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Table S1. Number of watershed samples from the Caravan and GAGES-II datasets, along with a summary of the
landscape attributes used for random forest (RF) training and prediction in this study. See the coloring and
symbols associated with the Figure below the table.

Dataset Subset Signature values | Attributes Attributes used for RF Number of samples
used for RF prediction
training
Caravan Passed Only available | Calculated from | - - 2,717
US subset | quality in Caravan observed data
#) control
Overlapping Calculated from | Caravan - 4,748
with GAGES- observed data attributes,
I (%) substituted
with
GAGES-II
equivalent
(same as
Table x)
Not Predicted - Some attributes are not 11
available
Did not Only available | Predicted - Caravan attributes 2,424
pass in Caravan
quality
control Not Predicted - Some attributes not 206
available
Overlapping Predicted - Caravan attributes, 618
with GAGES- substituted with GAGES-II
I (*%) equivalent
Not within the Continental Not included - - 1,479
United States
Overlapping CAMELS and | Not included - - 641
HYSETS gauges
GAGES-II | Not overlapping with Calculated from | - - 2,807
Caravan (##) observed data
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Predicted - Caravan attributes, 843
substituted with GAGES-II
equivalent. Climate
attributes were calculated
from gridMET data. PET
and aridity were bias-
corrected to match values
based on ERA FAO-PM
using linear regression.
Not predicted - Some attributes are not 40
available
Overlapping with Caravan; See above rows | See above See above rows 5,377
the sum of (*) and (**) rows
Total Signatures other than See above rows | See above See above rows The sum of (#) and (##) is
gages overland flow; the sum of rows 14,403. However, the signature
plotted on | (#) and (##) calculation returned errors or
the map attributes not available for
prediction for 257 watersheds;
and excluding insufficient
datasets; therefore, results were
obtained for a total of 14,146
watersheds
Overland flow signatures See above rows | See above See above rows 10,432
(excluding snow-dominated rows

watersheds, where the snow
fraction > 0.2)
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Venn diagram of samples used in this study. Watershed samples outside of CONUS are excluded from the
figure for clarity. The color scheme matches that of Figure 1 in the manuscript.

Table S2: TOSSH parameters were tuned based on the USGS gauge ID to capture overland flow signatures
(used as input for an event separation algorithm, util EventSeparation.m:
https://tosshtoolbox.github.io/TOSSH/_static/matlab/TOSSH code/TOSSH/TOSSH_code/utility functions/util
_EventSeparation.html)

The first 2 digits | min_termination Min_duratio | min_intensity day | min_intensity day | Max recessio
of the USGS [hours] n [hours] [mm/day] during [mm/day] ndays [days]
gauge ID

01 72 24 7.2 7.2 8
02 72 24 7.2 7.2 8
03 72 24 7.2 7.2 8
04 48 24 4.8 4.8 8
05 48 24 4.8 4.8 8
06 48 24 4.8 4.8 8
07 48 24 4.8 4.8 8
08 48 24 4.8 4.8 8
09 48 24 24 24 8
10 48 24 24 24 8
11 48 24 24 24 8
12 72 24 4.8 4.8 8
13 72 24 4.8 4.8 8
14 48 24 4.8 4.8 8
18 48 24 9.6 9.6 8
20 48 24 4.8 4.8 8
22 48 24 4.8 4.8 8
26 48 24 4.8 4.8 8
27 72 24 4.8 4.8 8
28 72 24 4.8 4.8 8
30 48 24 4.8 4.8 8
36 48 24 4.8 4.8 8
39 48 24 4.8 4.8 8
90 48 24 4.8 4.8 8



https://tosshtoolbox.github.io/TOSSH/_static/matlab/TOSSH_code/TOSSH/TOSSH_code/utility_functions/util_EventSeparation.html

Table S3: TOSSH parameters were tuned based on the USGS gauge ID for the recession delineation algorithm
(used as input for a function called uti/ RecessionSegments.m:
https://tosshtoolbox.github.io/TOSSH/_static/matlab/TOSSH code/TOSSH/TOSSH_code/utility functions/util
_RecessionSegments.html). If the 95th percentile of daily streamflow is below 1 mm day', the flow is
classified as low; otherwise, it is classified as normal.

flow Recession_length [days] N_start eps [-] filter_par [-]
[timestep]

normal 5 0 0.08 0.925

low 10 0 0.02 0.925



https://tosshtoolbox.github.io/TOSSH/_static/matlab/TOSSH_code/TOSSH/TOSSH_code/utility_functions/util_RecessionSegments.html

Table S4: Climate attributes from the Caravan and GAGES-II datasets used for clustering and defining climate

regions. The result of clustering is shown in Figure S2.

and mean precipitation

Variable name Description Source

PPTAVG BASIN Mean annual precipitation GAGES-II

T AVG _BASIN Mean annual air temperature GAGES-1I

PET Mean annual potential evapotranspiration rate estimated from mean GAGES-1I
monthly air temperature and latitude using Hamon's (1961) equation.

