We would like to express our sincere appreciation to the Reviewer #1 for the valuable
and constructive suggestions, which have helped us improve the quality of this
manuscript. We have addressed all these comments carefully and revised the manuscript
accordingly. Following the Reviewer’ comments in black, please find our point-to-point
responses in blue. Hereafter, all new added or modified sentences are marked in blue

and italic in this response.

Reviewer #1

Major comments:
1. While the paper demonstrates the benefit of using EMIT data in methodology, it
would be helpful to provide a quantitative assessment of uncertainties introduced by

the interpolation and assumptions in EMIT data processing (e.g., feldspar/quartz filling).
Response: We appreciate the reviewer's suggestion regarding the need for a more

detailed quantitative assessment of uncertainties introduced by the interpolation and
assumptions in EMIT data processing, particularly in relation to the filling of minerals
like feldspar and quartz. We fully agree that understanding these uncertainties is crucial

for a comprehensive evaluation of the methodology.

EMIT data processing involves spatial interpolation to create gridded maps of soil
mineral composition. The primary interpolation method used is based on geographic
mixing assumptions, where the spectral abundance of minerals detected at a given
location is extrapolated to cover the grid cell. The uncertainty in this process arises from
the assumption that the detected mineral signatures are representative of the entire grid
cell. For minerals not directly measured by EMIT, such as quartz and feldspar, we use
soil type conversion methods based on previous studies (e.g., Claquin et al., 1999;
Journet et al., 2014) to estimate their contributions. These estimates are then used to fill

in the remaining fraction of the soil composition.

We have revised Section 2.3 of the manuscript to include a quantitative assessment of



uncertainties associated with the EMIT data processing as follow.

“In contrast, the EMIT dataset (https://earth.jpl.nasa.gov/emit/data/data-products)
required additional preprocessing, as it reports only normalized spectral abundances
rather than mineral mass fractions. These spectral abundances were therefore
recalculated to represent the normalized mass proportions of each mineral in each
substrate. Furthermore, EMIT does not include data for feldspar and quartz,
necessitating additional correction procedures described below.

When the total mineral composition from EMIT summed to less than 100%,
indicating missing mineral contributions, the residual fraction was assigned to quartz
and feldspar based on their relative proportions in J2014 or N2012. Because EMIT
reports illite and mica as a single category, their individual abundances were separated
according to the ratios found in N2012 or J2014. For minerals that occur in both clay
and silt fractions, EMIT values were partitioned following the relative contributions
from N2012 or J2014.

For minerals not directly observed by EMIT (e.g., quartz and feldspar), their mass
fractions were estimated using soil-type conversion methods from previous studies
(Claquin et al., 1999, Journet et al., 2014). The spatial distributions of clay and silt
were obtained from the global SoilW texture dataset
(http://globalchange.bnu.edu.cn/research/soilw) at 1 km resolution and resampled to
0.5° to match EMIT data. Similarly, the J2014 and N2012 mineral datasets were
resampled to 0.5° resolution. Major minerals extracted from EMIT L3 include calcite,
dolomite, chlorite, goethite, gypsum, hematite, illitet+muscovite, kaolinite,
montmorillonite, and vermiculite. Notably, in the official EMIT L3B dataset
(https://data.lpdaac.earthdatacloud.nasa.gov/Ip-prod-
protected/EMITL3ASA.001/EMIT L3 ASA 001/EMIT L3 ASA 001.nc), illite and
muscovite are combined because they were jointly identified during the Tetracorder
analysis of L2B data using mineral groups 1 and 2 and the corresponding band depths
(https://github.com/nasa/EMIT-Data-

Resources/blob/main/data/mineral_grouping matrix 20230503.csv).

The EMIT mineral fractions were normalized so that their sum at each grid point



did not exceed unity. Any remaining fraction was attributed to quartz and feldspars
according to their relative proportions in J2014 or N2012. To ensure consistency with
the CHIMERE mineral representation, dolomite was merged into calcite,
illite+muscovite was separated into illite and mica, and montmorillonite was treated
as smectite. The mineral fractions were then converted to density-weighted values and
renormalized at each grid point so that the total sum equaled one. Finally, each mineral
was partitioned into clay and silt fractions based on the J2014 ratios, and the resulting
fractions were normalized using Equations (1)—(4). The processed dataset was exported
as a NetCDF file to serve as input for the CHIMERE model.

