammond 235 

et al. (2023) climate attributes (Table S4), and separate random forest models were trained for each region. Fig. S1 shows the 236 

identified climate regions. 237 

 238 
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 239 

Figure 1: Method used to obtain hydrologic signatures. Signatures are derived either from observed data (“Observed”: Caravan 240 
samples, n=7,465; GAGES-II samples, n=2,807; total n=10,261) or predicted using random forest models (“RF”; n=3,885). Predicted 241 
samples are categorized as: “Caravan+GAGES-II overlap” (present in both the Caravan and GAGES-II datasets; n=618), “Caravan 242 
only” (exclusive to Caravan; n=2,424), and “GAGES-II only” (exclusive to GAGES-II; n=843). State boundaries are indicated by 243 
grey lines.  244 

4 Results 245 

4.1 Mapping dominant processes across the contiguous U.S. 246 

Figures 2 and 3 show the maps of dominant processes derived from the hypotheses outlined in Table 1. Figure 2 presents the 247 

signature of each process hypothesis in a bivariate map. Figure 3 provides a summary, displaying only the selected process 248 

hypothesis when it is deemed dominant (i.e. both signatures are in the mid-high (50-75 %) or high (75-100 %) quantiles). 249 

Together, these maps highlight distinct regional patterns in hydrologic processes across the study area. The following sections 250 

examine these patterns in greater detail by region: the East and South. (Section 4.2.1.), the Midwest and Central (Section 4.2.2.), 251 

and the West and Southwest (Section 4.2.3.). 252 

 253 
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 254 

Figure 2:  Map of dominant processes estimated based on our hypothesis (defined in Table 1 and Section 3.3). Note that when 255 
baseflow and overland flow both occur, their colors are overlaid to give purple hues. 256 
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 257 

Figure 3:  Hydrologic signatures of each process hypothesis, shown in bivariate maps (a–e). See the legend at the bottom for 258 
explanation. The high-process quantile from (a) is used to infer “Baseflow” in Figure 2; from (b) to infer “High storage capacity”; 259 
from (c) to infer “Water balance losses”; and from (e) to infer “Overland flow.” Panel (f) shows the differences between the two 260 
signatures related to infiltration-excess (IE) flow and saturation-excess (SE) flow (i.e., values of RC_Pint minus PC_Pvol). In the 261 
overland flow panels (e) and (f), watersheds dominated by snow (i.e., where more than 20% of annual total precipitation falls as 262 
snow) are not shown. For the overland flow type pane (f), watersheds are not shown when the correlations between the event runoff 263 
coefficient and both rainfall characteristics (i.e., storm rainfall volume and maximum intensity) are negative. For maps of each 264 
signature value, see Figures S2 and S3. 265 
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 266 

Figure 4:  Map of the contiguous United States showing (i) areas described in Section 4.2.1-4.2.3 (East and South, Midwest and 267 
Central, West and Southwest; bolded brown line) (ii) geographical boundaries used for the USGS National Water Availability 268 
Assessment  (Qi and Mason, 2023; Stets et al., 2025; Van Metre et al., 2020) (beige line) (iii) topographic and geological features 269 
named in the text (pink annotations). 270 

4.2 Spatial patterns of hydrologic processes inferred from signatures 271 

4.2.1 Region 1: East and South 272 

This section describes the East and South of the U.S. (Fig. 4). This humid region has moderate to high precipitation (1,000-273 

1,500 mm/yr; calculated based on the 10th and 90th percentiles of sample watershed attributes), with low precipitation 274 

seasonality except in Florida. Temperatures vary widely from snow-dominated areas in the NorthEast to subtropical areas in 275 

Florida, with mean annual temperature ranging from 7-19°C (Fig. S4). The landscape is old with deeply weathered soils and 276 

characterized by predominantly low-lying elevation (mean watershed elevation ranges between 40-600m), though there is a 277 

primary elevation gradient from the Appalachian Mountains and Piedmont to the Eastern coastal plains, with peaks exceeding 278 

1,000m (Fig. S8). In Figure 3, signature values show that these climate and landscape conditions produce slowly-varying, 279 

baseflow-dominated flow regimes and mid-quantile signature values showing a lack of hydrologic extremes. Runoff ratios 280 

(TotalRR and EventRR; Fig. 3c) are moderate or high and seasonal variability in flow and recessions is moderate to low. 281 
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Storage capacity (Avg. Storage) is overall moderate, but recession shapes (Recession Params b) are variable (Fig. 3b). Evidence 282 

for overland flow is weak with saturation excess prevailing when it occurs (Fig. 3e,f).  283 

 284 

The gradient along the geographical transect from the Appalachian spine to the Eastern coastal plain is apparent in several 285 

processes. The Appalachians have strong baseflow influence, shown by high baseflow index and slow recessions (Fig. 3a). 286 

Nonlinear recessions (high Recession Parameter b; Fig. 3b) indicate multiple groundwater reservoirs supplying baseflow. In 287 

contrast, the Piedmont has lower baseflows and fast recessions, relating to lower storage, a greater fraction of developed land, 288 

and wide, wet valley bottoms that generate a fast response (Zimmer and Gannon, 2018). The Eastern coastal plain, especially 289 

towards the South, has high baseflow and moderate to slow recessions (Fig. 3a). Linear recessions suggest a single dominant 290 

groundwater reservoir supplying baseflow (Fig. 3b). These characteristics reflect the sandy soils, seasonal flooding and 291 

presence of wetlands atop the coastal plain aquifer (Holt and McMillan, 2025; Hupp, 2000). Lower runoff ratios in the coastal 292 

plains indicate losses to deep groundwater including offshore discharge, especially in Florida’s karst area (Fig. 3c, S6). The 293 

karst area stands out for its high dynamic storage and seasonality in recessions. Saturation excess dominates overland flow in 294 

the Coastal plain (Fig. 3f), although evidence for overland flow is weak (Fig. 3e) in contrast to a previous study (Wieczorek 295 

and LaMotte, 2010) that suggests the Florida panhandle has the highest fraction of saturation excess overland flow in the US.  296 

 297 

In inland areas such as the valleys of the Tennessee-Missouri region, baseflow is moderate and recessions are relatively fast 298 

(Fig. 3a). The Gulf Coast region has lower baseflow and faster, linear recessions. Although depth to bedrock is high (Fig. S5), 299 

and these areas overlie semi-consolidated sand aquifers, soils are clay-rich and capable of generating infiltration excess flow 300 

(Miller, 1999; Fig. S6). Infiltration excess flow largely occurs in the narrow ocean margin of the Gulf coast region but does 301 

not extend far inland (Fig. 3f). Exceptions to the area’s fast runoff occur in the Ozark Mountains and the west of the Mississippi 302 

embayment where limited areas of high baseflow and slow recessions occur.  303 

4.2.2 Region 2: MidWest and Central 304 

The landscape of the Midwest and Central region is dominated by the gradient from recently-glaciated, sandy, forested 305 

watersheds of the Great Lakes region, to the poorly-drained, clay-rich but highly developed for agriculture and populated 306 

region of the Souris-Red-Rainy and Midwest regions. Across the Midwest and Central area, mean watershed elevation ranges 307 

from 200 to 700 meters, and mean annual precipitation varies from 500 to 1,000 mm. Moving west into the Central and 308 

Northern High Plain regions, elevation gradually increases, precipitation decreases, and population density decreases (Fig. S8, 309 

S4, S7). The region experiences mean annual temperatures between 6 to 13°C. The absence of major topographic barriers 310 

results in a continental climate characterized by intense thunderstorms in summer and heavy snowfall in winter. 311 

 312 

Signature values show that storage capacity is moderate throughout the Midwest (Fig. 3b). Storage in this region is provided 313 

by a moderate snowpack and high depth to bedrock (Fig. S5). Most of the region was previously glaciated, leaving a thick 314 
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layer of glacial drift. The soil texture is graded from coarse and sandy around the Great Lakes to clay-rich further South and 315 

West, forming a distinctive outer ring around the Great Lakes region (Miller and White, 1998; Fig. S6). Following this gradient, 316 

there is very low evidence for overland flow around the Great Lakes, changing to stronger evidence further South-West (Fig. 317 

3e,f). Some occurrence of infiltration excess is consistent with evidence of this process from Midwest agricultural watersheds 318 

(Abban et al., 2014; Davis et al., 2014; Wilson et al., 2012). Streamflow seasonality follows the same gradient (Fig. 3d), with 319 

low seasonality around the Great Lakes where sandy aquifers sustain discharge year-round, and higher seasonality further 320 

SouthWest (Miller and White, 1998; Fig. 3d). A second gradient occurs in the MidWest from West to East, following 321 

precipitation and aridity gradients (Fig. S4). In the west, high aridity leads to high water balance losses to ET and low runoff 322 

coefficients at the annual and event scale (Fig. 3c). 323 

4.2.3 Region 3: West and Southwest 324 

The landscape of the West and Southwest region is dominated by the mountain ranges of the Coastal Ranges, Cascades, Sierra 325 

Nevada and Rocky Mountains, with mean watershed elevation ranging from 400 to over 2,700 meters. Dense populations in 326 

the coastal cities give way to sparsely populated inland areas. The climate exhibits strong gradients. The Pacific Northwest 327 

and Sierra Nevada mountain ranges receive substantial amount of precipitation than interior, with mean annual precipitation 328 

ranging from 460 to over 2,100 mm/yr across the region. The region shows a north-south temperature gradient with coastal 329 

moderation. Mean annual temperature ranges from 2°C in northern and high mountain areas to over 20°C in inland southern 330 

desert regions (Fig. S4). Precipitation patterns follow Mediterranean or semi-arid climates characterized by winter precipitation 331 

peaks and dry summers. 332 

 333 

High baseflows with slow recession are prevalent across most of the Western region, where deep snowpacks drive sustained 334 

baseflow processes (Fig. 3a, S5; Barnhart et al., 2016; Tague and Grant, 2009). Inland areas tend to have faster recessions 335 

while retaining high baseflows, while coastal areas - where snow is rare - have lower baseflow while retaining slow recessions. 336 

The Southwest desert contrasts with the rest of the region, having low baseflows and fast recessions typical of the arid or semi-337 

arid climate with water tables far below the land surface (Goodrich et al., 1997). Storage capacity and retention follow the 338 

same gradient from high in the Pacific Northwest to low in the South-East, but the high storage region is more constrained to 339 

the Rocky, Cascade and Sierra Nevada mountains (Fig. 3b). Water balance patterns contrast the pattern still further, with only 340 

the high mountains having high runoff ratios in contrast to low ratios throughout the remainder of the Western U.S. (Fig. 3c) 341 

Seasonal variability in processes is higher in the South (primarily California) where the seasonal Mediterranean climate pattern 342 

occurs with hot, dry summers and cool, wet winters (Fig. 3d, S5).  343 

 344 

Processes in the coastal margin are markedly different from those inland. The moderating influence of the coast is strongly 345 

apparent in storage capacity (Fig. 3b): the northern Coast Ranges have lower average storage compared to high storage inland 346 

areas, while the southern coastal band has higher storage compared to low storage inland areas. Overland flows are strongly 347 
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indicated all along the coast, but more weakly inland (Fig. 3e). Most overland flow favors saturation excess, although inland 348 

watersheds of the Southwest desert show areas of infiltration excess (Fig. 3f).  349 

4.3 Climate and landscape drivers of hydrologic processes 350 

In this section, we interpret the random forest models to understand which aspects of climate and landscape are most important 351 

in controlling hydrologic processes in different regions of the U.S. Random forest models performed reasonably well (R2 > 352 

0.4) for most signatures (Fig. 5), consistent with previous studies using similar model setups (Addor et al., 2018; Beck et al., 353 

2015; Bolotin and McMillan, 2024; Kuentz et al., 2017). Performance was higher for baseflow, water balance loss, and 354 

seasonality signatures, but lower for overland flow signatures. Figure S9 presents the regional model performances for each 355 

signature. 356 

 357 

Figure 6 provides an overview of variable importance results: Figure 6a focuses on spatial patterns, showing the landscape 358 

attribute category that has the strongest contribution to predictions of signatures and processes for each watershed, calculated 359 

using aggregated Shapley values; Figures 6b provides deeper insights into the ranking of landscape attributes, ordered by 360 

permutation importance, for predicting signatures in each region. Figure S10 complements Figure 6a by showing the 361 

importance of landscape attribute categories in each region, based on permutation importance. 362 

