

1 **Numerical simulation of nitrous oxide over Asia using**
2 **regional climate-chemistry-ecology coupling model**
3 **RegCM-Chem-YIBs**

4 Xin Zeng¹, Tijian Wang^{1*}, Congwu Huang², Bingliang Zhuang¹, Shu Li¹, Mengmeng
5 Li¹, Min Xie³, Qian Zhang¹, Nanhong Xie¹

6 ¹School of Atmospheric Sciences, Nanjing University, Nanjing, China.

7 ² Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources
8 and Environmental Science, Hubei University, Wuhan 430062, China.

9 ³ School of Environment, Nanjing Normal University, Nanjing, China

10 *Corresponding to:* Tijian Wang (tjwang@nju.edu.cn)

11 **Abstract.** Nitrous oxide (N₂O) is a significant greenhouse gas that not only contributes to global warming
12 but also depletes the ozone layer. In our study, we enhanced a regional climate-chemistry-ecology model
13 to better understand how N₂O is emitted, transported, and dispersed in the atmosphere. We focused on
14 East Asia, South Asia, and Southeast Asia, using two different datasets to analyze the patterns of N₂O in
15 2020. Our model showed good agreement with real-world observations, revealing that N₂O levels vary
16 seasonally and spatially. For example, the lowest concentrations were found in June, while the highest
17 were in December. Certain areas, like the North China Plain and the Ganges River Basin, had higher
18 N₂O levels. We also found that N₂O concentrations decrease with altitude. By validating our model, we
19 gained insights into the complex interactions between N₂O emissions and atmospheric processes. This
20 research helps policymakers develop strategies to reduce N₂O emissions. In the future, we aim to refine
21 our model further to improve predictions of N₂O emissions and distribution, which will support efforts
22 to combat climate change and protect the ozone layer.

1 **1 Introduction**
23 Nitrous oxide (N₂O) ranks as the third most prevalent greenhouse gas in the atmosphere, following
24 carbon dioxide (CO₂) and methane (CH₄). It possesses a warming potential 273 times greater than that
25 of carbon dioxide and contributes approximately 6% to the radiative forcing of long-lived greenhouse
26 gases (WMO, 2023; NOAA, 2024), with an atmospheric lifetime of 116±9 years (Prather et al., 2015).

27 By 2022, the global average concentration of N₂O had reached 335.8±0.1 parts per billion (ppb),
28 reflecting a 124% increase since the 1850s. This makes N₂O the primary driver of the increase in the

29 effective radiative forcing of long-lived gases since 1990 (Wmo, 2023). In addition to its role as a potent
30 greenhouse gas, N₂O is also a significant ozone-depleting substance. Its photolysis in the stratosphere
31 generates NO_x, which contributes to ozone depletion (Mcelroy and Mcconnell, 1971; Unep, 2013). In
32 2020, anthropogenic N₂O emissions, expressed in terms of CFC-11 equivalents, exceeded those of all
33 CFCs by more than twofold, representing over 20% of the peak CFC emissions recorded in 1987 (Geneva,
34 2022). Currently, N₂O emissions are the most substantial among ozone-depleting substances (ODS_s) and
35 are anticipated to remain the largest throughout the 21st century (Ravishankara et al., 2009). The
36 escalating concentration of N₂O exerts a profound impact on global warming, air pollution, and ozone
37 layer depletion, prompting extensive global concern. In response, the international community has
38 implemented various conventions and agreements to regulate N₂O emissions, aiming to mitigate its
39 detrimental effects on the climate and ozone layer. The United Nations Framework Convention on
40 Climate Change (UNFCCC), along with its Kyoto Protocol and the Paris Agreement (Idowu et al., 2023),
41 constitute three pivotal international legal instruments in the fight against climate change. These
42 frameworks guide global efforts to reduce emissions. The UNFCCC is dedicated to controlling
43 greenhouse gas emissions to combat global warming, the Kyoto Protocol establishes specific reduction
44 targets for developed countries, including N₂O, and the Paris Agreement reinforces the global
45 commitment to emission reduction by requiring nations to formulate and execute their Intended
46 Nationally Determined Contributions (NDCs) to cap the increase in global average temperature.

47 As a greenhouse gas of significant global concern, accurately simulating the emission and
48 concentration distribution of N₂O is essential for assessing the impacts of climate change and crafting
49 effective emission reduction strategies (De Sisto et al., 2024; Zhou et al., 2020). Tian (2020) quantified
50 global natural and anthropogenic sources and sinks of N₂O from 1980 to 2016, using both top-down and
51 bottom-up approaches. Their findings indicate that global anthropogenic emissions, primarily driven by
52 nitrogen inputs from agricultural activities, have increased by 30% during this period, leading to a
53 growing atmospheric burden. The imbalance between N₂O sources and sinks has contributed to the rise
54 in its atmospheric concentration. Previous research has predominantly concentrated on modeling N₂O
55 emissions to diminish uncertainty. This includes relatively simple empirical models such as the DAISY
56 model (Hansen et al., 1991) and the CRISP model (Nielsen et al., 1999), as well as process-based models
57 like DAYCENT (Parton et al., 1996), DNDC (Stange et al., 2000), ECOSYS (Grant et al., 2001), MiCNiT

58 (Blagodatsky et al., 2011), and the Dynamic Land Ecosystem Model (DLEM) (Tian et al., 2013). While
59 the simulation of N₂O emissions has seen consistent improvement, there remains a scarcity of models
60 capable of accurately simulating N₂O concentrations. Therefore, the development of high-resolution
61 atmospheric chemical models is crucial for simulating the concentration distribution of N₂O in the
62 atmosphere. Precise simulation of N₂O emissions and concentration dynamics is vital for forecasting its
63 potential environmental impacts and providing a scientific foundation upon which to base the
64 development of effective environmental policies.

65 Research (Tian et al., 2020; Weber et al., 2024) indicates that East Asia (EA) and South Asia (SA)
66 are the primary contributors to global N₂O emissions. Agricultural activities in these regions, particularly
67 the application of fertilizers and the use of livestock manure, are highly concentrated, which are the
68 predominant sources of N₂O (De Sisto et al., 2024; Zhang et al., 2022). In China and India, emissions
69 from fertilizer use are dominant, with agriculture accounting for approximately 70% of anthropogenic
70 N₂O emissions (Tian et al., 2020). Consequently, agricultural practices in these areas have a substantial
71 impact on the global N₂O emission profile. EA is responsible for 71-79% of global aquaculture N₂O
72 emissions, while SA and Southeast Asia (SEA) together contribute 10-20% (Beusen et al., 2016; Macleod,
73 2019). The densely populated and rapidly developing economies of EA, SA and SEA have led to an
74 increased demand for food and animal feed, further intensifying agricultural activities and the associated
75 N₂O emissions (Tian et al., 2020). As both a significant greenhouse gas and a stratospheric ozone-
76 depleting substance, N₂O presents additional challenges to environmental sustainability and regional
77 climate in EA (Bi et al., 2013). Therefore, monitoring and modeling the concentration distribution of
78 N₂O is essential for comprehending and predicting climate change trends (Ma et al., 2021). Satellite data
79 inversion reveals that N₂O concentrations exhibit significant temporal and spatial variability, influenced
80 not only by local emissions but also by regional transport from external areas. This underscores the
81 importance of regional and global cooperation in mitigating N₂O emissions and safeguarding the ozone
82 layer. Consequently, simulating and studying N₂O concentration patterns in EA, SA and SEA will not
83 only assist in pinpointing key emissions and transport pathways but also provide a scientific foundation
84 for developing effective regional climate policies and measures to protect the ozone layer (Weber et al.,
85 2024).

86 In this study, we employ an advanced coupled regional climate-chemical-ecosystem model,

87 RegCM-Chem-YIBs, to simulate and analyze N₂O concentrations in EA, SA and SEA during 2020. The
88 primary objective is to evaluate the atmospheric response to the rapid increase in terrestrial N₂O
89 emissions. Our research is designed to accurately simulate the fluctuations in N₂O concentrations,
90 thereby enabling the prediction of their potential environmental impacts and laying a scientific
91 groundwork for the development of impactful environmental policies. Furthermore, the findings of this
92 study are poised to offer invaluable insights for the formulation of greenhouse gas (GHG) reduction
93 strategies. The methodologies and datasets utilized in this research are meticulously outlined in Section
94 2, while the ensuing results are thoroughly examined in Section 3. Concluding remarks, summarizing
95 our key findings and their implications, are presented in Section 4.