To ensure mineral mass balance and model consistency, a normalization and
partitioning procedure was applied as follows. Equation (1) defines the total mass
Sraction (MF;) of mineral j as the sum of its contributions from the clay (MF C;) and silt
(MFS;) fractions:

MF; = MFC; + MFS; for all € Mcyiyere (1)

Equation (2) enforces a normalization constraint so that the sum of all mineral

mass fractions equals unity at each grid point.

1= MF, (2)

Zj EMCHIMERE

The normalized total fraction of each mineral (MF;") was then redistributed

between clay and silt according to their relative contributions in the reference dataset

(J2014 or N2012), as shown in Equations (3) and (4):

MFS]'

MES; = MF; MFS j+MFC; (3)
. _ % MFC]'
MFEC; = MF; MFS+MFC; (4)

Here, MFS; and MFC; represent the normalized mass fractions of mineral j in

the silt and clay fractions, respectively. The weighting terms MFS; and

MF C; preserve the clay-silt distribution patterns derived from the reference datasets

while maintaining the normalized total (MF;").”



2. The manuscript often mentions ACI (aerosol-cloud interaction), yet the modeling
focuses on ARI only. Please clarify this distinction earlier in the Introduction and reduce
any ambiguity about what has or has not been included.

Response: The Introduction of manuscript has been revised to clarify this distinction as
follows.

“Since the aerosol nucleation processes (ACI effects) of specific mineral components
are not represented in the current two-way coupled WRF—-CHIMERE framework, the
present study concentrates on the ARI effects of dust minerals. This focus ensures a
clear and robust assessment of how mineralogical composition influences radiative
processes, without introducing additional uncertainties arising from incomplete cloud-
related parameterizations. In this study, we employ a two-way coupled WRF-—
CHIMERE model with three mineralogical databases to investigate how dust
composition influences radiation and meteorology in North China during a severe dust
storm. Section 2 describes the model configuration and data sources, Section 3 presents
the simulations with emphasis on ARI-induced impacts on meteorology and air quality,

and Section 4 summarizes the main findings.”

3. The SSR and PMio comparisons are robust, but more details on the performance
metrics (bias, RMSE, etc.) across multiple sites and time periods would strengthen the
validation claims.

Response: Additional details on the model evaluation have been included. In the revised
manuscript, we now provide site-specific performance metrics (bias, RMSE,
correlation coefficient) for both SSR and PM ¢ across multiple observational sites and
time periods. These results are summarized in Table 1 and Figure 2 and discussed in

Section 3.1.

“The model demonstrates strong overall performance, with correlation
coefficients (R) between observed and simulated values reaching approximately 0.7 for
SSR and WS10, and up to 0.93 for T2. These results indicate the models ability to

capture key atmospheric patterns and variability across the simulation domain.



Nevertheless, systematic biases are apparent, particularly in North China, where the
model tends to overestimate SSR and WS10 by 60.69%—68.92% and 17.06%—17.52%,
respectively, while underestimating T2 by 0.48%—0.58%. The overestimation of SSR
likely results from uncertainties in cloud development associated with planetary
boundary layer and convection parameterizations (Alapaty et al., 2012). The systematic
overestimation of 10-m wind speed under low-wind conditions commonly observed in
weather models mainly stems from outdated geographic data and coarse spatial
resolution (Gao et al., 2024).”

“The models show relatively high correlations for PMo, with R values ranging
from 0.61 to 0.89 and NMBs from —73.8% to —0.9%. In contrast, their performance for

Os is notably poorer.”

These additions strengthen the robustness of the validation and support the reliability

of the modeling results.

4. The influence of mineralogy on PMio and O; is clearly demonstrated, but more
discussion of the physical mechanisms (e.g., specific reactions, photolysis suppression)
would help interpret the observed changes.

Response: We agree that elaborating on the physical mechanisms will improve the
interpretation of the results. In the revised manuscript, we have expanded the discussion
(Section 3.3) to describe the processes by which mineral dust composition influences

both PM o and Os.

“These reactions would be related to the adsorption and catalytic decomposition of
ozone on the surface of mineral dust particles, as well as the potential for dust to alter
the concentration of reactive species in the atmosphere through heterogeneous
chemistry (Cwiertny et al., 2008). For example, the presence of adsorbed water on dust
particles can compete with ozone for reactive sites, reducing the overall uptake and
decomposition of ozone (Usher et al., 2003). Additionally, the photochemical reactions

involving dust particles, such as the photolysis of nitrate ions, can produce reactive



radicals that further influence the atmospheric chemistry of ozone (Ma et al., 2021).”