 363 

Figure 5:  Ten-fold cross-validation performance of the random forest model trained on 4,748 CONUS-samples, where gauge IDs 364 
overlapped with Caravan and GAGES-II. Bars show the average R² between observed and predicted signatures, with error bars 365 
representing the standard deviation. See Table 1 for signature names.  366 
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 367 

Figure 6: (a) The landscape attribute category that contributes most to hydrologic responses was identified based on the average 368 

relative contribution of each category, 𝑹𝒌

(𝒚,𝒊)
 (derived from Shapley values; see Section 3.4). For each watershed, the most important 369 

category k was determined using the median of 𝑹𝒌

(𝒚,𝒊)
 across all hydrologic signatures. Results are displayed for the watershed 370 

samples included in the random forest training. Numbers in the legend indicate the frequency that each category was identified as 371 
the most important. (b) Frequency of watershed attributes ranked among the top three most important variables in permutation 372 
importance (IncMSE%) across all signatures in six U.S. climate regions. The x-axis indicates how many times each attribute 373 
appeared in the top three. See Section 3.4 and Table 2 for attribute names. 374 
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4.3.1 Region 1: East and South 375 

In the East and South, a wide variety of landscape attribute categories dominate process predictions, including topography, 376 

soils and geology, climate and human alteration (Fig. 6). Climate attributes dominate in cooler areas in the Northeast and along 377 

the Appalachian spine, while topography attributes dominate on the Eastern coastal plain. Along the Gulf coast, either climate 378 

or soils and geology may dominate. Human alteration attributes dominate clusters of watersheds around cities including New 379 

York, Philadelphia, Washington D.C., Raleigh and Atlanta.  380 

 381 

Overall, and particularly for signatures relating to storage and water balance in the East and South Region (TotalRR, RR 382 

seasonality, Event RR, AverageStorage, RecessionParameters_b), the random forest models show that climate drivers are less 383 

important than in the rest of the U.S., and soils and geology land cover drivers are more important (Fig. 6, S10). Human 384 

influence (population density) is a more important driver here than in other regions across most signatures, consistent with 385 

large areas of high population (Fig. S7). For example, highly developed areas of Western Florida have anomalous areas of low 386 

baseflow, as do developed Piedmont areas (Zimmer and Gannon, 2018). 387 

 388 

In the NorthEast, across all signatures, the drivers that most often appeared in the top three controls of random forest 389 

performance were Silt fraction, Precipitation, Geologic Age and Population density — representing the effects of geology, 390 

soils, climate and human development (Fig. 6b). Climate characteristics appear more often for signatures related to water 391 

balance and overland flow. In the South, Silt fraction, Aridity, Precipitation and Slope occur most often, representing gradients 392 

in elevation and soils from the Appalachians to the coastal plain and into Florida (Fig.s S6, S8).  393 

4.3.2 Region 2: MidWest and Central 394 

In the Midwest and Central area, a wide variety of landscape attribute categories dominate process predictions, including 395 

topography, soils and geology, climate and human alteration, showing strong spatial patterns (Fig. 6). Soils and geology 396 

attributes dominate in the Great Lakes region, and in the arc of clay-rich soils in the High Plains and Midwest regions (Fig. 397 

S6). A mixture of climate and topography attributes dominate in the Souris-Red-Rainy region. Human alteration attributes 398 

dominate in clusters of watersheds around Chicago, Detroit and Cleveland.  399 

 400 

Overall in the Midwest and Central area, the random forest models show that land cover and topography drivers are more 401 

important than in the rest of the U.S., while climate drivers are less important. Across all signatures, the drivers that most often 402 

appeared in the top three controls of random forest performance were Clay fraction, PET, Precipitation and Slope —  403 

representing the effects of soils, climate and topography (Fig. 6). Despite the flat topography of the region, several topographic 404 

attributes appear in the top ten, perhaps reflecting the effect of unusual topographic features such as the driftless area. Land 405 
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cover metrics (wetland, cropland, pasture) were secondary drivers, appearing for signatures related to storage and overland 406 

flow.  407 

 408 

The impact of climate is spread between multiple drivers: PET, Precipitation, Low precipitation frequency and Aridity. Climate 409 

drivers in the Midwest and Central area show multiple distinct spatial patterns, with aridity and low precipitation metrics 410 

showing an east-west gradient, temperature and PET having a north-south gradient, and precipitation and seasonality having 411 

a Northwest-Southeast gradient (Fig. S4, S5). Thus, each part of the Midwest and Central area has a unique holistic climate 412 

combination. Climate patterns differ distinctly from the NorthEast-Southwest pattern of the soils and land cover. 413 

4.3.3 Region 3: West and Southwest 414 

In the West, climate attributes dominate process predictions across most watersheds in the Pacific Northwest and Mountain 415 

West (Fig. 6a, S5). Some mountain areas have dominant topographic attributes, and topography drivers are more important in 416 

the Southwest region compared to the wider U.S.. Climate properties that appear most often include Snow fraction, 417 

Precipitation, Aridity and Seasonality (Fig. 6b: regions Pacific Northwest, Southwest, Mountain West). These attributes 418 

describe the primary climatic features of the West and Southwest U.S., which are governed by precipitation and aridity 419 

gradients from North to South, and from coasts to inland (Fig. S4). Inland mountain chains influence flow regimes by providing 420 

spring snowmelt and mountain block recharge, among the many influences of topography on hydrologic processes (Gnann et 421 

al., 2025). These controls are demonstrated by the importance of snow fraction alongside topographic attributes, elevation and 422 

slope. Soil control on runoff process is seen by the importance of clay fraction in the Pacific Northwest, reflecting Oregon’s 423 

common clay soils (Miller and White, 1998). 424 

5 Discussion 425 

This study creates comprehensive maps of hydrologic processes across the contiguous United States by using machine learning 426 

to analyze streamflow signatures from over 10,000 watersheds and connecting these signatures to dominant watershed 427 

processes. The research reveals that climate primarily controls hydrologic processes in the western U.S., while soils and 428 

geology dominate in the Great Lakes region, topography controls processes in the Southeast, and human influences are most 429 

important around large cities across the East. The analysis shows distinct regional patterns in hydrologic processes, with 430 

infiltration excess overland flow dominating the high plains., saturation excess flow prevalent in the valleys of the Tennessee-431 

Missouri region, and varying baseflow contributions across regions. These process maps provide novel information for 432 

selecting appropriate hydrologic models across large domains and help hydrologists anticipate how watersheds will respond 433 

to environmental changes such as altered climate or land use. 434 
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5.1 New process understanding over large domains 435 

Our results build on previous work to map hydrologic processes and drivers. Our map of baseflow process importance shows 436 

similar patterns to previous studies into baseflow and groundwater contribution to streamflow (Beck et al., 2013; Santhi et al., 437 

2008; Xie et al., 2024). As with those studies, our approach of using observations and machine learning methods provides finer 438 

detail than can be estimated using statistical interpolation or by hydrologic or climate models. By combining multiple recent 439 

datasets, we increase the number of observations used in our analysis. In our study, we used >10,000 observed watershed data 440 

within CONUS, representing a substantial advancement compared to the >600 to >3000 observation samples used in previous 441 

studies (Addor et al., 2018; Beck et al., 2013, 2015; Janssen and Ameli, 2021; Wu et al., 2021). Our analysis therefore provides 442 

a new benchmark, offering the most comprehensive coverage and highest spatial characterization of hydrologic processes 443 

across the contiguous United States to date. While larger datasets have been analyzed elsewhere, for example, >8,000 444 

watersheds (Santhi et al., 2008), >23,000 watersheds (Xie et al., 2024), those efforts focused exclusively on baseflow index. 445 

Beck et al. (2013) found sometimes differing drivers of baseflow index and recession slope despite their close connection: by 446 

using bivariate plots, we could more clearly highlight regions where patterns of these two signatures diverge. Those areas 447 

include the Pacific Northwest coast with lower baseflow index but slow recessions, and the central high plains with high 448 

baseflow index but fast recessions.  449 

 450 

Previous studies investigated patterns of overland flow generation across the U.S. using soil maps and rainfall intensity 451 

(Buchanan et al., 2018) streamflow signatures (Wu et al., 2021) and modeling approaches (Wolock, 2003b). Like us, Buchanan 452 

et al. (2018) and Wu et al., (2021) found infiltration excess runoff important throughout the high plains, and saturation excess 453 

in the valleys of the Tennessee-Missouri region, and a mixture of saturation and infiltration excess in the Southwestern U.S.. 454 

Substantial overland flow occurs in Southwest chaparral systems (Valeron and Meixner, 2010), and although deep groundwater 455 

tables suggest infiltration excess, we found a mixture of mechanisms. This could be due to incorrect inference: where 456 

magnitude of overland flow is related to storm size rather than intensity, as smaller storms are intercepted by the dense canopy, 457 

signatures may incorrectly assign this runoff to saturation excess flow. However, our results are supported by global studies 458 

that show saturation excess is always more common than infiltration excess even in arid regions, as saturation excess is 459 

generated in riparian zones and topographic convergence areas where water tables are higher (McMillan et al., 2025).  460 

 461 

By mapping and categorizing the primary drivers of runoff processes, we can untangle which physical characteristics drive the 462 

hydrologic response in each region. In some areas, there are multiple landscape attributes that could contribute to the response, 463 

for example in the Gulf Coast region the speed of recessions might be reduced by the high depth to bedrock, but increased by 464 

soils with low hydraulic conductivity. We find that silt fraction (soil texture) drives the response, creating fast recessions, with 465 

mapping showing that this is most important along the coastal margin. Our maps of primary drivers based on Shapley values 466 

extend previous work to analyze the drivers of hydrologic signatures. For example, Addor et al. (2018; their Fig. 3) show that 467 
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climate (aridity, seasonality, snow fraction) is the primary driver across most signatures, with topography (elevation, slope) 468 

and land cover (forest, leaf area index) being secondary drivers. Figure 6a similarly shows climate and topography as dominant, 469 

but adds spatial information to show that, for example, climate is dominant in the mountainous western U.S., but soils and 470 

geology dominate the Midwest and much of the Northeastern U.S. Geological age, a recently-proposed attribute to summarize 471 

watershed geology, was often in the top random forest attributes (Holt and McMillan, 2025). This highlights the need and 472 

opportunity for development of new landscape attributes that characterize the subsurface, echoing the call by Tarasova et al. 473 

(2023). 474 

5.2 Informing model selection and evaluation 475 

Our results support hydrological modeling by enabling hydrologists to check whether key processes in a watershed are well-476 

represented by a candidate model prior to application. A wide range of hydrologic models with differing process 477 

representations, structures and complexities are available (Knoben et al., 2020). Hydrologists must make choices on whether 478 

to include simulations of additional processes such as snowpack or deep groundwater, and the complexity required such as 479 

including energy balance at the land surface. Our maps of hydrologic processes provide a pre-screening tool to match 480 

hydrological models with appropriate process representations to regions. This approach aims to reduce model structural errors 481 

by discouraging use of models ill-suited to the dominant processes (e.g., using a bucket model in overland flow-dominated 482 

regions). 483 

 484 

Many previous studies have assessed preferred model structure in individual research watersheds, often using in-depth data 485 

analysis to ensure that modeled processes are consistent with observed processes (e.g. Hrachowitz et al., 2014; Kavetski and 486 

Fenicia, 2011). This study provides a method to support transparent model justification in applied studies without the resources 487 

to conduct model structure investigations, and to upscale model structure decisions to large domains. For example, if selecting 488 

models from the MARRMoT toolbox (Knoben et al., 2020), models for regions of dominant overland flow should include 489 

saturation excess and/or infiltration excess pathways, and models for regions of complex storage and retention should include 490 

multiple parallel groundwater reservoirs. The ability to choose appropriate models for thousands of watersheds is needed for 491 

new, flexible model frameworks such as the U.S. Next-Generation National Water Model Framework (Cosgrove et al., 2024; 492 

