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Table S1. Number of watershed samples from the Caravan and GAGES-II datasets, along with a summary of the 

landscape attributes used for random forest (RF) training and prediction in this study. See the coloring and 

symbols associated with the Figure below the table.  

 

Dataset Subset Signature values Attributes 
used for RF 
training 

Attributes used for RF 
prediction 

Number of samples 

Caravan 
US subset 
(#) 

Passed 
quality 
control 

Only available 
in Caravan 

Calculated from 
observed data 

- - 2,717 

Overlapping 
with GAGES-
II (*) 

Calculated from 
observed data 

Caravan 
attributes,  
substituted 

with 
GAGES-II 
equivalent 
(same as 
Table x) 

- 4,748 

Not Predicted - Some attributes are not 
available 

11 

Did not 

pass 
quality 
control 
 

Only available 

in Caravan 

Predicted - Caravan attributes  2,424 

Not Predicted - Some attributes not 
available 

206 

Overlapping 

with GAGES-
II (**) 

Predicted - Caravan attributes,  

substituted with GAGES-II 
equivalent 

618 

Not within the Continental 
United States 

Not included - - 1,479 

Overlapping CAMELS and 
HYSETS gauges 

Not included - - 641 
 

GAGES-II Not overlapping with 
Caravan  (##) 

Calculated from 
observed data 

- - 2,807 
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Predicted - Caravan attributes,  

substituted with GAGES-II 
equivalent. Climate 
attributes were calculated 
from gridMET data. PET 
and aridity were bias-
corrected to match values 
based on ERA FAO-PM 
using linear regression.  

843 

 

Not predicted - Some attributes are not 

available 

40 

Overlapping with Caravan; 

the sum of (*) and (**) 

See above rows See above 

rows 

See above rows 5,377 

Total 
gages 
plotted on 
the map 

Signatures other than 
overland flow; the sum of 
(#) and (##) 

See above rows See above 
rows 

See above rows The sum of (#) and (##) is 
14,403. However, the signature 
calculation returned errors or 
attributes not available for 
prediction for 257 watersheds; 
and excluding insufficient 
datasets; therefore, results were 
obtained for a total of 14,146 

watersheds 

Overland flow signatures 

(excluding snow-dominated 
watersheds, where the snow 
fraction > 0.2) 

See above rows See above 

rows 

See above rows 10,432 
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Venn diagram of samples used in this study. Watershed samples outside of CONUS are excluded from the 

figure for clarity. The color scheme matches that of Figure 1 in the manuscript.  

 

Table S2: TOSSH parameters were tuned based on the USGS gauge ID to capture overland flow signatures 

(used as input for an event separation algorithm, util_EventSeparation.m: 

https://tosshtoolbox.github.io/TOSSH/_static/matlab/TOSSH_code/TOSSH/TOSSH_code/utility_functions/util

_EventSeparation.html) 

 

The first 2 digits 

of the USGS 

gauge ID 

min_termination 

[hours] 

Min_duratio

n [hours] 

min_intensity_day 

[mm/day] 

min_intensity_day_

during [mm/day] 

Max_recessio

ndays [days] 

01 72 24 7.2 7.2 8 

02 72 24 7.2 7.2 8 

03 72 24 7.2 7.2 8 

04 48 24 4.8 4.8 8 

05 48 24 4.8 4.8 8 

06 48 24 4.8 4.8 8 

07 48 24 4.8 4.8 8 

08 48 24 4.8 4.8 8 

09 48 24 2.4 2.4 8 

10 48 24 2.4 2.4 8 

11 48 24 2.4 2.4 8 

12 72 24 4.8 4.8 8 

13 72 24 4.8 4.8 8 

14 48 24 4.8 4.8 8 

18 48 24 9.6 9.6 8 

20 48 24 4.8 4.8 8 

22 48 24 4.8 4.8 8 

26 48 24 4.8 4.8 8 

27 72 24 4.8 4.8 8 

28 72 24 4.8 4.8 8 

30 48 24 4.8 4.8 8 

36 48 24 4.8 4.8 8 

39 48 24 4.8 4.8 8 

90 48 24 4.8 4.8 8 

  

https://tosshtoolbox.github.io/TOSSH/_static/matlab/TOSSH_code/TOSSH/TOSSH_code/utility_functions/util_EventSeparation.html
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Table S3: TOSSH parameters were tuned based on the USGS gauge ID for the recession delineation algorithm 

(used as input for a function called util_RecessionSegments.m: 

https://tosshtoolbox.github.io/TOSSH/_static/matlab/TOSSH_code/TOSSH/TOSSH_code/utility_functions/util

_RecessionSegments.html). If the 95th percentile of daily streamflow is below 1 mm day⁻¹, the flow is 

classified as low; otherwise, it is classified as normal. 

