
We would like to express our sincere appreciation to the Reviewer #1 for the valuable 

and constructive suggestions, which have helped us improve the quality of this 

manuscript. We have addressed all these comments carefully and revised the manuscript 

accordingly. Following the Reviewer’ comments in black, please find our point-to-point 

responses in blue. Hereafter, all new added or modified sentences are marked in blue 

and italic in this response. 

 

Reviewer #1 

Major comments: 

1. While the paper demonstrates the benefit of using EMIT data in methodology, it 

would be helpful to provide a quantitative assessment of uncertainties introduced by 

the interpolation and assumptions in EMIT data processing (e.g., feldspar/quartz filling). 

Response: We appreciate the reviewer ’s suggestion regarding the need for a more 

detailed quantitative assessment of uncertainties introduced by the interpolation and 

assumptions in EMIT data processing, particularly in relation to the filling of minerals 

like feldspar and quartz. We fully agree that understanding these uncertainties is crucial 

for a comprehensive evaluation of the methodology. 

 

EMIT data processing involves spatial interpolation to create gridded maps of soil 

mineral composition. The primary interpolation method used is based on geographic 

mixing assumptions, where the spectral abundance of minerals detected at a given 

location is extrapolated to cover the grid cell. The uncertainty in this process arises from 

the assumption that the detected mineral signatures are representative of the entire grid 

cell. For minerals not directly measured by EMIT, such as quartz and feldspar, we use 

soil type conversion methods based on previous studies (e.g., Claquin et al., 1999; 

Journet et al., 2014) to estimate their contributions. These estimates are then used to fill 

in the remaining fraction of the soil composition. 

 

We have revised Section 2.3 of the manuscript to include a quantitative assessment of 



uncertainties associated with the EMIT data processing as follow. 

“In contrast, the EMIT dataset (https://earth.jpl.nasa.gov/emit/data/data-products) 

required additional preprocessing, as it reports only normalized spectral abundances 

rather than mineral mass fractions. These spectral abundances were therefore 

recalculated to represent the normalized mass proportions of each mineral in each 

substrate. Furthermore, EMIT does not include data for feldspar and quartz, 

necessitating additional correction procedures described below. 

When the total mineral composition from EMIT summed to less than 100%, 

indicating missing mineral contributions, the residual fraction was assigned to quartz 

and feldspar based on their relative proportions in J2014 or N2012. Because EMIT 

reports illite and mica as a single category, their individual abundances were separated 

according to the ratios found in N2012 or J2014. For minerals that occur in both clay 

and silt fractions, EMIT values were partitioned following the relative contributions 

from N2012 or J2014. 

For minerals not directly observed by EMIT (e.g., quartz and feldspar), their mass 

fractions were estimated using soil-type conversion methods from previous studies 

(Claquin et al., 1999; Journet et al., 2014). The spatial distributions of clay and silt 

were obtained from the global SoilW texture dataset 

(http://globalchange.bnu.edu.cn/research/soilw) at 1 km resolution and resampled to 

0.5° to match EMIT data. Similarly, the J2014 and N2012 mineral datasets were 

resampled to 0.5° resolution. Major minerals extracted from EMIT L3 include calcite, 

dolomite, chlorite, goethite, gypsum, hematite, illite+muscovite, kaolinite, 

montmorillonite, and vermiculite. Notably, in the official EMIT L3B dataset 

(https://data.lpdaac.earthdatacloud.nasa.gov/lp-prod-

protected/EMITL3ASA.001/EMIT_L3_ASA_001/EMIT_L3_ASA_001.nc), illite and 

muscovite are combined because they were jointly identified during the Tetracorder 

analysis of L2B data using mineral groups 1 and 2 and the corresponding band depths 

(https://github.com/nasa/EMIT-Data-

Resources/blob/main/data/mineral_grouping_matrix_20230503.csv). 

The EMIT mineral fractions were normalized so that their sum at each grid point 



did not exceed unity. Any remaining fraction was attributed to quartz and feldspars 

according to their relative proportions in J2014 or N2012. To ensure consistency with 

the CHIMERE mineral representation, dolomite was merged into calcite, 

illite+muscovite was separated into illite and mica, and montmorillonite was treated 

as smectite. The mineral fractions were then converted to density-weighted values and 

renormalized at each grid point so that the total sum equaled one. Finally, each mineral 

was partitioned into clay and silt fractions based on the J2014 ratios, and the resulting 

fractions were normalized using Equations (1)–(4). The processed dataset was exported 

as a NetCDF file to serve as input for the CHIMERE model. 

