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Abstract. Accurate measurements of cloud particle size, shape, and concentration are essential for microphysical cloud re-

search. Holographic imaging is ideal for three-dimensional analyses of particle size, shape, and spatial distribution in large

sample volumes, but its post-processing often leads to operator-dependent results and introduces uncertainties in detection

efficiency. Here we present CloudTarget, which uses a chrome photomask with a customised
:
a
:::
set

::
of

:::::::
chrome

::::::::::
photomasks

::::
with

:
a
::::::::::
customized pattern of opaque circles,

:::::::
serving as a verification tool to quantify detection efficiency and evaluate size and po-5

sition errors. CloudTarget provides a ground truth for optimizing hologram processing parameters, including detection, sizing,

and classification thresholds, and it facilitates evaluations of size- and position-dependent detection efficiency and uncertain-

ties. Additionally, we present a Convolutional Neural Network (CNN) for object classification that achieves high accuracy with

moderate training data. In a holography setup featuring a 5120× 5120 pixel imaging sensor, a 3 µm effective pixel size, and

355 nm illumination, the CNN achieves over 90% recall and precision for particles larger than 7 µm in a 10× 1.3× 1.3 cm310

detection volume. The average focus position error remains below 150 µm (1.5 times the reconstruction resolution) for particles

<10 cm from the image plane, with in-plane random position detection errors below 5 pixels (mean < 2 pixels). By combin-

ing inverse techniques with CloudTarget, the sizing error standard deviation is reduced to about 2 µm. Overall, classification

performance improves significantly, and a 100-fold increase in classification speed is achieved.

1 Introduction15

In-line holography is a versatile imaging technique for characterizing size, concentration, three-dimensional position and shape

of particles. It has been widely used in various research fields like cloud physics and atmospheric sciences to analyze cloud

droplets (Beals et al., 2015), ice crystals (Amsler, 2009), pollen (Sauvageat et al., 2020), aerosols (Berg, 2022) human exhaled

particles (Bagheri et al., 2023) and in biological imaging applications (Xu et al., 2001). In-situ atmospheric measurements with

holographic instruments are typically carried out on mountain tops(Raupach et al., 2006) or on board of an aircrafts (Brown,20

1989; Fugal et al., 2004; Fugal and Shaw, 2009) or aerostats (Ramelli et al., 2020; Stevens et al., 2021). Due to a complex
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post-processing of holograms the data output (particle count, positions and size) underlies accuracy limitations that need to

be assessed. Here, we focus specifically on the use of in-line holography for in-situ measurements of warm clouds, where

spherical cloud droplets are measured. The basic principle of holography is to illuminate a sample volume with collimated

coherent light (i.e. a laser light with a sufficiently large coherence length) and to then record the diffraction patterns of all25

the objects within the sample volume, i.e. the volume between the last optic of the illumination setup and the image plane of

the camera. From that diffraction pattern, the position, and cross-sectional shape of the particles in the sample volume can be

determined through complex post-processing of the holograms. Typically, the wavefront is reconstructed in a number of planes

parallel to the camera sensor along the optical axis (z-axis in our convention) covering the whole sample volume. In case of

sampling warm clouds, the cloud droplets can then be identified as dark sharp circular objects in the amplitude signal in their30

focus plane. While particles in focus can be found in the planes, each plane still contains all the diffraction patterns from other

objects as noise. The reconstructed planes are processed with a threshold to find dark objects. Due to the high noise, typically, a

classification is needed to identify droplets and classify the dark objects in the planes into “particle” or “artifact”. Other sources

of noise such as laser imperfections, camera noise, optical artifacts and, especially for in-flight holograms, dust or dirt on the

optics and windows make classification even more challenging.35

With the advancement of camera technology used in holographic instruments, both the sensor size and the frame rate increase

(see e.g. the evolution from HOLODEC (Fugal et al., 2004) and HALOHolo(Schlenczek, 2018) to HOLIMO (Henneberger

et al., 2013; Ramelli et al., 2020) and Max-Planck-Cloudkite+ (MPCK+) (Stevens et al., 2021)) which significantly increases

the amount of data recorded per flight. For example, in the EUREC4A campaign (Stevens et al., 2021) several hundred thousand

holograms with 25MB (5120x5120 pixel, 8 bit) each were recorded by the MPCK+ holographic system. While reconstruction40

is fully automated with the HOLOSUITE software package (Fugal et al., 2009), classification remains a challenge. It can be

done by manual labeling, with simple rules (circularity, edge sharpness...) or with machine learning algorithms trained on

manually labeled data. The machine learning algorithms range from decision trees over support vector machines (SVM) to

Artificial Neural Networks. In particular, simpler methods such as decision trees (Schledewitz, 2016; Schlenczek, 2018) and

rules (Glienke et al., 2023) work well for a subset of data, but struggle to generalise across several measurement instances (e.g.45

flight segments). Neural Networks have been successfully implemented for identifying both water droplets and ice crystals in

holographic reconstructions (Touloupas et al., 2020). Classification of small water droplets, however, still remains a challenge

for these classifiers (Lauber, 2020). For all methods, the manually annotated training and testing on data is the bottleneck. In

light of the increasing amount of data generated by the holographic imagers, an improved and less expensive classification

method must be developed that requires a moderate amount of manually labeled training data.50

Hong et al. (2024) give a comprehensive overview over traditional, inverse and machine learning approaches for the full

processing of holograms containing particles. There
:::
The

::::::
mean

:::::::
particle

:::
size

::::
can

:::::::
directly

:::
be

::::::::
extracted

:::::::
through

:::::::::
hologram

::::::::::::
self-correlation

::::::::::::::::
(Denis et al., 2006)

:
.
:::::::::::
Additionally,

:::::
there

:
is ongoing research how to skip the computationally expensive re-

construction algorithms altogether and implement wavefront reconstruction with machine learning or extract particle location

and shape
::::::::
individual

:::::::
particle

:::::::
locations

::::
and

::::::
shapes directly from the diffraction patterns in the holograms with Neural Networks55

(Wang et al., 2018; Ren et al., 2019; Zhang et al., 2022; Wu et al., 2021; Shao et al., 2020; Chen et al., 2021; Schreck et al.,
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2023; Paliwal et al., 2025). These groundbreaking approaches have the potential to significantly reduce computational time.

These methods may have great potential for future implementations. To
:::::::
However,

:::
to make progress now here we focus on the

classic approach of wavefront reconstruction with subsequent classification.

Besides generalisation, another issue with current classification methods is that their evaluation is often limited to comparison60

with manual labels. The inherent inaccuracy of this labeling remains an unknown factor. Furthermore, this evaluation can only

verify the classification accuracy, i.e. the extent to which objects found by the reconstruction have been misclassified by the

classification algorithm. The overall performance of a holographic system and the post-processing of the hologram are still

mostly unexplored. In a recent paper by Wu et al. (Wu et al., 2024)
:::::::::::::
Wu et al. (2024), a printed target with two-dimensional cir-

cular objects was introduced for verification of z-position accuracy and as an indication for detection. However, the analysis of65

the printed target measurements was limited, exact detection parameters like recall were not calculated, although such a target

is optimal for analysing them as a function of size and position.

The challenges in analyzing in-situ holographic measurements of cloud droplets include developing a classification algorithm

that is fast and accurate, as well as validating the quality of the resulting data against rigorous tests. Key questions that arise

during this process include: How accurate are the classifier’s predictions? What proportion of the actual particles are detected?70

Are there false positives — particles identified that do not actually exist? Can the measured size and position of the droplets be

trusted? How do the system’s performance metrics vary with changes in particle size, position, and concentration?

While users of holographic systems are aware of potential instrumental and processing inaccuracies (e.g., (Glienke et al.,

2020)), existing evaluation methods (summarised in section 3.1) are insufficient to fully and quantitatively verify the accuracy

of hologram processing. To address this limitation, we developed a verification tool, CloudTarget, designed to enhance the75

evaluation capabilities for hologram processing and classification accuracy. The CloudTarget uses one or more chrome pho-

tomasks with a customised pattern of opaque circles with diameters similar to those of drops in warm clouds. In addition, we

present a Convolutional Neural Network (CNN) approach for classifying holograms of particles with circular cross-sections

and a minimum diameter of twice the effective pixel size. We evaluate the robustness of the CNN and quantify its accuracy

using both laboratory and in-situ holograms collected during EUREC4A field campaign Stevens et al. (2021) captured with80

the Max-Planck-CloudKite+ (MPCK+) holography system. Our results highlight the critical role of selecting appropriate train-

ing data for the CNN and demonstrate the unique advantages of CloudTarget for assessing the entire hologram processing

workflow, including classification. By utilizing CloudTarget as a controlled test target within the sample volume, we analyze

detection performance in terms of precision and recall across all variables such as cross-section position (x-y), depth position

(z), and particle diameter. Additionally, we explore the potential for determining sizing and positional accuracy to a certain85

degree using CloudTarget.
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2 Hologram Processing

Figure 1 provides a comprehensive overview of our hologram processing steps. Our hologram processing follows the methods

presented by Fugal et al. (2009) and the HOLOSUITE software package (Fugal et al., 2009; Shaw et al., 2012; Schlenczek,

2018).90

2.1 Acquisition

In Figure 1 the Acquisition step illustrates the principle of in-line holography. An expanded, collimated laser beam (or an

alternate coherent light source) illuminates a sample volume. Within the context of cloud physics, cloud droplets fill the sample

volume (terms “droplets” and “particles” used interchangeably throughout this paper). The light is scattered at these droplets,

resulting in a diffraction pattern visible in the image plane. In our convention, the z-axis is along the laser beam and the image95

plane is at z = 0 cm. The directions parallel to the image plane are denoted with x and y. Mathematically, the diffraction in our

holograms can be described with Fraunhofer diffraction. The Fraunhofer condition is met for most of the droplet sizes (order

of 10 µm) for z larger than a few cm. As shown in Tyler and Thompson (1976) the diffraction pattern for an object with circular

cross-section and radius of a at distance z illuminated with coherent light of wavelength λ can be described with

I (r) = 1− 2πa2

λz
sin

(
πr2

λz

)
2J1 (m)

m
+

π2a4

λ2z2

(
2J1 (m)

m

)2

(1)100

where m= 2πar
λz and J1 is the Bessel function of the first kind of order 1. I(r) describes the intensity in a radial distance r

from the objects center. From the equation, we can infer the difference in diffraction pattern for large vs. small and near vs. far

droplets as indicated in the schematic in Figure 1 Acquisition. Droplets of larger diameter (a in Eq. 1) have a higher amplitude

in the radial intensity signal. Consequently, even in high noise conditions, their stronger signal can be detected. For droplets

closer to the image plane (small z), the high amplitude signal is more localised at small r i.e. the information does not spread105

to large x-y-extent. This phenomenon can affect detection for particles at large z and at x-y-position far from the center as

only a fraction of the signal of the diffraction pattern is recorded by the sensor. In scenarios where a hologram is sparsely

populated with small objects in the far-field, such as in-situ cloud droplet holography, the hologram can be approximated as a

superposition of the individual droplet diffraction patterns (Eg. 1). The image plane is either directly a camera sensor or the

image plane of a magnification lens translating the image onto the camera sensor. As an example, we show a hologram from the110