“The photochemical reactions involving dust particles, such as the photolysis of nitrate
ions, can produce reactive radicals that further influence the atmospheric chemistry of

ozone (Ma et al., 2021).”

5. The results show that quartz and feldspar dominate dust mass, while hematite
dominates radiative effects. This contrast deserves more discussion in both the Results
and Conclusion sections.

Response: We have expanded both the Results and Conclusion sections to emphasize
the contrast between dust mass and radiative importance among minerals. Specifically,
the revised text highlights that “Within the scope of this study, the results indicate that
overall dust mineralogical composition, rather than dust mass alone, plays a decisive
role in ARI effects, with hematite exerting a dominant influence despite its minor
abundance, although the radiative effects of individual mineral species were not
separately quantified.”. The new discussion clarifies why mass-dominant minerals do
not necessarily drive radiative forcing and why trace absorptive minerals can play an

outsized role.

6. The model bias discussion (Section 3.1) is helpful but could be deepened by
exploring possible reasons for the underestimation of PM o at high dust sites.

Response: The discussion of model bias in Section 3.1 has been expanded. In particular,
we now examine potential reasons for the underestimation of PMio at high-dust sites.
Possible explanations include “Although considerable progress has been made in dust
modeling, notable uncertainties remain. The parameterization of threshold friction
velocity and soil texture in emission schemes can still result in underestimated
emissions under strong winds (Zuo et al., 2024). Similarly, simplifications in coarse
particle size distributions may lead to enhanced deposition and transport losses. In
addition, incomplete knowledge of local soil mineralogical composition continues to

limit the accurate simulation of both emission fluxes and heterogeneous chemistry



(Pang et al., 2024).”. We have added this discussion in Section 3.1, noting that these
factors collectively contribute to the underestimation of PMio peaks in dust-dominated

regions.

Minor comments:

1. Line 137: Please specify how missing EMIT data (quartz/feldspar) are estimated —
a numeric assumption or spatial filling?

Response: We have clarified the treatment of missing EMIT data at Line 137.
Specifically, gaps in quartz and feldspar fractions are addressed using a spatial filling
approach rather than applying a single numeric assumption. The missing values are
filled by interpolating from neighboring valid EMIT pixels within the same dust source
region, constrained by the relative proportions observed in the reference mineralogical
dataset. This procedure ensures spatial consistency and preserves regional
mineralogical characteristics. The revised text in Section X.X now explicitly describes
this method.

“When the total mineral composition from EMIT summed to less than 100%, indicating
missing mineral contributions, the residual fraction was assigned to quartz and

feldspar based on their relative proportions in J2014 or N2012.”

2. Line 187-198: The bias in SSR is discussed, but no mention is made of possible
causes (e.g., aerosol loading or model radiation scheme limitations).

Response: We thank the reviewer for this valuable suggestion. We have now expanded
the discussion of possible causes of the SSR bias (Lines 187—-198) as follow.

“The overestimation of SSR likely results from uncertainties in cloud development
associated with planetary boundary layer and convection parameterizations (Alapaty

etal., 2012).”

3. Line 194: The overestimation of SSR and WS10 could be more quantitatively
discussed. Is this bias consistent with other dust studies in this region?

Response: We appreciate the reviewer’s constructive suggestion. We have revised the



text around Line 194 to provide a more quantitative discussion of the overestimation of
SSR and WS10.

“Nevertheless, systematic biases are apparent, particularly in North China, where the
model tends to overestimate SSR and WS10 by 60.69%—68.92% and 17.06%—17.52%,
respectively, while underestimating T2 by 0.48%—0.58%. The overestimation of SSR
likely results from uncertainties in cloud development associated with planetary
boundary layer and convection parameterizations (Alapaty et al., 2012). Likewise, the
systematic overestimation of 10-m wind speed under low-wind conditions commonly
observed in weather models mainly stems from outdated geographic data and coarse

spatial resolution (Gao et al., 2024).”.

Previous study evaluating the modeling performance of two-way coupled WRF—
CMAQ, WRF-Chem, and WRF-CHIMERE systems in simulating meteorology and
air quality over eastern China have also reported overestimations of SSR and WS10

(Gao et al., 2024).