To ensure mineral mass balance and model consistency, a normalization and 

partitioning procedure was applied as follows. Equation (1) defines the total mass 

fraction (𝑀𝐹𝑗) of mineral j as the sum of its contributions from the clay (𝑀𝐹𝐶𝑗) and silt 

(𝑀𝐹𝑆𝑗) fractions: 

 𝑀𝐹𝑗 = 𝑀𝐹𝐶𝑗 + 𝑀𝐹𝑆𝑗   𝑓𝑜𝑟 𝑎𝑙𝑙 ∈ 𝑀𝐶𝐻𝐼𝑀𝐸𝑅𝐸  (1) 

Equation (2) enforces a normalization constraint so that the sum of all mineral 

mass fractions equals unity at each grid point. 

 1 =  ∑ 𝑀𝐹𝑗𝑗∈𝑀𝐶𝐻𝐼𝑀𝐸𝑅𝐸
  (2) 

The normalized total fraction of each mineral ( 𝑀𝐹𝑗
∗ ) was then redistributed 

between clay and silt according to their relative contributions in the reference dataset 

(J2014 or N2012), as shown in Equations (3) and (4): 

 𝑀𝐹𝑆𝑗
∗ =  𝑀𝐹𝑗

∗ 𝑀𝐹𝑆𝑗

𝑀𝐹𝑆𝑗+𝑀𝐹𝐶𝑗
  (3) 

 𝑀𝐹𝐶𝑗
∗ =  𝑀𝐹𝑗

∗ 𝑀𝐹𝐶𝑗

𝑀𝐹𝑆𝑗+𝑀𝐹𝐶𝑗
  (4) 

Here, 𝑀𝐹𝑆𝑗
∗ and 𝑀𝐹𝐶𝑗

∗ represent the normalized mass fractions of mineral j in 

the silt and clay fractions, respectively. The weighting terms 𝑀𝐹𝑆𝑗  and 

𝑀𝐹𝐶𝑗  preserve the clay–silt distribution patterns derived from the reference datasets 

while maintaining the normalized total (𝑀𝐹𝑗
∗).” 

 

 



2. The manuscript often mentions ACI (aerosol-cloud interaction), yet the modeling 

focuses on ARI only. Please clarify this distinction earlier in the Introduction and reduce 

any ambiguity about what has or has not been included. 

Response: The Introduction of manuscript has been revised to clarify this distinction as 

follows. 

“Since the aerosol nucleation processes (ACI effects) of specific mineral components 

are not represented in the current two-way coupled WRF–CHIMERE framework, the 

present study concentrates on the ARI effects of dust minerals. This focus ensures a 

clear and robust assessment of how mineralogical composition influences radiative 

processes, without introducing additional uncertainties arising from incomplete cloud-

related parameterizations. In this study, we employ a two-way coupled WRF–

CHIMERE model with three mineralogical databases to investigate how dust 

composition influences radiation and meteorology in North China during a severe dust 

storm. Section 2 describes the model configuration and data sources, Section 3 presents 

the simulations with emphasis on ARI-induced impacts on meteorology and air quality, 

and Section 4 summarizes the main findings.” 

 

3. The SSR and PM10 comparisons are robust, but more details on the performance 

metrics (bias, RMSE, etc.) across multiple sites and time periods would strengthen the 

validation claims. 

Response: Additional details on the model evaluation have been included. In the revised 

manuscript, we now provide site‐specific performance metrics (bias, RMSE, 

correlation coefficient) for both SSR and PM10 across multiple observational sites and 

time periods. These results are summarized in Table 1 and Figure 2 and discussed in 

Section 3.1. 

 

“The model demonstrates strong overall performance, with correlation 

coefficients (R) between observed and simulated values reaching approximately 0.7 for 

SSR and WS10, and up to 0.93 for T2. These results indicate the model’s ability to 

capture key atmospheric patterns and variability across the simulation domain. 



Nevertheless, systematic biases are apparent, particularly in North China, where the 

model tends to overestimate SSR and WS10 by 60.69%–68.92% and 17.06%–17.52%, 

respectively, while underestimating T2 by 0.48%–0.58%. The overestimation of SSR 

likely results from uncertainties in cloud development associated with planetary 

boundary layer and convection parameterizations (Alapaty et al., 2012). The systematic 

overestimation of 10-m wind speed under low-wind conditions commonly observed in 

weather models mainly stems from outdated geographic data and coarse spatial 

resolution (Gao et al., 2024).” 