MPCK+ holography system recorded inside a warm cloud during the EUREC4A campaign (Stevens et al., 2021). This image

contains strong background signal primarily due to dust and water droplets on the laser window (at high z, see Fig. 2 F) and the

camera window (at low z). Additional systematic influences on the recorded hologram are caused by, for example, laser beam

inhomogeneities, contaminated
::::::::
imperfect

:
optics within the instrument, possible mechanical vibrations of the optical elements,

shot noise from the camera, and varying sensitivity of the camera pixels themselves.115
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Figure 1. Schematic showing the post-processing steps of holographic images to extract particle position and sizes from a hologram. The

hologram is acquired by illuminating the sample volume and recording the diffraction pattern. As an example, we show a real in-situ

hologram recorded with the MPCK+ in a precipitating cloud during the EUREC4A campaign. The static background of the holograms is

removed and additional noise filtering is applied. Then the hologram is propagated along the z-axis for reconstruction. Dark regions are

identified using a global threshold, which are then aggregated into “objects”. The z-plane focus of the objects are determined and a classifier

sorts the objects into the classes “particle” or “artifact”. In the final step, the particles are sized by converting the focused image crop of the

particles into binary form and computing the area equivalent diameter. The methods are based on the software package HOLOSUITE (Fugal

et al., 2009) with custom extensions and modifications by us. 5



2.2 Filtering, Reconstruction and Classification

The static background of the hologram is removed (BG + Filtering in 1). At a detector length / width of 15 mm and an image

acquisition rate of 75 Hz of the MPCK+, particles in a flow of more than 1.15 m/s, a condition met for all MPCK+ in-situ

measurements, will not appear in more than one hologram. This enables us to eliminate most of the hologram background by120

calculating the pixel-wise brightness median of neighbouring 2i holograms and perform a pixel-wise division

Ifx,y,n =
Ix,y,n

median(Ix,y,n−i...Ix,y,n+i)
, (2)

Ix,y,n is the intensity recorded at pixel x,y in hologram n and If is the intensity after background filtering. We discovered

, that slight relative movements between the camera and laser can make this background removal non-optimal. Shifting the

neighbouring images by a few pixels in x-y to enhance the correlation with the actual hologram improves background removal125

Ifx,y,n =
Ix,y,n

median
(
Ix+∆xn−1,y+∆yn−1,n−i...Ix+∆xn+1,y+∆yn+1,n+i

) . (3)

Typically, the background-removed hologram would then be reconstructed (as explained below). However, through extensive

testing we found that the following steps in the processing yield more accurate results when the hologram is further pre-

processed and additional noise (e.g. dominant frequency in background removed hologram) is removed. These additional130

filtering steps were implemented carefully to prevent removal of any droplet diffraction pattern signal. Here, we filter out

dominant frequencies in the energy spectrum of the image (visible as diagonal pattern in background removed hologram in

1) and perform Fourier-denoising to filter out Gaussian noise. The optimal noise filtering is, however, likely dependent on

holography system used.

Subsequently, the filtered hologram is normalised
:::::::::
normalized

:
and then reconstructed by propagation of the wavefront along135

the z-axisfrom z0 = 0 to z1 with the Rayleigh-Sommerfeld diffraction integral

u(x1,y1,z1) =
1

iλ

∫ ∫
u(x0,y0,z0)

(
1+

1

kR

)
z1e

ikR

R2
dx0dy0

with

R=

√
(x1 −x0)

2
+(y1 − y0)

2
z21 .

:
. From the recorded wavefront u(z0) at the sensor position z0 the wavefront u(z1) in a x-y-plane at distance z1 can therefore140

be calculated. k denotes the wavenumber k = 2π
λ . The Reconstruction is implemented in Fourier space with the a Huygen-

Fresnel kernel in filtering form as explained in Fugal et al. (2009) Eq. 2-5 . In the reconstruction with the Huygen Fresnel

filtering kernel, certain frequencies that would be under-sampled are filtered out ((Fugal et al., 2009) section 3.2 - 3.3). This

low-pass filter introduces a theoretical resolution limit. At a distance zd of a holographic system with wavelength λ and effective

sensor size of Dsensor the smallest resolvable structures are of size145

dmin =
2zdλ

Dsensor
.
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::::::
without

:::::::::
additional

::::::::
frequency

::::::
filters. The wavefront reconstruction provides the amplitude and phase at z-distances throughout

the sample volume. For MPCK+ holograms, the reconstruction is performed in ∆z = 100 µm steps. The ∆z = 100 µm was

empirically found to be optimal for wavelengths of 355−−532 nm
::::::::::
355-532 nm and a pixel pitch of few microns. For larger

∆z the particle may not appear in focus in any of the z-planes, whereas smaller ∆z does not lead to higher z-position accuracy150

while increasing computational effort.

Next, a global threshold, g-threshold in Fig. 1, for each plane is applied to the amplitude reconstructions. For calculating the

detection g-threshold, a parabola is fitted to the brightness histogram of the actual reconstructed slice (details in Schlenczek

(2018) chapter 4.1.2). Patches with n pixels darker than this threshold in m z-planes are saved. Typically n= 2, which puts a

lower limit of diameter of detectable particles at about 6 µm. We refer to these 3D volume crops around dark areas, contain-155

ing amplitude and phase, as “objects”. The focal plane of each of these 3D objects is determined by finding the z-plane with

maximum standard deviation of the Sobel amplitude gradient and maximum of the standard deviation of the complex image

gradient (Fugal et al., 2009; Schlenczek, 2018).

Considering the whole volume is typically filled with particles/droplets, each reconstructed plane contains not only the particles

that are in focus but also signals from the diffraction patterns of non-focused particles and noise or background signal that was160

not properly removed. Therefore, not all the dark objects can be presumed to be particles. The objects need to be classified

into “particles” and “artifacts”. As mentioned in prior work, this classification was conducted through manual labeling, simple

rules (Glienke et al., 2023), decision trees (e.g. carft (Schledewitz, 2016; Schlenczek, 2018)), support vector machines (Ramelli

et al., 2020), Neural Networks (Touloupas et al., 2020; Lauber, 2020) or a combination (Glienke et al., 2023). We developed a

Convolutional Neural Network for Classification that sorts each object into the two classes based on the amplitude and phase165

image in focus. Full details of the CNN are provided in section 2.3.

In the past, we have also tried to optimise the focus finding algorithm with the help of machine learning. For training data

we used manual label of focus plane. This manual labeling is, however, even more time-costly than the class annotations and

therefore less training data was available. The machine learning approaches were not able to achieve higher accuracy on aver-

age than the gradient approach (the error in z-focus improved for some objects and got worse for others). After improving the170

background and noise filtering, we find high accuracy for focus/ z-position detection (see section 5.4).

As a final step, an object-specific threshold (s-threshold in Fig. 1 Sizing), is applied to every amplitude image of objects clas-

sified as particle. The threshold is calculated as described in Schlenczek (2018) chapter 4.1.3. The particle image below the

threshold is dilated, eroded and holes are filled. From this binary image, we determine the size of the particle with the area

equivalent diameter, x-y-position from the centroid. After all of these processing steps the 3D position and size of all particles175

in the holography sample volume are extracted.

2.3 Improved Classification with a Convolutional Neural Network

We employed a Convolutional Neural Network (CNN) for classification of holography objects (see Figure 1 Classification).

CNNs are a class of machine learning algorithm. They consist of various layers inspired by the neuronal structure in brains180
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that process and then feed information into the successive layer. CNNs excel at object detection in images, can learn distinctive

image features such as edges and textures and can classify images into different classes (Krizhevsky et al., 2012). The general

concept here is to use a Convolutional Neural Network to classify the objects revealed in the reconstruction process (see ob-

jects in Fig. 1). The aim is to achieve a classification into the two classes particle and artifact and therefore the output of the

CNN should be a likelihood of the object being in each class. The cutoff up to which an object is considered a particle (Particle185

Classification Threshold: PCT) can then be decided on. As input, the cropped reconstructed planes around the dark regions –

what we call objects – were used. We selected a 30x30x2 layer per object, which corresponds to two images with 30x30 pixels.

One image is the amplitude and the other the phase, both from the focus planes of the objects
:::::::::
determined

::
in

:::
the

::::::::::::
reconstruction

::
of

:::
the

:::::::::
normalized

::::::::
hologram. Both amplitude and phase image are initially padded with the background value of the crop (90th

percentile) to form a square image. These square images are then resized to 30x30 pixels through interpolation. For a majority190

of objects this means upsizing, downsizing is less common.

For training the CNNs we used the trainNetwork function in MATLAB. The function requires defining the layers of the

CNN and the training options. The layers we used can be found in appendix A and the training options in B. The CNN consists

of five main layers- an image input layer, a 2D convolutional layer, a batch normalization layer, a Rectified Linear Unit (ReLU)

activation layer and a fully connected layer. The convolutional layer uses 40 filters of size 10x10. This architecture is tailored195

for 2-class classification tasks. All CNNs we compare in this paper, have these same input format, layers and training options.

We have evaluated more network configurations than the one presented here, including 3D images where all z-planes (instead

of just the focus plane) of an object as input to the CNN. Our findings indicate that the effects of network layers, training

options and modification of input (e.g. learning rate, number of epochs, resizing, 3D input with out-of-focus images, padding)

are negligible compared to the effect of choice of training data and, more importantly, background and noise filtering in the200

holograms. Based on our experience, fine-tuning the characteristics of the CNN classifier can not compensate for a hologram

that contains too much noise.

The different datasets used for CNN training are explained in section 4.1. All of them are a set of objects with manual an-

notations from one or two persons. In total, we compare seven CNNs in sections 5.1.1 and 5.1.2, each trained on a different

combination of the datasets described in Table 2.205

3 Verification of Holographic Droplet Data

A critical part of the hologram processing chain is the verification of the various processing steps. In this section, we first

describe the typical verification methods for measuring particles/droplets with holography that are available to our knowledge

to illustrate that they are not sufficient for a full verification. Generally, these methods can be categorized into two types. On

one hand, there are verification tests that can directly be applied to the in-situ holograms that are supposed to be analysed. On210

the other hand, it can be useful to record controlled test holograms as they provide more insight about the recorded objects.

Afterwards, we describe the newly developed characterisation CloudTarget and its role in addressing and filling gaps in the

verification process.
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3.1 Established Verification Methods

3.1.1 Direct Verification with In-situ Holograms215

Manual Object Classification

It is a common practice to evaluate the automated classification by comparison to a set of manually annotated objects. For

this, a number of objects, ideally representative of the entire range of holograms to be analyzed, are annotated manually by an

experienced operator with labels “Particle” or “Artifact” (or more classes). The manually annotated class can then be compared

with the predicted class by the automated classification method. This method is strongly dependent on the experience of the220

operator and the limits of human visual perception. In addition, the operator has to perform a large number of repetitive tasks,

which makes the work strenuous and very time-consuming. Depending on desired accuracy of labels an experienced operator

can label a few hundred objects in an hour. The main limitation is that only the classification can be verified with this method,

the actual detection efficiency (or recall) remains unknown.