96 **2 Model and Methods**

97 **2.1 Model description**

98 This study employs the regional climate-chemistry-ecology coupling model (RegCM-Chem-
99 YIBs) (Xie et al., 2019) which analyze the temporal and spatial distribution of short-lived air pollutants
100 and their interactions with the long-lived greenhouse gas CO₂. Additionally, it investigates the
101 processes and mechanisms underlying the interactions between air pollutants, greenhouse gases, and
102 regional climate. To enhance air pollution control and respond to climate change more effectively, the
103 regional climate chemical model RegCM-Chem (Shalaby et al., 2012) is integrated with the ecological
104 model YIBs (Yue and Unger, 2015), resulting in the development of a regional climate-chemical-
105 ecological coupling framework. Employing this advanced model, the authors have unveiled the spatial
106 and temporal distribution characteristics and influencing factors of terrestrial CO₂ concentration and
107 terrestrial carbon flux in China over recent years (Xie et al., 2019; Xie et al., 2020). They have also
108 quantitatively analyzed the interaction effects of O₃, PM_{2.5}, and CO₂ on the East Asian summer
109 monsoon climate (Ma et al., 2023b; Ma et al., 2023a). Drawing on the representative concentration
110 pathway climate scenario RCP4.5, the study simulates and forecasts the impacts of future regional
111 emission reduction policies and global climate change on air pollution and climate change in China,
112 aligning with the "dual-carbon" goal (Xu et al., 2022; Xu et al., 2023). Furthermore, the model was
113 utilized to explore the interaction dynamics of CO₂, ozone, and particulate matter through terrestrial

114 vegetation (Xie et al., 2024). The incorporation of heterogeneous methane (CH_4) allows for a
115 comprehensive assessment of the radiative and chemical impacts of CH_4 on terrestrial carbon fluxes
116 across East Asia (EA), South Asia (SA), and Southeast Asia (SEA) in 2010 (Zhang et al., 2024).

117 N_2O in the atmosphere is governed by a complex interplay of factors, such as sources, sinks,
118 transport processes, and chemical reactions, leading to a non-uniform spatiotemporal distribution. In
119 this study, we introduce a new species of N_2O into the coupled RegCM-Chem-YIBs model, taking into
120 account the emissions, atmospheric transport, and diffusion processes of N_2O . The enhanced model
121 was employed to simulate N_2O over a one-year period, and a comprehensive analysis of its spatial and
122 temporal distribution in the atmosphere was conducted.

123 **2.2 Experimental design**

124 The model utilized in this study features a horizontal resolution of 36 kilometers, with the upper
125 boundary of the model domain set at 50 hPa. It is composed of a total of 18 vertical layers, centered on
126 the grid point (31° N, 101° E). Employing the Lambert projection, the model simulates the entire region
127 of EA, as well as the majority of SEA and SA. The simulation period spans one year, from January 2020
128 to December 2020, capturing the spatial and temporal distribution of N_2O within the study area for that
129 year. For this experiment, the model integrates several advanced schemes and modules: the CBM-Z vapor
130 phase chemistry scheme (Zaveri and Peters, 1999) for chemical processes, the Holtslag PBL boundary
131 layer scheme (Holtslag et al., 1990) for boundary layer dynamics, the Grell cumulus convection scheme
132 (Grell, 1993) for convective processes, the CLM4.5 land surface process module (Oleson et al., 2008;
133 Stöckli et al., 2008) for terrestrial processes, and the CCM3 radiative transfer scheme (Zhang et al., 1998;
134 Giorgi et al., 2012; Giorgi and Mearns, 1999) for simulating the radiative effects within the atmosphere.

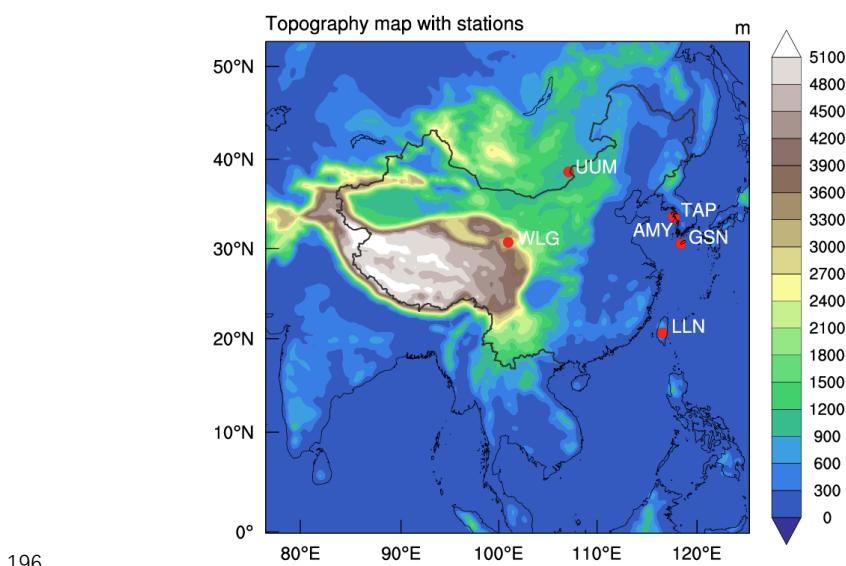
135 **2.3 Input data**

136 The meteorological initial conditions for our model are sourced from the ERA-Interim reanalysis
137 dataset (Dee, 2011), encompassing parameters such as temperature, humidity, potential height, and wind.
138 These data are ingested every six hours to inform the model's meteorological boundary conditions,
139 thereby constraining the simulated meteorological fields (Zhang et al., 2024). The model also receives
140 average sea surface temperature data from the National Oceanic and Atmospheric Administration

141 (NOAA) (Reynolds et al., 2002) on a weekly basis, while the chemical boundary conditions reflecting
142 the climate state are derived from the time-varying outputs of the Global Chemical Transport Model
143 (MOZART) (Hauglustaine et al., 1998; Horowitz et al., 2003). This model operates on a 6-hourly time
144 resolution. The anthropogenic emission inventory is based on the MIX Asia emission inventory (Li et al.,
145 2017), which offers a spatial resolution of $0.25^\circ \times 0.25^\circ$. Within the scope of this paper, we utilize two
146 distinct datasets for N₂O flux data: the Copernicus Atmosphere Monitoring Service (CAMS) (CAMS,
147 2023) and the Emission Database for Global Atmospheric Research (EDGAR) N₂O flux datasets (Crippa,
148 2024).

149 CAMS, which is operated by the European Centre for Medium-Range Weather Forecasts (ECMWF)
150 on behalf of the European Commission, is one of the six services comprising the Copernicus program.
151 The N₂O flux data for CAMS is derived using the atmospheric inversion framework PyVAR-N₂O. This
152 framework relies on observations of N₂O mixing ratios to estimate the flux that best accounts for these
153 observations, while being informed by a priori flux estimates. The CAMS Global Inversion Optimized
154 Greenhouse Gas (GHG) fluxes and concentrations dataset encompasses net surface fluxes, model-level
155 mixing ratios, and column average mixing ratios for CO₂, CH₄ and N₂O. These net fluxes encompass
156 contributions from both the natural biosphere, such as vegetation and wetlands, as well as anthropogenic
157 sources, including fossil fuel emissions and rice fields. The optimized N₂O flux data from CAMS are
158 archived as NetCDF files, with each file containing a month's worth of time-varying flux data at a spatial
159 resolution of $2.5^\circ \times 1.26^\circ$. Additionally, a three-dimensional N₂O concentration field, generated using
160 the optimized flux data, is also saved in NetCDF format. Each monthly file includes 79 vertical layers of
161 N₂O concentration data with a horizontal resolution of $2.5^\circ \times 1.26^\circ$, recorded every 3 hours. The
162 CAMS N₂O concentration data serve as the initial and boundary conditions for model initialization, while
163 the N₂O flux data are used as the emission input within the model to simulate N₂O emissions.