Johnson et al., 2023; Ogden et al., 2021). Our observation-based method complements previous large-domain model-based 493 

methods that use analysis of model sensitivities (Markstrom et al., 2016) and performance (Prieto et al., 2021; Spieler et al., 494 

2020) Therefore, where hydrologists seek to evaluate models against process representation, this study offers an opportunity 495 

to enhance model benchmarking frameworks by adding process realism as a metric.  496 

5.3 Limitations and future work 497 

The hydrologic process maps produced by this study are limited to the contiguous U.S.. Recent streamflow observation datasets 498 

offer the opportunity to extend this method to other regions or globally. Such datasets include the community Caravan dataset 499 
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(Kratzert et al., 2023), and the international dataset of watersheds with limited human influences, Reference Observatory of 500 

Basins for International hydrological climate change detection (ROBIN; Turner et al., 2025). If extending the method globally, 501 

caution is advised with scaling, in order to represent different ranges of signature values in different regions. In this study, we 502 

plotted signature values as quantiles based on the U.S. distribution, but other countries may have very different signature 503 

distributions (McMillan et al., 2022). Therefore, watershed processes that are considered important in a U.S. context, may be 504 

considered less important in a global context. Further, some regions of the U.S. are excluded or poorly represented in the 505 

dominant process maps presented in this paper, due to a low spatial coverage of USGS stream gages. For example, there are 506 

significant gaps in the arid southwest where perennial streamflow is rare (Kiang et al., 2013; Krabbenhoft et al., 2022). In such 507 

regions there is a need for alternative process-mapping methods that do not rely on streamflow records.  508 

 509 

A limitation of this study that would become more apparent at a global scale is the quality of precipitation, streamflow, and 510 

attribute data. A previous study noted issues with limited quality and consistency of the global attribute data for soils and 511 

geology that reduced their predictive power (Beck et al., 2015). Continental scales necessitate the use of gridded precipitation 512 

products, but in areas with low density of observations these products may be insufficient to analyze localized, flashy processes 513 

such as infiltration excess flow (McMillan et al., 2023). In small, headwater watersheds, precipitation grid size may be large 514 

compared to watershed area, and headwaters are also underrepresented in streamflow observations (Golden et al., 2025). In 515 

snowy areas, signature values can be compromised because liquid water inputs to the watershed come from snowmelt rather 516 

than directly from precipitation. In our study, we excluded snow-dominated watersheds for signatures related to overland flow, 517 

as these require event-scale surface water input that are particularly affected by frozen or snowmelt conditions. Products such 518 

as NLDAS3 (Case et al., 2025) or surface water inputs considering rain-on-snow and snowmelt (Hammond, 2024; Hammond 519 

and Kampf, 2020) may provide future abilities to estimate overland flow processes in snow areas using estimates of hourly 520 

snow accumulation and melt. While our study used potential evapotranspiration (PET) information in only one signature 521 

(AverageStorage), uncertainty in PET is a major issue of global datasets and needs to be addressed (Clerc-Schwarzenbach et 522 

al., 2024; Destouni and Zarei, 2024) before this approach can be expanded to a variety of (eco)hydrologic processes. 523 

 524 

A further limitation is the extent to which continental scale maps of dominant processes can be validated. Large-domain 525 

signature datasets can be evaluated for data quality, for interpolation quality using cross-validation, and compared with 526 

previous datasets. However, it is more difficult to determine how accurately signatures relate to processes over large domains. 527 

Research watersheds offer “ground truth” points at which processes are already well understood (Penna, 2024). Previous 528 

studies used a handful of U.S. critical zone observatory watersheds for evaluation (McMillan et al., 2022). However, the large 529 

number of past and present research watersheds across the globe offer an interesting future opportunity for wider-scale 530 

validation of process mapping techniques (McMillan et al., 2025; Sebestyen et al., 2025). Similarly, validation of process 531 

drivers remains challenging. While Shapley values and permutation importance provide explanatory power for random forest 532 

models, they have some limitations. Both metrics characterize model interactions within a given dataset; therefore, the variety 533 
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of processes covered in the dataset matters, and data or model uncertainties may propagate into the interpretations (Husic, 534 

2025). Shapley values do not capture joint distributional effects among multiple interacting variables (Lundberg and Lee, 535 

2017). Developing an explanatory framework that maximizes both model performance and interpretability remains an ongoing 536 

research area in hydrology (Robert Maier et al., 2024; Willard et al., 2024). 537 

5 Conclusion 538 

A fundamental question in hydrology is how hydrologic processes are organized over large scales, and how they are controlled 539 

by climate and landscape (Blöschl et al., 2019). In this study, we contribute towards answering this question by mapping 540 

hydrologic processes and their drivers across the contiguous U.S.. Our approach used hydrologic signatures to describe 541 

streamflow dynamics, and connected these dynamics to dominant processes in the associated watersheds using established 542 

relationships between signatures and watershed processes. We analyzed 14,146 gauged U.S. watersheds; our map of processes 543 

was based on observational data from 10,261 gauged sites and extended using random forest predictions to an additional 3,885 544 

watersheds with insufficient record length or completeness. Our method enables knowledge transfer from gauged basins with 545 

well-established conceptual models to ungauged or poorly instrumented watersheds.  546 

 547 

Our results comprise maps of hydrologic process importance across the contiguous U.S., including baseflow, overland flow, 548 

water storage, seasonal variation and water balance processes.  Using interpretable machine learning methods, we create maps 549 

of process drivers that explain which climate and landscape attributes are dominant in controlling hydrologic processes in each 550 

watershed and each region. We find clear patterns at the continental scale, such that processes most strongly relate to climate 551 

in the western U.S., to soils and geology in the Great Lakes region, to topography in the Southeast, and to human influences 552 

around large cities, especially in the Northeast. 553 

 554 

Our findings extend and generalize process understanding from research watersheds to large domains, revealing regional 555 

heterogeneity within broader physiographic provinces that are often treated as hydrologically uniform. Hydrologic process 556 

maps provide essential support for new, large-domain model frameworks that must select model structure across thousands of 557 

watersheds. These maps enable hydrologists to select models that adequately represent the dominant processes of a watershed.  558 

Identification of dominant processes in each region further enables hydrologists to anticipate streamflow response to 559 

environmental change, by identifying which processes are most sensitive to shifts in driving variables. Such analysis has the 560 

potential to support scenario testing for future land use or climate, to guide selection of green and grey infrastructure compatible 561 

with dominant processes, and to inform risk assessments for regions prone to flash flooding, streamflow depletion, or altered 562 

seasonal flow regimes. 563 
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Code availability 564 

Code used for analysis is available via Zenodo at (The Zenodo link will be made available following the revision and upon 565 

completion of the publication-ready version) and as a continuously updated version via GitHub at 566 

https://github.com/RY4GIT/signature-prediction. Code used to calculate geologic and wetland attributes (Holt and McMillan, 567 

2025) is deposited in Zenodo at (The Zenodo link will be made available following the revision and upon completion of the 568 

publication-ready version) and as a continuosly updated version via GitHub 569 

at  https://github.com/RY4GIT/Wetland_GeologicAge_Attributes. Caravan attributes for GAGES-II only watersheds were 570 

calculated using https://github.com/kratzert/Caravan (Kratzert et al., 2023). Hydrologic signatures are calculated using 571 

https://github.com/RY4GIT/TOSSH, which modified the original TOSSH toolbox https://github.com/TOSSHtoolbox/TOSSH 572 

(Gnann et al., 2021b).  573 

Data availability 574 

The hydrologic signature datasets, derived from observed data and predicted using random forest models, are deposited at (The 575 

Hydroshare link will be made available following the revision and upon completion of the publication-ready version). The 576 

Caravan Version 1.5 dataset is available at https://doi.org/10.5281/zenodo.10968468 (Kratzert et al., 2024), which contains 577 

streamflow, meteorological data, watershed boundaries and attributes. GAGES-II attributes are available at 578 

https://www.sciencebase.gov/catalog/item/631405bbd34e36012efa304a (Falcone, 2011), and time series of meteorological 579 

data for GAGES-II locations are available from https://www.sciencebase.gov/catalog/item/64134069d34eb496d1ce3c6f 580 

(Wieczorek et al., 2023) and https://www.sciencebase.gov/catalog/item/6494515fd34ef77fcb014eb0 (Hammond, 2024). 581 
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Tables 608 

Table 1: Hydrologic signatures used for building process hypotheses. The signature descriptions are adapted from 609 

(McMillan et al., 2022). 610 

Hydrologic processes and 
signature hypothesis 

Relationship between 
the signature values 
and process strength 

Signature Unit Description 

Baseflow  

 

We hypothesize that a larger 
baseflow magnitude (i.e., 
higher BFI) and a slower 

recession rate (i.e., lower 
BaseflowRecessionK) indicate 
a stronger baseflow process. 

Positive BFI - Baseflow index (BFI) represents baseflow 
proportion and residence time (Bulygina et al., 
2009; Yilmaz et al., 2008). Calculated as mean 
baseflow divided by mean streamflow. Hydrograph 
separation is implemented to obtain baseflow 

fraction using the UKIH smoothed minima method 
(UKIH, 1980). 

Negative BaseflowRece
ssionK 

1/d Represents groundwater influence and longer 
subsurface flow paths (Safeeq et al., 2013). 
Calculated as an exponential recession constant K 
fitted to the master recession curve derived from 
adaptive matching strip method.  

High storage capacity 

 

We hypothesize that larger 
storage (i.e., higher 

AverageStorage) and more 
nonlinear recession behavior 
(i.e., higher 
RecessionParameters_b) 
indicate a greater storage 
capacity and the involvement 
of multiple storages. 

Positive AverageStora
ge 

mm Represents average magnitude of watershed storage 
(Peters and Aulenbach, 2011). Derived from 
average baseflow and storage-discharge 
relationship. Uses a simple water balance model to 

calculate changes in storage, then finds the 
relationship between storage and discharge, and 
then estimates average storage from average 
baseflow.  

Positive RecessionPar
ameters_b 

- The nonlinearity indicates the contributions of 
multiple storages (Clark et al., 2009; Tallaksen, 
1995). Recession analysis parameters approximate 
storage-discharge relationship. Fits a line to the 
dQ/dt-Q relationship in log-log space for each 

individual recession and returns the median slope. b 
is a shape parameter representing the degree of 
nonlinearity. 

Water balance losses 

 
We hypothesize that a smaller 
runoff ratio (Q:P ratio) at both 
interannual and event scales 
(i.e., lower TotalRR and 
EventRR) indicates greater 

water balance losses due to 
evapotranspiration, deep 
drainage to groundwater, or 
some other processes. 
  

Negative TotalRR - Total runoff ratio (RR) infer evapotranspiration or 
other flow bypassing gauge (Safeeq and Hunsaker, 
2016). Calculated as  mean streamflow divided by 
mean precipitation. 

Negative EventRR - Event runoff ratio (RR) infer rapid vertical drainage 
of water to groundwater (Noguchi et al., 1997). 
Calculated as an average of runoff ratios 
(streamflow divided by 

precipitation) from all identified storm events. 
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Seasonal variability 

 

We hypothesize that greater 
flow variability, both in 

general patterns (i.e., higher 
Variability Index) and in 
seasonal patterns (i.e., higher 
Recession_a_Seasonality), 
indicates a stronger influence 
of seasonal evapotranspiration 
patterns on water storage. 
 

 

Positive Recession_a_
Seasonality 

- Seasonal variation in the recession “a” parameter 
reflects the impact of evapotranspiration on water 
storage (Shaw and Riha, 2012). Calculated as the 
difference between the maximum and minimum 

monthly median values of the y-intercept (“a” 
parameter) in the dQ/dt–Q relationship in log-log 
space, assuming a slope of 2. 

Positive VariabilityInd
ex 

- High variability index shows lower water storage 
(Estrany et al., 2010). Calculated as the standard 
deviation of log-transformed discharge values 
determined at 10% intervals from 10% to 90% of 
the cumulative frequency distribution (flow 
duration curve).  

Overland flow 

 

We hypothesized that a strong 
threshold relationship between 
quickflow and precipitation 
characteristics (i.e., high 
significance and higher 
threshold values) suggests a 
more dominant overland flow 
process. 