225

Inverse Methods

To verify the sizing of particles or droplets in in-situ holograms it is also advised to compare the chosen sizing method with the

sign-matched filter approach described by Lu et al. (Lu et al., 2012). In principle, particle positions and locations are guessed

(e.g. an informed guess from reconstruction method) and the expected diffraction signal is compared with the actual signal.

Predicted particle size and position is tuned until they match. This method does not depend on the classic reconstruction of230

holograms followed by thresholding and pixel counting algorithms and instead tries to match the observed diffraction pattern

to its prediction. It therefore gives an independent test of the sizing. To some degree it can also indicate misclassification as the

algorithm not converging can indicate a false positive (FP ) prediction. The method is very computationally expensive and can

therefore only be applied to a subset of predicted particles as a test.

235

Super-hologram

Typically, a sequence of holograms contains thousands of images. In most applications, like cloud droplet imaging, it can be

assumed that on average the droplets are evenly distributed within the sample volume and the size distribution should also be

position independent. Therefore, a common technique to find biases in detection efficiency is calculating a super-hologram,

where all particles (i.e. after classification and exclusion of all artifacts ) from a large number of holograms are placed inside a240

single sample volume (e.g. (Beals, 2013; Larsen and Shaw, 2018)). With this method, one can determine the relative detection

efficiency of droplets of different sizes within the volume as a function of 3D-position. Based on this, an effective sample

volume and particle size range can be chosen, such that detection efficiency is approximately constant. However, the absolute

value of that detection efficiency remains unknown, i.e. it can only provide a relative indication of the detection efficiency

within the sample volume.245

9



Instrument Inter-comparison

If other instruments have measured the same particles as the holographic instrument in the in-situ experiment, an inter-

comparison is possible. Typical for simultaneous measurement of cloud droplets are Cloud Droplet Probes (CDPs) (Glienke

et al., 2023; Schlenczek, 2018; O’Shea et al., 2016). The average droplet concentration and size distribution can be compared.250

Therefore, a low detection efficiency, a high number of falsely classified particles or a clear bias in sizing could be identified if

large deviations are found.

The unique feature of holographic instruments are, however, the large sample volume and rate. This is unmatched by conven-

tional droplet probes and therefore a comparison can only be made if averaged over a sufficiently long time, which translates

to long flight distance. But especially for cloud measurements, it can not be assumed that concentration and size distribution255

are constant as shown in Allwayin et al. (2024).

3.1.2 Processing Verification with Test Holograms

Resolution Test Target

To test the resolution of an
:
a optical system, including a holographic instrument, a simple method is using a optical test targets

such as the 1951 USAF Resolution Test Chart (used in e.g. (Spuler and Fugal, 2011; Beck et al., 2017; Ramelli et al., 2020)).260

This chart consists of opaque lines of a certain thickness d spaced by d. The thinnest and closest lines with dmin(res) that

are distinguishable determine the systems resolution limit. While this test is a first step to check the resolution of the optical

system, it does have limitations. The lines with dmin(res) that indicate resolution limit of the target can be placed at only one

position in the whole sample volume for each hologram. Therefore, the position dependence in all 3 dimensions can only be

captured by a substantial number of test holograms. The resolution of two thin lines close to each other also does not directly265

translate to round objects, such as cloud droplets typically measured with holographic systems. Overall, the USAF Chart is a

decent tool to check whether the system approximately follows the theoretically expected resolution.

Test Beads/ Generated Droplets

Another useful test for holographic systems involve glass beads with specified diameters that are brought into the sample vol-270

ume (Pu et al., 2005). The advantage of this method is that glass beads are optically similar to cloud droplets. In addition, if

beads are dispersed throughout the entire sample volume and the concentration is comparable to those found in clouds, the

resulting hologram is almost identical to one recorded from cloud droplets, only excluding the in-situ specific noises. However,

the characterisation remains limited since the location and total number of glass beads are not known
:
,
:::::
hence

::::::
precise

:::::::::
validation

::
of

::::::::
individual

:::::::
droplet

::::
sizes

::
is

:::
not

:::::::
possible. With mono-disperse beads the sizing method can be evaluated by determining the275

uncertainty in sizing. But since typically concentration is unclear, the glass bead test can not determine the detection efficiency

for different sizes/ positions. The bead/ droplet size resolution limit can be obtained by probing different mono-dispersed glass

beads. However, in our experience, the smaller the glass beads, the more they tend to clump together, which .
:::
As

::
at

::::
least

:::::
parts

::
of

:::
the

:::::::
clusters

:::
are

::::::::
classified

::
as

::::::::
particles

::
in

:::
our

::::::::::
processing,

::::
this

:
makes it increasingly challenging to identify the measured

sizes corresponding to individual beads instead of bead clusters. Consequently, this method is not ideal for sizing beads with280
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diameters below 15 µm—
:
,
:::::
which

::
is

:
a critical size range for the majority of cloud droplets.

:::
The

:::
use

::
of

:::::::::
ultrasonic

:::::::::
dispersion

:::::::::
techniques,

::::
such

:::
as

::::
those

:::::::::
described

::
in

:::::::::::::::::
Giri and Berg (2023)

:
,
::::
may

:::::::
improve

:::
the

:::::::::
separation

::
of

:::::
beads

::::
and

:::::::
enhance

:::
the

::::::::
method’s

::::::::::
applicability

::
in

::::
this

::::::
regime.

:
When using poly-disperse glass beads with a known size distribution comparing the given size

distribution of the glass beads with the measured size distribution, the relative detection efficiency of different sized beads/-

particles can be estimated. Guildenbecher et al. (2013) improved this method by probing polystyrene beads that are dispersed285

in oil in a thin cuvette, thereby z-position and concentration are well-defined but similar to our CloudTarget the droplets are

only located in a discrete z-plane. Similar principles and arguments apply for using a droplet generator (Ramelli et al., 2020)

or droplet injector (Fugal, 2007) to benchmark the sizing accuracy.

Modeling Approach290

Another possibility to verify particle detectability is based on generating synthetic particle holograms with optical properties

as close to the actual instrument as possible (e.g. (Fugal and Shaw, 2009)). Via this method it is possible to find the volume of

uniform detectability based on particle diameter, which can be compared with the results from the super-hologram. A detailed

analysis based on applying an instrument model is presented in Schlenczek (2018) chapter 5.1.2. Fundamental limitations of

the modeling approach are effects and processes which occur in the actual holographic setup but are not captured by the model295

(e.g. variation of the hologram background in time, optical aberration,...).

3.2 Quantitative Experimental Verification with CloudTarget

As previously mentioned, there are limited options to obtain an in-situ calibration of both particle position and particle size of

an in-line holography setup with a realistic number concentration and size distribution compared to atmospheric clouds. We

developed the idea of a calibration setup for in-line holography to record holograms of 3D volumes wherein all the particles300

present are well defined, meaning their position and size are known. We call this calibration setup CloudTarget.

3.2.1 CloudTarget Design

The calibration setup consists of a metal box designed to hold up to 5 individual glass chrome photomasks (see Fig. 2 D). The

photomasks (or ”glass targets”) are made of Quartz-Fused Silica and have an anti-reflective coating achieving a transmission

of 92% for the relevant wavelengths. Each photomask measures 45 × 45 mm (Fig. 2 E). The size was chosen so that it fits into305

both of the MPIDS’ holographic systems with room for shifting it in x-y.

On each photomask around 6000 opaque (chrome coating OD5) circular disks ranging from diameters of 4 to 70 µm are printed

as shown to scale in Fig. 2 A. The diffraction pattern of a cloud droplet can be approximated with that of an opaque disk as

shown in Tyler et al. (Tyler and Thompson, 1976). Consequently, a hologram recorded with CloudTarget in the sample volume

approximately looks like a hologram recorded in clouds, with the exception of the particles being located at discrete z-positions310

only. The CloudTarget presents a greater challenge compared to real clouds due to significant interference from densely packed

objects within the setup. However, as a controlled laboratory environment, it offers a cleaner background than what is typically

encountered in real clouds. The size distribution of the particles printed on the photomasks of CloudTarget, is shown in Fig. 2C
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in orange compared to the size distribution in the CLOUD-test dataset in blue which is a randomized subset of particles from

in-situ cloud holograms. The size distribution mimics what can typically be found in clouds with an over-representation of large315

particles (>20 µm) to ensure sufficient statistics for calculating size-dependent verification metrics. The printed particles are

distributed with a Poisson disk distribution with a minimum distance of 390 µm to avoid overlapping and excessive clustering

in the x-y plane.

Each CloudTarget contains a unique identifiable pattern in the centre (highlighted in orange in Fig. 2B). This pattern can be

used to determine the relative x-y displacement of the target with respect to the camera sensor, the rotation and whether the320

target is flipped or not. The design ensures that this pattern is captured on every hologram, even if the target is not exactly

centered in the holographic sample volume. With that, the objects classified as particles can be matched one-to-one with the

CloudTarget dataset. Thus, CloudTarget can be used effectively as ground truth for particle size, concentration and x-y-z

position with respect to the camera sensor.

The brightness of the laser in the holographic system must be adjusted depending on the number of photomasks used in325

CloudTarget, due to the limited transmission caused by reflection at the interface of the individual CloudTarget photomasks.

We have found that the number or order of targets has no effect on CNN precision or recall if the number of targets is below

threeor four. If more than three or four photomasks are used, the signal-to-noise ratio deteriorates due to low transmission

which leads to a lower mean brightness and reflections become visible. Therefore, in the tests described in this paper only a

single photomask was used in CloudTarget.,
::::::
which

:::
was

::::::
altered

::
in
:::::::::
z-position.

::::
The

:::::::::
z-positions

:::
of

:::
the

:::::::::
photomask

::
is

:::::
given

::
as

:::
the330

::::
mean

::::::::::::
reconstructed

:::::::
distance

::
of

:::
the

::::::::
identified

:::::::
particles

:::::
from

:::
the

:::::
image

:::::
plane

:::::::::
throughout

:::::::
section

::
5.

:::
The

:::::::
change

::
in

::::::
optical

::::
path

:::::
length

::::
due

::
to
:::
the

::::::::
refractive

:::::
index

:::
of

:::::::
n= 1.46

::
of

:::
the

:::
2.3

::::
mm

::::
thick

::::::::::
photomask

::
is

::::::::::::
approximately

:
1
::::
mm

:::
and

::::::::
neglected

:::::
here.

3.2.2 Experimental Procedure

In the following, we describe the procedure used to record and analyse test holograms with CloudTarget. The fundamentals

of CloudTarget are described in Stieger (2024). First, the photomasks are placed within the target holder. The CloudTarget is335

then brought into the sample volume of the holographic setup under test as depicted in Fig. 2F. During hologram recording, the

target is moved continuously in x-y plane while ensuring that the edges of CloudTarget remain outside of the sample volume.

