We would like to express our sincere appreciation to the Reviewer #2 for the valuable
and constructive suggestions, which have helped us improve the quality of this
manuscript. We have addressed all these comments carefully and revised the manuscript
accordingly. Following the Reviewer’ comments in black, please find our point-to-point
responses in blue. Hereafter, all new added or modified sentences are marked in blue

and italic in this response.

Reviewer #2

This manuscript used a 2-way coupled WRF-CHIMERE model to investigate how
different mineralogical compositions of dust affect aerosol-radiation and aerosol-cloud
interactions (ARI/ACI) and their subsequent air quality outcomes. The model was run
on a synoptic scale over North China during a major dust storm in March 2021. The
authors observed that using EMIT to enhance the mineralogical details has improved
the model predictions of PMjo, by revealing significant spatial differences in
radioactive forcing and increased PMio levels in source regions. These results are
critical for a better prediction during dust storm periods when the level of PMo is
readily underestimated due to the lack of ARI/ACI consideration. Nevertheless, the
manuscript could be improved by addressing the following concerns. I would suggest

that paper be reconsidered after a major revision.

Major comments:

1. In multiple positions (lines 37-38, 44-45, 72-73), the authors declared the importance
of ACI effects on the Earth’s energy balance and can also be altered by the difference

in mineral compositions. However, this research also stated that they did not consider
ACI effects in their 2-way coupled model but did not clearly explain why this is not
included and how it will affect the final predictions. This affected the rationale of
adopting this 2-way coupled model and a justification should be better provided.

Response: We thank the reviewer for raising this important point. While ACI processes

are indeed critical in regulating the Earth’s energy balance and may be influenced by



mineralogical composition, this study focuses on ARI because the WRF—-CHIMERE
two-way coupled framework currently does not include parameterizations of mineral-
specific ice- and cloud-nucleating properties. In addition, the study aims to isolate and
quantify the radiative effects of mineralogical dust using the newly available EMIT data,
for which ARI pathways are better constrained and more directly comparable.
We acknowledge that excluding ACI limits the full representation of dust—climate
feedbacks, meaning our results may underestimate the total climatic and air quality
impacts of mineral dust, particularly those linked to cloud microphysics (e.g.,
precipitation formation, cloud lifetime). To clarify this rationale, we have revised the
manuscript in the corresponding sections to explicitly explain why ACI effects were not
included, how this choice narrows the study’s scope, and that future work will extend
the two-way coupled framework to incorporate mineral-resolved ACI schemes. This
will enable a more comprehensive assessment of both radiative and microphysical
feedbacks of dust minerals on regional meteorology and air quality. The corresponding
text have been rewritten in the revised manuscript as follows.
“Since the aerosol nucleation processes (ACI effects) of specific mineral components
are not represented in the current two-way coupled WRF-CHIMERE framework, the
present study concentrates on the ARI effects of dust minerals. This focus ensures a
clear and robust assessment of how mineralogical composition influences radiative
processes, without introducing additional uncertainties arising from incomplete cloud-
related parameterizations. In this study, we employ a two-way coupled WRF-—
CHIMERE model with three mineralogical databases to investigate how dust
composition influences radiation and meteorology in North China during a severe dust
storm. Section 2 describes the model configuration and data sources, Section 3 presents
the simulations with emphasis on ARI-induced impacts on meteorology and air quality,
and Section 4 summarizes the main findings.”

“These findings highlight the importance of incorporating dust mineralogical data to
improve simulations of radiative forcing and air quality impacts. Within the scope of
this study, the results indicate that overall dust mineralogical composition, rather than

dust mass alone, plays a decisive role in ARI effects, with hematite exerting a dominant



influence despite its minor abundance, although the radiative effects of individual
mineral species were not separately quantified. Systematic biases in surface radiation,
near-surface winds, and temperature persist, reflecting challenges in simulating dust—
atmosphere interactions and uncertainties in mineralogical datasets. Future research
should focus on coupling mineral-specific dust with cloud processes and leveraging
higher-resolution soil and satellite data to refine dust emission simulations and reduce

model biases. ”

2. In Section 2.1, The authors collected environmental data from various sources:
meteorology data from CMA, PM concentrations from an online blog, and SSR data
from a peer-reviewed paper. How do the authors ensure the fidelity of the data they
obtained, and how do they maintain the integrity of them?