164 EDGAR is a comprehensive, independent global database that documents anthropogenic
165 greenhouse gas emissions and air pollution worldwide. Utilizing international statistics and consistent
166 IPCC methodologies, EDGAR offers independent emissions estimates, providing a valuable comparison
167 to those reported by European member states or parties under the United Nations Framework Convention
168 on Climate Change (UNFCCC). The database provides a grid of total national emissions at a global scale
169 with a resolution of $0.1^\circ \times 0.1^\circ$, including annual, monthly, and hourly data. For this study, we have



170 utilized EDGAR's monthly N₂O emission grid for 2020, categorized by sector, in units of kg/m² /s, with
171 a spatial resolution of 0.1° x 0.1° . The sectors covered include: the power industry for electric and
172 thermal power plants (both public and private), industrial combustion for manufacturing processes,
173 small-scale non-industrial fixed combustion in buildings, transportation for mobile combustion sources
174 (road, rail, ship and aviation), agricultural soils, crop residue burning, enteric fermentation, manure
175 management, and agricultural indirect N₂O emissions. Additionally, it includes emissions from fuel
176 production, fuel extraction (such as conversion and refining), industrial processes (e.g. cement, steel,
177 aluminum, chemicals, solvents), and the waste industry, encompassing solid waste treatment and
178 wastewater management. The 12-month emissions for each sector in 2020, as provided by EDGAR, were
179 consolidated into a total flux file. This file was then input into the model as an alternative set of N₂O
180 emissions for simulation purposes.

181 **2.4 Validation data**

182 The World Greenhouse Gas Data Center (WDCGG) (Lan, 2023) is a World Data Center (WDC)
183 operated by the Japan Meteorological Agency (JMA) under the Global Atmospheric Watch (GAW)
184 program of the World Meteorological Organization (WMO). WDCGG collects, archives, and distributes
185 data on greenhouse gases (e.g. CO₂, CH₄, CFCs, N₂O) and related gases (e.g. CO) from the atmosphere
186 and other sources, provided by various contributors. In this study, data from six N₂O observation sites in
187 WDCGG were utilized to validate the model simulation results. These sites include Anmyeon-do (AMY),
188 Gosan (GSN), and Tae-ahn Peninsula (TAP) in the Republic of Korea, Ulaan Uul (UUM) in Mongolia,
189 and Mt. Waliguan (WLG) and Lulin (LLN) in China. The N₂O concentration data from WDCGG
190 encompass monthly data for the six sites, daily data for AMY and GSN, and hourly data for AMY and
191 GSN. Both WLG and LLN are located on plateaus, while UUM is situated in a vast and sparsely
192 populated area, less influenced by human activities, thus providing a better representation of natural N₂O
193 concentrations. The AMY and GSN stations are near the ocean and are significantly affected by marine
194 sources. The spatial distribution of these N₂O monitoring stations is depicted in Fig.1, and their latitude
195 and longitude coordinates are listed in Table 1.

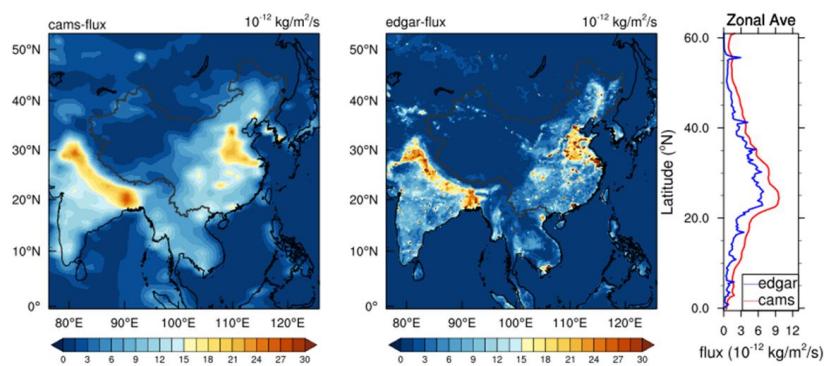
197 **Figure 1.** The model domain of the RegCM-Chem-YIBs model and location of WDCGG N₂O
198 measurement sites.

199 **Table 1.** Geographic information of the observation sites

Site	Abbreviation	Longitude(°E)	Latitude(°N)	Altitude(m)
Anmyeon-do	AMY	126.33	36.54	42
Gosan	GSN	126.16	33.29	71
Lulin	LLN	120.87	23.47	2862
Tae-ahn Peninsula	TAP	126.13	36.73	20
Ulaan Uul	UUM	111.08	44.44	992
Mt. Waliguan	WLG	100.90	36.29	3810

200

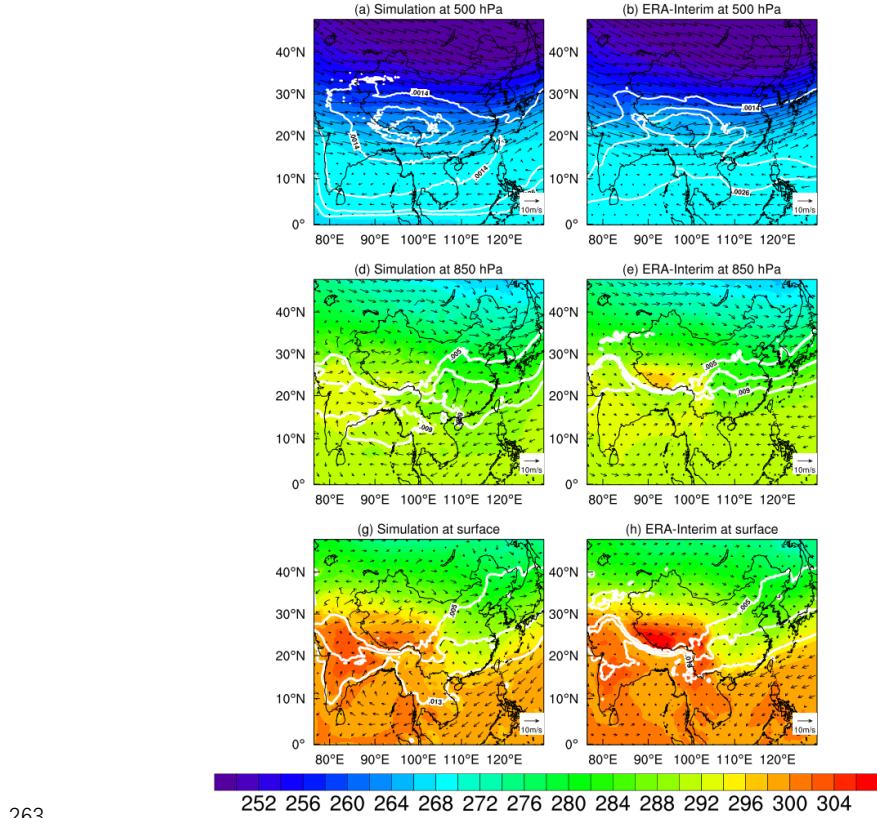
201 **3 Results and discussion**


202 **3.1 Distribution characteristics of two different emissions**

203 In this trial, we employed two distinct emission datasets: the CAMS net surface N₂O flux derived
204 from ECMWF inversion and EDGAR's sectoral N₂O emission inventory. To facilitate a more direct
205 comparison of emission differences between these two sources, we averaged the emissions at the grid
206 points within the simulated region and compared the average monthly emissions for each month of 2020
207 between the two datasets (as shown in Fig.7). The analysis reveals that for the flux of EDGAR remains
208 relatively stable throughout the year, with no significant seasonal variation. The average annual
209 nitrification flux is 2.475×10^{-12} kg/m²/s, with a fluctuation amplitude of 0.27 ppb. In contrast, the net
210 flux from CAMS exhibits greater variability than the EDGAR, with a notable increase in flux during July,
211 August, and September. The N₂O emission is comparatively lower in winter, with a fluctuation amplitude
212 of 0.96 ppb. The average annual emission flux of nitrous oxide for CAMS is 3.965×10^{-12} kg/m²/s, which
213 is 1.6 times that of the EDGAR. The accounting of anthropogenic and natural sources of N₂O in China
214 indicates that anthropogenic emissions in China for the year 2020 amount to 6.3×10^{-12} kg/m²/s, while
215 the combined natural and anthropogenic emissions total 7.5×10^{-12} kg/m²/s (Liang et al., 2024b). These
216 figures are more aligned with the emission utilized in this study.