This results in the printed particles being at different x-y-positions in each recorded hologram, thereby allowing the use of

typical background removal methods like division of median of neighbouring holograms in a sequence.

After acquisition, the holograms are processed with the processing chain explained earlier, from background removal to clas-340

sification and sizing, i.e. exactly the same procedure is used as for the in-situ holograms. In the following analysis step, Cloud-

Target is considered ground truth. We know the particle sizes and positions and therefore concentration and size distribution

(with imperfections as explained below) a priori. This ground truth is compared with the measured objects that are classified

as particles.

As mentioned, each CloudTarget contains a specific particle pattern in the center that allows us to find the x-y-shift, rotation345

and orientation of CloudTarget with respect to the image plane. Even after translation and rotation of the ground truth data to

overlay with the experimental data, we see misalignment towards the edges of the hologram. This misalignment seems to be
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Figure 2. Overview of CloudTarget. A show the distribution of the 6000 printed particles on a photomask of CloudTarget; B zoom into

center of photomask with orange circles indicating the tracking pattern, a specific, pre-defined pattern used to align measured data with the

ground truth; C histograms of the particle sizes in the printed particles and the size distribution of the random in-situ dataset CLOUD-test;D

the target holder can hold up to 5 photomasks to be measured at once inside the sample volume; E photo of one of the photomasks adapted

from (Stieger, 2024); and F schematic of how a test hologram is recorded with CloudTarget.

roughly consistent for each photomask over different holograms but varies for the different photomasks used. We therefore

suspect that these differences are due to the manufacturing tolerances used to produce the photomasks of CloudTarget, which

makes it difficult to use CloudTarget as an exact ground truth for the x-y-position (more on this in section 5.4). To improve350

particle matching for sizing and detection analysis we further correct the ground truth position by using a two-dimensional

Particle Image Velocimetry (PIV) algorithm (as described in Stieger (2024)). This adjustment leads to a better alignment of

the ground truth with the measured particles. With the CloudTarget holograms, for which one photomask was used, we expect

the z-position of all the found particles to be constant. However, in every CloudTarget hologram, we find the main z-plane

with all particles on (sometimes slightly tilted in x-z and/or x-y) but also a parallel plane in about 1.5 mm distance in z where355

particles have been predicted. We found that this layer contains ghost particles, which we believe are caused by reflections

within the photomask. Since this is only an artifact of the test holograms with the photomasks and would not occur in real

in-situ holograms, this layer of ghost particles is manually removed before further analysis (see (Stieger, 2024) for a more

detailed analysis and justifications).

To evaluate the detection performance of the holographic system and subsequent processing, we count the predicted positives360

PP in the measured data (all objects with classification value larger than the chosen Particle Classification Threshold) and the

positives P (particles) in the ground truth data. If a measured particle is close enough to a ground truth particle (less than 3

pixels deviation in x and y) and has approximately the same size (less than 2 pixels deviation), mathematically expressed as
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|xm −xgt|< 10 µm ∧ |ym − ygt|< 10 µm ∧ |dm − dgt|< 6 µm, it is counted as a true positive TP . The number of TP is

robust against varying these limits. All the PP that are not TP are defined as false positives FP and all the P that are not TP365

are false negatives FN .

3.3 Summary and Comparison

in-situ holos test holos

m. labels inv. S-holo inst. comp. USAF glass beads CloudTarget

Resolution limit (✓) ✓ ✓

Classification ✓ (✓) ✓

sizing ✓ (✓) ✓ (✓)

detection relative relative ✓

focus accuracy ✓ (✓)

x-y-position accuracy (✓) (✓ )
Table 1. Overview of verification methods: manual object annotations (m. labels), inverse methods (inv.), super-hologram (S-holo), in-

strument inter-comparison (inst. comp.), USAF resolution test target (USAF), glass beads and CloudTarget. Each verification method can

validate different aspects of the processing chain or different quantities obtained from it. The applicable verifications for each method is

marked with a checkmark symbol ✓. Certain methods can not fully verify a measurement or provide absolute values on the accuracy but

can indicate towards accurate or inaccurate measurements. These are marked with a checkmark symbol in parentheses (✓). The resolution

limit and absolute detection are discussed in section 5.2, classification in sections 5.1.1 and 5.1.2, sizing in section 5.3 and focus accuracy

and x-y-position accuracy in 5.4.

In Table 1 we give an overview about the verification methods described in section 3.1 and CloudTarget described in sec-

tion 3.2. Check marks indicate the verification capabilities. The resolution limit, i.e. the smallest resolvable diameter can be370

measured with the USAF target (with the constraint that resolution of lines might be clearer than resolution of circular objects)

and CloudTarget directly. Through instrument inter-comparison, it can also be estimated from comparison of measured size

distribution. Classification methods can be compared and evaluated against manual labels, the inverse method can confirm it

for a small set of objects and with the ground truth from CloudTarget test holograms it can fully be tested. For testing the

sizing algorithm, one can measure mono-disperse particles with a known size in a test hologram like glass beads or droplets375

from a droplet generator, use the inverse method to measure size of selected particles threshold-independently, or compare the

measured sizes to the CloudTarget ground truth (although we will show that there is a bias in sizing CloudTarget objects in

test holograms compared to sizing droplets in in-situ holograms ,see section 5.3). While, to our knowledge, a verification for

absolute detection efficiency i.e. determining recall of the whole system, was missing until the introduction of CloudTarget,
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it was possible to quantify the relative detection efficiency as a function of particle position or size with the super-hologram380

method and through instrument inter-comparison. The current version of CloudTarget can verify position accuracy only to an

extent. We can measure the z-position scatter and therefore a relative mean error. Verifying x-y-position revealed potential in-

accuracies in the design of CloudTarget itself, but should theoretically be possible (see section 5.4 for more details). Otherwise

the inverse method can be used to determine particle position independently of the processing algorithm. It can, however, not

reveal position inaccuracies based on misaligned optics (only errors stemming from the processing algorithm) as it assumes385

perfectly aligned optics.

Overall, from Table 1 it is clear that CloudTarget is a powerful verification tool for holographic systems and fills gaps in the

validation other methods were not able to cover yet.

4 Methodology

4.1 Datasets for Classifier Training and Experimental Verification390

The datasets used throughout this paper can be divided into two groups: datasets that were used to train the classification

CNN (section 2.3) and datasets to verify the holographic methods. The CLOUD-XX datasets for CNN training each contain

a number of objects that were chosen from a given number of holograms Nholos and then manually annotated by one or two

operators
::
(as

::::::::
indicated

:::
in

:::::
Table

::
2). Manually labeling the objects from holographic reconstruction, as done for the CLOUD

datasets, is a time-consuming effort. For labeling, the operator examines the amplitude and phase image of the object as well as395

the image gradient along z and can therefore make a decision on “particle” or “artifact”. In some datasets, we added the classes

“LA: likely Artifact” and “LP: likely Particle” to distinguish cases where the operator is unsure to cases where the operator

is convinced about the label. “OOF: out-of-focus Particles” are particles, where the focus finding algorithm did not find the

optimal focus and “G: Ghosts” are ghost particles that look like round particles but are optical artifacts.

CLOUD-3k, CLOUD-8k and CLOUD-l were selected from holograms taken from two MPCK+ flights in the EUREC4A400

campaign ((Stevens et al., 2021)). Holograms were randomly selected from the whole domain and processed using our final

background processing and filtering methods prior to reconstruction. For CLOUD-3k and CLOUD-8k the objects where cho-

sen completely randomly from the reconstructions, their size distribution and fraction of particles/artifacts are representative of

the EUREC4A holograms. The CLOUD-l dataset solely contains objects >20 µm from the same randomly selected holograms.

Additionally, two other datasets that were labeled before or during the optimisation of background removal and noise filtering405

were used. For the CLOUD-o dataset, only static background removal was performed as the hologram filtering method – no

additional noise filtering was applied as this dataset was created before our improvement of the filteting
::::::
filtering. The dataset

consists of randomly selected objects with an addition of large objects all taken from few holograms from short selected sec-

tions of one EUREC4A flight. The CLOUD-5h dataset consists of labeled objects and was originally used to determine the

optimal background and filtering method. The objects are chosen from selected regions of the same 5 holograms but processed410

with 9 different background removal and filtering methods each, including methods that were considered less than ideal. Within

each selected region of the different reconstructions of the 5 holograms, all objects were chosen, thereby preserving the size
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Use Dataset Type Established Variables Nholos dmean, dp95 Notes

CLOUD-3k in-situ
labels 1 Operator:

P, A, LP, LA, G, OOF
1500

p: 14µm, 24µm

(o: 15µm, 26µm)

2 flights

3k objects

22% particles

C
N

N
Tr

ai
ni

ng
CLOUD-8k in-situ

labels 1 Operator:

P, A, LP, LA, G, OOF
2200

p: 14µm, 23µm

(o: 15µm, 25µm)

2 flights

8k objects

22% particles

CLOUD-l in-situ
labels 1 Operator:

P, A, LP, LA, G, OOF
2300

23µm, 36µm

(o: 25µm, 46µm)

2 flights

9k objects

4% particles

>20µm

CLOUD-o in-situ
labels 1 or 2 Operators:

P, A, OOF
126

19µm, 30µm

(o: 16µm, 30µm)

prelim. filtering

9k objects

57% particles

CLOUD-5h in-situ
labels 1 Operator:

P, A, LP, LA, G, OOF
5

15µm, 23µm

(o: 15µm, 25µm)

filter tests

122k objects

8% particles

V
er

ifi
ca

tio
n

CLOUD-test in-situ
labels 2 Operators:

P, A, LP, LA, G, OOF
500

p: 15µm, 24µm

(o: 14µm, 23µm)

2 flights

1.5k objects

38% particles

no overlap with training holos

CLOUD-inv in-situ size via (Lu et al., 2012) 60 14µm, 24µm
2 flights

7k predicted particles

TARGET-5

Cloud

Target

test

holograms

ground truth

1
19µm, 55µm

4-70µm

one photomask

different z-pos

TARGET-8 ground truth

TARGET-10 ground truth

TARGET-17 ground truth

TARGET-19 ground truth

TARGET-21 ground truth

MICRO1 microscope

image

inter-particle

distances

CloudTarget photomask

Keyence VK-200MICRO2

Table 2. Overview of all datasets used for this paper used for the training of the classification CNNs and for verification purposes. CLOUD

datasets include selected objects,
:::::::
manually

::::::
labeled

::
as

:::::
either

::::::
particles

::
or
:::::::

artifacts,
:
from reconstructions of in-situ holograms captured with

MPCK+ during the EUREC4A campaign. These objects were manually labeled as particles or artifacts. The holograms for the CLOUD

datasets are reconstructed between z = 2 cm and z = 18 cm. They are used for CNN training and verification against manual labels. For the

CLOUD datasets the sizes of
:::
only

:
particles “p” and objects are

:::::::
(particles

:::
and

:::::::
artifacts) “o” are given seperately

:::::::
separately. TARGET datasets

are holograms recorded with CloudTarget at different z-positions from the image plane, e.g. TARGET-5 is the dataset where the photomask

was at a distance of 5 cm from the camera image plane. The MICRO datasets are microscope scans of the photomask used in CloudTarget.
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distribution and fraction of particles/artifacts.

