
We would like to express our sincere appreciation to the Reviewer #2 for the valuable 

and constructive suggestions, which have helped us improve the quality of this 

manuscript. We have addressed all these comments carefully and revised the manuscript 

accordingly. Following the Reviewer’ comments in black, please find our point-to-point 

responses in blue. Hereafter, all new added or modified sentences are marked in blue 

and italic in this response. 

 

Reviewer #2 

This manuscript used a 2-way coupled WRF-CHIMERE model to investigate how 

different mineralogical compositions of dust affect aerosol-radiation and aerosol-cloud 

interactions (ARI/ACI) and their subsequent air quality outcomes. The model was run 

on a synoptic scale over North China during a major dust storm in March 2021. The 

authors observed that using EMIT to enhance the mineralogical details has improved 

the model predictions of PM10, by revealing significant spatial differences in 

radioactive forcing and increased PM10 levels in source regions. These results are 

critical for a better prediction during dust storm periods when the level of PM10 is 

readily underestimated due to the lack of ARI/ACI consideration. Nevertheless, the 

manuscript could be improved by addressing the following concerns. I would suggest 

that paper be reconsidered after a major revision. 

 

Major comments: 

1. In multiple positions (lines 37-38, 44-45, 72-73), the authors declared the importance 

of ACI effects on the Earth’s energy balance and can also be altered by the difference 

in mineral compositions. However, this research also stated that they did not consider 

ACI effects in their 2-way coupled model but did not clearly explain why this is not 

included and how it will affect the final predictions. This affected the rationale of 

adopting this 2-way coupled model and a justification should be better provided. 

Response: We thank the reviewer for raising this important point. While ACI processes 

are indeed critical in regulating the Earth’s energy balance and may be influenced by 



mineralogical composition, this study focuses on ARI because the WRF–CHIMERE 

two-way coupled framework currently does not include parameterizations of mineral-

specific ice- and cloud-nucleating properties. In addition, the study aims to isolate and 

quantify the radiative effects of mineralogical dust using the newly available EMIT data, 

for which ARI pathways are better constrained and more directly comparable. 

We acknowledge that excluding ACI limits the full representation of dust–climate 

feedbacks, meaning our results may underestimate the total climatic and air quality 

impacts of mineral dust, particularly those linked to cloud microphysics (e.g., 

precipitation formation, cloud lifetime). To clarify this rationale, we have revised the 

manuscript in the corresponding sections to explicitly explain why ACI effects were not 

included, how this choice narrows the study’s scope, and that future work will extend 

the two-way coupled framework to incorporate mineral-resolved ACI schemes. This 

will enable a more comprehensive assessment of both radiative and microphysical 

feedbacks of dust minerals on regional meteorology and air quality. The corresponding 

text have been rewritten in the revised manuscript as follows. 

“Since the aerosol nucleation processes (ACI effects) of specific mineral components 

are not represented in the current two-way coupled WRF–CHIMERE framework, the 

present study concentrates on the ARI effects of dust minerals. This focus ensures a 

clear and robust assessment of how mineralogical composition influences radiative 

processes, without introducing additional uncertainties arising from incomplete cloud-

related parameterizations. In this study, we employ a two-way coupled WRF–

CHIMERE model with three mineralogical databases to investigate how dust 

composition influences radiation and meteorology in North China during a severe dust 

storm. Section 2 describes the model configuration and data sources, Section 3 presents 

the simulations with emphasis on ARI-induced impacts on meteorology and air quality, 

and Section 4 summarizes the main findings.” 

“These findings highlight the importance of incorporating dust mineralogical data to 

improve simulations of radiative forcing and air quality impacts. Within the scope of 

this study, the results indicate that overall dust mineralogical composition, rather than 

dust mass alone, plays a decisive role in ARI effects, with hematite exerting a dominant 



influence despite its minor abundance, although the radiative effects of individual 

mineral species were not separately quantified. Systematic biases in surface radiation, 

near-surface winds, and temperature persist, reflecting challenges in simulating dust–

atmosphere interactions and uncertainties in mineralogical datasets. Future research 

should focus on coupling mineral-specific dust with cloud processes and leveraging 

higher-resolution soil and satellite data to refine dust emission simulations and reduce 

model biases.” 