RH BASIN Mean Relative Humidity GAGES-II

ARIDITY_GAGES2 Aridity index calculated from GAGESII attributes; ratio of mean PET GAGES-II

moisture_index

Mean annual moisture index (Knoben et al., 2018) based on monthly
aridity describing the water- or energy-limited conditions

Caravanl.4/ERA-5

SNOW_PCT_PRECIP

Mean snow percent of the total precipitation estimate

GAGES-II

PRECIP_SEAS IND

Precipitation seasonality index (Markham, 1970; Dingman, 2002)

GAGES-II

input_seasonality

Seasonality index (Markham, 1970; Dingman, 2002) calculated for
snow water equivalent

(Hammond et al.,
2023)

seasonality

Largest changes in monthly moisture index in a year (Knoben et al.,
2018)

Caravanl.4/ERA-5

input PET synchrony

Water and energy synchrony estimated from a correlation between
mean monthly surface water input and mean monthly PET, derived
from gridMET and University of Arizona SWE product 1991-2020

(Hammond et al.,
2023)

WD BASIN

Mean annual number of days of measurable precipitation

GAGES-II

high _prec_freq

Frequency of high precipitation days, where precipitation >5 times the
mean daily precipitation

Caravanl.4/ERA-5

high_prec_dur

Average duration of low precipitation events (number of consecutive
days where precipitation >5 times mean daily precipitation)

Caravanl.4/ERA-5

low_prec_freq

Frequency of low precipitation days, where precipitation <I mm/day

Caravanl.4/ERA-5

low_prec_dur

Average duration of low precipitation events (number of consecutive
days where precipitation <1 mm/day)

Caravanl.4/ERA-5

FST32F_BASIN

Mean day of the year of the first freeze

GAGES-II

LST32F BASIN

Mean day of the year of the last freeze

GAGES-II
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Text S1: Excluded Caravan landscape attributes in the study. We removed strongly correlated variables
(Spearman’s p > 0.8 or <—0.8). Rationales are given in the following.

e ele mt sav/ele mt smn/ele mt smx: The average, maximum, and minimum elevation are strongly
correlated with each other (|p|>0.8). Picked the average elevation (ele mt_sav) as a representative of the
watershed elevation characteristics.

e sgr dk sav/slp dg sav: Stream gradient (sgr _dk sav) and terrain slope (slp_dg sav) are strongly
correlated (|p[>0.8). Picked the terrain slope (slp_dg_sav) as a stronger predictor of hydrologic process
control.

e cly pc_sav/snd_pc_sav/slt pc sav: There is a strong correlation (|p[>0.8) between sand fraction
(snd_pc sav) and clay fraction (cly_pc_sav), as well as between sand fraction (snd_pc_sav) and silt
fraction (slt_pc_sav). Picked clay fraction (cly pc sav) and silt fraction (slt_pc_sav) as a representative
of a soil texture, as information on clay and silt content constrains sand content and is more relevant to
water retention capacity.

e ppd _pk sav/pop ct usu/urb _pc_sse/nli_ix sav/hft ix s93/ hft ix s09 /rdd_mk sav: There is
a strong correlation (|p[>0.8) among these attributes representing anthropogenic impacts. Removed
human footprint indices (hft_ix s93 & hft_ix s09) because they are primarily defined based on land-
covers, whose information is already contained in and interferes with land-cover attributes. Road density
(rdd_mk_sav), nighttime light (nli_ix_sav), and urban extents (urb_pc_sse) are considered as a result of
high population density (ppd_pk sav) and high population count (pop_ct usu). Picked population
density (ppd_pk sav) as a primary representative of anthropogenic impacts on the watershed through
urbanization. Note that gross domestic product (gdp ud sav) and the human development index
(hdi_ix_sav) were excluded from the analysis due to their weak association with hydrologic responses.

e aridity/ moisture_index: There is a strong correlation (|p[>0.8) between moisture index
(moisture_index) and aridity index (aridity). Picked aridity index (aridity) because it is widely used and
shown to be a strong predictor of hydrologic processes (Budyko & Miller, 1974; Meira Neto et al.,
2020).

o low prec_dur/high prec dur: Low and high precipitation duration are strongly correlated (|p[>0.8).
Picked low precipitation duration (low prec dur) because it characterizes the extended dry period.

e prm_pc_sse: Permafrost extent was excluded from the analysis because its values were zero in most
watersheds over the continental United States, and it appeared to be the least important attribute across
signatures and regions.
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Text S2: Preliminary random forest experiments with Caravan dataset subsets
To evaluate the impact of dataset selection on random forest training, we conducted preliminary experiments
using subsets of the Caravan dataset. In the figure below,

e All Caravan: All watersheds within the Caravan dataset with sufficient data quality (gauges with
insufficient data removed).