 

flow Recession_length [days] N_start 

[timestep] 

eps [-] filter_par [-] 

normal 5 0 0.08 0.925 

low 10 0 0.02 0.925 

  

https://tosshtoolbox.github.io/TOSSH/_static/matlab/TOSSH_code/TOSSH/TOSSH_code/utility_functions/util_RecessionSegments.html
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Table S4: Climate attributes from the Caravan and GAGES-II datasets used for clustering and defining climate 

regions. The result of clustering is shown in Figure S2. 

Variable name Description Source 

PPTAVG_BASIN Mean annual precipitation GAGES-II 

T_AVG_BASIN Mean annual air temperature GAGES-II 

PET Mean annual potential evapotranspiration rate estimated from mean 
monthly air temperature and latitude using Hamon's (1961) equation. 

GAGES-II 

RH_BASIN Mean Relative Humidity GAGES-II 

ARIDITY_GAGES2 
 

Aridity index calculated from GAGESII attributes; ratio of mean PET 
and mean precipitation  

GAGES-II 

moisture_index Mean annual moisture index (Knoben et al., 2018) based on monthly 
aridity describing the water- or energy-limited conditions 

Caravan1.4/ERA-5 

SNOW_PCT_PRECIP Mean snow percent of the total precipitation estimate GAGES-II 

PRECIP_SEAS_IND Precipitation seasonality index (Markham, 1970; Dingman, 2002) GAGES-II 

input_seasonality Seasonality index (Markham, 1970; Dingman, 2002) calculated for 
snow water equivalent 

(Hammond et al., 
2023) 

seasonality Largest changes in monthly moisture index in a year (Knoben et al., 
2018)  

Caravan1.4/ERA-5 

input_PET_synchrony Water and energy synchrony estimated from a correlation between 
mean monthly surface water input and mean monthly PET, derived 
from gridMET and University of Arizona SWE product 1991-2020 

(Hammond et al., 
2023) 

WD_BASIN Mean annual number of days of measurable precipitation GAGES-II 

high_prec_freq Frequency of high precipitation days, where precipitation ≥5 times the 
mean daily precipitation 

Caravan1.4/ERA-5 

high_prec_dur Average duration of low precipitation events (number of consecutive 
days where precipitation ≥5 times mean daily precipitation) 

Caravan1.4/ERA-5 

low_prec_freq Frequency of low precipitation days, where precipitation <1 mm/day Caravan1.4/ERA-5 

low_prec_dur Average duration of low precipitation events (number of consecutive 
days where precipitation <1 mm/day) 

Caravan1.4/ERA-5 

FST32F_BASIN Mean day of the year of the first freeze GAGES-II 

LST32F_BASIN Mean day of the year of the last freeze GAGES-II 

 

 

 

  

https://paperpile.com/c/ImlWXC/gdbCM
https://paperpile.com/c/ImlWXC/7vmGX
https://paperpile.com/c/ImlWXC/7vmGX
https://paperpile.com/c/ImlWXC/gdbCM
https://paperpile.com/c/ImlWXC/gdbCM
https://paperpile.com/c/ImlWXC/7vmGX
https://paperpile.com/c/ImlWXC/7vmGX
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Text S1: Excluded Caravan landscape attributes in the study. We removed strongly correlated variables 

(Spearman’s ρ > 0.8 or <－0.8). Rationales are given in the following.  

● ele_mt_sav / ele_mt_smn / ele_mt_smx: The average, maximum, and minimum elevation are strongly 

correlated with each other (|ρ|>0.8). Picked the average elevation (ele_mt_sav) as a representative of the 

watershed elevation characteristics.  

● sgr_dk_sav / slp_dg_sav: Stream gradient (sgr_dk_sav) and terrain slope (slp_dg_sav) are strongly 

correlated (|ρ|>0.8). Picked the terrain slope (slp_dg_sav) as a stronger predictor of hydrologic process 

control.  