For the CLOUD-test data, we randomly selected objects from 500 holograms from two chosen MPCK+ flights in the EU-

REC4A campaign. Since this dataset is used for verification (see section 5.1.1) they were selected from holograms that are not415

part of any of the training sets. The objects for verification in CLOUD-test were labeled independently by two operators. Each

operator was asked to classify all the objects into five groups, namely “likely artifact”, “sure artifact”, “likely particle” and

“sure particle” and “ghost”. Objects labeled as ghosts were removed from the test and training sets. Ghosts are optical artifacts

that look similar to particles and they are therefore hard to distinguish but identification by the classifier is not needed as ghosts

can easily be removed from in-situ data due to their reoccurring position over many holograms. Especially for the verification420

dataset CLOUD-test, the operators were asked to label the objects carefully and to not rush. This in combination with having

two independent operators should ensure the best possible manual labeling. The agreement between the independent labels two

operators was > 98% in the sure classes and on average 96% when including the “likely” labels. The two operator labels of

the objects used for validation from CLOUD-test were then combined into a binary classification of “particle” or “artifact” (in

case of disagreement between operator labels “sure” always overruled “likely” and if needed the more experienced operator425

overruled the less experienced).

The TARGET-z datasets contain the data of holograms recorded with MPCK+ of CloudTarget following the procedure de-

scribed in section 3.2.2. The holograms are processed in the same way as in-situ holograms, including background removal

and noise filtering. The number in the dataset name indicates the distance of the photomask from the image plane in cm (e.g.

TARGET-5 for photomask 5 cm from image plane, particles reconstructed at z = 5 cm.430

All holographic datasets are recorded with the MPCK+ holographic system, which has a sample volume of 1.5 cm × 1.5 cm

× 22 cm and a wavelength of λ= 355 nm. The effective pixel size, which is a result of sensor pixel size and magnification

lens, is 3 µm. For the CLOUD datasets the z-extent of the sample volume is limited to 2-18 cm. For further verification of

x-y-position or inter-particle distances in the TARGET holograms, the photomask used in CloudTarget was recorded using the

Keyence VK-200 microscope. For each microscopy dataset the microscope scans a number of neighbouring images with a 10x435

objective of the field of view of 1.35 mm × 1.012 mm that is resolved onto 1024 × 768 pixels. For MICRO1 26 × 3 images

were scanned and for MICRO2 10 × 4. The images are then assembled into a an overview of the scanned region, which is

saved at lower resolution (MICRO1: 23.3 mm × 4.1 mm saved in 4199 × 743 pixels, MICRO2: 12.6 mm × 3.8 mm saved

in 9078 × 2753 pixels). Afterwards a threshold is applied to detect the particles and the inter-particle distances are measured.

With this processing circles >9 µm printed on the photomask are detected.440

Table 2 provides a comprehensive overview of all datasets.

4.2 Evaluation metrics

To evaluate detection and classification performance, we use precision and recall as metrics. The recall is defined as

Recall =
TP

TP +FN
=

TP

P
, (4)
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Figure 3. Schematic illustrating the relationship between Positives P , Predicted PositivesPP , False Negatives FN and False Positives FP .

There are two types of Fale Negatives FN = FN1+FN2: FN1 are particles that were simply misclassified by the classifier. FN2 are

particles that were not classified at all because they did not appear in the object list and were overlooked in the reconstruction step before

classification.

where TP denotes the true positives, meaning particles correctly found. FN are the false negatives, particles that were not445

found and P is the sum of both, so all the real particles in the hologram. The recall is always between 0 and 1, and is a measure

on what fraction of the particles present in the probing volume were found by the instrument and associated analysis methods.

If the classifier correctly identifies all true particles as particles, the recall rate reaches one. Conversely, if no true particles

are classified as particles, the recall rate drops to zero. In the results section two different definitions of false negatives FN

are used. When evaluating the classification method against manual labels given to the objects, the false negatives only entail450

objects that were misclassified. In Figure 3 this is denoted with FN1. However, there are also FN that were completely missed

by the post-processing and reconstruction (FN2). These can only be identified when there is a known ground truth, as it is in

the CloudTarget experiments (see section 5.1.2).

The precision is defined as

Precision =
TP

TP +FP
=

TP

PP
, (5)455

where FP is the false positives, so any artifacts that is misclassified as a particle. The predicted positives PP represent all the

objects that the classifier identifies as particles, i.e. the definitive output that end users rely on for their research and analysis.

The precision therefore measures the proportion of objects classified as particles that are actually particles. If all the particles
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identified by the classifier are true particles, the precision rate reaches one. Conversely, if none of the classified particles are

true particles, the precision rate falls to zero. It represents the ability of the classifier to minimise false positives and provides460

information about the accuracy of its positive predictions. Typically, the goal is to have high recall while maintaining an equally

high precision. An ideal scenario—rarely achieved in real-world applications—is when both recall and precision equal 1.0.

Combining recall and precision into a single metric can be highly useful, as it simplifies comparisons between different algo-

rithms. This can be expressed with the F1score, the harmonic mean of precision and recall

F1 =
2

Precision−1 +Recall−1 =
2TP

2TP +FN +FP
(6)465

When analysing the results with the characterisation target it is crucial to note that the size distribution of the particles printed

on the targets does not represent common size distributions found in clouds measured by our holography instruments. Specifi-

cally, large particles (>20 µm) are overrepresented in the targets (as shown in Fig. 2 C). Given that larger particles are easier to

detect, we would overestimate precision and recall if we show the average over all particles. To prevent any misinterpretation,

we show size-dependent results, wherever possible. Particularly for detection of small droplets we want to resolve the size470

dependency up to micrometer accuracy. Our sizing error, however, is on the order of at least 1 µm for most holograms (see

section 5.3). For the sizing accuracy, we calculate the difference of the measured diameter and the ground truth diameter for all

TP of the TARGET measurements. Therefore
::::::
binning

:::
our

::::::
results

:::
by the measured size dm or the ground truth size dgt from

CloudTarget as a reference for binning our results are not interchangeable. While we have both a measured and a ground truth

size for the TP , the FN were missed by our processing algorithm and therefore no size was measured and the FP are not475

actual printed particles and therefore we can not attribute a ground truth size with them. To not mix binning of ground truth

size and measured size in the calculation of recall Eq. (4) or precision Eq.(5) we use the ground truth diameter dgt for binning

recall and the measured diameter dm for binning precision results. This also allows a physical interpretation of the binned pre-

cision and recall. Precision is interpreted as how many of the measured particles of a certain measured size are actual particles.

Recall is interpreted as how many of the particles with a certain actual size are detected by the holographic system and the480

post-processing.

This distinction between measured and ground truth size is not needed when testing the CNN classifiers by comparison with

the manually labeled dataset. There are no ground truth values for the diameter of the particles in CLOUD-test, simply because

the ground truth is not known. In this analysis, FN only covers the particles that were incorrectly classified as artifacts but were

still identified by the threshold after reconstruction and are part of the object set. In 3 this is denoted with FN1. As mentioned485

above, this is a limitation of this verification step. However, it means that all FN have a measured size dm and therefore the

binning is performed with the measured size for all detection parameters in section 5.1.1.
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5 Verification Results

5.1 Neural Network Classification490

5.1.1 Neural Network Classification Compared to Manual Annotations

In this section, we evaluate the proposed CNNs, that are trained on different datasets, based on comparison to manual annota-

tions as described in 3.1.1 using Cloud-test dataset (see Table 2). As described in section 4.1 the labels used in CLOUD-test
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Figure 4. Precision-recall curves for comparison of prediction of CLOUD-test set made by CNNs trained with the different CLOUD datasets

(see Table 2) to the manual annotations of the CLOUD-test set. Here, precision and recall are an indicator of how well the classifier has

worked, it does not consider particles that might have been entirely missed by reconstruction. The round marker shows precision and recall

for PCT = 0.3 and the square marker for PCT = 0.1. The light grey star shows the optimal performance at precision = recall = 1, where all

particles are correctly classified. The grey crosses show the inter-operator comparison: for each cross the manual annotations of one operator

were assumed to be ground truth and the precision and recall of the other operators label were calculated. In the inset we show F1-score (Eq.

6) as a function of diameter for a Particle Classification Threshold of 0.3. The low F1-score for the 20 µm bin is likely an outlier due to a low

number of samples.

are a combination of the labels of 2 operators. These labels are then used as a baseline in this section, but it has to be noted
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that they are not a real ground truth. For in-situ data a real ground truth does not exist, we have no certain knowledge about the495

actual number, size distribution and spatial distribution of the probed particles. This comparison to the manual annotations can

only verify the object classification. The inter-operator agreement in labeling the objects is shown with the dark grey crosses

in Figure 4, where each cross represents the agreement of one operator to the other in terms of precision and recall. The high

inter-operator agreement indicates successful noise filtering of the holograms as most objects are clearly distinguishable as

“particle” or “artifact”. It also indicates only a small operator bias, which is important since the large training sets are mostly500

annotated by a single operator.

The predicted classes by each of the seven CNNs of the CLOUD-test objects are compared to the operator labels to verify their

classification and compare the effect of different training datasets. Based on the equations given in 4.2 precision and recall are

calculated for varying Particle Classification Thresholds and shown in Figure 4. It is important to keep in mind, that recall is

based on only the false negatives that were misclassified, not the ones that were never found by reconstruction (FN1 in Figure505

3). Remarkably, precision and recall of all CNN based predictions both exceed 95% for the optimal Particle Classification

Threshold. Even the CNN trained on the CLOUD-o training data, which consists of objects from holograms with non-optimal

noise filtering from only a small section of one MPCK+ EUREC4A flight, can generalise to the test data from the full two

flights with the new noise filtering applied. The small random dataset of 3000 random objects (CLOUD-3k) achieves high

precision and recall values but a significant improvement can be observed when increasing the number of objects in the train-510

ing data to 8000 (CLOUD-8k). The general trend can be observed that precision and recall improve further when even more

training data is added. The two best performing CNNs are trained on CLOUD-8k combined with CLOUD-l and CLOUD-o

with P:97%, R:98% and with added CLOUD-5h P:98%, R:98%. As an inset in Figure 4 we show the size dependent F1-score

of the CNN trained on CLOUD-8k-l-o. The F1-score is independent of size for particles of diameter <20 µm (low F1 of last

data point is caused one misclassification in small sample). Larger particles are rare, they are not contained in the randomly515

selected CLOUD-test data.

This test of manual annotations compared to automatic classification is reliable in finding the optimal automated classification

method within the human error. As mentioned the test set is manually labeled and has therefore a small inherent error. More-

over, a test set is always limited. Here we decided on 1.5k objects. Considering each hologram can contain thousand of objects

and we intend to analyse 105 MPCK+ holograms from EUREC4A (Stevens et al., 2021) this of course can never be a fully520

representative sample.