217 We have depicted the annually spatial distributions and zonally averaged N₂O fluxes for both
218 datasets across the year in Fig.2. We selected January, April, July and October to represent the four
219 seasons of spring, summer, autumn and winter to analyze the seasonal characteristics of N₂O, as shown
220 in Fig.S1. As observed in Fig.2, within the study area, North China and the Ganges River basin in India
221 exhibit elevated N₂O fluxes, surpassing 1.5×10^{-11} kg/m²/s. Besides these two extensive regions with

222 significant N_2O emissions, China and India also feature numerous localized areas with high N_2O
223 emissions. This could be attributed to the intensive use of nitrogen fertilizers in these regions, as they
224 are a primary source of N_2O from agricultural lands (Shengji Yan, 2022). Furthermore, urbanization
225 can lead to reduced flow rates and dissolved oxygen levels, as well as increased nitrogen availability
226 and denitrification processes, potentially contributing to higher concentrations and fluxes of N_2O (Chen
227 et al., 2025). In contrast, Northwest China, the Tibetan Plateau, and Inner Mongolia are characterized
228 by relatively lower N_2O emissions. This may be due to less agricultural intensification, reduced
229 nitrogen fertilizer application, distinct climatic conditions and soil properties, and a more pristine and
230 less polluted natural environment in these areas (Wang et al., 1998; Du et al., 2016). The pattern of high
231 and low emission regions aligns with the findings of previous studies (Liang et al., 2024b; Zhou et al.,
232 2014; Garg et al., 2011; Wang et al., 1998). It is noteworthy that in the CAMS flux distribution, the
233 western Pacific region along China's coast displays a relatively pronounced negative N_2O flux during
234 winter. This indicates that the ocean along China's coast acts as a weak sink for N_2O during late autumn
235 and throughout winter and early spring. In summary, it is evident that the EDGAR datasets, with their
236 higher resolution of $0.1^\circ \times 0.1^\circ$, provide a more detailed distribution of N_2O in the target area compared
237 to the CAMS flux data at $2.5^\circ \times 2.5^\circ$. Despite the CAMS datasets being more accurate and closer to
238 reality, they exhibit significant seasonal variations and fluctuations.



239
240 **Figure 2.** Comparison of annually averaged spatial distribution and zonal mean nitrous oxide flux
241 between two datasets.

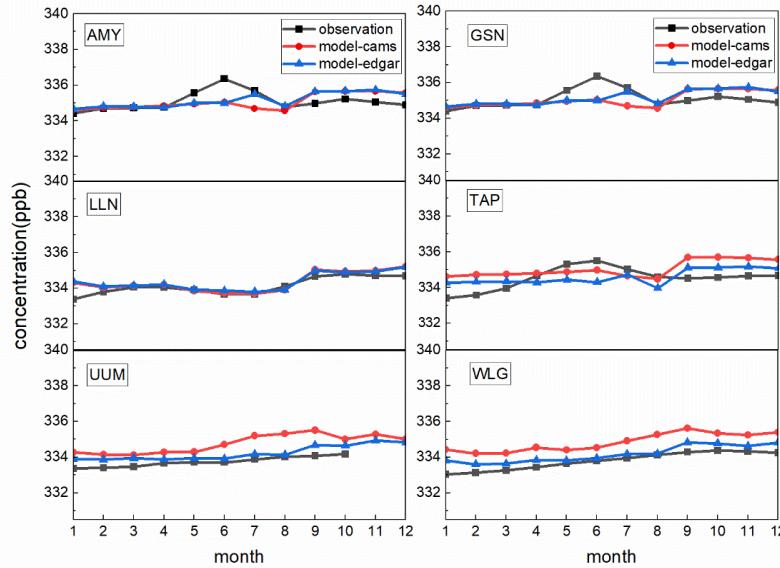
242 **3.2 Model evaluation**

243 By comparing the model simulation results with the observations, we evaluated the performance of
244 the model based on a number of meteorological factors, including air temperature (T), relative humidity
245 (RH), and wind speed. As shown in Fig.3 and Fig.S2, as well as Table 2, the RegCM-Chem-YIBs model
246 has successfully captured the spatial distribution and intensity of both temperature and specific humidity
247 at the 500hPa, 850hPa, and 1000hPa pressure levels. Notably, the model's simulated correlation
248 coefficient for wind at 500hPa height reached 0.95, indicating the precision of the model's simulation
249 capabilities. The simulation correlation between the model and observational data for the middle and
250 lower atmospheric layers is also significant, with values ranging from 0.36 to 0.44, as detailed in Table
251 2. Within these layers, the model's simulation of wind speed over the Qinghai-Tibet Plateau and sea areas
252 is relatively accurate, and the wind direction is largely correctly predicted. Prior research (Xie et al., 2019;
253 Xie et al., 2020; Xu et al., 2023; Xu et al., 2022; Ma et al., 2023a; Ma et al., 2023b; Zhang et al., 2024;
254 Xie et al., 2024; Yin et al., 2015; Gao et al., 2023) has similarly validated the model's proficiency in
255 accurately representing air quality, weather fields, and major greenhouse gases in Asia. When comparing
256 the two distinct sources, it was observed that the meteorological field simulated using the CAMS flux
257 model aligns more closely with observational outcomes. Given that CAMS flux data are derived from
258 the inversion of model results, they are deemed more precise than the EDGAR emission inventories,
259 especially under the dual constraints of observational and model-based accuracy. Furthermore, different
260 models may exhibit varying sensitivities to emissions, which is contingent upon how chemical and
261 physical processes are handled within the model framework. Models that exhibit heightened sensitivity
262 to emissions may yield more precise simulation results under specific conditions.

263

264 **Figure 3.** Annual average temperature (color-filled; units: K), specific humidity (contours; units: kg kg⁻¹) and wind field (streamlines; units: m/s) at 500 hPa (a, b), 850 hPa (c, d) and surface (e, f) for the ERA-
265 Interim reanalysis data (a, c, e) and model simulation (b, d, f). This is the result of the CAMS dataset.
266

267 **Table 2.** Statistical indicators for comparing model simulation results with reanalysis data Statistical
268 characteristics of simulated (Sim) and observed (Obs) monthly N₂O mixing ratios at the seven stations


Factors	Altitude	^a R	^b R
Temperature (K)	500hPa	0.998	0.997
	850hPa	0.989	0.988
	1000hPa	0.988	0.988
Specific humidity (Kg Kg ⁻¹)	500hPa	0.854	0.831
	850hPa	0.985	0.983
	1000hPa	0.988	0.986
Wind speed (m/s)	500hPa	0.963	0.952
	850hPa	0.442	0.424
	1000hPa	0.363	0.368

269 (^aR indicates the correlation coefficient of CAMS, ^bR indicates the correlation coefficient of EDGAR.)

270 Figure 4 juxtaposes the monthly average mixing ratios of N₂O at the six observation sites, as both
271 observed and simulated by the model, with detailed statistical insights provided in Table 3. The figure
272 reveals that the model's simulated N₂O concentrations closely match the observed values, particularly at
273 the LLN station. Notably, the N₂O mixing ratios at TAP, AMY, and GSN exhibit pronounced seasonality,
274 peaking in spring or summer and plummeting in winter. This pattern is attributed to higher air-sea fluxes
275 during spring and summer, with the East China Sea and South China Sea regions serving as net sources
276 of N₂O (Chen et al., 2021). At inland locations such as UUM and WLG, the simulated and observed N₂O
277 concentrations follow a similar upward trend. However, the N₂O concentrations simulated with both
278 sources exceed the observed concentrations, with those using EDGAR emissions being closer to the
279 actual measurements. For the LLN site, the simulation outcomes from the two emissions are highly
280 congruent, mirroring the observational data. The LLN site exhibits subdued seasonality, with N₂O
281 concentrations being lower in summer and winter and slightly elevated in spring and autumn.

282 Based on the fitting results from the model simulations and observations at the six sites, as detailed
283 in Table S1, the correlation coefficients for LLN, WLG, and UUM are exceptionally high. Generally, the
284 simulation results using the CAMS emission source outperform those using EDGAR, with correlation
285 coefficients ranging from 0.82 to 0.92. In contrast, the correlation for the other three coastal sites is
286 comparatively low. This is likely due to the significant influence of marine environmental factors such
287 as land and sea breezes, sea fog, and salt fog on meteorological conditions in coastal areas (Qiu and Fan,
288 2013). The complexity of these factors may contribute to the less accurate simulation outcomes in these
289 regions. For these six sites, the discrepancy between the CAMS-calculated concentration values and the
290 observed values is minimal, varying from -0.09% to 0.31%. Similarly, the deviation between the
291 concentration values calculated by EDGAR and the observed values is also very small, ranging from -
292 0.18% to 0.14%. Regarding the annual variation in simulated N₂O concentrations, UUM, WLG and LLN
293 sites exhibit smaller fluctuations, while TAP, AMY and GSN sites display larger annual variations. In
294 coastal regions, the sea-air exchange flux is substantial, and the transfer of N₂O from the ocean to the
295 atmosphere is more dynamic, potentially leading to greater annual variability of N₂O at coastal sites
296 (Wang et al., 2023).