 
 
 
 

Negative (Values 
outside the range 0 ≤ 

P-value ≤ 0.05 are 
deemed insignificant 
and clipped out. 
Within the range, the 
smaller P-value is, the 
more significant the 
threshold is) 

Average of  
IE_thresh_sig

nif and  
SE_thresh_si
gnif 

- Significant values (<0.05) imply infiltration excess 
(IE) or saturation excess (SE) occurs (Ali et al., 

2013; McGrath et al., 2007). p-value was calculated 
for the significance of a non-zero change in slope 
above and below a threshold in a relationship of 
event quickflow volume versus event maximum 
precipitation intensity (for IE) or event total 
precipitation volume (for SE).  

Positive Average of 
IE_thresh 

and  
SE_thresh 

mm Indicates rainfall intensity or event precipitation 
depth required to generate infiltration excess or 

saturation excess, respectively (Ali et al., 2013; 
McGrath et al., 2007). Value of the threshold 
identified in the IE/SE_thresh_signif signature. The 
“broken-stick” model was fit to the relationship 
between quickflow vs. precipitation characteristics.  

Overland flow type 

 

We hypothesized that the 
relative strength in infiltration 
vs. saturation of excess 

overland flow (i.e., differences 
in RC_Pvol and RC_Pint) 
indicate the prevalence of 
either overland flow 
mechanisms.  
 
Exclude watersheds where 
event runoff coefficient has 

negative relationships with 
storm characteristics (i.e.,  
RC_Pvol < 0 and RC_Pint < 
0).  

Positive relationship 
with infiltration excess 
overland flow 

RC_Pvol - Indicates stormflow processes sensitive to rainfall 
intensity, for example, infiltration excess 
(Hortonian) overland flow (Wu et al., 2021). 
Calculated as the Spearman correlation coefficients 
between event runoff coefficient and event 

maximum rainfall intensity. As pe  (Wu et al., 
2021), event maximum rainfall intensity is 
calculated as the multiplication of daily rainfall 
(mm/day) from original climate forcings (i.e., 
ERA5 for Caravan, gridMET for GAGES-II) 
multiplied by the fraction of maximum rainfall 
intensity from CAMELSH hourly NLDAS forcings.  

Positive relationship 
with saturation excess 

overland flow 

RC_Pint - Indicates stormflow processes sensitive to rainfall 
volume, for example, saturation excess overland 

flow, subsurface stormflow, and groundwater flow 
(Wu et al., 2021). Calculated as the Spearman 
correlation coefficients between event runoff 
coefficient and rainfall volume.  

 611 

  612 
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Table 2: Landscape attributes used in training the random forest model. Descriptions are adapted from (Falcone, 2011; 613 

Falcone et al., 2010; Holt and McMillan, 2025; Kratzert et al., 2023; Linke et al., 2019). For predictions, when certain 614 

attributes are unavailable, equivalent attributes are substituted (e.g., Caravan equivalents are used when predicting signatures 615 

for watershed samples available only in Caravan). The combinations are detailed in Table S1. An asterisk (*) in the unit 616 

column indicates that the landscape attribute unit from GAGES-II was converted to the Caravan equivalent (Fig. S11 shows 617 

the comparison). 618 

 619 

Category Attribute 
Name 

Description Unit Original Source Dataset 
Source 

Caravan 
Equivalent 

Physiography ELEV_MEA
N_M_BASIN 

Mean watershed elevation meters
T

0 

USGS 100m National 
Elevation Dataset (Gesch 

et al., 2018) 

GAGES-II ele_mt_sav 

Physiography DRAIN_SQ

KM 

Watershed drainage area km2 Multiple sources, while 

the majority derived 
from NHDPlus (U.S. 
Environmental 
Protection Agency, 
2008) (see original 
USGS, 2011 report on 
GAGES-II) 

GAGES-II area 

Physiography SLOPE_PCT Mean watershed slope, 
percent 

% USGS 100m resolution 
National Elevation 

Dataset (Gesch et al., 
2018) 

GAGES-II slp_dg_sav 

Land Cover FORESTNL
CD06 

Forest extent % area NLCD06 for most 
regions; NLCD01 for 
Alaska, Hawaii, and 
Puerto Rico (Yang et al., 
2018) 

GAGES-II for_pc_sse 

Land Cover CROPSNLC
D06 

Cultivated Crops extent % area GAGES-II crp_pc_sse 

Land Cover PASTUREN
LCD06 

Pasture/Hay extent % area GAGES-II pst_pc_sse 

Land Cover PCT_IRRIG_
AG 

Irrigated agriculture extent % area Based on 250m MODIS 
datasets, USGS MIrAD-
US (Shrestha et al., 
2019) 

GAGES-II ire_pc_sse 

Land Cover PADCAT1_
AND_2 

Percent of watershed 
designated as Protected Area 
Category 1 and 2 

% area 
* 

Protected Areas 
Database (United States 
Geological Survey, 
2024) 

GAGES-II pac_pc_sse 
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Land Cover isowet_areafr
ac 

Isolated wetland area 
fraction (Holt, 2024) 

- National Wetlands 
Inventory (Lane and 
D’Amico, 2016) 

Holt and 
McMillan, 
2025 

N/A 

Soils & 
Geology 

CLAYAVE Average clay content % STATSGO (United 
States Department of 

Agriculture et al., 2008) 

GAGES-II cly_pc_sav 

Soils & 

Geology 

SILTAVE Average silt content % GAGES-II slt_pc_sav 

Soils & 

Geology 

soc_th_sav Organic carbon content in 

soil 

tonnes/

hectare 

Caravan/Hydr

oAtlas 

N/A 

Soils & 

Geology 

kar_pc_sse Karst area extent % area Rock Outcrops v3.0 

(Williams and Ford, 
2006) 

Caravan/Hydr

oAtlas 

N/A 

Soils & 
Geology 

geol_weighte
d_ave_age_m
a 

Area-weighted average of 
geologic age 

ma The USGS State 
Geologic Map 
Compilation (Horton et 
al., 2017) 

Holt and 
McMillan, 
2025 

N/A 

Anthropogenic PDEN_2000_
BLOCK 

Population density in the 
watershed 

persons
/km2 

2000 Census block data 
regridded to 100m 

GAGES-II ppd_pk_sav 

Climate P_mm_day Mean annual precipitation 
(1971-2000). The unit was 
converted from the original 
variable 

“PPTAVG_BASIN” in 
cm/year to mm/day.  

mm/da
y * 

800m PRISM data  GAGES-II p_mean 

Climate PET_mm_da
y 

Mean annual potential 
evapotranspiration rate 
estimated from mean 
monthly air temperature and 
latitude using Hamon (1961) 
equation. The unit was 
converted from the original 
variable “PET” in mm/year 

to mm/day.  

mm/da
y * 

Monthly air temperature 
from 30-year (1961-
1990) PRISM 

GAGES-II pet_mean_FA
O_PM 

Climate ARIDITY_G
AGES2 

Aridity index, ratio of mean 
PET and mean precipitation  

- Calculated from 
PPTAVG_BASIN and 
PET in GAGES-II 
attributes 

GAGES-II aridity_FAO_
PM 

Climate SNOW_PCT
_PRECIP 

Mean snow percent of total 
precipitation estimate (1901-
2000) 
 
 

- * McCabe and Wolock 
(submitted, 2008), 1km 
grid 

GAGES-II frac_snow 
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Climate seasonality_F
AO_PM 

Moisture index seasonality 
in range [0, 2] (Knoben et 
al., 2018), where 0 indicates 
no change in the water or 

energy budget throughout 
the year, and 2 indicates a 
transition from fully arid to 
fully humid conditions. The 
moisture index is calculated 
as the normalized aridity 
index at the monthly scale. 

- ERA-5 (Muñoz Sabater, 
2019); The FAO 
Penman–Monteith 
equation (Allen et al., 

1998; Shalev and 
Kratzert, 2024) is used to 
calculate Potential 
Evapotranspiration 
(PET) 

Caravan/ERA-
5 

N/A 

Climate high_prec_fre
q 

Frequency of high 

precipitation days, 

where precipitation 

≥5 times mean daily 

precipitation 

- ERA-5 (Muñoz Sabater, 
2019) 

Caravan/ERA-
5  

N/A 

Climate low_prec_fre
q 

Frequency of low 
precipitation days, where 
precipitation <1 mm/day 

- ERA-5 (Muñoz Sabater, 
2019) 

Caravan/ERA-
5 

N/A 

Climate low_prec_dur Average duration of low 
precipitation events (number 
of consecutive days where 

precipitation <1 mm/day) 

day ERA-5 (Muñoz Sabater, 
2019) 

Caravan/ERA-
5 

N/A 

References 620 

Abban, B., Papanicolaou, A. N. (thanos), Cowles, M. K., and Wilson, C. G.: Examining Seasonal Trends in Sediment Source 621 

Contributions in an Intensely Cultivated Midwestern Sub-Watershed Using Bayesian Unmixing, in: World Environmental and 622 

Water Resources Congress 2014, World Environmental and Water Resources Congress 2014, Portland, Oregon, 1453–1463, 623 

https://doi.org/10.1061/9780784413548.146, 2014. 624 

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for 625 

large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. 626 

Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M. P.: A ranking of hydrological signatures based 627 

on their predictability in space, Water Resour. Res., 54, 8792–8812, https://doi.org/10.1029/2018WR022606, 2018. 628 

Ali, G., Tetzlaff, D., Soulsby, C., McDonnell, J. J., and Capell, R.: A comparison of similarity indices for catchment 629 

classification using a cross-regional dataset, Adv. Water Resour., 40, 11–22, https://doi.org/10.1016/j.advwatres.2012.01.008, 630 

2012. 631 

Ali, G., Oswald, C. J., Spence, C., Cammeraat, E. L. H., McGuire, K. J., Meixner, T., and Reaney, S. M.: Towards a unified 632 

threshold-based hydrological theory: necessary components and recurring challenges: INVITED COMMENTARY, Hydrol. 633 

Process., 27, 313–318, https://doi.org/10.1002/hyp.9560, 2013. 634 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.



30 
 

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration – Guidelines for Computing Crop Water 635 

Requirements, in: FAO Irrigation and drainage paper 56, Food and Agriculture Organization of the United Nations, Rome, 636 

Italy, 1998. 637 

Almagro, A., Meira Neto, A. A., Vergopolan, N., Roy, T., Troch, P. A., and Oliveira, P. T. S.: The Drivers of Hydrologic 638 

Behavior in Brazil: Insights From a Catchment Classification, Water Resources Research, 60, 639 

https://doi.org/10.1029/2024WR037212, 2024. 640 

Angermann, L., Jackisch, C., Allroggen, N., Sprenger, M., Zehe, E., Tronicke, J., Weiler, M., and Blume, T.: Form and function 641 

in hillslope hydrology: characterization of subsurface flow based on response observations, Hydrol. Earth Syst. Sci., 21, 3727–642 

3748, https://doi.org/10.5194/hess-21-3727-2017, 2017. 643 

Araki, R., Branger, F., Wiekenkamp, I., and McMillan, H. K.: A signature‐based approach to quantify soil moisture dynamics 644 

under contrasting land‐uses, Hydrol. Process., 36, e14553, https://doi.org/10.1002/hyp.14553, 2022. 645 

Ariano, S. and Ali, G.: From river flow regime diversity to proxies for hydrologic homogeneity a Canada-wide case study, Sci. 646 

Rep., 15, 16743, https://doi.org/10.1038/s41598-025-00244-7, 2025. 647 

Arsenault, R., Brissette, F., Martel, J.-L., Troin, M., Lévesque, G., Davidson-Chaput, J., Gonzalez, M. C., Ameli, A., and 648 

Poulin, A.: A comprehensive, multisource database for hydrometeorological modeling of 14,425 North American watersheds, 649 

Sci Data, 7, 243, https://doi.org/10.1038/s41597-020-00583-2, 2020. 650 

Barnhart, T. B., Molotch, N. P., Livneh, B., Harpold, A. A., Knowles, J. F., and Schneider, D.: Snowmelt baseflow 651 

contributions: A comparison of methods using nested catchments in the Colorado River basin, Water Resources Research, 52, 652 

4524–4548, 2016. 653 

Barnhart, T. B., Farmer, W. H., Hammond, J. C., Sexstone, G. A., Curran, J. H., Koch, J. C., and Driscoll, J. M.: Evaluating 654 

hydrologic region assignment techniques for ungaged basins in Alaska, USA, River Res. Appl., 38, 1569–1584, 655 

https://doi.org/10.1002/rra.4028, 2022. 656 

Beck, H., Dijk, A., Miralles, D., Jeu, R. A. M., (Sampurno) Bruijnzeel, L., McVicar, T., and Schellekens, J.: Global patterns 657 

in base flow index and recession based on streamflow observations from 3394 catchments, Water Resources Research, 49, 658 

7843–7863, https://doi.org/10.1002/2013WR013918, 2013. 659 

Beck, H. E., De Roo, A., and van Dijk, A. I.: Global maps of streamflow characteristics based on observations from several 660 

thousand catchments, J. Hydrometeorol., 16, 1478–1501, 2015. 661 

Berghuijs, W. R., Sivapalan, M., Woods, R. A., and Savenije, H. H. G.: Patterns of similarity of seasonal water balances: A 662 

window into streamflow variability over a range of time scales, Water Resour. Res., 50, 5638–5661, 663 

https://doi.org/10.1002/2014WR015692, 2014. 664 

Blöschl, G.: Hydrologic synthesis: Across processes, places, and scales, Water Resour. Res., 42, 665 

https://doi.org/10.1029/2005wr004319, 2006. 666 

Blöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, 667 

H. H. G., Sivapalan, M., Stumpp, C., Toth, E., Volpi, E., Carr, G., Lupton, C., Salinas, J., Széles, B., Viglione, A., Aksoy, H., 668 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.