Response: We thank the reviewer for raising this point. All datasets were carefully
selected and quality-checked to ensure reliability. Meteorological data were obtained
from CMA, which provides standardized and quality-controlled observations. PM1 and
O3 data were sourced from https://quotsoft.net/air/, which aggregates official national
monitoring data. SSR data came from Tang et al. (2019), a peer-reviewed study with
documented quality control. In addition, we conducted checks for outliers, unit
consistency, and temporal alignment to maintain data integrity throughout the study.
We have revised the corresponding paragraph in the manuscript to clarify the data
sources and ensure the description is accurate and clear.

“To evaluate the performance of the WRF-CHIMERE model with and without
mineralogical dust emissions, we compiled a comprehensive set of environmental
observations. Hourly PMio and O3 concentrations (132 observations) were obtained
from https://quotsoft.net/air/, which aggregates official monitoring data from the
Ministry of Ecology and Environmental Protection of China. Shortwave radiation (SSR)
data (59 hourly measurements) were obtained from Tang et al. (2019), with the original
measurements sourced from the China Meteorological Administration. Hourly surface
meteorological data (844 observations) were also obtained from the China

Meteorological Administration (https://data.cma.cn). All datasets were subjected to



quality control procedures, including checks for outliers, unit consistency, and temporal

alignment, to ensure reliability and integrity.”

3. Lines 134-145, the authors mentioned a lack of feldspar and quartz and the
combination of illite and muscovite in EMIT. Their proportions were all estimated
based on N2012 or J2014 data. This is ambiguous since there are no details and rationale
about which database was chosen. A sensitivity test is suggested to show how different
methods of filling and splitting cause the change of results and how the actual methods
are selected for each mineral component.

Response: We thank the reviewer for pointing out the ambiguity regarding the treatment
of missing mineral components and the combination of illite and muscovite in the EMIT
dataset. For clarity, missing mineral species such as feldspar and quartz were estimated
based on the relative abundances reported in N2012 and J2014. N2012 was chosen as
the primary reference due to its comprehensive global coverage, while J2014 was used
to refine regional variations where higher-resolution data were available. For the
combined illite and muscovite fraction in EMIT, we split it proportionally according to
the relative fractions in N2012 or J2014, ensuring consistency with known regional
mineralogical compositions. This approach was selected to provide the most accurate
and regionally representative estimates for each mineral component, and the rationale
has now been clarified in the revised manuscript (Lines 134-145).

“Accurate soil composition data are essential for partitioning dust emission fluxes
into contributions from individual minerals. Mineral density and refractive index data
were obtained from Menut et al. (2020). Three global mineralogical composition
datasets (N2012, J2014, and EMIT) provide information on 12 mineral species (Table
1) at different spatial resolutions (1 km *x I km and 0.5° % (0.5°).

To ensure a consistent spatial framework and facilitate cross-dataset integration,
the N2012 dataset (originally provided at 1 km % I km resolution and available at
http://www.seevcce.rs/GMINER30) was resampled to 0.5° x 0.5°. The J2014 dataset,
widely employed in the WRF-CHIMERE modeling framework, includes 12 mineral

species distributed across the clay and/or silt fractions (see Table 2 in Menut et al.,



2020). In contrast, the EMIT dataset (https://earth.jpl.nasa.gov/emit/data/data-
products) required additional preprocessing, as it reports only normalized spectral
abundances rather than mineral mass fractions. These spectral abundances were
therefore recalculated to represent the normalized mass proportions of each mineral in
each substrate. Furthermore, EMIT does not include data for feldspar and quartz,
necessitating additional correction procedures described below.

When the total mineral composition from EMIT summed to less than 100%,
indicating missing mineral contributions, the residual fraction was assigned to quartz
and feldspar based on their relative proportions in J2014 or N2012. Because EMIT
reports illite and mica as a single category, their individual abundances were separated
according to the ratios found in N2012 or J2014. For minerals that occur in both clay
and silt fractions, EMIT values were partitioned following the relative contributions
from N2012 or J2014.