 

2. In Section 2.1, The authors collected environmental data from various sources: 

meteorology data from CMA, PM concentrations from an online blog, and SSR data 

from a peer-reviewed paper. How do the authors ensure the fidelity of the data they 

obtained, and how do they maintain the integrity of them? 

Response: We thank the reviewer for raising this point. All datasets were carefully 

selected and quality-checked to ensure reliability. Meteorological data were obtained 

from CMA, which provides standardized and quality-controlled observations. PM10 and 

O3 data were sourced from https://quotsoft.net/air/, which aggregates official national 

monitoring data. SSR data came from Tang et al. (2019), a peer-reviewed study with 

documented quality control. In addition, we conducted checks for outliers, unit 

consistency, and temporal alignment to maintain data integrity throughout the study. 

We have revised the corresponding paragraph in the manuscript to clarify the data 

sources and ensure the description is accurate and clear. 

“To evaluate the performance of the WRF-CHIMERE model with and without 

mineralogical dust emissions, we compiled a comprehensive set of environmental 

observations. Hourly PM10 and O3 concentrations (132 observations) were obtained 

from https://quotsoft.net/air/, which aggregates official monitoring data from the 

Ministry of Ecology and Environmental Protection of China. Shortwave radiation (SSR) 

data (59 hourly measurements) were obtained from Tang et al. (2019), with the original 

measurements sourced from the China Meteorological Administration. Hourly surface 

meteorological data (844 observations) were also obtained from the China 

Meteorological Administration (https://data.cma.cn). All datasets were subjected to 



quality control procedures, including checks for outliers, unit consistency, and temporal 

alignment, to ensure reliability and integrity.” 

 

3. Lines 134-145, the authors mentioned a lack of feldspar and quartz and the 

combination of illite and muscovite in EMIT. Their proportions were all estimated 

based on N2012 or J2014 data. This is ambiguous since there are no details and rationale 

about which database was chosen. A sensitivity test is suggested to show how different 

methods of filling and splitting cause the change of results and how the actual methods 

are selected for each mineral component. 

Response: We thank the reviewer for pointing out the ambiguity regarding the treatment 

of missing mineral components and the combination of illite and muscovite in the EMIT 

dataset. For clarity, missing mineral species such as feldspar and quartz were estimated 

based on the relative abundances reported in N2012 and J2014. N2012 was chosen as 

the primary reference due to its comprehensive global coverage, while J2014 was used 

to refine regional variations where higher-resolution data were available. For the 

combined illite and muscovite fraction in EMIT, we split it proportionally according to 

the relative fractions in N2012 or J2014, ensuring consistency with known regional 

mineralogical compositions. This approach was selected to provide the most accurate 

and regionally representative estimates for each mineral component, and the rationale 

has now been clarified in the revised manuscript (Lines 134–145). 

“Accurate soil composition data are essential for partitioning dust emission fluxes 

into contributions from individual minerals. Mineral density and refractive index data 

were obtained from Menut et al. (2020). Three global mineralogical composition 

datasets (N2012, J2014, and EMIT) provide information on 12 mineral species (Table 

1) at different spatial resolutions (1 km × 1 km and 0.5° × 0.5°). 

To ensure a consistent spatial framework and facilitate cross-dataset integration, 

the N2012 dataset (originally provided at 1 km × 1 km resolution and available at 

http://www.seevccc.rs/GMINER30) was resampled to 0.5° × 0.5°. The J2014 dataset, 

widely employed in the WRF–CHIMERE modeling framework, includes 12 mineral 

species distributed across the clay and/or silt fractions (see Table 2 in Menut et al., 



2020). In contrast, the EMIT dataset (https://earth.jpl.nasa.gov/emit/data/data-

products) required additional preprocessing, as it reports only normalized spectral 

abundances rather than mineral mass fractions. These spectral abundances were 

therefore recalculated to represent the normalized mass proportions of each mineral in 

each substrate. Furthermore, EMIT does not include data for feldspar and quartz, 

necessitating additional correction procedures described below. 