31 
 

Allen, S. T., Amin, A., Andréassian, V., Arheimer, B., Aryal, S. K., Baker, V., Bardsley, E., Barendrecht, M. H., Bartosova, 669 

A., Batelaan, O., Berghuijs, W. R., Beven, K., Blume, T., Bogaard, T., Borges de Amorim, P., Böttcher, M. E., Boulet, G., 670 

Breinl, K., Brilly, M., Brocca, L., Buytaert, W., Castellarin, A., Castelletti, A., Chen, X., Chen, Y., Chen, Y., Chifflard, P., 671 

Claps, P., Clark, M. P., Collins, A. L., Croke, B., Dathe, A., David, P. C., de Barros, F. P. J., de Rooij, G., Di Baldassarre, G., 672 

Driscoll, J. M., Duethmann, D., Dwivedi, R., Eris, E., Farmer, W. H., Feiccabrino, J., Ferguson, G., Ferrari, E., Ferraris, S., 673 

Fersch, B., Finger, D., Foglia, L., Fowler, K., Gartsman, B., Gascoin, S., Gaume, E., Gelfan, A., Geris, J., Gharari, S., Gleeson, 674 

T., Glendell, M., Gonzalez Bevacqua, A., González-Dugo, M. P., Grimaldi, S., Gupta, A. B., Guse, B., Han, D., Hannah, D., 675 

Harpold, A., Haun, S., Heal, K., Helfricht, K., Herrnegger, M., Hipsey, M., Hlaváčiková, H., Hohmann, C., Holko, L., 676 

Hopkinson, C., Hrachowitz, M., Illangasekare, T. H., Inam, A., Innocente, C., Istanbulluoglu, E., Jarihani, B., et al.: Twenty-677 

three unsolved problems in hydrology (UPH) – a community perspective, Hydrol. Sci. J., 64, 1141–1158, 678 

https://doi.org/10.1080/02626667.2019.1620507, 2019. 679 

Bolotin, L. A. and McMillan, H.: A hydrologic signature approach to analysing wildfire impacts on overland flow, Hydrol. 680 

Process., 38, https://doi.org/10.1002/hyp.15215, 2024. 681 

Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., and Roy, A. G.: Concepts of hydrological 682 

connectivity: Research approaches, pathways and future agendas, Earth-Sci. Rev., 119, 17–34, 683 

https://doi.org/10.1016/j.earscirev.2013.02.001, 2013. 684 

Brooks, P. D., Chorover, J., Fan, Y., Godsey, S. E., Maxwell, R. M., McNamara, J. P., and Tague, C.: Hydrological partitioning 685 

in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics: 686 

CRITICAL ZONE HYDROLOGY, Water Resour. Res., 51, 6973–6987, https://doi.org/10.1002/2015wr017039, 2015. 687 

Brunner, M. I., Melsen, L. A., Newman, A. J., Wood, A. W., and Clark, M. P.: Future streamflow regime changes in the United 688 

States: assessment using functional classification, Hydrol. Earth Syst. Sci., 24, 3951–3966, https://doi.org/10.5194/hess-24-689 

3951-2020, 2020. 690 

Buchanan, B., Auerbach, D. A., Knighton, J., Evensen, D., Fuka, D. R., Easton, Z., Wieczorek, M., Archibald, J. A., 691 

McWilliams, B., and Walter, T.: Estimating dominant runoff modes across the conterminous United States, Hydrol. Process., 692 

32, 3881–3890, https://doi.org/10.1002/hyp.13296, 2018. 693 

Bulygina, N., McIntyre, N., and Wheater, H.: Conditioning rainfall-runoff model parameters for ungauged catchments and 694 

land management impacts analysis, Hydrol. Earth Syst. Sci., 13, 893–904, https://doi.org/10.5194/hess-13-893-2009, 2009. 695 

Case, J. L., Mocko, D. M., Hain, C. R., Maina, F. Z., Whitney, K. M., Kumar, S. V., Wade, R. A., Locke, K. A., and White, 696 

K. D.: NLDAS-3: Next-Generation Land Data Assimilation System to Support North American Water-Informed Decisions, 697 

in: 2025 National Soil Moisture Workshop, 2025. 698 

Clark, M., Rupp, D., Woods, R., Meerveld, H., Peters, N., and Freer, J.: Consistency between hydrological models and field 699 

observations: linking processes at the hillslope scale to hydrological responses at the watershed scale, Hydrological Processes, 700 

23, 311–319, https://doi.org/10.1002/HYP.7154, 2009. 701 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.



32 
 

Clark, M., Nijssen, B., Lundquist, J., Kavetski, D., Rupp, D., Woods, R., Freer, J., Gutmann, E., Wood, A., Brekke, L., Arnold, 702 

J., Gochis, D., and Rasmussen, R.: A unified approach for process‐based hydrologic modeling: 1. Modeling concept, Water 703 

Resources Research, 51, 2498–2514, https://doi.org/10.1002/2015WR017198, 2015. 704 

Clerc-Schwarzenbach, F., Selleri, G., Neri, M., Toth, E., van Meerveld, I., and Seibert, J.: Large-sample hydrology – a few 705 

camels or a whole caravan?, Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, 2024. 706 

Cosgrove, B., Gochis, D., Flowers, T., Dugger, A., Ogden, F., Graziano, T., Clark, E., Cabell, R., Casiday, N., Cui, Z., Eicher, 707 

K., Fall, G., Feng, X., Fitzgerald, K., Frazier, N., George, C., Gibbs, R., Hernandez, L., Johnson, D., Jones, R., Karsten, L., 708 

Kefelegn, H., Kitzmiller, D., Lee, H., Liu, Y., Mashriqui, H., Mattern, D., McCluskey, A., McCreight, J. L., McDaniel, R., 709 

Midekisa, A., Newman, A., Pan, L., Pham, C., RafieeiNasab, A., Rasmussen, R., Read, L., Rezaeianzadeh, M., Salas, F., Sang, 710 

D., Sampson, K., Schneider, T., Shi, Q., Sood, G., Wood, A., Wu, W., Yates, D., Yu, W., and Zhang, Y.: NOAA’s National 711 

Water Model: Advancing operational hydrology through continental‐scale modeling, J. Am. Water Resour. Assoc., 60, 247–712 

272, https://doi.org/10.1111/1752-1688.13184, 2024. 713 

Davis, C. A., Ward, A. S., Burgin, A. J., Loecke, T. D., Riveros-Iregui, D. A., Schnoebelen, D. J., Just, C. L., Thomas, S. A., 714 

Weber, L. J., and St. Clair, M. A.: Antecedent Moisture Controls on Stream Nitrate Flux in an Agricultural Watershed, Journal 715 

of Environmental Quality, 43, 1494–1503, https://doi.org/10.2134/jeq2013.11.0438, 2014. 716 

DeCicco, L. A., Hirsch, R. M., Lorenz, D., Watkins, D., and Michael Johnson, J.: dataRetrieval, U.S. Geological Survey, 717 

https://doi.org/10.5066/P9X4L3GE, 2018. 718 

Destouni, G. and Zarei, M.: Water and climate interplay on land in comparative datasets: Revealing unrealistic major drying 719 

bias of climate reanalysis over Africa and the world, AGUFM, 2024, H54B–05, 2024. 720 

Dettinger, M. D. and Diaz, H. F.: Global characteristics of stream flow seasonality and variability, J. Hydrometeorol., 1, 289–721 

310, https://doi.org/10.1175/1525-7541(2000)001<0289:gcosfs>2.0.co;2, 2000. 722 

Dhungel, S., Tarboton, D. G., Jin, J., and Hawkins, C. P.: Potential effects of climate change on ecologically relevant 723 

streamflow regimes: Climate change and streamflow regimes, River Res. Appl., 32, 1827–1840, 724 

https://doi.org/10.1002/rra.3029, 2016. 725 

Eng, K. and Wolock, D. M.: Evaluation of machine learning approaches for predicting streamflow metrics across the 726 

conterminous United States, 2022–5058, 2022. 727 

Estrany, J., Garcia, C., and Batalla, R. J.: Hydrological response of a small mediterranean agricultural catchment, J. Hydrol. 728 

(Amst.), 380, 180–190, https://doi.org/10.1016/j.jhydrol.2009.10.035, 2010. 729 

Falcone, J.: GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow, https://doi.org/10.5066/P96CPHOT, 2011. 730 

Falcone, J. A., Carlisle, D. M., Wolock, D. M., and Meador, M. R.: GAGES: A stream gage database for evaluating natural 731 

and altered flow conditions in the conterminous United States, Ecology, 91, 621–621, https://doi.org/10.1890/09-0889.1, 2010. 732 

Fang, K. and Shen, C.: Full‐flow‐regime storage‐streamflow correlation patterns provide insights into hydrologic functioning 733 

over the continental US, Water Resour. Res., 53, 8064–8083, https://doi.org/10.1002/2016wr020283, 2017. 734 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.