● cly_pc_sav / snd_pc_sav / slt_pc_sav: There is a strong correlation (|ρ|>0.8) between sand fraction 

(snd_pc_sav) and clay fraction (cly_pc_sav), as well as between sand fraction (snd_pc_sav) and silt 

fraction (slt_pc_sav). Picked clay fraction (cly_pc_sav) and silt fraction (slt_pc_sav) as a representative 

of a soil texture, as information on clay and silt content constrains sand content and is more relevant to 

water retention capacity.  

● ppd_pk_sav / pop_ct_usu / urb_pc_sse / nli_ix_sav / hft_ix_s93/ hft_ix_s09 / rdd_mk_sav: There is 

a strong correlation (|ρ|>0.8) among these attributes representing anthropogenic impacts. Removed 

human footprint indices (hft_ix_s93 & hft_ix_s09) because they are primarily defined based on land-

covers, whose information is already contained in and interferes with land-cover attributes. Road density 

(rdd_mk_sav), nighttime light (nli_ix_sav), and urban extents (urb_pc_sse) are considered as a result of 

high population density (ppd_pk_sav) and high population count (pop_ct_usu). Picked population 

density (ppd_pk_sav) as a primary representative of anthropogenic impacts on the watershed through 

urbanization. Note that gross domestic product (gdp_ud_sav) and the human development index 

(hdi_ix_sav) were excluded from the analysis due to their weak association with hydrologic responses. 

● aridity / moisture_index: There is a strong correlation (|ρ|>0.8) between moisture index 

(moisture_index) and aridity index (aridity). Picked aridity index (aridity) because it is widely used and 

shown to be a strong predictor of hydrologic processes (Budyko & Miller, 1974; Meira Neto et al., 

2020).  

● low_prec_dur / high_prec_dur: Low and high precipitation duration are strongly correlated (|ρ|>0.8). 

Picked low precipitation duration (low_prec_dur) because it characterizes the extended dry period.  

● prm_pc_sse: Permafrost extent was excluded from the analysis because its values were zero in most 

watersheds over the continental United States, and it appeared to be the least important attribute across 

signatures and regions.  
 

  

https://paperpile.com/c/ImlWXC/7X6p+tJTP
https://paperpile.com/c/ImlWXC/7X6p+tJTP


 

7 

Text S2: Preliminary random forest experiments with Caravan dataset subsets 

To evaluate the impact of dataset selection on random forest training, we conducted preliminary experiments 

using subsets of the Caravan dataset. In the figure below,  

● All Caravan: All watersheds within the Caravan dataset with sufficient data quality (gauges with 

insufficient data removed). 

● CAMELS subset: Caravan subset of CAMELS watersheds; watersheds within the CAMELS samples. 

Trained using Caravan hydroclimatic data and attributes. CAMELS is widely recognized as a 

benchmark for high-quality, natural watersheds. 

● GAGES2 subset: Caravan subset of GAGES-II watersheds; Watersheds overlapping between Caravan 

and GAGES-II, using Caravan hydroclimatic data and attributes. USGS’s GAGES-II is developed to 

represent and investigate natural and human-altered flow regimes. 

● GAGES2 subset + attrs: Identical to the GAGES2 subset in terms of watershed selection, but model 

training employed Caravan-equivalent GAGES-II attributes (Table 1) rather than the standard Caravan 

attributes. 

● GAGES2-Ref subset: Watersheds overlapping between Caravan and GAGES-II, but restricted to those 

designated as Reference by GAGES-II classification. 

 

It should be noted that the reported R2 values reflect training performance and does not represent true predictive 

skill. Key findings from these experiments are as follows: 

- Training on All Caravan watersheds resulted in relatively poor performance 

- The CAMELS subset yielded the strongest performance 

- The GAGES2 subset performed slightly worse than the CAMELS subset, but remained comparable. 