When the total mineral composition from EMIT summed to less than 100%, 

indicating missing mineral contributions, the residual fraction was assigned to quartz 

and feldspar based on their relative proportions in J2014 or N2012. Because EMIT 

reports illite and mica as a single category, their individual abundances were separated 

according to the ratios found in N2012 or J2014. For minerals that occur in both clay 

and silt fractions, EMIT values were partitioned following the relative contributions 

from N2012 or J2014. 

For minerals not directly observed by EMIT (e.g., quartz and feldspar), their mass 

fractions were estimated using soil-type conversion methods from previous studies 

(Claquin et al., 1999; Journet et al., 2014). The spatial distributions of clay and silt 

were obtained from the global SoilW texture dataset 

(http://globalchange.bnu.edu.cn/research/soilw) at 1 km resolution and resampled to 

0.5° to match EMIT data. Similarly, the J2014 and N2012 mineral datasets were 

resampled to 0.5° resolution. Major minerals extracted from EMIT L3 include calcite, 

dolomite, chlorite, goethite, gypsum, hematite, illite+muscovite, kaolinite, 

montmorillonite, and vermiculite. Notably, in the official EMIT L3B dataset 

(https://data.lpdaac.earthdatacloud.nasa.gov/lp-prod-

protected/EMITL3ASA.001/EMIT_L3_ASA_001/EMIT_L3_ASA_001.nc), illite and 

muscovite are combined because they were jointly identified during the Tetracorder 

analysis of L2B data using mineral groups 1 and 2 and the corresponding band depths 

(https://github.com/nasa/EMIT-Data-

Resources/blob/main/data/mineral_grouping_matrix_20230503.csv). 

The EMIT mineral fractions were normalized so that their sum at each grid point 

did not exceed unity. Any remaining fraction was attributed to quartz and feldspars 



according to their relative proportions in J2014 or N2012. To ensure consistency with 

the CHIMERE mineral representation, dolomite was merged into calcite, 

illite+muscovite was separated into illite and mica, and montmorillonite was treated 

as smectite. The mineral fractions were then converted to density-weighted values and 

renormalized at each grid point so that the total sum equaled one. Finally, each mineral 

was partitioned into clay and silt fractions based on the J2014 ratios, and the resulting 

fractions were normalized using Equations (1)–(4). The processed dataset was exported 

as a NetCDF file to serve as input for the CHIMERE model. 

To ensure mineral mass balance and model consistency, a normalization and 

partitioning procedure was applied as follows. Equation (1) defines the total mass 

fraction (𝑀𝐹𝑗) of mineral j as the sum of its contributions from the clay (𝑀𝐹𝐶𝑗) and silt 

(𝑀𝐹𝑆𝑗) fractions: 

 𝑀𝐹𝑗 = 𝑀𝐹𝐶𝑗 + 𝑀𝐹𝑆𝑗   𝑓𝑜𝑟 𝑎𝑙𝑙 ∈ 𝑀𝐶𝐻𝐼𝑀𝐸𝑅𝐸  (1) 

Equation (2) enforces a normalization constraint so that the sum of all mineral 

mass fractions equals unity at each grid point. 

 1 =  ∑ 𝑀𝐹𝑗𝑗∈𝑀𝐶𝐻𝐼𝑀𝐸𝑅𝐸
  (2) 

The normalized total fraction of each mineral ( 𝑀𝐹𝑗
∗ ) was then redistributed 

between clay and silt according to their relative contributions in the reference dataset 

(J2014 or N2012), as shown in Equations (3) and (4): 

 𝑀𝐹𝑆𝑗
∗ =  𝑀𝐹𝑗

∗ 𝑀𝐹𝑆𝑗

𝑀𝐹𝑆𝑗+𝑀𝐹𝐶𝑗
  (3) 

 𝑀𝐹𝐶𝑗
∗ =  𝑀𝐹𝑗

∗ 𝑀𝐹𝐶𝑗

𝑀𝐹𝑆𝑗+𝑀𝐹𝐶𝑗
  (4) 

Here, 𝑀𝐹𝑆𝑗
∗ and 𝑀𝐹𝐶𝑗

∗ represent the normalized mass fractions of mineral j in 

the silt and clay fractions, respectively. The weighting terms 𝑀𝐹𝑆𝑗  and 

𝑀𝐹𝐶𝑗  preserve the clay–silt distribution patterns derived from the reference datasets 

while maintaining the normalized total (𝑀𝐹𝑗
∗).” 