297

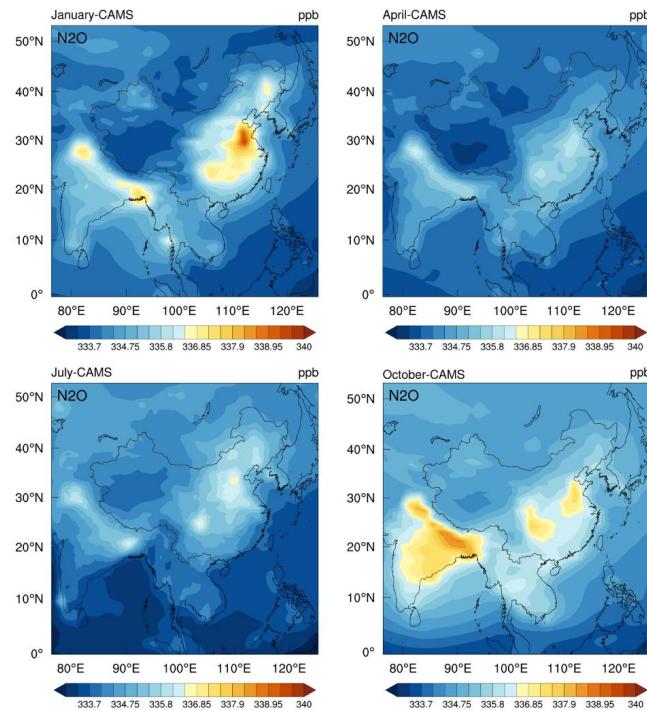
298 **Figure 4.** The monthly mean mixing ratio of nitrous oxide at the six sites observed and simulated by the
299 model.

300 **Table 3.** Statistical characteristics of simulated (Sim) and observed (Obs) monthly N₂O mixing ratios at
301 the seven stations Correlation coefficients and RMSE between the simulated results and the observed
302 values for the two emission sources

Site	Mean					Annual amplitude			Standard deviation		
	Sim1	Sim2	Obs	Bias1	Bias2	Sim1	Sim2	Obs	Sim1	Sim2	Obs
AMY	335.06	335.16	335.09	-0.01	0.02	1.09	1.08	1.95	0.44	0.41	0.52
GSN	334.43	334.12	334.73	-0.09	-0.18	1.37	1.34	1.80	0.49	0.51	0.57
LLN	334.34	334.36	334.12	0.07	0.07	1.52	1.38	1.41	0.56	0.50	0.46
TAP	335.04	334.60	334.53	0.15	0.02	1.22	1.21	2.10	0.47	0.42	0.60
UUM	334.76	334.23	333.75	0.30	0.14	1.39	1.07	0.82	0.52	0.41	0.27
WLG	334.84	334.17	333.80	0.31	0.11	1.41	1.23	1.33	0.51	0.47	0.47

303 ($Bias_1 = \frac{Sim_1 - Obs}{Obs} \times 100\%$ $Bias_2 = \frac{Sim_2 - Obs}{Obs} \times 100\%$). Subscript 1 represents CAMS flux and
304 subscript 2 represents EDGAR flux. Sim1 represents the nitrous oxide mixing ratio modeled using
305 CAMS flux, Sim2 represents the nitrous oxide mixing ratio modeled using EDGAR flux, the units of
306 Sim1, 2 and Obs are ppb, the unit of Bias is %)

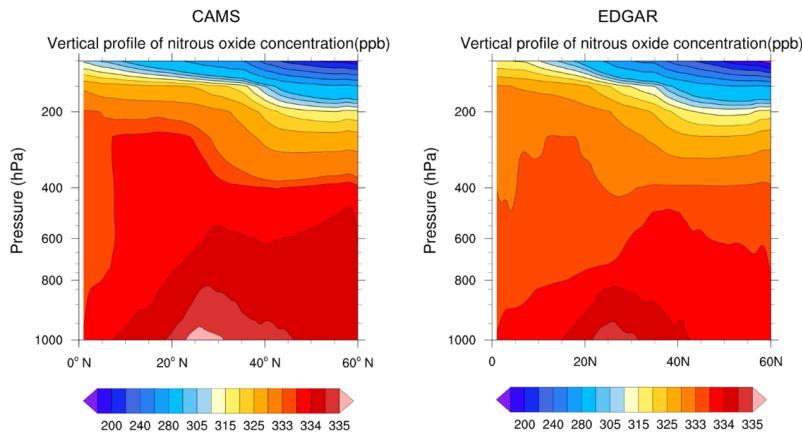
307 **3.3 Spatiotemporal distribution of N₂O**


308 Figure 5 illustrates the spatial distribution of N₂O surface concentrations simulated using two
309 different fluxes. In a similar vein, we utilize the months of January, April, July, and October to depict the
310 seasonal fluctuation of nitrous oxide. In combination with Fig.S3, the surface N₂O concentration
311 simulated by two different emissions exhibit a relatively consistent trend: from spring to winter, the
312 concentrations initially decrease and then increase. The monthly average surface N₂O concentrations
313 simulated by CAMS and EDGAR reach their lowest values in June, at 334.01 ppb and 333.79 ppb,
314 respectively, and their highest values in December, at 335.42 ppb and 335.15 ppb, respectively.
315 Regardless of the month, N₂O concentrations are high in central and eastern China, particularly in the
316 North China Plain, Sichuan Basin, and the Ganges Valley in India. In contrast, the Tibetan Plateau, the
317 Indian Ocean, and the South China Sea are characterized by low concentrations, aligning with the
318 intensity of imported N₂O emissions. The North China Plain and Sichuan Basin are major agricultural
319 regions in China, where extensive use of nitrogen fertilizers leads to increased N₂O emissions (Liang et
320 al., 2024b; Shengji Yan, 2022). In China, in particular, the intensive scale development of agriculture to
321 support 22% of the world's population has resulted in heavy nitrogen fertilizer usage, further boosting
322 N₂O emissions. The central and eastern regions of China are densely populated and industrially advanced,
323 with industrial emissions and municipal waste from these areas also contributing significantly to N₂O
324 emissions (Bu et al., 2024; Luo et al., 2019).

325 The findings indicate that ground-level N₂O emissions significantly influence its atmospheric
326 concentration, exhibiting a strong correlation. In the Qinghai-Tibet Plateau, the high altitude and low
327 temperatures lead to reduced microbial activity, resulting in lower N₂O production. Additionally, the thin
328 air at high altitudes contributes to the relatively low concentration of N₂O. In the Indian Ocean and the
329 South China Sea, ocean dynamics primarily dictate N₂O levels. While the gas mainly originates from
330 denitrification processes in seafloor sediments, the unique marine environment keeps its concentration

331 relatively low (Craig and Gordon, 1963).

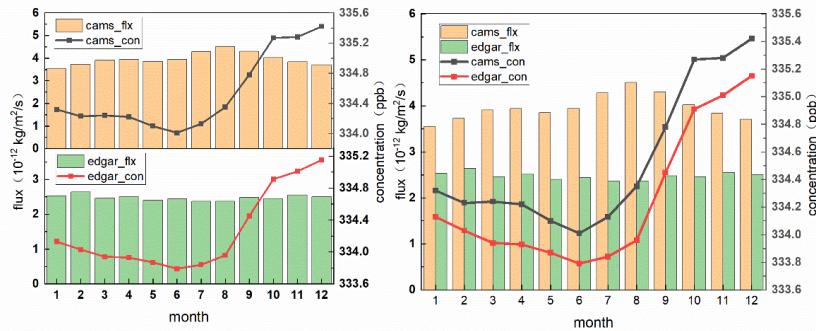
332


333

334 **Figure 5.** The distribution of the seasonal average ground-level N₂O concentration in 2020, as simulated
335 by the CAMS datasets

336 We selected January, April, July and October to represent the four seasons of spring, summer,
337 autumn and winter, respectively, to investigate the seasonal variation characteristics of the vertical
338 distribution of N₂O (Fig.S4). Additionally, we obtained the annual vertical profile of nitrous oxide for
339 the study period, depicted in Fig.6. According to Fig.6 and Fig.S4, regardless of whether using the CAMS
340 flux or the EDGAR flux, N₂O is uniformly distributed at high concentrations in the middle and lower
341 troposphere. From the upper troposphere to the lower stratosphere, the concentration of N₂O gradually
342 decreases (Krysztofiak et al., 2023; Tsai et al., 2012). Overall, the concentration of N₂O at the same
343 pressure height gradually decreases from the equator to the high latitudes of the northern hemisphere,

344 such as in spring and autumn. However, in summer, the high-value area shifts northward to around 30°
345 N latitude, with a relative low-value area in the troposphere over the equatorial region. In winter, the
346 high-value area of the troposphere is near the latitude of 15°N. The RegCM-Chem-YIBs model used in
347 this study extends up to 50hPa, covering the middle and lower stratosphere, but it does not include any
348 N₂O loss processes. Therefore, future research should incorporate the atmospheric chemical sink of N₂O
349 in the stratosphere so as to better study the vertical change trends of N₂O.