For minerals not directly observed by EMIT (e.g., quartz and feldspar), their mass
fractions were estimated using soil-type conversion methods from previous studies
(Claquin et al., 1999; Journet et al., 2014). The spatial distributions of clay and silt
were obtained from the global SoilW texture dataset
(http://globalchange.bnu.edu.cn/research/soilw) at 1 km resolution and resampled to
0.5° to match EMIT data. Similarly, the J2014 and N2012 mineral datasets were
resampled to 0.5° resolution. Major minerals extracted from EMIT L3 include calcite,
dolomite, chlorite, goethite, gypsum, hematite, illitetmuscovite, kaolinite,
montmorillonite, and vermiculite. Notably, in the official EMIT L3B dataset
(https://data.lpdaac.earthdatacloud.nasa.gov/Ip-prod-
protected/EMITL3ASA.001/EMIT L3 ASA_001/EMIT L3 ASA 001.nc), illite and
muscovite are combined because they were jointly identified during the Tetracorder
analysis of L2B data using mineral groups 1 and 2 and the corresponding band depths
(https://github.com/nasa/EMIT-Data-

Resources/blob/main/data/mineral_grouping matrix 20230503.csv).
The EMIT mineral fractions were normalized so that their sum at each grid point

did not exceed unity. Any remaining fraction was attributed to quartz and feldspars



according to their relative proportions in J2014 or N2012. To ensure consistency with
the CHIMERE mineral representation, dolomite was merged into calcite,
illitet+tmuscovite was separated into illite and mica, and montmorillonite was treated
as smectite. The mineral fractions were then converted to density-weighted values and
renormalized at each grid point so that the total sum equaled one. Finally, each mineral
was partitioned into clay and silt fractions based on the J2014 ratios, and the resulting
fractions were normalized using Equations (1)—(4). The processed dataset was exported
as a NetCDF file to serve as input for the CHIMERE model.

To ensure mineral mass balance and model consistency, a normalization and
partitioning procedure was applied as follows. Equation (1) defines the total mass
fraction (MF;) of mineral j as the sum of its contributions from the clay (MF C;) and silt
(MFS;) fractions:

MF; = MFC; + MFS; for all € McymEre (1)

Equation (2) enforces a normalization constraint so that the sum of all mineral

mass fractions equals unity at each grid point.

1= MF, )

ZJ' EMCHIMERE

The normalized total fraction of each mineral (MF;') was then redistributed

between clay and silt according to their relative contributions in the reference dataset

(J2014 or N2012), as shown in Equations (3) and (4):

MFS;

MES; = MF; MFS;+MFC; (3)
. . MFC;
MEC; = MF; MFSj+MFC; (4)

Here, MFS; and MFC; represent the normalized mass fractions of mineral j in

the silt and clay fractions, respectively. The weighting terms MFS; and

MF C; preserve the clay-silt distribution patterns derived from the reference datasets

while maintaining the normalized total (MF;').”

4. Lines 207-208, the authors mentioned a huge overestimation of SSR (>60%) from

the model. This is an interesting finding, since this overestimation may lead to large



errors in dust dispersion and hence change the PM prediction. An attribution of
meteorological biases vs. mineralogical composition to the PMo prediction would help
clarify the conclusions of mineralogical effects. Comparing the simulation with the bias
and after correcting the bias may provide insights into how much the actual ARI effect
accounts for.

Response: We appreciate the reviewer’s insightful comment. The large overestimation
of SSR (>60%) in the original WRF simulation may strongly influence dust transport
and PM o predictions. To disentangle the relative roles of meteorological biases, with
and without enabling spectral nudging meteorology assimilation with and without
considering aerosol feedbacks of bulk dust simulation has been conducted. The SSR-
related biases were mitigated by FDDA nudging of temperature, humidity, and wind
fields, while radiation and surface fluxes were recomputed to maintain energy balance
(Table 2). Comparing PMjo concentrations among these simulations allowed us to
quantify the relative contributions of SSR-related meteorological biases and
mineralogical composition. The difference between Spectral nudg ARI and
No _nudg_ ARI isolates the influence of meteorological biases. The difference between
N2012_default ARI and  N2012 EMIT ARI (J2014_default ARI and
J2014 _EMIT ARI) highlights the mineralogical effect. These experiments further
reveal possible non-linear interactions and clarify the actual ARI impact. It should be
noted that our simulations in the previous manuscript have been enabled spectral
nudging.

As shown in Table 2, incorporating meteorological spectral nudging substantially
reduces the overestimation of surface shortwave radiation (SSR) compared with the no-
nudging scenario, indicating improved representation of large-scale meteorological
conditions. Moreover, spectral nudging enhances the simulation of PMio spatial
distributions, particularly over the North China Plain (NCP) (Figure S1). The changes
in PMio concentrations induced by meteorological spectral nudging under ARI effects
(259.53 pg m3, 95% CI: [-1040.38, 4060.07], Fig. S2) are higher than those obtained
from different mineralogical composition atlas (ranging from 129.56 to 156.94 ug m=).