 

4. Lines 207-208, the authors mentioned a huge overestimation of SSR (>60%) from 

the model. This is an interesting finding, since this overestimation may lead to large 



errors in dust dispersion and hence change the PM prediction. An attribution of 

meteorological biases vs. mineralogical composition to the PM10 prediction would help 

clarify the conclusions of mineralogical effects. Comparing the simulation with the bias 

and after correcting the bias may provide insights into how much the actual ARI effect 

accounts for. 

Response: We appreciate the reviewer’s insightful comment. The large overestimation 

of SSR (>60%) in the original WRF simulation may strongly influence dust transport 

and PM10 predictions. To disentangle the relative roles of meteorological biases, with 

and without enabling spectral nudging meteorology assimilation with and without 

considering aerosol feedbacks of bulk dust simulation has been conducted. The SSR-

related biases were mitigated by FDDA nudging of temperature, humidity, and wind 

fields, while radiation and surface fluxes were recomputed to maintain energy balance 

(Table 2). Comparing PM10 concentrations among these simulations allowed us to 

quantify the relative contributions of SSR-related meteorological biases and 

mineralogical composition. The difference between Spectral_nudg_ARI and 

No_nudg_ARI isolates the influence of meteorological biases. The difference between 

N2012_default_ARI and N2012_EMIT_ARI (J2014_default_ARI and 

J2014_EMIT_ARI) highlights the mineralogical effect. These experiments further 

reveal possible non-linear interactions and clarify the actual ARI impact. It should be 

noted that our simulations in the previous manuscript have been enabled spectral 

nudging. 

As shown in Table 2, incorporating meteorological spectral nudging substantially 

reduces the overestimation of surface shortwave radiation (SSR) compared with the no-

nudging scenario, indicating improved representation of large-scale meteorological 

conditions. Moreover, spectral nudging enhances the simulation of PM₁₀ spatial 

distributions, particularly over the North China Plain (NCP) (Figure S1). The changes 

in PM₁₀ concentrations induced by meteorological spectral nudging under ARI effects 

(259.53 μg m⁻³, 95% CI: [−1040.38, 4060.07], Fig. S2) are higher than those obtained 

from different mineralogical composition atlas (ranging from 129.56 to 156.94 μg m⁻³). 

This result does not necessarily indicate stronger ARI effects but rather reflects a more 



realistic representation of ARI-induced dust perturbations when the large-scale 

meteorological constraints are properly maintained (Table S2).  

 

Table S1. Summary of bulk dust simulations with and without meteorological nudging and aerosol 

feedbacks. 

Simulation Nudging ARI  

No_nudg_NO   No nudging and No aerosol feedbacks 

No_nudg_ARI  ✓ No nudging and ARI 

Spectral_nudg_NO ✓  Spectral nudging and No aerosol feedbacks 

Spectral_nudg_ARI ✓ ✓ Spectral nudging and ARI 

 

Table S2. Statistics analysis of daily averaged SSR from different scenario simulations and ground 

observations in North China with and without meteorology nudging and aerosol feedbacks. 

Scenario 

SSR 

R NMB 

Spectral_nudg_NO 0.70  68.92 

Spectral_nudg_ARI 0.72 60.69 

No_nudg_NO 0.62 72.65 

No_nudg_ARI 0.64  65.38 

 

 

Figure S1. Horizontal distributions of PM10 concentrations on 13:00 (local time) 15th March 

2021 from bulk dust simulations with and without meteorological nudging and aerosol feedbacks. 



Figure S2. Changes in PM10 concentrations induced by ARI effects under FDDA-enabled and no-

FDDA scenarios, as well as the meteorological effects (FDDA-No FDDA) considering ARI. 