350
351 **Figure 6.** Vertical profiles of N₂O in 2020 from two emissions simulations.
352

353 **3.4 Seasonality of ground N₂O concentrations**

354 Our enhanced RegCM-Chem-YIBs model simulates the emission process of N₂O, as well as its
355 advection, diffusion, and other transport processes in the atmosphere. The resulting concentration
356 distribution of N₂O exhibits pronounced seasonality (Nevison et al., 2011; Yang et al., 2020; Jiang et al.,
357 2007; Sun et al., 2024; Liao et al., 2004), primarily due to the combined effects of ground-level emissions,
358 atmospheric transport processes, and stratosphere-troposphere gas exchange. We utilized two distinct
359 sets of emissions to investigate their impacts on N₂O concentrations, as illustrated in Fig. 7. The EDGAR
360 emission inventory indicates that N₂O emissions show minimal variation throughout the 12 months of
361 2020, with only slight fluctuations. The monthly average changes in N₂O flux data derived from CAMS
362 reanalysis are slightly more pronounced than those from EDGAR, yet there is no significant seasonal
363 fluctuation. However, the monthly average concentration of surface N₂O obtained from these two sources

364 display the same variation trend: the concentration reaches its lowest value in June and its highest value
365 in December, exhibiting clear seasonality, which aligns with the average seasonal variation observed at
366 Mt. Waliguan (Liang et al., 2024a). This suggests that in the studied Northern Hemisphere region, higher
367 emissions correspond to higher surface N_2O concentrations. However, the seasonal relationship between
368 surface N_2O concentration and surface emissions is relatively weak, while the seasonal relationship with
369 atmospheric transport is more significant. Nevertheless, the seasonal characteristics of N_2O over oceans
370 and land differ, with distinct dominant influencing factors (Jiang et al., 2007; Sun et al., 2024; Liao et al.,
371 2004), necessitating further analysis specific to these regions.

372
373 **Figure 7.** Plots of the monthly average emissions of the two emissions and their corresponding monthly
374 mean N_2O surface concentrations

375 **4 Summary and conclusions**

376 In this study, the RegCM-Chem-YIBs model was improved to incorporate N_2O as a species,
377 allowing for the simulation of its emission, transport, and diffusion processes in the atmosphere, thereby
378 obtaining the distribution of N_2O . We employed this improved model to simulate N_2O in East Asia and
379 most parts of South and Southeast Asia in 2020 utilizing two different emissions: the CAMS model
380 inversion flux and the EDGAR emission inventory. Subsequently, we verify the model's ability to
381 simulate the spatial and temporal distribution of N_2O in the target region, and evaluate the model's
382 performance using the WDCGG ground observation data. Thereafter, the spatiotemporal distribution of
383 N_2O in the model output were analyzed. Finally, the causes of N_2O seasonality were investigated using

384 the simulations from the two emissions datasets.

385 The research indicates that between spring and winter, the average surface N₂O in the study area
386 decreases initially, then rises again. The monthly average surface N₂O concentration simulated by CAMS
387 and EDGAR reached their lowest values in June, at 334.01 ppb and 333.79 ppb, respectively, and their
388 highest values in December, at 335.42 ppb and 335.15 ppb, respectively. Regardless of the month, the
389 concentrations of N₂O are high in central and eastern China, particularly in the North China Plain,
390 Sichuan Basin and Ganges valley of India. In contrast, the Tibetan Plateau, the Indian Ocean, the South
391 China Sea and other sea areas are in a state of low concentration, which is consistent with the intensity
392 of the input N₂O emissions. In the vertical profile, N₂O is uniformly distributed at high concentrations in
393 the middle and lower troposphere. From the upper troposphere to the lower stratosphere. The
394 concentration of N₂O is markedly higher near the ground and shows a gradual reduction with height. On
395 the whole, the mixing ratio of N₂O at the same pressure level gradually decreases from the equator to the
396 higher latitudes in the northern Hemisphere. By comparing the simulation results of two different
397 emissions, it is evident that the seasonal relationship between surface N₂O concentration and surface
398 emission is relatively weak. The model used in this study does not include the stratospheric chemical
399 sink of N₂O, so the observed seasonality is primarily related to the atmospheric transport of N₂O. For
400 this model, the temporal and spatial distribution characteristics of N₂O presented by the simulation results
401 of two emissions are largely consistent, with the results being more accurate when using the CAMS
402 emission.

403 In summary, this study improves a reliable high-resolution regional climate-chemistry-ecology
404 model. This enhanced model can be used to develop a high-resolution inverse modeling system for N₂O
405 in future studies, as well as to investigate its climate and environmental impacts. Additionally, there is
406 still potential for further refinement in subsequent research. First, model may overestimate the actual
407 concentration of N₂O in the atmosphere because they do not account for loss processes, such as photolysis
408 and chemical reactions, which reduce N₂O. The photolysis of N₂O in the stratosphere is a significant
409 chemical sink, and the material exchange (STE) between the stratosphere and the troposphere greatly
410 influences the distribution of N₂O in both the troposphere and at the surface (Ray et al., 2019; Jiang et
411 al., 2007). This exchange contributes significantly to the seasonal cycle of N₂O in the troposphere of the
412 Northern Hemisphere. Secondly, it is essential to include heterogeneous N₂O in the calculation of

413 longwave radiation. This would enable the estimation of the N₂O radiative forcing, providing a more
414 accurate evaluation of its radiative and climate effects. Finally, we aim to further optimize N₂O flux,
415 accurately describing its sources and sinks. These improvements will help refine the RegCM-Chem-YIBs
416 model, allowing it to more precisely predict N₂O emissions and distribution, thereby offering stronger
417 support for global climate change mitigation and ozone layer protection.

418 **Code and data availability**

419 The input data and source code for RegCM-Chem-YIBs have been archived on Zenodo at
420 <https://doi.org/10.5281/zenodo.15043206> (Zeng et al., 2025). Data used in this study are listed as
421 follows: the European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim reanalysis
422 are provided at <https://doi.org/10.24381/cds.f2f5241d> (Dee, 2011), the Copernicus Atmosphere
423 Monitoring Service(CAMS) N₂O fluxes are available at
424 <https://ads.atmosphere.copernicus.eu/datasets/cams-global-greenhouse-gas-inversion?tab=overview>
425 (CAMS, 2023), the EDGAR's N₂O emission inventory is provided at
426 https://edgar.jrc.ec.europa.eu/dataset_ghg2024#p4 (Crippa, 2024) and the World Data Centre for
427 Greenhouse Gases (WDCGG) N₂O observation data are accessed at <https://doi.org/10.15138/53g1-x417>
428 (Lan, 2023).

429 **Author contributions**

430 TW and XZ designed this study. XZ modified the model, performed the experiments, and drafted the
431 manuscript. TW revised the manuscript, and all authors contributed to the review and editing of the
432 manuscript.

433 **Competing interests**

434 The corresponding author has stated that all the authors have no conflicts of interest.

435 **Disclaimer**

436 Publisher's note: Copernicus Publications remains neutral about jurisdictional claims in published maps
437 and institutional affiliations.

438 **Acknowledgments**

439 This work was supported by the National Key Basic Research Development Program of China
440 (2024YFC3711905) and the National Natural Science Foundation of China (42477103).