33 
 

Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., Brooks, P. D., Dietrich, W. E., Flores, A., 735 

Grant, G., Kirchner, J. W., Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague, C., Ajami, H., Chaney, N., 736 

Hartmann, A., Hazenberg, P., McNamara, J., Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X., 737 

Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B., Safeeq, M., Shen, C., Verseveld, W., Volk, J., 738 

and Yamazaki, D.: Hillslope hydrology in global change research and Earth system modeling, Water Resour. Res., 55, 1737–739 

1772, https://doi.org/10.1029/2018wr023903, 2019. 740 

Fenicia, F. and Mcdonnell, J. J.: Modeling streamflow variability regional scale:(1) perceptual model development through 741 

signature analysis, Journal Hydrology, 2022. 742 

Frame, J. M., Araki, R., Bhuiyan, S. A., Bindas, T., Rapp, J., Bolotin, L., Deardorff, E., Liu, Q., Haces-Garcia, F., Liao, M., 743 

Frazier, N., and Ogden, F. L.: Machine learning for a heterogeneous water modeling framework, J. Am. Water Resour. Assoc., 744 

61, https://doi.org/10.1111/1752-1688.70000, 2025. 745 

Gesch, D. B., Evans, G. A., Oimoen, M. J., and Arundel, S.: The National Elevation Dataset: USGS Earth Resources 746 

Observation and Science Center, 2018. 747 

Gnann, S., Baldwin, J. W., Cuthbert, M. O., Gleeson, T., Schwanghart, W., and Wagener, T.: The influence of topography on 748 

the global terrestrial water cycle, Rev. Geophys., 63, e2023RG000810, https://doi.org/10.1029/2023rg000810, 2025. 749 

Gnann, S. J., Howden, N. J. K., and Woods, R. A.: Hydrological signatures describing the translation of climate seasonality 750 

into streamflow seasonality, Hydrol. Earth Syst. Sci. Discuss., 24, 561–580, https://doi.org/10.5194/hess-24-561-2020, 2020. 751 

Gnann, S. J., McMillan, H. K., Woods, R. A., and Howden, N. J. K.: Including Regional Knowledge Improves Baseflow 752 

Signature Predictions in Large Sample Hydrology, Water Resour. Res., 57, e2020WR028354, 753 

https://doi.org/10.1029/2020WR028354, 2021a. 754 

Gnann, S. J., Coxon, G., Woods, R. A., Howden, N. J. K., and McMillan, H. K.: TOSSH: A Toolbox for Streamflow Signatures 755 

in Hydrology, Environmental Modelling & Software, 138, 104983, https://doi.org/10.1016/j.envsoft.2021.104983, 2021b. 756 

Golden, H. E., Christensen, J. R., McMillan, H. K., Kelleher, C. A., Lane, C. R., Husic, A., Li, L., Ward, A. S., Hammond, J., 757 

Seybold, E. C., Jaeger, K. L., Zimmer, M., Sando, R., Jones, C. N., Segura, C., Mahoney, D. T., Price, A. N., and Cheng, F.: 758 

Advancing the science of headwater streamflow for global water protection, Nat Water, 1–11, https://doi.org/10.1038/s44221-759 

024-00351-1, 2025. 760 

Goodrich, D. C., Lane, L. J., Shillito, R. M., Miller, S. N., Syed, K. H., and Woolhiser, D. A.: Linearity of basin response as a 761 

function of scale in a semiarid watershed, Water Resour. Res., 33, 2951–2965, https://doi.org/10.1029/97wr01422, 1997. 762 

Haines, A., Finlayson, B., and McMahon, T.: A global classification of river regimes, Applied Geography, 8, 255–272, 763 

https://doi.org/10.1016/0143-6228(88)90035-5, 1988. 764 

Hammond, J. C.: Daily time series of surface water input from rainfall, rain on snow, and snowmelt for the Conterminous 765 

United States from 1990 to 2023, as well as annual series of input seasonality, precipitation seasonality, and average rainfall, 766 

rain on snow, and snowmelt rates, https://doi.org/10.5066/P9JWJPNC, 2024. 767 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.



34 
 

Hammond, J. C. and Kampf, S. K.: Subannual streamflow responses to rainfall and snowmelt inputs in snow‐dominated 768 

watersheds of the western United States, Water Resour. Res., 56, https://doi.org/10.1029/2019wr026132, 2020. 769 

Hammond, J. C., Zimmer, M., Shanafield, M., Kaiser, K., Godsey, S. E., Mims, M. C., Zipper, S. C., Burrows, R. M., Kampf, 770 

S. K., Dodds, W., Jones, C. N., Krabbenhoft, C. A., Boersma, K. S., Datry, T., Olden, J. D., Allen, G. H., Price, A. N., Costigan, 771 

K., Hale, R., Ward, A. S., and Allen, D. C.: Spatial patterns and drivers of nonperennial flow regimes in the contiguous United 772 

States, Geophys. Res. Lett., 48, https://doi.org/10.1029/2020gl090794, 2021. 773 

Hammond, J. C., Sexstone, G. A., Putman, A. L., Barnhart, T. B., Rey, D. M., Driscoll, J. M., Liston, G. E., Rasmussen, K. L., 774 

McGrath, D., Fassnacht, S. R., and Kampf, S. K.: High resolution SnowModel simulations reveal future elevation‐dependent 775 

snow loss and earlier, flashier surface water input for the upper Colorado river basin, Earths Future, 11, 776 

https://doi.org/10.1029/2022ef003092, 2023. 777 

Hay, L. E., LaFontaine, J. H., Van Beusekom, A. E., Norton, P. A., Farmer, W. H., Regan, R. S., Markstrom, S. L., and 778 

Dickinson, J. E.: Parameter estimation at the conterminous United States scale and streamflow routing enhancements for the 779 

National Hydrologic Model infrastructure application of the Precipitation-Runoff Modeling System (NHM-PRMS), 780 

https://doi.org/10.3133/tm6b10, 2023. 781 

Hodgkins, G. A., Renard, B., Whitfield, P. H., Laaha, G., Stahl, K., Hannaford, J., Burn, D. H., Westra, S., Fleig, A. K., Araújo 782 

Lopes, W. T., Murphy, C., Mediero, L., and Hanel, M.: Climate driven trends in historical extreme low streamflows on four 783 

continents, Water Resour. Res., 60, https://doi.org/10.1029/2022wr034326, 2024. 784 

Holt, A.: New Predictors for Hydrologic Signatures: Wetlands and Geologic Age Across Continental Scales, San Diego State 785 

University, United States -- California, 2024. 786 

Holt, A. and McMillan, H.: New predictors for hydrologic signatures: Wetlands and geologic age across continental scales, 787 

Hydrol. Process., 39, https://doi.org/10.1002/hyp.70080, 2025. 788 

Horton, J. D., San Juan, C. A., and Stoeser, D. B.: The State Geologic Map Compilation (SGMC) geodatabase of the 789 

conterminous United States, https://doi.org/10.3133/ds1052, 2017. 790 

Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink, R., Freer, J., Savenije, H. H. G., and Gascuel-Odoux, C.: 791 

Process consistency in models: The importance of system signatures, expert knowledge, and process complexity, Water Resour. 792 

Res., 50, 7445–7469, https://doi.org/10.1002/2014wr015484, 2014. 793 

Hupp, C. R.: Hydrology, geomorphology and vegetation of Coastal Plain rivers in the south-eastern USA. Hydrological 794 

processes, 14, 2991–3010, 2000. 795 

Husic, A.: Game theory for catchment science, ESS Open Archive, https://doi.org/10.22541/essoar.173924202.27840286/v1, 796 

2025. 797 

Husic, A., Hammond, J., Price, A. N., and Roundy, J. K.: Interrogating process deficiencies in large-scale hydrologic models 798 

with interpretable machine learning, Hydrol. Earth Syst. Sci., 29, 4457–4472, https://doi.org/10.5194/hess-29-4457-2025, 799 

2025. 800 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.



35 
 

Jackisch, C., Angermann, L., Allroggen, N., Sprenger, M., Blume, T., Tronicke, J., and Zehe, E.: Form and function in hillslope 801 

hydrology: in situ imaging and characterization of flow-relevant structures, Hydrol. Earth Syst. Sci., 21, 3749–3775, 2017. 802 

Janssen, J. and Ameli, A. A.: A hydrologic functional approach for improving large‐sample hydrology performance in poorly 803 

gauged regions, Water Resour. Res., 57, https://doi.org/10.1029/2021wr030263, 2021. 804 

Jefferson, A., Grant, G. E., Lewis, S. L., and Lancaster, S. T.: Coevolution of hydrology and topography on a basalt landscape 805 

in the Oregon Cascade Range, USA, Earth Surf. Process., https://doi.org/10.1002/esp.1976, 2010. 806 

Ji, H., Song, Y., Bindas, T., Shen, C., Yang, Y., Pan, M., Liu, J., Rahmani, F., Abbas, A., Beck, H., Lawson, K., and Wada, 807 

Y.: Distinct hydrologic response patterns and trends worldwide revealed by physics-embedded learning, arXiv [physics.geo-808 

ph], arXiv, 2025. 809 

Johnson, J. M., Fang, S., Sankarasubramanian, A., Rad, A. M., Kindl da Cunha, L., Jennings, K. S., Clarke, K. C., Mazrooei, 810 

A., and Yeghiazarian, L.: Comprehensive analysis of the NOAA National Water Model: A call for heterogeneous formulations 811 

and diagnostic model selection, J. Geophys. Res., 128, https://doi.org/10.1029/2023jd038534, 2023. 812 

Kavetski, D. and Fenicia, F.: Elements of a flexible approach for conceptual hydrological modeling: 2. Application and 813 

experimental insights, Water Resour. Res., 47, https://doi.org/10.1029/2011wr010748, 2011. 814 

Kennard, M. J., Pusey, B. J., Olden, J. D., Mackay, S. J., Stein, J. L., and Marsh, N.: Classification of natural flow regimes in 815 

Australia to support environmental flow management: Classification of natural flow regimes in Australia, Freshw. Biol., 55, 816 

171–193, https://doi.org/10.1111/j.1365-2427.2009.02307.x, 2010. 817 

Kiang, J. E., Stewart, D. W., Archfield, S. A., Osborne, E. B., and Eng, K.: A national streamflow network gap analysis (No. 818 

2013-5013), US Geological Survey, 2013. 819 

Knoben, W. J. M., Woods, R. A., and Freer, J. E.: A quantitative hydrological climate classification evaluated with independent 820 

streamflow data, Water Resour. Res., 54, 5088–5109, https://doi.org/10.1029/2018wr022913, 2018. 821 

Knoben, W. J. M., Freer, J. E., Peel, M. C., Fowler, K. J. A., and Woods, R. A.: A brief analysis of conceptual model structure 822 

uncertainty using 36 models and 559 catchments, Water Resour. Res., 56, e2019WR025975, 823 

https://doi.org/10.1029/2019wr025975, 2020. 824 

Krabbenhoft, C. A., Allen, G. H., Lin, P., Godsey, S. E., Allen, D. C., Burrows, R. M., DelVecchia, A. G., Fritz, K. M., 825 

Shanafield, M., Burgin, A. J., Zimmer, M. A., Datry, T., Dodds, W. K., Jones, C. N., Mims, M. C., Franklin, C., Hammond, J. 826 

C., Zipper, S., Ward, A. S., Costigan, K. H., Beck, H. E., and Olden, J. D.: Assessing placement bias of the global river gauge 827 

network, Nat. Sustain., 5, 586–592, https://doi.org/10.1038/s41893-022-00873-0, 2022. 828 

Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L., Hassidim, A., Klotz, D., Nevo, S., 829 

Shalev, G., and Matias, Y.: Caravan - A global community dataset for large-sample hydrology, Sci Data, 10, 61, 830 

https://doi.org/10.1038/s41597-023-01975-w, 2023. 831 

Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L., Hassidim, A., Klotz, D., Nevo, S., 832 

Shalev, G., and Matias, Y.: Caravan - A global community dataset for large-sample hydrology Version 1.4, 833 

https://doi.org/10.5281/ZENODO.10968468, 2024. 834 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.