“The models show relatively high correlations for PM10, with R values ranging 

from 0.61 to 0.89 and NMBs from −73.8% to −0.9%. In contrast, their performance for 

O3 is notably poorer.” 

 

These additions strengthen the robustness of the validation and support the reliability 

of the modeling results. 

 

4. The influence of mineralogy on PM10 and O3 is clearly demonstrated, but more 

discussion of the physical mechanisms (e.g., specific reactions, photolysis suppression) 

would help interpret the observed changes. 

Response: We agree that elaborating on the physical mechanisms will improve the 

interpretation of the results. In the revised manuscript, we have expanded the discussion 

(Section 3.3) to describe the processes by which mineral dust composition influences 

both PM10 and O3.  

 

“These reactions would be related to the adsorption and catalytic decomposition of 

ozone on the surface of mineral dust particles, as well as the potential for dust to alter 

the concentration of reactive species in the atmosphere through heterogeneous 

chemistry (Cwiertny et al., 2008). For example, the presence of adsorbed water on dust 

particles can compete with ozone for reactive sites, reducing the overall uptake and 

decomposition of ozone (Usher et al., 2003). Additionally, the photochemical reactions 

involving dust particles, such as the photolysis of nitrate ions, can produce reactive 



radicals that further influence the atmospheric chemistry of ozone (Ma et al., 2021).” 

 

“The photochemical reactions involving dust particles, such as the photolysis of nitrate 

ions, can produce reactive radicals that further influence the atmospheric chemistry of 

ozone (Ma et al., 2021).” 

 

5. The results show that quartz and feldspar dominate dust mass, while hematite 

dominates radiative effects. This contrast deserves more discussion in both the Results 

and Conclusion sections. 

Response: We have expanded both the Results and Conclusion sections to emphasize 

the contrast between dust mass and radiative importance among minerals. Specifically, 

the revised text highlights that “Within the scope of this study, the results indicate that 

overall dust mineralogical composition, rather than dust mass alone, plays a decisive 

role in ARI effects, with hematite exerting a dominant influence despite its minor 

abundance, although the radiative effects of individual mineral species were not 

separately quantified.”. The new discussion clarifies why mass-dominant minerals do 

not necessarily drive radiative forcing and why trace absorptive minerals can play an 

outsized role. 

 

6. The model bias discussion (Section 3.1) is helpful but could be deepened by 

exploring possible reasons for the underestimation of PM10 at high dust sites. 

Response: The discussion of model bias in Section 3.1 has been expanded. In particular, 

we now examine potential reasons for the underestimation of PM₁₀ at high‐dust sites. 

Possible explanations include “Although considerable progress has been made in dust 

modeling, notable uncertainties remain. The parameterization of threshold friction 

velocity and soil texture in emission schemes can still result in underestimated 

emissions under strong winds (Zuo et al., 2024). Similarly, simplifications in coarse 

particle size distributions may lead to enhanced deposition and transport losses. In 

addition, incomplete knowledge of local soil mineralogical composition continues to 

limit the accurate simulation of both emission fluxes and heterogeneous chemistry 



(Pang et al., 2024).”. We have added this discussion in Section 3.1, noting that these 

factors collectively contribute to the underestimation of PM₁₀ peaks in dust‐dominated 

regions. 

 

Minor comments: 

1. Line 137: Please specify how missing EMIT data (quartz/feldspar) are estimated — 

a numeric assumption or spatial filling? 

Response: We have clarified the treatment of missing EMIT data at Line 137. 

Specifically, gaps in quartz and feldspar fractions are addressed using a spatial filling 

approach rather than applying a single numeric assumption. The missing values are 

filled by interpolating from neighboring valid EMIT pixels within the same dust source 

region, constrained by the relative proportions observed in the reference mineralogical 

dataset. This procedure ensures spatial consistency and preserves regional 

mineralogical characteristics. The revised text in Section X.X now explicitly describes 

this method. 

“When the total mineral composition from EMIT summed to less than 100%, indicating 

missing mineral contributions, the residual fraction was assigned to quartz and 

feldspar based on their relative proportions in J2014 or N2012.” 