e CAMELS subset: Caravan subset of CAMELS watersheds; watersheds within the CAMELS samples.
Trained using Caravan hydroclimatic data and attributes. CAMELS is widely recognized as a
benchmark for high-quality, natural watersheds.

o GAGES?2 subset: Caravan subset of GAGES-II watersheds; Watersheds overlapping between Caravan
and GAGES-II, using Caravan hydroclimatic data and attributes. USGS’s GAGES-II is developed to
represent and investigate natural and human-altered flow regimes.

o GAGES?2 subset + attrs: Identical to the GAGES2 subset in terms of watershed selection, but model
training employed Caravan-equivalent GAGES-II attributes (Table 1) rather than the standard Caravan
attributes.

o GAGES2-Ref subset: Watersheds overlapping between Caravan and GAGES-II, but restricted to those
designated as Reference by GAGES-II classification.

It should be noted that the reported R’ values reflect training performance and does not represent true predictive
skill. Key findings from these experiments are as follows:

- Training on A/l Caravan watersheds resulted in relatively poor performance

- The CAMELS subset yielded the strongest performance

- The GAGES?2 subset performed slightly worse than the CAMELS subset, but remained comparable.

- Incorporating Caravan-equivalent GAGES-II attributes in the GAGES?2 subset improved performance

by several percentage points (GAGES?2 subset + attrs vs. GAGES2 subset)

On the basis of these observations, we elected to train our random forest models using the GAGES?2 subset +
attrs, as reported in the main manuscript.
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(a) Map of U.S. hydroclimate clusters used in the Random Forest regional experiments. Six climate

regions were identified using a Gaussian mixture model in Scikit-learn (Pedregosa et al., 2011) based on

Figure S1

hydroclimate attributes from Caravan, GAGES-II, and Hammond et al. (2023) listed in Table S4. Separate

Random Forest models were then trained for each region. (b) Climate characteristics of the six clusters. Values

are standardized by the overall dataset mean and standard deviation. Blue indicates that all quantiles (25th, 50th,

and 75th percentiles) are above average, while pink indicates that they are below average.
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Figure S2. Hydrologic signature values analyzed to generate Figures 2 and 3 (a—c). The chart above the color
bar shows the distribution of signature values. Dashed lines indicate the 0.25, 0.5, and 0.75 quantiles.
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Figure S3. Hydrologic signature values used to generate Figures 2 and 3 (d-f). The chart above the color bar
shows the distribution of signature values. Dashed lines indicate the 0.25, 0.5, and 0.75 quantiles.
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Figure S4: Maps showing climate attributes’ values (right column) and Shapley values (left column) for a
selected signature.
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Figure S5: Maps showing climate attributes’ values (right column) and Shapley values (left column) for a
selected signature. The Figure continues to introduce Soil and Geologic attributes.
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Figure S6: Maps showing soil and geologic attributes’ values (right column) and Shapley values (left column)
for a selected signature.
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Figure S7: Maps showing land cover attributes’ values (right column) and Shapley values (left column) for a
selected signature.
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Figure S8: Maps showing topographic attributes’ values (right column) and Shapley values (left column) for a
selected signature.
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Figure S9: Goodness of fit of random forest models (predicted vs. observed signatures) from regional
experiments. The region names correspond to the climate clusters defined in Figure S1.
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Figure S10: Bar plot showing changes in relative variable importance (IncMSE%) of landscape attribute
categories in each of the regional experiments compared to the average of all regional experiments.
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First, we calculated the relative importance of category & for a given signature y. To do this, we summed the
variable importance of all attributes x within category k (x € k) and normalized it by the total contribution of all
attributes (x € A).

RE; = 100 XYoo I/ Sxes I

This value, RI , represents the relative contribution of category k to signature y. For example, RIEFL can
be interpreted as “Land cover accounts for RIEEL, . % of the variable importance in predicting the baseflow
index signature (BFI).”

Next, we compared the relative importance from the regional random forest model to that from the average of
all regional models:

1
ARI(r) = RIX(r) — Ez R ()
TER
, where r is a region and R is all six regions. For example, this comparison tells us: “Land cover is

ARIBEL, o ver %6 more important in the Midwest regional model than the average for predicting BFL.”

Finally, we computed the mean ARI ,f (r) across signatures y (y € Y), which defines the x-axis in the plot:
Mean ARI,, (%).
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Figure S11: Comparisons of Caravan (x-axis) and GAGES-II equivalent attributes (y-axis) after unit conversion
(units and attribute descriptions are in Table 2). Median values of each attribute and the correlation coefficient R
are shown in the legend. The correlation coefficients are R > 0.7 for most of the attributes, with the exception of
silt content (R = 0.64).
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