441 **References**

442 Beusen, A. H. W., Bouwman, A. F., Van Beek, L. P. H., Mogollón, J. M., and Middelburg, J. J.: Global
443 riverine N and P transport to ocean increased during the 20th century despite increased retention
444 along the aquatic continuum, *Biogeosciences*, 13, 2441-2451, 10.5194/bg-13-2441-2016, 2016.

445 Bi, Y., Xu, L., and Zhou, R.: Simulation of influence of N₂O's increase on atmospheric environment and
446 comparison with the influences of methane and stratospheric water vapor, *CHINESE JOURNAL
447 OF GEOPHYSICS*, 56, 38-46, 10.6038/cjg20130104, 2013.

448 Blagodatsky, S., Grote, R., Kiese, R., Werner, C., and Butterbach-Bahl, K.: Modelling of microbial
449 carbon and nitrogen turnover in soil with special emphasis on N-trace gases emission, *Plant and
450 Soil*, 346, 297-330, 10.1007/s11104-011-0821-z, 2011.

451 Bu, M., Xi, W., Wang, Y., and Wang, G.: Scenario-Based Modeling of Agricultural Nitrous Oxide
452 Emissions in China, *Agriculture*, 14, 10.3390/agriculture14112074, 2024.

453 Chen, X., Wang, J., Liu, J., Zhang, S., Gao, H., and Xia, X.: Unveiling riverine N(2)O dynamics along
454 urbanization gradients by integrating hydrological, biogeochemical and microbial processes, *Water
455 Res*, 268, 122620, 10.1016/j.watres.2024.122620, 2025.

456 Chen, X., Ma, X., Gu, X., Liu, S., Song, G., Jin, H., and Zhang, G.: Seasonal and spatial variations of
457 N₂O distribution and emission in the East China Sea and South Yellow Sea, *Science of The Total
458 Environment*, 775, 10.1016/j.scitotenv.2021.145715, 2021.

459 Craig, H. and Gordon, L. I.: Nitrous oxide in the ocean and the marine atmosphere, *Geochimica et
460 Cosmochimica Acta*, 27, 949-955, 10.1016/0016-7037(63)90104-2, 1963.

461 Crippa, M., Guizzardi, D., Pagani, F., Banja, M., Muntean, M., Schaaf, E., Monforti-Ferrario, F., Becker,
462 W.E., Quadrelli, R., Risquez Martin, A., Taghavi-Moharamli, P., Köykkä, J., Grassi, G., Rossi, S.,
463 Melo, J., Oom, D., Branco, A., San-Miguel, J., Manca, G., Pisoni, E., Vignati, E. and Pekar, F.: GHG
464 emissions of all world countries, Publications Office of the European Union, Luxembourg,
465 10.2760/953332, 2024.

466 De Sisto, M., Somes, C., Landolfi, A., and MacDougall, A. H.: Projecting atmospheric N₂O rise until the
467 end of the 21st century: an Earth System Model study, *Environmental Research Letters*, 19,
468 10.1088/1748-9326/ad8c6c, 2024.

469 Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda,
470 M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann,
471 N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hó
472 lm, E.V., Isaksen, L., Källberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M.,
473 Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart,
474 F. ERA-Interim global atmospheric reanalysis. Copernicus Climate Change Service (C3S) Climate
475 Data Store (CDS): <https://doi.org/10.24381/cds.f2f5241d>, last access: 25 October 2024.

476 Du, Y., Zhou, G., Guo, X., and Li, J.: Response of N₂O emission flux to soil temperature and moisture in
477 alpine meadow on Qinghai-Tibetan Plateau, *Grassland and Turf*, 36, 55-59,

478 10.13817/j.cnki.cyycp.2016.01.010, 2016.

479 Gao, L., Wang, T., Ren, X., Ma, D., Qu, Y., and Wu, H.: Mechanism of persistent heavy PM_{2.5} pollution
480 over the Beijing-Tianjin-Hebei region of China: A combination of aerosol radiative effect and
481 atmospheric quasi-biweekly oscillation, *Atmospheric Environment*, 303,
482 10.1016/j.atmosenv.2023.119751, 2023.

483 Garg, A., Shukla, P. R., and Upadhyay, J.: N₂O emissions of India: an assessment of temporal, regional
484 and sector trends, *Climatic Change*, 110, 755-782, 10.1007/s10584-011-0094-9, 2011.

485 Geneva, W.: Executive Summary. *Scientific Assessment of Ozone Depletion: 2022*, GAW Report,
486 WMO, No. 278, 56 pp. 2022.

487 Giorgi, F. and Mearns, L. O.: Introduction to special section: Regional Climate Modeling Revisited,
488 *Journal of Geophysical Research: Atmospheres*, 104, 6335-6352, 10.1029/98jd02072, 1999.

489 Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X., Elguindi, N., Diro, G. T., Nair, V.,
490 Giuliani, G., Turuncoglu, U. U., Cozzini, S., Gütterl, I., O'Brien, T. A., Tawfik, A. B., Shalaby, A.,
491 Zakey, A. S., Steiner, A. L., Stordal, F., Sloan, L. C., and Brankovic, C.: RegCM4: model description
492 and preliminary tests over multiple CORDEX domains, *Climate Research*, 52, 7-29,
493 10.3354/cr01018, 2012.

494 Grant, R. F., Goulden, M. L., Wofsy, S. C., and Berry, J. A.: Carbon and energy exchange by a black
495 spruce-moss ecosystem under changing climate: Testing the mathematical model ecosys with data
496 from the BOREAS experiment, *Journal of Geophysical Research: Atmospheres*, 106, 33605-33621,
497 10.1029/2001jd900064, 2001.

498 Grell, G. A.: Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations, *Monthly
499 Weather Review*, 121, 764-787, 10.1175/1520-0493(1993)121<0764:Peaub>2.0.Co;2, 1993.

500 Hansen, S., Jensen, H. E., Nielsen, N. E., and Svendsen, H.: Simulation of nitrogen dynamics and
501 biomass production in winter wheat using the Danish simulation model DAISY, *Fertilizer Research*,
502 27, 245-259, 10.1007/bf01051131, 1991.

503 Hauglustaine, D. A., Brasseur, G. P., Walters, S., Rasch, P. J., Müller, J. F., Emmons, L. K., and Carroll,
504 M. A.: MOZART, a global chemical transport model for ozone and related chemical tracers: 2.
505 Model results and evaluation, *Journal of Geophysical Research: Atmospheres*, 103, 28291-28335,
506 10.1029/98jd02398, 1998.

507 Holtslag, A. A. M., De Brujin, E. I. F., and Pan, H. L.: A High Resolution Air Mass Transformation Model
508 for Short-Range Weather Forecasting, *Monthly Weather Review*, 118, 1561-1575, 10.1175/1520-
509 0493(1990)118<1561:Ahramt>2.0.Co;2, 1990.

510 Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., Tie, X.,
511 Lamarque, J. F., Schultz, M. G., Tyndall, G. S., Orlando, J. J., and Brasseur, G. P.: A global
512 simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART,
513 version 2, *Journal of Geophysical Research: Atmospheres*, 108, 10.1029/2002jd002853, 2003.

514 Idowu, S. O., Schmidpeter, R., Capaldi, N., Zu, L., Del Baldo, M., and Abreu, R.: Encyclopedia of
515 Sustainable Management, 10.1007/978-3-031-25984-5, 2023.

516 Jiang, X., Ku, W. L., Shia, R. L., Li, Q., Elkins, J. W., Prinn, R. G., and Yung, Y. L.: Seasonal cycle of
517 N₂O: Analysis of data, *Global Biogeochemical Cycles*, 21, 10.1029/2006gb002691, 2007.

518 Krysztofiak, G., Catoire, V., Dudok de Wit, T., Kinnison, D. E., Ravishankara, A. R., Brocchi, V., Atlas,
519 E., Bozem, H., Commane, R., D'Amato, F., Daube, B., Diskin, G. S., Engel, A., Friedl-Vallon, F.,
520 Hintsa, E., Hurst, D. F., Hoor, P., Jegou, F., Jucks, K. W., Kleinböhl, A., Küllmann, H., Kort, E. A.,
521 McKain, K., Moore, F. L., Obersteiner, F., Ramos, Y. G., Schuck, T., Toon, G. C., Viciani, S., Wetzel,

522 G., Williams, J., and Wofsy, S. C.: N₂O Temporal Variability from the Middle Troposphere to the
523 Middle Stratosphere Based on Airborne and Balloon-Borne Observations during the Period 1987–
524 2018, *Atmosphere*, 14, 10.3390/atmos14030585, 2023.