 

In the revised manuscript, we have emphasized the role of spectral nudging in capturing 

the ARI effects of dust from different mineral datasets under more realistic 

meteorological conditions. 

Lines 112-113: “To minimize meteorological bias, a spectral nudging approach is 

applied (Menut et al., 2024).” 

Lines 663-665: “Incorporating meteorological spectral nudging in future simulations 

could provide a more realistic representation of ARI-induced dust perturbations under 

different mineralogical compositions.” 

 

5. Lines 446-453, this paragraph is not well discussed. By comparing the subfigures in 

Fig 8, we can see that the PM10 levels predicted using different database show 

substantial disparities. Suggest reducing the tone of the limited effect of mineral 

composition to PM10 concentration. 

Response: Thank you for the comment. We agree that the original paragraph may have 

understated the influence of dust speciation on PM10 concentrations. Upon closer 

examination of Fig. 8, it is evident that using different mineralogical databases leads to 

noticeable differences in the predicted PM10 levels in certain regions. We have revised 

the paragraph to reflect this observation, emphasizing that while mineral composition 

may not dominate the total dust load globally, it can have a substantial impact on PM10 

concentrations locally and under specific transport conditions. This revision reduces the 

tone suggesting a “limited effect” and better aligns the discussion with the evidence 



presented in Fig. 8 as follows. 

“The inclusion of speciated dust influences long-range transport and can substantially 

affect PM10 concentrations. Comparison of the subfigures in Fig. 8 reveals pronounced 

regional differences in PM10 predictions arising from the use of different mineralogical 

databases. Incorporating detailed mineralogical data enhances the accuracy of dust 

composition representation and its associated effects on PM10, highlighting the critical 

role of mineral speciation in dust modeling and regional air quality assessment.” 

 

6. Overall, this research did not include uncertainties in many of their reported values, 

such as predicted PM10 levels, changes in PM10 and ozone by including ARI effects, 

and different PM10 concentrations considering dust mineralogy atlases. It is important 

to quantify these uncertainties for a study with an improved modeling design, thus 

statistical measures are suggested to include. 

Response: We thank the reviewer for this insightful comment. In the revised manuscript, 

95% confidence intervals have been incorporated to quantify the uncertainties in the 

predicted PM10 concentrations and in the changes of PM10 and O3 caused by aerosol–

radiation interactions and different dust mineralogy atlases. These results are presented 

in Table S1, Domain-averaged PM₁₀ concentrations with 95% confidence intervals 

simulated using different dust mineralogy atlases with and without ARI effects, and 

Table S2, Domain-averaged ΔPM₁₀ and ΔO₃ with 95% confidence intervals for different 

dust mineralogy atlases comparing ARI and NO simulations. The inclusion of these 

statistical measures enhances the robustness and reliability of the modeling results. 

Table S3. Domain-averaged PM10 concentrations with 95% confidence intervals simulated 

using different dust mineralogy atlases with and without ARI effects. 

Scenario PM10 (μg m−3) 

Dust_NO 533.81 [0.28, 5962.95] 

Dust_ARI 653.29 [0.28, 7120.49] 

N2012_default_NO 529.32 [0.74, 5784.02] 

N2012_default_ARI 679.85 [0.74, 7484.01] 



N2012_EMIT_NO 526.05 [0.74, 5663.86] 

N2012_EMIT_ARI 655.61 [0.74, 6926.42] 

J2014_default_NO 529.25 [0.74, 5750.11] 

J2014_default_ARI 686.19 [0.74, 7463.57] 

J2014_EMIT_NO 516.23 [0.74, 5501.87] 

J2014_EMIT_ARI 607.22 [0.74, 6325.16] 

 

Table S4. Domain-averaged ΔPM10 and ∆O3 with 95% confidence intervals for different dust 

mineralogy atlases comparing ARI and NO simulations. 