36 
 

Kuentz, A., Arheimer, B., Hundecha, Y., and Wagener, T.: Understanding hydrologic variability across Europe through 835 

catchment classification, Hydrol. Earth Syst. Sci., 21, 2863–2879, 2017. 836 

Kuhn, M.: Building predictive models in R using the caret package, Journal of Statistical Software, 28, 1–26, 837 

https://doi.org/10.18637/JSS.V028.I05, 2008. 838 

Lane, B. A., Dahlke, H. E., Pasternack, G. B., and Sandoval-Solis, S.: Revealing the Diversity of Natural Hydrologic Regimes 839 

in California with Relevance for Environmental Flows Applications, J. Am. Water Resour. Assoc., 53, 411–430, 840 

https://doi.org/10.1111/1752-1688.12504, 2017. 841 

Lane, C. R. and D’Amico, E.: Identification of putative geographically isolated wetlands of the conterminous United States, J. 842 

Am. Water Resour. Assoc., 52, 705–722, https://doi.org/10.1111/1752-1688.12421, 2016. 843 

Lapides, D. A., Zipper, S., and Hammond, J. C.: Identifying hydrologic signatures associated with streamflow depletion caused 844 

by groundwater pumping, Hydrol. Process., 37, https://doi.org/10.1002/hyp.14877, 2023. 845 

Lee, D., Ward, P., and Block, P.: Defining high-flow seasons using temporal streamflow patterns from a global model, Hydrol. 846 

Earth Syst. Sci., 19, 4689–4705, https://doi.org/10.5194/hess-19-4689-2015, 2015. 847 

Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., Beames, P., Burchard-Levine, V., Maxwell, S., 848 

Moidu, H., Tan, F., and Thieme, M.: Global hydro-environmental sub-basin and river reach characteristics at high spatial 849 

resolution, Sci Data, 6, 283, https://doi.org/10.1038/s41597-019-0300-6, 2019. 850 

Lins, H. F.: Regional streamflow regimes and hydroclimatology of the United States, Water Resour. Res., 33, 1655–1667, 851 

https://doi.org/10.1029/97WR00615, 1997. 852 

Lohse, K. A. and Dietrich, W. E.: Contrasting effects of soil development on hydrological properties and flow paths, Water 853 

Resour. Res., 41, https://doi.org/10.1029/2004wr003403, 2005. 854 

Lundberg, S. and Lee, S.-I.: A unified approach to interpreting model predictions, arXiv [cs.AI], arXiv, 2017. 855 

Lundberg, S. M., Erion, G. G., and Lee, S.-I.: Consistent individualized feature attribution for tree ensembles, arXiv [cs.LG], 856 

arXiv, 2018. 857 

Markstrom, S. L., Hay, L. E., and Clark, M. P.: Towards simplification of hydrologic modeling: identification of dominant 858 

processes, Hydrol. Earth Syst. Sci., 20, 4655–4671, https://doi.org/10.5194/hess-20-4655-2016, 2016. 859 

Mazvimavi, D., Meijerink, A. M. J., Savenije, H. H. G., and Stein, A.: Prediction of flow characteristics using multiple 860 

regression and neural networks: A case study in Zimbabwe, Phys. Chem. Earth (2002), 30, 639–647, 861 

https://doi.org/10.1016/j.pce.2005.08.003, 2005. 862 

McGrath, G. S., Hinz, C., and Sivapalan, M.: Temporal dynamics of hydrological threshold events, Hydrol. Earth Syst. Sci., 863 

11, 923–938, https://doi.org/10.5194/hess-11-923-2007, 2007. 864 

McMillan, H.: Linking hydrologic signatures to hydrologic processes: A Review, Hydrol. Process., 34, 1393–1409, 865 

https://doi.org/10.1002/hyp.13632, 2020. 866 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.



37 
 

McMillan, H., Gueguen, M., Grimon, E., Woods, R., Clark, M., and Rupp, D. E.: Spatial variability of hydrological processes 867 

and model structure diagnostics in a 50 km 2 catchment, Hydrol. Process., 28, 4896–4913, https://doi.org/10.1002/hyp.9988, 868 

2014. 869 

McMillan, H., Westerberg, I., and Branger, F.: Five guidelines for selecting hydrological signatures, Hydrol. Process., 31, 870 

4757–4761, https://doi.org/10.1002/hyp.11300, 2017. 871 

McMillan, H., Araki, R., Bolotin, L., Kim, D.-H., Coxon, G., Clark, M., and Seibert, J.: Global patterns in observed hydrologic 872 

processes, Nat Water, https://doi.org/10.1038/s44221-025-00407-w, 2025. 873 

McMillan, H. K.: A review of hydrologic signatures and their applications, WIREs Water, 8, https://doi.org/10.1002/wat2.1499, 874 

2021. 875 

McMillan, H. K., Gnann, S. J., and Araki, R.: Large scale evaluation of relationships between hydrologic signatures and 876 

processes, Water Resour. Res., 58, https://doi.org/10.1029/2021wr031751, 2022. 877 

McMillan, H. K., Coxon, G., Araki, R., Salwey, S., Kelleher, C., Zheng, Y., Knoben, W., Gnann, S., Seibert, J., and Bolotin, 878 

L.: When good signatures go bad: Applying hydrologic signatures in large sample studies, Hydrol. Process., 37, 879 

https://doi.org/10.1002/hyp.14987, 2023. 880 

Miller, D. A. and White, R. A.: A conterminous United States multilayer soil characteristics dataset for regional climate and 881 

hydrology modeling, Earth Interact., 2, 1–26, https://doi.org/10.1175/1087-3562(1998)002<0001:acusms>2.3.co;2, 1998. 882 

Miller, J. A.: Ground water atlas of the United States: Introduction and national summary (No. 730-A), A1–A15, 1999. 883 

Molnar, C., Bischl, B., and Casalicchio, G.: iml: An R package for Interpretable Machine Learning, 884 

https://doi.org/10.21105/joss.00786, 2018. 885 

Mosley, M. P.: Delimitation of New Zealand hydrologic regions, J. Hydrol. (Amst.), 49, 173–192, 886 

https://doi.org/10.1016/0022-1694(81)90211-0, 1981. 887 

Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1950 to present, https://doi.org/10.24381/CDS.68D2BB30, 2019. 888 

Neff, B. P., Day, S. M., Piggott, A. R., and Fuller, L. M.: Base flow in the Great Lakes Basin, 889 

https://doi.org/10.3133/sir20055217, 2005. 890 

Noguchi, S., Nik, A. R., Yusop, Z., Tani, M., and Sammori, T.: Rainfall-runoff responses and roles of soil moisture variations 891 

to the response in tropical Rain Forest, Bukit Tarek, peninsular Malaysia, J. Forest Res., 2, 125–132, 892 

https://doi.org/10.1007/bf02348209, 1997. 893 

Ogden, F., Avant, B., Bartel, R., Blodgett, D., Clark, E., Coon, E., Cosgrove, B., Cui, S., Kindl da Cunha, L., Farthing, M., 894 

Flowers, T., Frame, J., Frazier, N., Graziano, T., Gutenson, J., Johnson, D., McDaniel, R., Moulton, J., Loney, D., Peckham, 895 

S., Mattern, D., Jennings, K., Williamson, M., Savant, G., Tubbs, C., Garrett, J., Wood, A., and Johnson, J.: The Next 896 

Generation Water Resources Modeling Framework: Open Source, Standards Based, Community Accessible, Model 897 

Interoperability for Large Scale Water Prediction, AGU Fall Meeting Abstracts, New Orleans, LA, 2021, H43D–01, 2021. 898 

Omernik, J. M.: Ecoregions of the conterminous United States, Ann. Assoc. Am. Geogr., 77, 118–125, 1987. 899 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.



38 
 

Omernik, J. M.: Perspectives on the nature and definition of ecological regions, Environ. Manage., 34 Suppl 1, S27–38, 900 

https://doi.org/10.1007/s00267-003-5197-2, 2004. 901 

Oswald, C. J., Kelleher, C., Ledford, S. H., Hopkins, K. G., Sytsma, A., Tetzlaff, D., Toran, L., and Voter, C.: Integrating 902 

urban water fluxes and moving beyond impervious surface cover: A review, J. Hydrol. (Amst.), 618, 129188, 903 

https://doi.org/10.1016/j.jhydrol.2023.129188, 2023. 904 

Oudin, L., Andréassian, V., Perrin, C., Michel, C., and Le Moine, N.: Spatial proximity, physical similarity, regression and 905 

ungaged catchments: A comparison of regionalization approaches based on 913 French catchments, Water Resources Research, 906 

44, https://doi.org/10.1029/2007WR006240, 2008. 907 

Paola, C., Foufoula-Georgiou, E., Dietrich, W. E., Hondzo, M., Mohrig, D., Parker, G., Power, M. E., Rodriguez-Iturbe, I., 908 

Voller, V., and Wilcock, P.: Toward a unified science of the Earth’s surface: Opportunities for synthesis among hydrology, 909 

geomorphology, geochemistry, and ecology, Water Resour. Res., 42, https://doi.org/10.1029/2005wr004336, 2006. 910 

Pechlivanidis, I. G. and Arheimer, B.: Large-scale hydrological modelling by using modified PUB recommendations: the 911 

India-HYPE case, Hydrol. Earth Syst. Sci., 19, 4559–4579, https://doi.org/10.5194/hess-19-4559-2015, 2015. 912 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., 913 

Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine 914 

Learning in Python, Journal of Machine Learning Research, 12, 2825–2830, 2011. 915 

Penna, D.: A recipe for why and how to set up and sustain an experimental catchment, Hydrol. Process., 38, 916 

https://doi.org/10.1002/hyp.15163, 2024. 917 

Peters, N. E. and Aulenbach, B. T.: Water storage at the Panola mountain research watershed, Georgia, USA: Water storage 918 

at pmrw, Hydrol. Process., 25, 3878–3889, https://doi.org/10.1002/hyp.8334, 2011. 919 

Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G. E., Stewart, M. K., and McDonnell, J. J.: Bedrock geology 920 

controls on catchment storage, mixing, and release: A comparative analysis of 16 nested catchments, Hydrological Processes, 921 

31, 1828–1845, https://doi.org/10.1002/hyp.11134, 2017. 922 

Prieto, C., Kavetski, D., Le Vine, N., Álvarez, C., and Medina, R.: Identification of dominant hydrological mechanisms using 923 

Bayesian inference, multiple statistical hypothesis testing, and flexible models, Water Resour. Res., 57, 924 

https://doi.org/10.1029/2020wr028338, 2021. 925 

Qi, S. L. and Mason, C. A.: Data used to prioritize the selection of river basins for intensive monitoring and assessment by the 926 

U.S. Geological Survey, https://doi.org/10.5066/P98194QR, 2023. 927 

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 928 

Vienna, Austria. https://www.R-project.org/. 929 

Reinecke, R., Stein, L., Gnann, S., Andersson, J. C. M., Arheimer, B., Bierkens, M., Bonetti, S., Güntner, Kollet, S., Mishra, 930 

S., Moosdorf, N., Nazari, S., Pokhrel, Y., Prudhomme, C., Schewe, J., Shen, C., and Wagener, T.: Uncertainties guide global 931 

water model advancement, WIREs Water, 12, https://doi.org/10.1002/wat2.70025, 2025. 932 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.



39 
 

Robert Maier, H., Rosa Taghikhah, F., Nabavi, E., Razavi, S., Gupta, H., Wu, W., Radford, D. A. G., and Huang, J.: How 933 

much X is in XAI: Responsible use of “Explainable” artificial intelligence in hydrology and water resources, J. Hydrol. X, 25, 934 

100185, https://doi.org/10.1016/j.hydroa.2024.100185, 2024. 935 

Safeeq, M. and Hunsaker, C. T.: Characterizing runoff and water yield for headwater catchments in the southern Sierra Nevada, 936 

J. Am. Water Resour. Assoc., 52, 1327–1346, https://doi.org/10.1111/1752-1688.12457, 2016. 937 

Safeeq, M., Grant, G. E., Lewis, S. L., and Tague, C. L.: Coupling snowpack and groundwater dynamics to interpret historical 938 

streamflow trends in the western United States: COUPLING SNOWPACK AND GROUNDWATER DYNAMICS TO 939 

INTERPRET STREAMFLOW, Hydrol. Process., 27, 655–668, https://doi.org/10.1002/hyp.9628, 2013. 940 

Santhi, C., Allen, P. M., Muttiah, R. S., Arnold, J. G., and Tuppad, P.: Regional estimation of base flow for the conterminous 941 

United States by hydrologic landscape regions, J. Hydrol. (Amst.), 351, 139–153, 942 

https://doi.org/10.1016/j.jhydrol.2007.12.018, 2008. 943 

Sauquet, E., Shanafield, M., Hammond, J. C., Sefton, C., Leigh, C., and Datry, T.: Classification and trends in intermittent 944 

river flow regimes in Australia, northwestern Europe and USA: A global perspective, J. Hydrol. (Amst.), 597, 126170, 945 

https://doi.org/10.1016/j.jhydrol.2021.126170, 2021. 946 

Seaber, P. R., Kapinos, F. P., and Knapp, G. L.: Hydrologic unit maps, US Geological Survey, https://doi.org/10.3133/wsp2294, 947 

1987. 948 

Sebestyen, S. D., Shanley, J. B., Blume, T., Duncan, J. M., Jones, J., Segura, C., and Mast, M. A.: Introduction to the special 949 

issue on research and observatory catchments, Hydrol. Process., 39, https://doi.org/10.1002/hyp.70069, 2025. 950 

Shalev, G. and Kratzert, F.: Caravan MultiMet: Extending Caravan with multiple weather nowcasts and forecasts, arXiv 951 

[cs.LG], arXiv, 2024. 952 

Shapley, L. S.: 17. A Value for n-Person Games, in: Contributions to the Theory of Games (AM-28), Volume II, edited by: 953 

Kuhn, H. W. and Tucker, A. W., Princeton University Press, Princeton, 307–318, https://doi.org/10.1515/9781400881970-018, 954 

1953. 955 

Shaw, S. B. and Riha, S. J.: Examining individual recession events instead of a data cloud: Using a modified interpretation of 956 

dQ/dt–Q streamflow recession in glaciated watersheds to better inform models of low flow, J. Hydrol. (Amst.), 434-435, 46–957 

54, https://doi.org/10.1016/j.jhydrol.2012.02.034, 2012. 958 

Shrestha, D., Howard, D., and Benedict, T. D.: Moderate Resolution Imaging Spectroradiometer (MODIS) irrigated 959 

Agriculture datasets for the conterminous United States (MIrAD-US), https://doi.org/10.5066/P9NA3EO8, 2019. 960 

Sivapalan, M.: Pattern, process and function: Elements of a unified theory of hydrology at the catchment scale, in: 961 

Encyclopedia of Hydrological Sciences, Wiley, Chichester, UK, https://doi.org/10.1002/0470848944.hsa012, 2005. 962 

Web Soil Survey: http://websoilsurvey.nrcs.usda.gov/, last access: 11 May 2025. 963 

Spieler, D., Mai, J., Craig, J. R., Tolson, B. A., and Schütze, N.: Automatic model structure identification for conceptual 964 

hydrologic models, Water Resour. Res., 56, https://doi.org/10.1029/2019wr027009, 2020. 965 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.