 

2. Line 187–198: The bias in SSR is discussed, but no mention is made of possible 

causes (e.g., aerosol loading or model radiation scheme limitations). 

Response: We thank the reviewer for this valuable suggestion. We have now expanded 

the discussion of possible causes of the SSR bias (Lines 187–198) as follow. 

“The overestimation of SSR likely results from uncertainties in cloud development 

associated with planetary boundary layer and convection parameterizations (Alapaty 

et al., 2012).” 

 

3. Line 194: The overestimation of SSR and WS10 could be more quantitatively 

discussed. Is this bias consistent with other dust studies in this region? 

Response: We appreciate the reviewer’s constructive suggestion. We have revised the 



text around Line 194 to provide a more quantitative discussion of the overestimation of 

SSR and WS10.  

“Nevertheless, systematic biases are apparent, particularly in North China, where the 

model tends to overestimate SSR and WS10 by 60.69%–68.92% and 17.06%–17.52%, 

respectively, while underestimating T2 by 0.48%–0.58%. The overestimation of SSR 

likely results from uncertainties in cloud development associated with planetary 

boundary layer and convection parameterizations (Alapaty et al., 2012). Likewise, the 

systematic overestimation of 10-m wind speed under low-wind conditions commonly 

observed in weather models mainly stems from outdated geographic data and coarse 

spatial resolution (Gao et al., 2024).”. 

 

Previous study evaluating the modeling performance of two-way coupled WRF–

CMAQ, WRF–Chem, and WRF–CHIMERE systems in simulating meteorology and 

air quality over eastern China have also reported overestimations of SSR and WS10 

(Gao et al., 2024). 

 

4. Line 213–214: “minimizing the negative biases in T2” — perhaps “reducing the 

magnitude of negative biases” is clearer. 

Response: We thank the reviewer for this helpful wording suggestion. We have revised 

the text at Lines 213–214 to “reducing the magnitude of negative biases in T2,” which 

we agree is clearer and more precise. 

 

5. Line 250: “Positive O3 biases increased” is unclear — do you mean O3 concentrations 

were overestimated? 

Response: We appreciate the reviewer’s comment. Our intent was to indicate that the 

model overestimated O3 concentrations during that period. To improve clarity, we have 

revised the wording at Line 250 to “the underestimation of PM10 was alleviated, 

whereas the overestimation of O3 was amplified” instead of “positive O3 biases 

increased.” 

 



6. Line 305: “−900 W m−2” seems unusually large for surface shortwave cooling. Please 

double-check this value. 

Response: Thank you for raising this point. We rechecked the model diagnostics and 

confirm that the value −900 W m−2 reported on line 305 is correct. 

 

7. Line 584: Suggest shortening this part of the conclusion and moving satellite 

technical details into Data/Methods. 

Response: We thank the reviewer for this constructive suggestion. We have shortened 

the text in the Conclusion (Line 584) to focus on the key findings, and we have moved 

the technical details regarding satellite data (sensor specifications, retrieval algorithms, 

and processing steps) into the Data/Methods section. 

“Dust mineral composition plays a vital role in regulating atmospheric radiation 

and air quality, yet its effects remain poorly constrained in current atmospheric models. 

Understanding these impacts is particularly important for North China, where severe 

dust storms frequently affect regional climate and pollution. This study investigates how 

variations in mineral composition influence aerosol–radiation interactions and their 

implications for meteorology and air quality during a major dust storm event. 

The findings revealed significant spatial variations in radiative forcing due to 

differences in dust mineralogy. Compared to the ARI effects of bulk dust, the 

mineralogical composition of dust aerosols can increase SW radiation forcing at the 

surface and in the atmosphere by +0.10 to +0.82 W m−2, while simultaneously causing 

a decrease of approximately −0.72 W m−2 in SW radiation forcing at the TOA. 

Integrating EMIT data into the model reduced PM10 biases by over 15% in high-

concentration regions and improved ozone predictions, with localized changes ranging 

from −2.46 to +3.52 µg m⁻³. Specifically, the ARI effects of these mineralogical 

compositions led to a notable increase in PM10 levels, reaching up to 1189.48 µg m⁻³ in 

dust source regions, when compared to bulk dust scenarios. 