4. Line 213-214: “minimizing the negative biases in T2” — perhaps “reducing the
magnitude of negative biases” is clearer.

Response: We thank the reviewer for this helpful wording suggestion. We have revised
the text at Lines 213-214 to “reducing the magnitude of negative biases in T2,” which

we agree is clearer and more precise.

5. Line 250: “Positive O3 biases increased” is unclear — do you mean O3 concentrations
were overestimated?

Response: We appreciate the reviewer’s comment. Our intent was to indicate that the
model overestimated O3 concentrations during that period. To improve clarity, we have
revised the wording at Line 250 to “the underestimation of PMio was alleviated,
whereas the overestimation of Oz was amplified” instead of “positive Oz biases

increased.”



6. Line 305: “—900 W m 2" seems unusually large for surface shortwave cooling. Please
double-check this value.
Response: Thank you for raising this point. We rechecked the model diagnostics and

confirm that the value —900 W m 2 reported on line 305 is correct.

7. Line 584: Suggest shortening this part of the conclusion and moving satellite
technical details into Data/Methods.

Response: We thank the reviewer for this constructive suggestion. We have shortened
the text in the Conclusion (Line 584) to focus on the key findings, and we have moved
the technical details regarding satellite data (sensor specifications, retrieval algorithms,
and processing steps) into the Data/Methods section.

“Dust mineral composition plays a vital role in regulating atmospheric radiation
and air quality, yet its effects remain poorly constrained in current atmospheric models.
Understanding these impacts is particularly important for North China, where severe
dust storms frequently affect regional climate and pollution. This study investigates how
variations in mineral composition influence aerosol-radiation interactions and their
implications for meteorology and air quality during a major dust storm event.

The findings revealed significant spatial variations in radiative forcing due to
differences in dust mineralogy. Compared to the ARI effects of bulk dust, the
mineralogical composition of dust aerosols can increase SW radiation forcing at the
surface and in the atmosphere by +0.10 to +0.82 W m™2, while simultaneously causing
a decrease of approximately —0.72 W m™? in SW radiation forcing at the TOA.
Integrating EMIT data into the model reduced PMjo biases by over 15% in high-
concentration regions and improved ozone predictions, with localized changes ranging
from —2.46 to +3.52 ug m>. Specifically, the ARI effects of these mineralogical
compositions led to a notable increase in PMg levels, reaching up to 1189.48 ug m=in
dust source regions, when compared to bulk dust scenarios.

These findings highlight the importance of incorporating dust mineralogical data
to improve simulations of radiative forcing and air quality impacts. Within the scope of

this study, the results indicate that overall dust mineralogical composition, rather than



dust mass alone, plays a decisive role in ARI effects, with hematite exerting a dominant
influence despite its minor abundance, although the radiative effects of individual
mineral species were not separately quantified. Systematic biases in surface radiation,
near-surface winds, and temperature persist, reflecting challenges in simulating dust—
atmosphere interactions and uncertainties in mineralogical datasets. Future research
should focus on coupling mineral-specific dust with cloud processes and leveraging
higher-resolution soil and satellite data to refine dust emission simulations and reduce

model biases.”

8. Figure 1: Please include a scale bar and clear region names to help interpret mineral
distributions.

Response: We appreciate the reviewer’s helpful suggestion. We have revised Figure 1
to include a scale bar and have added region names to facilitate interpretation of the
mineral distributions. The updated figure improves geographic clarity and makes it

easier for readers to contextualize the results.
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Figure 1. Spatial distribution of content for the different mineral dust species in the silt and clay

fraction of the soil for original J2014 mineralogical data.
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Figure AS. Spatial distribution of content for the different mineral dust species in the silt and clay
fraction of the soil for J2014 with EMIT satellite data.
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Figure A6. Spatial distribution of content for the different mineral dust species in the silt and clay

fraction of the soil for original N2012 mineralogical data.
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Figure A7. Spatial distribution of content for the different mineral dust species in the silt and clay
fraction of the soil for N2012 with EMIT satellite data.

9. Figure 2: Consider including error bars or confidence intervals for observed values,
“Statatiscal metrices” — should be “Statistical metrics” in its caption.