40 
 

Stets, E. G., Archer, A. A., Degnan, J. R., Erickson, M. L., Gorski, G., Medalie, L., and Scholl, M. A.: The National integrated 966 

water availability assessment, 2025. 967 

Tague, C. and Grant, G. E.: A geological framework for interpreting the low‐flow regimes of Cascade streams, Willamette 968 

River Basin, Oregon: GEOLOGICAL FRAMEWORK FOR LOW-FLOW REGIMES, Water Resour. Res., 40, 969 

https://doi.org/10.1029/2003wr002629, 2004. 970 

Tague, C. and Grant, G. E.: Groundwater dynamics mediate low-flow response to climate warming in snow-dominated alpine 971 

regions, Water Resources Research, 45, 2009. 972 

Tallaksen, L. M.: A review of baseflow recession analysis, J. Hydrol., 165, 349–370, https://doi.org/10.1016/0022-973 

1694(94)02540-R, 1995. 974 

Tarasova, L., Gnann, S., Yang, S., Hartmann, A., and Wagener, T.: Catchment characterization: Current descriptors, 975 

knowledge gaps and future opportunities, Earth Sci. Rev., 252, 104739, https://doi.org/10.1016/j.earscirev.2024.104739, 2023. 976 

Thompson, J. M., Hathaway, J. M., Perfect, E., and Schwartz, J. S.: The effect of stormwater infiltration and surrounding built 977 

infrastructure on local groundwater dynamics: a case study for regenerative stormwater conveyances, Sustain. Resilient 978 

Infrastruct., 1–11, https://doi.org/10.1080/23789689.2020.1772636, 2020. 979 

Trancoso, R., Phinn, S., McVicar, T., Larsen, J., and McAlpine, C.: Regional variation in streamflow drivers across a 980 

continental climatic gradient, Ecohydrology, 10, e1816, https://doi.org/10.1002/eco.1816, 2017. 981 

Tran, V. N.: CAMELSH: A large-sample hourly hydrometeorological dataset and attributes at watershed-scale for contiguous 982 

United States, https://doi.org/10.5281/ZENODO.15070091, 2025. 983 

Tran, V. N., Xu, D., Van Nguyen, T., Kim, T., and Ivanov, V. Y.: CAMELSH: A large-sample hourly hydrometeorological 984 

dataset and attributes at watershed-scale for CONUS, Sci. Data, 12, 1307, https://doi.org/10.1038/s41597-025-05612-6, 2025. 985 

Turner, S., Hannaford, J., Barker, L. J., Suman, G., Killeen, A., Armitage, R., Chan, W., Davies, H., Griffin, A., Kumar, A., 986 

Dixon, H., Albuquerque, M. T. D., Almeida Ribeiro, N., Alvarez-Garreton, C., Amoussou, E., Arheimer, B., Asano, Y., 987 

Berezowski, T., Bodian, A., Boutaghane, H., Capell, R., Dakhaoui, H., Daňhelka, J., Do, H. X., Ekkawatpanit, C., El Khalki, 988 

E. M., Fleig, A. K., Fonseca, R., Giraldo-Osorio, J. D., Goula, A. B. T., Hanel, M., Horton, S., Kan, C., Kingston, D. G., Laaha, 989 

G., Laugesen, R., Lopes, W., Mager, S., Rachdane, M., Markonis, Y., Medeiro, L., Midgley, G., Murphy, C., O’Connor, P., 990 

Pedersen, A. I., Pham, H. T., Piniewski, M., Renard, B., Saidi, M. E., Schmocker-Fackel, P., Stahl, K., Thyer, M., Toucher, 991 

M., Tramblay, Y., Uusikivi, J., Venegas-Cordero, N., Visessri, S., Watson, A., Westra, S., and Whitfield, P. H.: ROBIN: 992 

Reference observatory of basins for international hydrological climate change detection, Sci. Data, 12, 654, 993 

https://doi.org/10.1038/s41597-025-04907-y, 2025. 994 

UKIH: UK Institute of Hydrology (Great Britain), Low Flow Studies Reports, Institute of Hydrology, 1980. 995 

United States Department of Agriculture, Soil Survey Staff, and Natural Resources Conservation: U.S. General Soil Map 996 

(STATSGO): Web soil survey, 2008. 997 

United States Geological Survey: Protected Areas Database of the United States (PAD-US) 4, 998 

https://doi.org/10.5066/P96WBCHS, 2024. 999 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.



41 
 

U.S. Environmental Protection Agency: National Hydrography Dataset Plus (NHDPlus): USEPA; USGS; and Horizon 1000 

Systems Corporation, 2008. 1001 

U.S. Geological Survey: USGS Water Data for the Nation: U.S. Geological Survey National Water Information System 1002 

Database, https://doi.org/10.5066/F7P55KJN, 2025. 1003 

Valeron, B. and Meixner, T.: Overland flow generation in chaparral ecosystems: temporal and spatial variability, Hydrol. 1004 

Process., 24, 65–75, https://doi.org/10.1002/hyp.7455, 2010. 1005 

Van Metre, P. C., Qi, S., Deacon, J., Dieter, C., Driscoll, J. M., Fienen, M., Kenney, T., Lambert, P., Lesmes, D., Mason, C. 1006 

A., Mueller-Solger, A., Musgrove, M., Painter, J., Rosenberry, D., Sprague, L., Tesoriero, A. J., Windham-Myers, L., and 1007 

Wolock, D.: Prioritizing river basins for intensive monitoring and assessment by the US Geological Survey, Environ. Monit. 1008 

Assess., 192, 458, https://doi.org/10.1007/s10661-020-08403-1, 2020. 1009 

Westerberg, I. K., Wagener, T., Coxon, G., McMillan, H. K., Castellarin, A., Montanari, A., and Freer, J.: Uncertainty in 1010 

hydrological signatures for gauged and ungauged catchments, Water Resources Research, 52, 1847–1865, 1011 

https://doi.org/10.1002/2015WR017635, 2016. 1012 

Wieczorek, M. E. and LaMotte, A. E.: Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: 1013 

Average Saturation Excess-Overland Flow, 2002: U.S. Geological Survey data release, 2010. 1014 

Wieczorek, M. E., Hafen, K. C., and Staub, L. E.: Data-Driven Drought Prediction Project model inputs for Upper and Lower 1015 

Colorado portions of the national hydrologic Geo-spatial fabric version 1.1 and select U.s. geological Survey streamgage basins 1016 

(ver. 2.0, July 2025), https://doi.org/10.5066/P98IG8LO, 2023. 1017 

Willard, J. D., Ciulla, F., Weierbach, H., Kumar, V., and Varadharajan, C.: Evaluating deep learning approaches for predictions 1018 

in unmonitored basins with continental-scale stream temperature models, arXiv [cs.LG], arXiv, 2024. 1019 

Williams, P. W. and Ford, D. C.: Global distribution of carbonate rocks, Zeitschrift für Geomorphologie Suppl, 147, 1–2, 2006. 1020 

Wilson, C. G., Papanicolaou, A. N. T., and Denn, K. D.: Partitioning fine sediment loads in a headwater system with intensive 1021 

agriculture, J. Soils Sediments, 12, 966–981, https://doi.org/10.1007/s11368-012-0504-2, 2012. 1022 

Winter, T. C.: The Concept of Hydrologic Landscapes, JAWRA Journal of the American Water Resources Association, 37, 1023 

335–349, https://doi.org/10.1111/j.1752-1688.2001.tb00973.x, 2001. 1024 

Wlostowski, A. N., Molotch, N., Anderson, S. P., Brantley, S. L., Chorover, J., Dralle, D., Kumar, P., Li, L., Lohse, K. A., 1025 

Mallard, J. M., McIntosh, J. C., Murphy, S. F., Parrish, E., Safeeq, M., Seyfried, M., Shi, Y., and Harman, C.: Signatures of 1026 

Hydrologic Function Across the Critical Zone Observatory Network, Water Resour. Res., 57, e2019WR026635, 1027 

https://doi.org/10.1029/2019wr026635, 2021. 1028 

Wolock, D. M.: Hydrologic landscape regions of the United States, US Geological Service, 2003a. 1029 

Wolock, D. M.: Infiltration-excess overland flow estimated by TOPMODEL for the conterminous United States (No. 2003-1030 

310), US Geological Survey., 2003b. 1031 

Wu, S., Zhao, J., Wang, H., and Sivapalan, M.: Regional patterns and physical controls of streamflow generation across the 1032 

conterminous United States, Water Resour. Res., 57, e2020WR028086, https://doi.org/10.1029/2020wr028086, 2021. 1033 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.



42 
 

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., 1034 

Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy flux analysis and 1035 

validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and 1036 

application of model products, J. Geophys. Res. D: Atmos., 117, https://doi.org/10.1029/2011JD016048, 2012. 1037 

Xie, J., Liu, X., Jasechko, S., Berghuijs, W. R., Wang, K., Liu, C., Reichstein, M., Jung, M., and Koirala, S.: Majority of global 1038 

river flow sustained by groundwater, Nat. Geosci., 17, 770–777, https://doi.org/10.1038/s41561-024-01483-5, 2024. 1039 

Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M., 1040 

Granneman, B., Liknes, G. C., Rigge, M., and Xian, G.: A new generation of the United States National Land Cover Database: 1041 

Requirements, research priorities, design, and implementation strategies, ISPRS J. Photogramm. Remote Sens., 146, 108–123, 1042 

https://doi.org/10.1016/j.isprsjprs.2018.09.006, 2018. 1043 

Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic approach to model evaluation: Application to the 1044 

NWS distributed hydrologic model, Water Resour. Res., 44, https://doi.org/10.1029/2007wr006716, 2008. 1045 

Zimmer, M. A. and Gannon, J. P.: Run-off processes from mountains to foothills: The role of soil stratigraphy and structure 1046 

in influencing run-off characteristics across high to low relief landscapes, Hydrol. Process., 32, 1546–1560, 1047 

https://doi.org/10.1002/hyp.11488, 2018. 1048 

Zipper, S. C., Hammond, J. C., Shanafield, M., Zimmer, M., Datry, T., Jones, C. N., Kaiser, K. E., Godsey, S. E., Burrows, R. 1049 

M., Blaszczak, J. R., Busch, M. H., Price, A. N., Boersma, K. S., Ward, A. S., Costigan, K., Allen, G. H., Krabbenhoft, C. A., 1050 

Dodds, W. K., Mims, M. C., Olden, J. D., Kampf, S. K., Burgin, A. J., and Allen, D. C.: Pervasive changes in stream 1051 

intermittency across the United States, Environ. Res. Lett., 16, 084033, https://doi.org/10.1088/1748-9326/ac14ec, 2021. 1052 

https://doi.org/10.5194/egusphere-2025-6156
Preprint. Discussion started: 18 December 2025
c© Author(s) 2025. CC BY 4.0 License.