These findings highlight the importance of incorporating dust mineralogical data 

to improve simulations of radiative forcing and air quality impacts. Within the scope of 

this study, the results indicate that overall dust mineralogical composition, rather than 



dust mass alone, plays a decisive role in ARI effects, with hematite exerting a dominant 

influence despite its minor abundance, although the radiative effects of individual 

mineral species were not separately quantified. Systematic biases in surface radiation, 

near-surface winds, and temperature persist, reflecting challenges in simulating dust–

atmosphere interactions and uncertainties in mineralogical datasets. Future research 

should focus on coupling mineral-specific dust with cloud processes and leveraging 

higher-resolution soil and satellite data to refine dust emission simulations and reduce 

model biases.” 

 

8. Figure 1: Please include a scale bar and clear region names to help interpret mineral 

distributions. 

Response: We appreciate the reviewer’s helpful suggestion. We have revised Figure 1 

to include a scale bar and have added region names to facilitate interpretation of the 

mineral distributions. The updated figure improves geographic clarity and makes it 

easier for readers to contextualize the results. 

 

Figure 1. Spatial distribution of content for the different mineral dust species in the silt and clay 

fraction of the soil for original J2014 mineralogical data. 

 



 

Figure A5. Spatial distribution of content for the different mineral dust species in the silt and clay 

fraction of the soil for J2014 with EMIT satellite data. 

 

 

Figure A6. Spatial distribution of content for the different mineral dust species in the silt and clay 

fraction of the soil for original N2012 mineralogical data. 

 

 



Figure A7. Spatial distribution of content for the different mineral dust species in the silt and clay 

fraction of the soil for N2012 with EMIT satellite data. 

 

9. Figure 2: Consider including error bars or confidence intervals for observed values, 

“Statatiscal metrices” → should be “Statistical metrics” in its caption. 

Response: We thank the reviewer for this valuable suggestion. We have revised Figure 

2 to include error bars representing the standard deviation (or 95% confidence intervals) 

of the observed values, thereby providing a clearer indication of observational 

uncertainty.  

 

Figure 2. Statatiscal metrices between observated and simulated PM10 concentrations by different 

scenario simulations. 

 

In addition, we have corrected the typographical error in the caption, changing 

“Statatiscal metrices” to “Statistical metrics.” 

 



10. Figure quality could be improved — e.g., Figures 2 and 7 would benefit from 

enhanced color contrast and labeled axes for clarity. 

Response: We thank the reviewer for this helpful suggestion. We have improved the 

quality of Figures 2 and 7 by enhancing the color contrast to better distinguish data 

ranges and by adding clearly labeled axes with units where applicable. These 

improvements enhance readability and ensure that the figures convey the data more 

effectively. 

 

Figure 2. Statatiscal metrices between observated and simulated PM10 concentrations by different 

scenario simulations. 



 
Figure A2. Statatiscal metrices between observated and simulated O3 concentrations by different 

scenario simulations. 



 

Figure 7. Changes in PM10 and O3 concentrations resulting from bulk dust-induced ARI effects, 

compared to the scenario without aerosol feedbacks. 

 

11. Reference format is mostly consistent, but some recent references (e.g., Panta et al., 

2023) are missing DOIs. 

Response: We thank the reviewer for noting this. We have carefully checked all 

references and added missing DOIs, including for Panta et al. (2023) and any other 

recent studies where applicable. The reference list is now complete and consistent with 

the journal’s formatting requirements. 

Panta, A., Kandler, K., Alastuey, A., González-Flórez, C., González-Romero, A., Klose, M., Querol, 

X., Reche, C., Yus-Díez, J., and Pérez García-Pando, C.: Insights into the single-particle 

composition, size, mixing state, and aspect ratio of freshly emitted mineral dust from field 

measurements in the Moroccan Sahara using electron microscopy, Atmospheric Chemistry 



and Physics, 23, 3861–3885, https://doi.org/10.5194/acp-23-3861-2023, 2023. 

Green, R. O., Mahowald, N., Ung, C., Thompson, D. R., Bator, L., Bennet, M., Bernas, M., 

Blackway, N., Bradley, C., and Cha, J.: The Earth surface mineral dust source investigation: 

An Earth science imaging spectroscopy mission, 2020 IEEE aerospace conference, 1–15, 

https://doi.org/10.1109/AERO47225.2020.9172731, 2020. 

 

 

At last, many thanks for the Reviewer’s helpful for comments and suggestions to 

improve the quality of our manuscript. 

 