This result does not necessarily indicate stronger ARI effects but rather reflects a more



realistic representation of ARI-induced dust perturbations when the large-scale

meteorological constraints are properly maintained (Table S2).

Table S1. Summary of bulk dust simulations with and without meteorological nudging and aerosol

feedbacks.
Simulation Nudging  ARI
No_nudg NO No nudging and No aerosol feedbacks
No nudg ARI N No nudging and ARI
Spectral nudg NO v Spectral nudging and No aerosol feedbacks
Spectral nudg ARI N v Spectral nudging and ARI

Table S2. Statistics analysis of daily averaged SSR from different scenario simulations and ground

observations in North China with and without meteorology nudging and aerosol feedbacks.

SSR
Scenario R NMB
Spectral nudg NO 0.70 68.92
Spectral nudg ARI 0.72 60.69
No _nudg NO 0.62 72.65
No nudg ARI 0.64 65.38
Spectral nudging No nudging
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Figure S1. Horizontal distributions of PMo concentrations on 13:00 (local time) 15" March

2021 from bulk dust simulations with and without meteorological nudging and aerosol feedbacks.
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Figure S2. Changes in PMo concentrations induced by ARI effects under FDDA-enabled and no-

FDDA scenarios, as well as the meteorological effects (FDDA-No FDDA) considering ARI.

In the revised manuscript, we have emphasized the role of spectral nudging in capturing
the ARI effects of dust from different mineral datasets under more realistic
meteorological conditions.

Lines 112-113: “To minimize meteorological bias, a spectral nudging approach is
applied (Menut et al., 2024).”

Lines 663-665: “Incorporating meteorological spectral nudging in future simulations
could provide a more realistic representation of ARI-induced dust perturbations under

different mineralogical compositions.”

5. Lines 446-453, this paragraph is not well discussed. By comparing the subfigures in
Fig 8, we can see that the PMio levels predicted using different database show
substantial disparities. Suggest reducing the tone of the limited effect of mineral
composition to PMo concentration.

Response: Thank you for the comment. We agree that the original paragraph may have
understated the influence of dust speciation on PMjo concentrations. Upon closer
examination of Fig. 8, it is evident that using different mineralogical databases leads to
noticeable differences in the predicted PMo levels in certain regions. We have revised
the paragraph to reflect this observation, emphasizing that while mineral composition
may not dominate the total dust load globally, it can have a substantial impact on PMig
concentrations locally and under specific transport conditions. This revision reduces the

tone suggesting a “limited effect” and better aligns the discussion with the evidence



presented in Fig. 8 as follows.

“The inclusion of speciated dust influences long-range transport and can substantially
affect PM o concentrations. Comparison of the subfigures in Fig. 8 reveals pronounced
regional differences in PM o predictions arising from the use of different mineralogical
databases. Incorporating detailed mineralogical data enhances the accuracy of dust
composition representation and its associated effects on PM o, highlighting the critical

role of mineral speciation in dust modeling and regional air quality assessment.”

6. Overall, this research did not include uncertainties in many of their reported values,
such as predicted PMiy levels, changes in PMi¢ and ozone by including ARI effects,
and different PM1o concentrations considering dust mineralogy atlases. It is important
to quantify these uncertainties for a study with an improved modeling design, thus
statistical measures are suggested to include.
Response: We thank the reviewer for this insightful comment. In the revised manuscript,
95% confidence intervals have been incorporated to quantify the uncertainties in the
predicted PMio concentrations and in the changes of PMo and O3 caused by aerosol—
radiation interactions and different dust mineralogy atlases. These results are presented
in Table S1, Domain-averaged PMio concentrations with 95% confidence intervals
simulated using different dust mineralogy atlases with and without ARI effects, and
Table S2, Domain-averaged APMio and AOs with 95% confidence intervals for different
dust mineralogy atlases comparing ARI and NO simulations. The inclusion of these
statistical measures enhances the robustness and reliability of the modeling results.
Table S3. Domain-averaged PMjo concentrations with 95% confidence intervals simulated

using different dust mineralogy atlases with and without ARI effects.

Scenario PMo (ug m™3)

Dust NO 533.81[0.28, 5962.95]
Dust ARI 653.29 [0.28, 7120.49]
N2012_default NO 529.32 [0.74, 5784.02]

N2012 default ARI 679.85[0.74, 7484.01]



N2012_EMIT_NO 526.05[0.74, 5663.86]

N2012_EMIT ARI 655.61 [0.74, 6926.42]
12014 _default NO 529.25 [0.74, 5750.11]
12014 _default ARI 686.19 [0.74, 7463.57]
12014 EMIT_NO 516.23 [0.74, 5501.87]
J2014 EMIT ARI 607.22 [0.74, 6325.16]

Table S4. Domain-averaged APMo and AO3 with 95% confidence intervals for different dust

mineralogy atlases comparing ARI and NO simulations.