Response: We thank the reviewer for this valuable suggestion. We have revised Figure
2 to include error bars representing the standard deviation (or 95% confidence intervals)

of the observed values, thereby providing a clearer indication of observational

uncertainty.
—— Obs —— N2012_default_NO —— N2012_EMIT_NO —— 12014_default NO J2014_EMIT_NO
—— Dust NO  —— N2012 default AR —— N2012 EMIT ARI ~ —— J2014 default ARI 12014 EMIT ARI
— Dust_ARI
Ordos Kalgan
10000 @ ( IRQ)
8000 .
R=0.60 NMB=-64.3% R=0.76 NMB=-4.3%
m’; R=0.61 NMB=-73.8% R=0.72 NMB=-42.2%
B 6000 1 r=0.61 NMB=64.4% 1 R=0.76 NMB=-1.5%
= R=0.61 NMB=-73.5% || R=0.73 NMB=-40.2%
2 4000 | RA0-60 NMB=64.1% | | R=0.75 NMB=-5.5%
E R=0.61 NMB=-73.7% |} R=0.72 NMB=-42.3%
R=0.60 NMB=-67.0% || R=0.73 NMB=-17.2%
2000 / 1 R=0.70 NMB=-47.9%
Beijing Tianjin
10000 © @
8000 1
R=0.88 NMB=-30.9% R=0.75 NMB=-13.7%
r*-’g R=0.82 NMB=-58.0% R=0.68 NMB=-48.8%
= 6000 1 r=0.89 NMB=-29.7% 1 R=0.72 NMB=-13.6%
= R=0.82 NMB=-56.2% R=0.69 NMB=-46.6%
= =0,88 NMB=-32.6% R=0.71 NMB=-17.6%
o 4000 | R88 6% | R=07 7.6%
= R=0.82 NMB=-58.1% R=0.67 NMB=-48.9%
R=0.86 NMB=—42.8% R=0.69 NMB=-29.8%
2000 { r=0.80 NMB=-62.7% 1 R=0.65 NMB=-54.9¢,
0 T T - T 7|
SRS SERSEI
N N A N N Y

Figure 2. Statatiscal metrices between observated and simulated PM o concentrations by different

scenario simulations.

In addition, we have corrected the typographical error in the caption, changing

“Statatiscal metrices” to “Statistical metrics.”




10. Figure quality could be improved — e.g., Figures 2 and 7 would benefit from
enhanced color contrast and labeled axes for clarity.

Response: We thank the reviewer for this helpful suggestion. We have improved the
quality of Figures 2 and 7 by enhancing the color contrast to better distinguish data
ranges and by adding clearly labeled axes with units where applicable. These

improvements enhance readability and ensure that the figures convey the data more

effectively.
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Figure 2. Statatiscal metrices between observated and simulated PM o concentrations by different

scenario simulations.
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Figure A2. Statatiscal metrices between observated and simulated O3 concentrations by different

scenario simulations.
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Figure 7. Changes in PMjo and O3 concentrations resulting from bulk dust-induced ARI effects,
compared to the scenario without aerosol feedbacks.

11. Reference format is mostly consistent, but some recent references (e.g., Panta et al.,
2023) are missing DOIs.

Response: We thank the reviewer for noting this. We have carefully checked all
references and added missing DOIs, including for Panta et al. (2023) and any other
recent studies where applicable. The reference list is now complete and consistent with

the journal’s formatting requirements.

Panta, A., Kandler, K., Alastuey, A., Gonzalez-Florez, C., Gonzalez-Romero, A., Klose, M., Querol,
X., Reche, C., Yus-Diez, J., and Pérez Garcia-Pando, C.: Insights into the single-particle
composition, size, mixing state, and aspect ratio of freshly emitted mineral dust from field
measurements in the Moroccan Sahara using electron microscopy, Atmospheric Chemistry



and Physics, 23, 3861-3885, https://doi.org/10.5194/acp-23-3861-2023, 2023.

Green, R. O., Mahowald, N., Ung, C., Thompson, D. R., Bator, L., Bennet, M., Bernas, M.,
Blackway, N., Bradley, C., and Cha, J.: The Earth surface mineral dust source investigation:
An Earth science imaging spectroscopy mission, 2020 IEEE aerospace conference, 1-15,
https://doi.org/10.1109/AER047225.2020.9172731, 2020.

At last, many thanks for the Reviewer’s helpful for comments and suggestions to

improve the quality of our manuscript.