The precision we found here can be assumed to accurate within these limits of operator errors and the limited number of ob-

jects in the test set. However, it must be noted that the evaluation against a manual test set is not optimal for determination of

recall. It can only verify the performance of the classifier itself. Any limitations in detection (recall) due to flaws in the setup,

the reconstruction or the thresholding and object detection can not be quantified. The recall has to be interpreted as "of the525

particles that were found by reconstruction x % was classified correctly".

Within the limitations of a classifier that is trained on manually annotated data without a ground truth, the CNNs trained on

CLOUD-8k-l-+ perform optimal and there is little to no room for improvements when relying on manual labels. Beyond the

excellent performance of the CNN classifiers (as shown here and 5.1.2), a significant improvement is the reduced processing
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effort in object classification. Previously, we aimed to extract the particle information from the hundred thousand of holograms530

from MPCK+ recorded during EUREC4A using decision trees. However, each decision tree was only capable to generalise over

102 holograms and therefore requiring manual annotation of training data and verification of the tree predictions for each 102

hologram section. This resulted in an estimated classification output of <103 holograms per day. In contrast, the CNN-based

approach enables fully automated classification on a high-performance computing cluster, which increased the classification

outputs to 104 holograms per day. Now, despite the initial training data annotations and verification of the CNN, no further535

operator interaction is needed.

5.1.2 Neural Network Classification Compared to CloudTarget Ground Truth

The CloudTarget can be used to confirm the choice of the object classification method and selection of training data for the

classification CNN as shown in Figure 5. We show the results for all six TARGET-z holograms combined. Remarkably, the540

classifiers detect CloudTarget particles which supports the assumption of the printed circles in CloudTarget as a valid proxy for

cloud droplets. The performance in terms of precision and recall when testing with CloudTarget is weaker than when testing

against the manually annotated in-situ holograms, i.e. CLOUD-test. A small deviation could be explained by a different mean

z-position of the combination of the TARGET datasets used here compared to the CLOUD-test set or by the fact that the CNN

classifier was trained on manually labeled data and thereby learned the human labeling biases.545

A weaker recall is expected nonetheless. As mentioned, when calculating the recall compared to the manual test set the false

negatives FN are only the objects that were misclassified as artifacts FN1 in Figure 3. But when comparing to CloudTarget,

we find all the FN = FN1+FN2 which are objects that were misclassified as artifacts FN1 but also particles that were not

found by the reconstruction and never appeared even in the objects list FN2. Therefore, assuming the classifiers perform the

same on test holograms as they do on in-situ holograms, the actual recall here has to be smaller than the recall when comparing550

to manual labels.

The precision in the manual comparison gave us an estimate how precise the classification of the CNN is compared to human

labeling. With CloudTarget we see overall worse precision which could indicate that the human labeling itself has a high

inaccuracy and artifacts are too often mislabeled as particles by the operators. However, we argue that more ghost particles are

present in the TARGET holograms caused by reflection (see section 3.2.2 about ghost layer) that are not identified as artifacts555

by the classifier but since they would not exist in in-situ holograms we can ignore this fault of the classifier. In reality, the

low precision is likely due to a combination of these reasons: human labeling might be slightly biased towards labeling too

many objects as particles but the precision of only 80% can be seen as a lower limit as some of the FP are likely caused by

the reflections photomask specifically as explained in section 3.2 and the actual precision is likely closer to the one found in

4. Despite that, in Figure 5 we see similar trends in how CNNs performs as those shown in Figure 4 for particles <20 µm, e.g.560

CLOUD-o and CLOUD-3k perform worse than the others. This confirms the similarity between the in-situ holograms and the

test holograms recorded with CloudTarget, supporting the assumption that results from CloudTarget tests are transferable to

in-situ cloud holograms.

22



For objects larger than 20 µm, it is clear that a CNN is needed that is also trained on a substantial amount of large objects

(see Fig. 5 right where CNN trained on CLOUD-3k and CLOUD-8k perform worst). CNNs trained exclusively on randomly565

selected objects is associated with a low recall for objects >20 µm, indicating that it struggles to generalize to larger objects.

This occurs despite the fact that the input images for classification are resized to a consistent size (see section 2.3).
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Figure 5. Precision and recall of prediction of CloudTarget holograms with CNNs trained by the different CLOUD datasets compared to the

ground truth of printed particles. Left: precision and recall for particles <20 µm in diameter so that size distribution is comparable to CLOUD

test comparison in Figure 4 (see 2 C). Right: precision and recall for large objects. A CNN that was trained on substantial number of large

objects is needed to correctly classify large objects. As in Figure 4 round markers indicate a PCT = 0.3 and square markers for PCT = 0.1.

5.1.3 Choice of Classifier and Particle Classification Threshold (PCT)

We choose the network trained on CLOUD-8k-l-o as the final classification method based on the results shown in 5.1.2 com-570

bined with the results from the comparison to the manually annotated test set in section 5.1.1. All results in the following are

based on classification with a CNN trained on this dataset.

The Particle Classification Threshold is typically chosen based on optimising F1-score, but can also be chosen differently if

either precision or recall are prioritised. In Figures 4 and 5 we indicate precision and recall for two different Particle Classi-
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fication Thresholds (0.3 and 0.1) with the round and square marker respectively for the chosen classifier. The comparison to575

manual labels would suggest an optimal PCT of 0.1 (square), whereas recall would drop by 3% (to 95%) and precision only

gaining 2% (to 99.7%) when using a PCT of 0.3. When testing with CloudTarget a PCT of 0.3 seems to be optimal, although

an even higher one would be best for the largest droplets (>20 µm).

We choose a PCT of 0.3 as a reasonable cutoff as it shows close to optimal performance in both the test against manual labels

and in the CloudTarget test. If, as explained in section 5.1.2, the low precision in CloudTarget results is associated with ghost580

particles that would not exist in in-situ results, it is justifiable to use an even lower PCT between 0.1 and 0.3 for analysis of

in-situ holograms.

5.2 Droplet Detection

Detection efficiency (recall) highly depends on size of the droplet and the position within the 3D measurement volume as

mentioned in section 2. Further away from the camera (large z-coordinate) and near the edges of the x-y-cross-section it is585

harder to detect particles, especially small ones.

There is a theoretical limit to the minimal resolvable size of droplets depending on the z-position (see Eq. ??). Furthermore,

these
::::
These

:
trends can be deduced based on the radial frequencies and amplitudes of the diffraction patterns (see section 2 for

detailed discussion). The relative detection bias of the device can be revealed by calculating a so-called super-hologram, in

which all measured particles of a large number of holograms are combined into one hologram. This technique is commonly590

used to select a subsection of the holography volume in which the detection efficiency is sufficiently uniform. However, it is

impossible to translate these relative differences to an absolute measure of detection efficiency or precision and recall. With

our test holograms with CloudTarget in the sample volume, we can measure the absolute detection in precision and recall as a

function of x,y,z-position and size of the particle.

595

5.2.1 Detection Dependency on z-Position

In Figure 6 we show precision and recall of the six individual TARGET-z holograms. Each hologram was recorded with

CloudTarget with one photomask at a fixed z-position (TARGET datasets 2). We show recall and precision as a function of

particle size for each z-position of the target assuming a Particle Classification Threshold of 0.3 (see section 3.2.2 and section

4.2).600

In the top Figure 6 it can be seen that generally the recall increases with increased particle size, meaning smaller particles

are harder to detect. For z-positions <10 cm we see a linear increase from 0 to 85% going from 4 to 7 µm in particle diameter.

For larger particles the recall is not diameter dependent anymore and fluctuates around 90-95%. Particles further away, i.e. z

>10 cm the recall is size dependent for all relevant particle diameters and is below 85% for most of the particle sizes and even

below 60% for particles <10 µm.605

The theoretical detection limit due to the filtering of under-sampled frequencies in the reconstruction process (see Eq. ??,

according to (Fugal et al., 2009)) the minimal detectable diameter only exceeds the detection limit due to pixel size (minimum

24



2 pixels 6 m) after z = 12 cm. For z = 16.7 cm, z = 19.2 cm, z = 21.7 cm the theoretical minimum is at d16.7 cm = 7.9 µm,

d19.2 cm = 9.1 µm, d21.7 cm = 10.3 µm. We see that at these theoretical limit recall for the different z-positions is <0.6.In the

lower panel of Figure 6, we see that precision is not dependent on the z-position in the volume. Precision is size-dependent for610

small measured particles <12 µm, where precision is worse for smaller particles. For particles >12 µm the precision fluctuates

mostly around 80-100%.

We assume the measured recall to be realistic and don
::
do

:
not see a source of inaccuracy. The complete knowledge about the

FN (see Figure 3 FN = FN1+FN2) makes the recall measured with CloudTarget more reliable than the recall when com-

paring to a manually annotated test dataset. As mentioned, the precision is likely to be influenced by ghost particles caused615

by reflection of the photomasks and therefore specific to CloudTarget holograms (see section 3.2.2, ghost particles in parallel

plane are removed but presence of more ghost particles is likely). We can therefore assume the precision to be higher in in-situ

holograms and the values shown here can be seen as a lower bound. A a more realistic assessment of precision is given by the

test against manual annotations (Fig. 4) as FP (as oppsed to FN ) are fully captured by the test of the classifier alone.

620

5.2.2 Detection Dependency on x-y-Position

As mentioned, the detection efficiency, i.e. the recall does not only depend on the distance to the camera (z-position) but also the

x-y-position. For particles closer to the edge of the hologram cross section, meaning x-y closer to the camera edge, parts of the

diffraction patterns are not recorded. This can be assumed to be a symmetric phenomenon and the effect on detection depends

on z-position and particle size due to the difference in localisation and signal strength of diffraction pattern (see discussion in625

section 2 and Fig. 1 Acquisition schematic). Therefore, information about the particle near the edge is lost and detection is

harder. To analyse this, we show the recall of particles in a hologram close (z = 9.9cm) and far away (z = 19.2cm) from the

camera for different sizes of particles as a function of how much we exclude from the edges of the sample volume cross-section

in Figure 7. We only exclude the edges in the last processing step, cutting them away from the effective sample volume. In

reconstruction, of course, the whole hologram is still used. This way none of the particles in the new effective sample volume630

are closer to the edge of the sensor than the chosen cutoff.

As expected, the general trend is the more we reduce the cross-section of the sample volume, the higher is the recall. The

effect is in particular significant for small particles. For the hologram with particles closer to the camera sensor (low z) the

recall saturates after excluding 1 or 2 mm from the edges. Detection of small particles (<15 µm) further away in z, however

still significantly improves when cutting off up to 5 mm from all edges which reduces the sample cross section from 1.5 cm x635

1.5 cm to 0.5 cm x 0.5 cm. This can be explained by the larger spread in x-y of diffraction patterns for particles at large z. For

large particles >20 µm, however, we see a saturation of recall when cutting 2 mm, a further reduction of cross section does not

increase detection.
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Figure 6. Top: Recall as a function of ground truth particle diameter. Bottom: Precision as a function of measured particle diameter. Shades

of blue show results for different z-distances. Results are shown for PCT = 0.3 and 1 mm of the edges in x-y cut off. While recall strongly

depends on z-distance, precision does not. Both recall and precision increase with particle size.