Scenario APM (ug m3) AO;3 (ug m™)

Dust_ARI — Dust NO 119.48 [-27.63, 1408.39]  -46.52 [-63.38, -31.74]
N2012 default ARI —N2012 default NO  156.94 [-18.63,1735.68] -46.37 [-63.41, -31.60]
N2012_EMIT ARI—-N2012_EMIT NO 147.65 [-22.36,1623.48]  -46.48 [-63.40, -31.58]
J2014 default ARI—1J2014 default NO 150.53 [-20.12, 1707.75]  -46.62 [-63.46, -31.65]

J2014 EMIT ARI-J2014 EMIT NO 129.56 [-23.42, 1462.55]  -46.56 [-63.36, -31.61]

The corresponding descriptions have been added in the revised manuscript.

Lines 335-340: “All six experiments display similar dust distributions in the
atmosphere, consistent with observations from Himawari-8 and CALIPSO. This
suggests that the models effectively capture the general spatial patterns of dust
transport. On March 15, 2021, the daily domain-averaged PMy concentration was
533.81 ug m=3, with a 95% confidence interval (CI) of 0.28-5962.95 (Table S1).”

Lines 480-483: “As shown in Figure 7 and Table S2, the inclusion of bulk dust
aerosol feedbacks in the WRF-CHIMERE model resulted in substantial increases in
PM;o concentrations, with an average increase of 119.48 ug m=3 with a 95% CI of
—27.63 to 1408.39 ug m=.

Lines 510-512: “Ozone changes along transport pathways were generally smaller
than the surrounding concentrations, typically ranging from —60 to —40 ug m=> with a

mean value of —46.52 ug m=(95% CI: —63.38 to —31.74) as shown in Table S2.”



Minor comments:

1. Table 1, the last mineral was written as mica while the note mentioned it as muscovite.
Although it is known that muscovite is a mica, it is suggested to make their name
consistent to avoid confusion.

Response: Thank you for pointing this out. We agree that consistency in terminology is
important. We have revised Table 1 so that the last mineral is labeled as mica, in Line

199 with the note, to avoid any potential confusion.

2. Table 3, the digits of values should be uniform: suggest to retain a digit of 2.
Response: We thank the reviewer for this suggestion. We have revised all numerical
values in the manuscript to retain two significant digits for consistency across the tables

and text.

3. Figure 7, the picture for ozone is dazzling. The max/min/mean values (top left corner)
cannot be seen clearly because of the color. Suggest reducing the hue of palette and
move the text or change the color of the text.

Response: We appreciate the reviewer’s comment. In the revised manuscript, we have
adjusted the color palette in Figure 7 to reduce the dazzling effect and improved the

visibility of the max/min/mean values by changing the text color and repositioning it.
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Figure 7. Changes in PMjo and O3 concentrations resulting from bulk dust-induced ARI effects,
compared to the scenario without aerosol feedbacks.

4. Figure 8, N2012_ EMIT-bulk dust is exactly the same with J2014 _default-Bulk dust.
Suggest recheck the pictures.

Response: We thank the reviewer for the careful check. After re-examination, we found
that the panel for J2014 default-Bulk dust was mistakenly duplicated. The
N2012_EMIT-bulk dust panel is correct, and we have updated the J2014 default-Bulk

dust panel accordingly in the revised Figure 8.
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Figure 8. Difference in PM;y concentrations considering bulk dust and various dust mineralogy
atlases that enable ARI effects.

5. Figure 9, the texts in the violet region of quartz are not visible. Suggest changing its
color to white. Also, the bars outside the pie look protruding; suggest using arrows to
denote minimal values.

Response: Thank you for the comment. We have updated Figure 9 accordingly: the text
in the violet region of quartz has been changed to white for better visibility. Additionally,
we replaced the protruding bars outside the pie with arrows to indicate the minimal

values, improving the clarity of the figure.
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Figure 9. Contributions of different mineralogical compositions using N2012 default,
N2012_EMIT, J2014 default, and J2014_EMIT, considering ARI effects, compared to the scenario
without enabling aerosol feedbacks.

At last, many thanks for the Reviewer’s helpful for comments and suggestions to

improve the quality of our manuscript.