- Incorporating Caravan-equivalent GAGES-II attributes in the GAGES2 subset improved performance 

by several percentage points (GAGES2 subset + attrs vs. GAGES2 subset) 

On the basis of these observations, we elected to train our random forest models using the GAGES2 subset + 

attrs, as reported in the main manuscript. 
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Figure S1: (a) Map of U.S. hydroclimate clusters used in the Random Forest regional experiments. Six climate 

regions were identified using a Gaussian mixture model in Scikit-learn (Pedregosa et al., 2011) based on 

hydroclimate attributes from Caravan, GAGES-II, and Hammond et al. (2023) listed in Table S4. Separate 

Random Forest models were then trained for each region. (b) Climate characteristics of the six clusters. Values 

are standardized by the overall dataset mean and standard deviation. Blue indicates that all quantiles (25th, 50th, 

and 75th percentiles) are above average, while pink indicates that they are below average.  

 

https://paperpile.com/c/ImlWXC/q57A
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Figure S2. Hydrologic signature values analyzed to generate Figures 2 and 3 (a–c). The chart above the color 

bar shows the distribution of signature values. Dashed lines indicate the 0.25, 0.5, and 0.75 quantiles. 

 

 
  



 

10 

Figure S3. Hydrologic signature values used to generate Figures 2 and 3 (d-f). The chart above the color bar 

shows the distribution of signature values. Dashed lines indicate the 0.25, 0.5, and 0.75 quantiles. 
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Figure S4: Maps showing climate attributes’ values (right column) and Shapley values (left column) for a 

selected signature.  
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Figure S5: Maps showing climate attributes’ values (right column) and Shapley values (left column) for a 

selected signature. The Figure continues to introduce Soil and Geologic attributes.  
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Figure S6: Maps showing soil and geologic attributes’ values (right column) and Shapley values (left column) 

for a selected signature.  
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Figure S7: Maps showing land cover attributes’ values (right column) and Shapley values (left column) for a 

selected signature.  
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Figure S8: Maps showing topographic attributes’ values (right column) and Shapley values (left column) for a 

selected signature.  
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Figure S9: Goodness of fit of random forest models (predicted vs. observed signatures) from regional 

experiments. The region names correspond to the climate clusters defined in Figure S1. 
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Figure S10: Bar plot showing changes in relative variable importance (IncMSE%) of landscape attribute 

categories in each of the regional experiments compared to the average of all regional experiments. 

 
 

First, we calculated the relative importance of category k for a given signature y. To do this, we summed the 

variable importance of all attributes x within category k (𝑥 ∈ 𝑘) and normalized it by the total contribution of all 

attributes (𝑥 ∈ 𝐴). 

 𝑅𝐼𝑘
𝑦

=  100 ✕∑𝑥∈𝑘 𝐼𝑥
𝑦

/ ∑𝑥∈𝐴 𝐼𝑥
𝑦
  

This value, 𝑅𝐼𝑥
𝑦
, represents the relative contribution of category 𝑘 to signature 𝑦. For example,  𝑅𝐼𝑙𝑎𝑛𝑑𝑐𝑜𝑣𝑒𝑟

𝐵𝐹𝐼  can 

be interpreted as “Land cover accounts for 𝑅𝐼𝑙𝑎𝑛𝑑𝑐𝑜𝑣𝑒𝑟
𝐵𝐹𝐼 % of the variable importance in predicting the baseflow 

index signature (BFI).”  

 

Next, we compared the relative importance from the regional random forest model to that from the average of 

all regional models: 

𝛥𝑅𝐼𝑘
𝑦

(𝑟) =  𝑅𝐼𝑘
𝑦

(𝑟) −  
1

𝑅
∑ 𝑅𝐼𝑘

𝑦
 (𝑟)

𝑟∈𝑅

 

, where r is a region and R is all six regions. For example, this comparison tells us: “Land cover is  

𝛥𝑅𝐼𝑙𝑎𝑛𝑑𝑐𝑜𝑣𝑒𝑟
𝐵𝐹𝐼 % more important in the Midwest regional model than the average for predicting BFI.”  

 

Finally, we computed the mean 𝛥𝑅𝐼𝑘
𝑦

(𝑟) across signatures y (𝑦 ∈ 𝑌), which defines the x-axis in the plot: 

𝑀𝑒𝑎𝑛 𝛥𝑅𝐼𝑘   (%). 
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Figure S11: Comparisons of Caravan (x-axis) and GAGES-II equivalent attributes (y-axis) after unit conversion 

(units and attribute descriptions are in Table 2). Median values of each attribute and the correlation coefficient R 

are shown in the legend. The correlation coefficients are R > 0.7 for most of the attributes, with the exception of 

silt content (R = 0.64).  
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