Scenario ∆PM10 (μg m−3) ∆O3 (μg m−3) 

Dust_ARI − Dust_NO 119.48 [-27.63, 1408.39] -46.52 [-63.38, -31.74] 

N2012_default_ARI − N2012_default_NO 156.94 [-18.63, 1735.68] -46.37 [-63.41, -31.60] 

N2012_EMIT_ARI − N2012_EMIT_NO 147.65 [-22.36, 1623.48] -46.48 [-63.40, -31.58] 

J2014_default_ARI − J2014_default_NO 150.53 [-20.12, 1707.75] -46.62 [-63.46, -31.65] 

J2014_EMIT_ARI − J2014_EMIT_NO 129.56 [-23.42, 1462.55] -46.56 [-63.36, -31.61] 

 

The corresponding descriptions have been added in the revised manuscript. 

Lines 335-340: “All six experiments display similar dust distributions in the 

atmosphere, consistent with observations from Himawari-8 and CALIPSO. This 

suggests that the models effectively capture the general spatial patterns of dust 

transport. On March 15, 2021, the daily domain-averaged PM10 concentration was 

533.81 μg m⁻³, with a 95% confidence interval (CI) of 0.28–5962.95 (Table S1).” 

Lines 480-483: “As shown in Figure 7 and Table S2, the inclusion of bulk dust 

aerosol feedbacks in the WRF-CHIMERE model resulted in substantial increases in 

PM10 concentrations, with an average increase of 119.48 μg m⁻³ with a 95% CI of 

−27.63 to 1408.39 μg m⁻³.” 

Lines 510-512: “Ozone changes along transport pathways were generally smaller 

than the surrounding concentrations, typically ranging from −60 to −40 μg m⁻³ with a 

mean value of −46.52 μg m⁻³ (95% CI: −63.38 to −31.74) as shown in Table S2.” 



 

Minor comments: 

1. Table 1, the last mineral was written as mica while the note mentioned it as muscovite. 

Although it is known that muscovite is a mica, it is suggested to make their name 

consistent to avoid confusion. 

Response: Thank you for pointing this out. We agree that consistency in terminology is 

important. We have revised Table 1 so that the last mineral is labeled as mica, in Line 

199 with the note, to avoid any potential confusion. 

 

2. Table 3, the digits of values should be uniform: suggest to retain a digit of 2. 

Response: We thank the reviewer for this suggestion. We have revised all numerical 

values in the manuscript to retain two significant digits for consistency across the tables 

and text. 

 

3. Figure 7, the picture for ozone is dazzling. The max/min/mean values (top left corner) 

cannot be seen clearly because of the color. Suggest reducing the hue of palette and 

move the text or change the color of the text. 

Response: We appreciate the reviewer’s comment. In the revised manuscript, we have 

adjusted the color palette in Figure 7 to reduce the dazzling effect and improved the 

visibility of the max/min/mean values by changing the text color and repositioning it. 



 

Figure 7. Changes in PM10 and O3 concentrations resulting from bulk dust-induced ARI effects, 

compared to the scenario without aerosol feedbacks. 

 

4. Figure 8, N2012_EMIT-bulk dust is exactly the same with J2014_default-Bulk dust. 

Suggest recheck the pictures. 

Response: We thank the reviewer for the careful check. After re-examination, we found 

that the panel for J2014_default-Bulk dust was mistakenly duplicated. The 

N2012_EMIT-bulk dust panel is correct, and we have updated the J2014_default-Bulk 

dust panel accordingly in the revised Figure 8. 



 

Figure 8. Difference in PM10 concentrations considering bulk dust and various dust mineralogy 

atlases that enable ARI effects. 

 

5. Figure 9, the texts in the violet region of quartz are not visible. Suggest changing its 

color to white. Also, the bars outside the pie look protruding; suggest using arrows to 

denote minimal values. 

Response: Thank you for the comment. We have updated Figure 9 accordingly: the text 

in the violet region of quartz has been changed to white for better visibility. Additionally, 

we replaced the protruding bars outside the pie with arrows to indicate the minimal 

values, improving the clarity of the figure. 



 

Figure 9. Contributions of different mineralogical compositions using N2012_default, 

N2012_EMIT, J2014_default, and J2014_EMIT, considering ARI effects, compared to the scenario 

without enabling aerosol feedbacks. 

 

At last, many thanks for the Reviewer’s helpful for comments and suggestions to 

improve the quality of our manuscript. 

 