5.3 Droplet Sizing Accuracy640

For final sizing, an object specific threshold (s-threshold, Figure 1) is applied to the in-focus amplitude crop and the area-

equivalent diameter is determined. As described in section 2.2, we calculate the s-threshold using the method described in

Schlenczek (2018) chapter 4.1.3 with an adaptable factor called stretch Factor, sF . The stretch Factor allows adjustment of the

values of background level BL and particle level PL from which the threshold is then calculated as described in Schlenczek

(2018). Other thresholding methods, such as the IsoData algorithm, did not prove to be successful.645

CloudTarget holograms recorded in the laboratory can not be directly used to choose or validate the typical threshold-based

sizing-methods for use on the in-situ holograms. We found that adjusting the s-threshold finding algorithm to match the Cloud-

Target ground truth size (sF = 0.1) leads to significant under-sizing in the in-situ holograms as indicated by the inverse method

via sign-matched filtering by Lu et al. (Lu et al., 2012) (to be discussed in more detail below) and a test with NIST glass beads
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Figure 7. Influence of particle in x-y-position and size on recall. A shows schematically how the sample volume is limited. B shows how

detection (recall) is improved for particles at z = 9.9 cm by limiting the sample volume in x-y-direction. In C it can be seen that detection

improves significantly for particles further away from the camera z = 19.2 cm by excluding the edges of the sample volume. Detection

towards the edges of the x-y plane is harder, especially at high z and for smaller particles. Therefore recall is increased by cutting the edges

from the sample volume. The effect is stronger for small particles and at high z.

(see 3.1.2). This can be associated to different signal to noise ratios in CloudTarget vs. in-situ holograms. A threshold algorithm650

that selects the correct threshold for accurate sizing in the cleaner CloudTarget holograms determines a threshold that is too

strict in in-situ holograms due to darker background signal. Therefore it misses pixels of particles and under-sizes them.

The inverse method is threshold-independent and instead tries to match the diffraction pattern to determine size of a particle.

In Lu et al. (2012) the inverse method for improved sizing is only experimentally tested on an approximately 50 µm sized

droplet and its size-dependent performance is unknown. Using CloudTarget, the performance of the inverse method can now655

be tested for a wider range of particle sizes. Since the sizing ground truth provided by the TARGET holograms can not be

used to validate our threshold-based sizing-method, we chose to use the inverse method as an independent sizing reference. We

applied the inverse method to 7000 predicted particles from the two flights. This dataset is called CLOUD-inv (see Table 2).

The results of the CloudTarget test of the inverse method are shown in Figure 8, where the inverse method diameter dinv is

shown against the ground truth diameter dgt for subsets of TARGET8-17 (target datasets that are within the z-range of recon-660

struction of in-situ holograms). The inverse method reliably sizes particles larger than dinv > 12 µm. If the size determined

by the inverse method dinv is smaller, it is not meaningful as can be seen in the larger scatter below the light blue line in

Figure 8 A. The extreme outliers throughout all size ranges can be explained with particles being close to each other and

the inverse method matching the diffraction pattern of a neighbouring particle. Testing our s-threshold algorithm against the

inverse method is therefore a valid method to test sizing for droplets dinv > 12 µm, which can be used as a precious tool to665

fine tune sF for accurate sizing of in-situ holograms, for which we do not have a ground truth available. This is shown in
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bottom panel of Figure 8 for two different sets of in-situ holograms obtained in two different flights. We see that the optimal

stretch Factor may vary slightly between the two flights but overall sF = 1.8 seems a good choice for minimizing the bias

in the sizing. The comparison to the inverse methods for particles dinv < 12 µm can be ignored as the inverse method does

not provide a reliable reference here as proven by the CloudTarget test. Still, we believe that adjusting the stretch Factor so670

that s-threshold particle sizes match the ones found by the inverse method for larger droplets also improves sizing of smaller

droplets. Generally, there seems to be a constant trend in over- or under-sizing almost independent of particle size, depending

on the sF that is corrected by adjustment of the stretch Factor. The correction is however smaller for particles <8 µm. This

effect is shown in Figure 8 B and C, where we correct the stretch Factor from what is best used in in-situ holograms (sF = 1.8)

so that it matches CloudTarget results (sF = 0.1) for particles >12 µm. Admittedly, small particles are still oversized with675

CloudTarget-optimised sF = 0.1 but sizing error still is reduced.

Overall, CloudTarget helped confirming the accuracy of the inverse method. With the inverse method, we were able to deter-

mine the optimal stretch Factor for finding the s-threshold and size the droplets recorded in the in-situ holograms. We know

that the stretch Factor is optimal for droplets >12 µm and CloudTarget tests with different stretch Factors suggest that it is

therefore also an improvement for smaller droplets. Comparing the s-threshold sizing to the inverse method does not allow a680

direct assessment of the distribution of absolute sizing errors of the s-threshold as the inverse method has an inherent scatter.

Assuming, however, that the difference in sizing between CloudTarget holograms and in-situ holograms is a constant offset,

the error distribution of sizing in in-situ holograms with sF = 1.8 is the same as for CloudTarget holograms with sF = 0.1.

This indicates a standard deviation of the sizing error of about 2 µm. Since absolute sizing error and error distribution width is

largely constant along droplet sizes, the relative error in sizing decreases with droplet size.685

5.4 Droplet Position Accuracy

In this section, we explore the capabilities of CloudTarget to verify the precision of 3D-position measurement in holography.

The section is divided into two parts, where we examine the z- and x-y-position accuracy separately.

5.4.1 z-Position Accuracy690

The z-position of the particles is determined by identifying the focus plane. In principle, the focus plane is the plane where the

particle appears in-focus with a sharp edge (see section 2). While the resolution of z-position is influenced by the ∆z in the

reconstruction, and with the ∆z = 100 µm chosen here, an average deviation of half the step size zm − zgt = 50 µm) could be

expected even with a near-perfect focus finder and precise z-position measurement.

The distance from image plane to photomask and hence the expected z of CloudTarget can be physically measured, but the695

accuracy is on the order of millimeters and hence not be usable as zgt. But due to the use of the photomasks in CloudTarget,

we know, that all particles are perfectly placed on a 2D plane within the volume. This plane is not necessarily perfectly per-

pendicular to the image plane but can exhibit a tilt in x-z and/or y-z.

We cannot measure the absolute error in z-position but determine how much the z-positions scatter around a perfect 2D plane.
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Figure 8. Determining the optimal stretch Factor sF for finding the sizing s-threshold. A: inverse sizing method (Lu et al., 2012) tested

on TARGET holograms. B: s-threshold sizing method tested on TARGET holograms. C: sizing error of s-threshold with different stretch

Factors. On TARGET holograms sF = 1.8 leads to significant over-sizing of about 2-3 µm. The standard deviation is shown as dotted line,

it is about 2 µm independent of particle size or stretch Factor. D,E: sizing error with the inverse sizing method as the reference to determine

optimal stretch Factor for particles >12 µm where the inverse sizing method can be trusted.
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Figure 9. Relative z-position accuracy is estimated by fitting a 2D plane through TP found in each TARGET dataset (B). The deviation in z

from the measured particle position to the fitted 2D plane zm − zfit can be interpreted as random error in z. z-position error increases with

the distance (C) from the image plane z but has no particle diameter dependence (D,E).

Since there is no reason to believe the z-position would have a bias towards over- or underestimation of z, we argue this scatter700

is a valid measure of accuracy of z-position. For each TARGET dataset we fit a plane in x-y-z-space to the positions of TP s

as shown in Figure 9 B with z (x,y) = a0 + a1x+ a2y, which takes the tilt of the photomask into account. The offset in z

from the measured zm to the ideal zfit is shown in Figure 9 C as a boxplot, which is a reasonable proxy measure for z-error

for the different TARGET datasets each representing a different mean z-position. The first observation is that the uncertainty

in z position of particles increases with z-position. For particles with low z < 10 cm, more than 75% of the particles have a705

deviation of less than |zm − zfit|< 100 µm which is reasonable when keeping the reconstructions steps of ∆z = 100 µm in

mind. For large z the reconstruction image of particles becomes less sharp as resolution is more limited, a larger scatter is

therefore expected. In Figure 9 D and E we show the results for TARGET-8 and TARGET-19 respectively as a function of

particle size. While large particle size also increases the number of z-planes where the particle appears as a dark object, it does

not seem to affect the accuracy in z-position/ focus finding. This is likely due to large objects having a clearer and sharper710

appearance in the focus plane and therefore the focus is reliably found through our method even with more potential z planes.
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5.4.2 x-y-Position Accuracy

We define the x-y-position of each particle as the centroid of the pixels darker than the threshold in the amplitude image crop in

focus. As mentioned in section 3.2.2, there is a misalignment in x-y between measured particles and CloudTarget ground truth715

that can not be corrected through translation or rotation. In fact, we see a negative dilation of particle positions in the measured

data compared to the ground truth data in the TARGET datasets as shown in Figure 10 A-D. All these datasets were recorded

with the exact same photomask in the Cloud Target target holder, but due to motion in x-y for recording (explained in section

3.2.2) slightly different parts of the photomask were imaged. For holograms of other photomasks, we observe both positive

and negative dilations, indicating no systematic trends. This variability suggests that these dilations may not originate from the720

holographic measurement itself, e.g. collimation issues alone cannot explain this. However, it remains crucial to thoroughly

investigate the sources of these deviations to confirm their origin.

The dilation can be quantified by calculating the inter-particle distances si,j =
√
(xj −xi)

2
+(yj − yi)

2 for all particle pairs

in both the measured data of a hologram and the ground truth. This is an indirect measure of relative particle position without

having to rely on non-exact matching through translation and rotation. Since holography gives us a 3D position for the particles725

we can correct the measured inter-particle distances for tilt in x-z and y-z. Since the misalignment seems to be mostly dependent

on the photomask used and not so much on z-distance or hologram, we assume there is a deviation between expected ground

truth position and actual ground truth position on the target. In fact, some of the photomasks purchased later showed only very

slight positional deviations compared to the reconstructed holograms, suggesting that the deviations observed in some other

photomasks were most likely due to manufacturing imperfections. To investigate this more thoroughly, we imaged two parts730

of the whole target with a Keyence vk-x200 3D laser microscope shown in red in Fig. 10 A as described in section 4.1. From

these microscopy images we also extracted the inter-particle distances. The relative inter-particle distance differences to the

expected ground truth ∆srel =
sm−sgt

sgt
are shown in Figure 10 E for the two microscopy images and three holograms. For

each dataset the two boxes correspond to particle pairs from two different overlapping regions. Of course, only inter-particle

distances of particles that appear in all measurements are considered. We see that microscopy agrees more with the distances735

measured from the holographic data than the theoretical ground truth data. We can therefore conclude that the ∼−1% dilation

of holography compared to the expected ground truth is an upper bound to the x-y-position error.

In Figure 10F we show the absolute difference of the measured inter-particle distances and the ground truth inter-particle

distances ∆sabs = sm − sgt as a function of the ground truth inter-particle distances sgt as an example for the hologram with

photomask at z = 5 cm. The linear relationship confirms the negative dilation of particle positions suspected from Fig. 10 A-D.740

Assuming the microscopy is accurate the holography over-sizes distances (i.e. positive dilation). This dilation is z-dependent

0.3% for z = 5 cm 0.4% for z = 9.9 cm and 0.8% for z = 19.2 cm. This linear dependence could be easily explained by a not

perfectly collimated diverging beam with an angle of less than 0.02◦. If we, however, assume the ground truth particle positions

to be correct we could not find a physical interpretation for the results .

As a lower bound for x-y-position error we corrected the results for the holograms for dilation compared to the expected ground745

truth of the photomask. For that, we calculate a dilation factor through a linear fit of ∆sabs(sgt) (as indicated in Fig. 10 F) and
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Figure 10. When x-y-positions of particles from measurement are overlayed they match perfectly in the center close to the tracking pattern

(B, particles not to scale). From C and D it can be seen that towards the edges the measured x-y-positions are typically smaller, the measured

particles are placed further inward than the ground truth. E: We show the relative difference of measured to expected inter-particle distances

∆srel for different measurements of the target. We show the results for 3 holograms that tend to underestimate inter-particle distances but

a reference microscope measurement also validates this. (left: particles in MICRO1, right: particles in MICRO2) F: Absolute difference of

measured to expected inter-particle distances ∆sabs as a function of expected inter-particle distance. A clear linear trend can be seen which

can be interpreted as a constant dilation factor. G: ∆sabs holography compared to expected ground truth and compared to the microscope

images corrected with constant stretch factor which leaves random error which is on the order of 10 µm.

correct the measured inter-particle data sm with that factor. When we calculate the difference in inter-particle distances then,

it can be interpreted as the random error (systematic error due to collimation removed, random error could be caused by errors

in finding particle center) in distances ∆scorr shown in Figure 10 G. This random error is typically lower than 10 µm but can

be up to 40 µm for large z.750

Overall, CloudTarget in its current form is not able to give a precise answer to the question of position accuracy due to likely

a small but significant dilation of 1% in position of the printed circles. We can, however, estimate a lower bound of 10 µm

error in x-y and an additional deviation of around 1-2% in distance measurements as an upper bound. For quantities, such as

concentration or Liquid Water Content LWC measurements in clouds, the change in volume due to a dilated image with 1-2%

is negligible. The accuracy of inter-particle distance is particularly interesting for measures of particle clustering like the Radial755

Distribution Function (RDF) g(r+ dr), however inaccuracies in z are typically still larger and therefore the bigger challenge.
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Still, the inability to exactly quantify the x-y-position error with the current version of CloudTarget is a disadvantage. For future

versions, photomaskw
::::::::::
photomasks

:
with even higher position accuracy would be required to measure position accuracy more

directly. Nevertheless, CloudTarget already makes it possible to record holograms with the exact same particles and therefore

the same set of inter-particle distances that can be measured. Even if the absolute ground truth for the positions or inter-particle760

distances is not precisely known, comparing holograms can reveal inconsistencies that may be attributed to collimation issues.

6 Conclusions

6.1 Verification Capabilities of CloudTarget

We believe strongly that CloudTarget is a necessary tool for the characterisation of holography, but we also recognise its lim-

itations and provide a brief overview of its advantages and disadvantages here. The CloudTarget was developed primarily to765

measure absolute detection efficiency — and has successfully fulfilled this task. With CloudTarget, we were able to quantify

the recall rate as a function of position along the camera axes and within the hologram cross-section. While we trust the recall

rate assessment with CloudTarget, the presence of ghost particles affects our precision measurement and results in lower values

than expected in in-situ holograms of droplets. We account for a distinct ghost particle layer located 1.5 mm from real particles

and remove these artifacts from the analysis. However, ghost particles caused by reflections may still exist within the actual770

z-layer, making them difficult to exclude. Given the high accuracy of the classifier, confirmed through manual labeling, we

suspect the true precision is higher than suggested by the TARGET datasets. Nevertheless, CloudTarget measurements provide

a robust and conservative lower bound on precision.

CloudTarget also helps to accurately determine sizing errors as it enables the validation of the sizing reference from the inverse

method. The size error combined with the detection efficiency gives an estimate of the uncertainty of quantities such as liquid775

water content. Another use was to estimate the uncertainty in position measurements, but it remains unclear to what extent we

can trust the theoretical inter-particle distances of CloudTarget’s photomasks. However, the ability to record holograms with

the same set of particles, i.e. with the same inter-particle distances, allows us to compare the relative positions of the particles

between the holograms. At the very least, we can estimate the random error or scatter of the particle position and reveal a di-

vergence or convergence of the laser beam in the holographic system that leads to a positive or negative dilation of the relative780

positions. With the matching techniques used here, the position and size errors are insignificant for the precision and recall

assesment.

As with all test holograms, CloudTarget holograms will most likely look different from in-situ holograms in terms of noise. In

future, we think it is useful to take test holograms right before and after in-situ holograms are collected, so that contaminated

windows, optics and their exact position and alignment is captured and can be tested. The effect of contamination of windows785

for example, can also be tested artificially in laboratory tests. While artificially introduced noise in the lab can never fully match

the noise of in-situ holograms, some noise sources remain statistically similar, e.g. the laser instabilities, camera shot noise,

reflections and other optical artifacts. As a result, the background and noise removal techniques should not be calibrated with

CloudTarget holograms but always with in-situ holograms. Other than that, all processing steps can be evaluated and optimised
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with CloudTarget.790

CloudTarget’s reliance on photomasks restricts particles to discrete z-positions, which is a clear disadvantage. It also means

that, when matching particle concentrations, the typical 3D distance between particles is smaller than it would be in a real

scenario. Additionally, achieving a large number of z-positions requires multiple photomasks, which reduces transmission and

can introduce reflections, degrading hologram quality in a way that is not representative of actual conditions. Overall, despite

the limitations mentioned above, CloudTarget remains an invaluable tool for the evaluation and optimisation of holographic795

instruments. By measuring absolute detection efficiency by quantifying recall rates, estimating size errors and assessing posi-

tional uncertainties - all in a single setup - it provides essential information that is otherwise difficult to obtain. Combined with

its ease of use, CloudTarget proves to be a robust and highly effective choice for quantifying holographic measurements.

6.2 Verification Results

In summary, we have shown how to decide on training data for holographic object classification and which evaluation steps800

are needed to determine potential errors and inaccuracies of the particle data output of holograms. We have demonstrated that

with current verification methods for holographic systems there is still a gap for absolute quantification of detection efficiency.

It is crucial to not blindly trust the complex and error prone process of hologram analysis without proper verification. Despite

non-optimal performance of CloudTarget due to position inaccuracies of the printed circles and the effects of reflected light

on the photomasks this gap in verification method is filled with CloudTarget. We can conclude for the specific properties of805

the holographic setup used in this study: a 5120 × 5120 pixel imaging sensor, a 3 µm µ
::
m effective pixel size, and 355 nm

illumination:

– The CNN developed in this study can classify “objects” correctly when fed with moderate amount of training data. It is

important to include rare objects (e.g. large particles). Due to better generalisation the CNN can be used fully automated

and classification output increased from 102 (supervised decision trees) to 104 holograms per day.810

– A verification of
:::
the classifier with manually annotated test is valid to choose the right classifier and assess precision

(>90%) but can not accurately determine detection efficiency in terms of recall.

–
:::::
While

:::
the

:::::
CNN

:::::::
classifier

::::::
shows

::::::::
promising

::::::::::::
generalization

::::
from

::::::
in-situ

:::::::
training

::::
data

::
to

:::
the

::::::::::
CloudTarget

:::::::
dataset,

:::
and

::::
also

::
to

::::
other

:::::::::::
holographic

:::::
setups

:::
as

:::::::::::
demonstrated

:::
by

:::::::::::::::::
(Thiede et al., 2025)

:
,
::
its

:::::::::::
performance

::::::
should

::::
still

::
be

:::::::::
evaluated

:::::
using

:::::::::
established

::
or

::::
new

::::::::::
verification

:::::::
methods

::::
such

:::
as

::::::::::
CloudTarget

::::::
before

::::::::
applying

:
it
:::

to
:::::::
datasets

::::
with

::::::::::
significantly

::::::::
different815

::::
noise

::::::::::::
characteristics

::
or

:::::
from

:::::::
different

::::::::::
instruments.

:

– The CloudTarget proved invaluable in finding recall is >90% for particles >7 µm within (at least) z < 10 cm.

– To achieve good detection especially for small particles CloudTarget results suggests that is best to exclude ∼ 2 mm of

the x-y-edges from the analysis.

– By combining the inverse method (Lu et al., 2012) with CloudTarget results the sizing threshold was optimised to not820

have a bias towards over- or under-sizing. The comparison suggests a standard deviation of sizing error of a about 2 µm
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– The focus position offset can be estimated with CloudTarget and we found the rms is below 150 µm for particles with

z < 10 cm while the step size of z-position ∆z = 100 µm.

– x-y-position analysis with CloudTarget revealed a potential diverging beam (<0.02deg) in the holographic system that

leads to slight stretching of inter-particle distances with increasing z.825

Appendix A: CNN Layers

imageInputLayer([30 30 2], ’Normalization’, ’zerocenter’)

convolution2dLayer(10, 40, ’Stride’, [1 1], ’Padding’, [0 0 0 0])

batchNormalizationLayer

reluLayer830

fullyConnectedLayer(2)

softmaxLayer

classificationLayer
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Appendix B: CNN Training Options835

Momentum: 0.9000

InitialLearnRate: 1.0000e-03

LearnRateSchedule: ’none’

LearnRateDropFactor: 0.1000

LearnRateDropPeriod: 10

L2Regularization: 1.0000e-04

GradientThresholdMethod: ’l2norm’

GradientThreshold: Inf

MaxEpochs: 30

MiniBatchSize: 128

Verbose: 0

VerboseFrequency: 50

ValidationData: []

ValidationFrequency: 50

ValidationPatience: Inf

Shuffle: ’once’

CheckpointPath: ”

ExecutionEnvironment: ’auto’

WorkerLoad: []

OutputFcn: []

Plots: ’training-progress’

SequenceLength: ’longest’

SequencePaddingValue: 0

SequencePaddingDirection: ’right’

DispatchInBackground: 0

ResetInputNormalization: 1

BatchNormalizationStatistics: ’population’

Author contributions. BT,KS and GB conceptualized CloudTarget verification. BT, OS, AE and GB developed the CNN classifier. BT, KS,

OS and GB performed CloudTarget experiments and analysis. BT, OS, KS, AE, EB and GB interpreted the results. BT and GB wrote the

initial draft of the paper. BT, OS, KS, AE, EB and GB proofread and edited the paper.
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