525 Lan, X.: Atmospheric Nitrous Oxide Dry Air Mole Fractions from the NOAA GML Carbon Cycle
526 Cooperative Global Air Sampling Network, 1997-2022: <https://doi.org/10.15138/53g1-x417>, last
527 access: 15 May 2024.

528 Li, M., Zhang, Q., Kurokawa, J.-i., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G.,
529 Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng,
530 B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration
531 framework of the MICS-Asia and HTAP, *Atmospheric Chemistry and Physics*, 17, 935–963,
532 10.5194/acp-17-935-2017, 2017.

533 Liang, M., Fang, S., Liu, L., Zhang, Y., Wang, J., Liu, S., Wang, H., and Deng, L.: Variation
534 characteristics of nitrous oxide concentration at Wari global background station in 2001~2018,
535 *Scientia Sinica(Terrae)*, 54, 97-109, 2024a.

536 Liang, M., Zhou, Z., Ren, P., Xiao, H., Xu, R., Hu, Z., Piao, S., Tian, H., Tong, Q., Zhou, F., Wei, J., and
537 Yuan, W.: Four decades of full-scale nitrous oxide emission inventory in China, *Natl Sci Rev*, 11,
538 nwad285, 10.1093/nsr/nwad285, 2024b.

539 Liao, T., Camp, C. D., and Yung, Y. L.: The seasonal cycle of N₂O, *Geophysical Research Letters*, 31,
540 10.1029/2004gl020345, 2004.

541 Luo, Z., Lam, S. K., Fu, H., Hu, S., and Chen, D.: Temporal and spatial evolution of nitrous oxide
542 emissions in China: Assessment, strategy and recommendation, *Journal of Cleaner Production*, 223,
543 360-367, 10.1016/j.jclepro.2019.03.134, 2019.

544 Ma, D., Wang, T., Wu, H., Qu, Y., Liu, J., Liu, J., Li, S., Zhuang, B., Li, M., and Xie, M.: The effect of
545 anthropogenic emission, meteorological factors, and carbon dioxide on the surface ozone increase
546 in China from 2008 to 2018 during the East Asia summer monsoon season, *Atmospheric Chemistry
547 and Physics*, 23, 6525–6544, 10.5194/acp-23-6525-2023, 2023a.

548 Ma, D., Wang, T., Xu, B., Song, R., Gao, L., Chen, H., Ren, X., Li, S., Zhuang, B., Li, M., Xie, M., and
549 Saikawa, E.: The mutual interactions among ozone, fine particulate matter, and carbon dioxide on
550 summer monsoon climate in East Asia, *Atmospheric Environment*, 299,
551 10.1016/j.atmosenv.2023.119668, 2023b.

552 Ma, P., Xiong, X., Chen, L., Tao, M., Chen, H., Zhang, Y., Zhang, L., Li, Q., Zhou, C., Chen, C., Zhang,
553 L., Weng, G., and Wang, Z.: Temporal and Spatial Characteristics of Nitrous Oxide Concentration
554 in China, *Spectroscopy and Spectral Analysis*, 41, 20-24, 10.3964/j.issn.1000-0593(2021)01-0020-
555 05, 2021.

556 MacLeod, M., Hasan, M.R., Robb, D.H.F. & Mamun-Ur-Rashid, M. : Quantifying and mitigating
557 greenhouse gas emissions from global aquaculture., FAO, Rome, ISBN 978-92-5-131992-5, 2019.

558 McElroy, M. B. and McConnell, J. C.: Nitrous Oxide: A Natural Source of Stratospheric NO, *Journal of
559 the Atmospheric Sciences*, 28, 1095-1098, 10.1175/1520-0469(1971)028<1095:Noanso>2.0.Co;2,
560 1971.

561 CAMS: CAMS global inversion-optimised greenhouse gas fluxes and concentrations,
562 [https://ads.atmosphere.copernicus.eu/datasets/cams-global-greenhouse-gas-
563 inversion?tab=overview](https://ads.atmosphere.copernicus.eu/datasets/cams-global-greenhouse-gas-inversion?tab=overview), last access: 16 March 2024.

564 Nevison, C. D., Dlugokencky, E., Dutton, G., Elkins, J. W., Fraser, P., Hall, B., Krummel, P. B.,
565 Langenfelds, R. L., O'Doherty, S., Prinn, R. G., Steele, L. P., and Weiss, R. F.: Exploring causes of

566 interannual variability in the seasonal cycles of tropospheric nitrous oxide, *Atmospheric Chemistry*
567 and *Physics*, 11, 3713-3730, 10.5194/acp-11-3713-2011, 2011.

568 Nielsen, S. N., Anastácio, P. M., Frias, A. F., and Marques, J. C.: CRISP-crayfish rice integrated system
569 of production. 5. Simulation of nitrogen dynamics, *Ecological Modelling*, 123, 41-52,
570 10.1016/s0304-3800(99)00166-0, 1999.

571 THE NOAA ANNUAL GREENHOUSE GAS INDEX (AGGI): <https://gml.noaa.gov/aggi/aggi.html> ,
572 last access: 15 October 2024.

573 Oleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stöckli, R.,
574 Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., and Qian, T.: Improvements to the Community
575 Land Model and their impact on the hydrological cycle, *Journal of Geophysical Research: Biogeosciences*, 113, 10.1029/2007jg000563, 2008.

576 Parton, W. J., Mosier, A. R., Ojima, D. S., Valentine, D. W., Schimel, D. S., Weier, K., and Kulmala, A.
577 E.: Generalized model for N₂ and N₂O production from nitrification and denitrification, *Global
578 Biogeochemical Cycles*, 10, 401-412, 10.1029/96gb01455, 1996.

579 Prather, M. J., Hsu, J., DeLuca, N. M., Jackman, C. H., Oman, L. D., Douglass, A. R., Fleming, E. L.,
580 Strahan, S. E., Steenrod, S. D., Sovde, O. A., Isaksen, I. S., Froidevaux, L., and Funke, B.:
581 Measuring and modeling the lifetime of nitrous oxide including its variability, *J Geophys Res Atmos*,
582 120, 5693-5705, 10.1002/2015JD023267, 2015.

583 Qiu, X. and Fan, S.: Progress of Sea-Land Breeze Study and the Characteristics of Sea-Land Breeze in
584 Three Coastal Areas in China, *Meteorological Monthly*, 39(2): 186-193. DOI: 10.7519/j.issn.1000-
585 0526.2013.02.007., 2013.

586 Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous oxide (N₂O): the dominant ozone-
587 depleting substance emitted in the 21st century, *Science*, 326, 123-125, 10.1126/science.1176985,
588 2009.

589 Ray, E. A., Portmann, R. W., Yu, P., Daniel, J., Montzka, S. A., Dutton, G. S., Hall, B. D., Moore, F. L.,
590 and Rosenlof, K. H.: The influence of the stratospheric Quasi-Biennial Oscillation on trace gas
591 levels at the Earth's surface, *Nature Geoscience*, 13, 22-27, 10.1038/s41561-019-0507-3, 2019.

592 Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An Improved In Situ and
593 Satellite SST Analysis for Climate, *Journal of Climate*, 15, 1609-1625, 10.1175/1520-
594 0442(2002)015<1609:Aiias>2.0.Co;2, 2002.

595 Shalaby, A., Zakey, A. S., Tawfik, A. B., Solmon, F., Giorgi, F., Stordal, F., Sillman, S., Zaveri, R. A.,
596 and Steiner, A. L.: Implementation and evaluation of online gas-phase chemistry within a regional
597 climate model (RegCM-CHEM4), *Geoscientific Model Development*, 5, 741-760, 10.5194/gmd-5-
598 741-2012, 2012.

599 Shengji Yan, Z. S., Aixing Deng, Weijian Zhang: Spatiotemporal Characteristics and Reduction
600 Approaches of Farmland N₂O Emission in China, *Crops*, 1-8, 10.16035/j.issn.1001-
601 7283.2022.03.001, 2022.

602 Stange, F., Butterbach-Bahl, K., Papen, H., Zechmeister-Boltenstern, S., Li, C., and Aber, J.: A process-
603 oriented model of N₂O and NO emissions from forest soils: 2. Sensitivity analysis and validation,
604 *Journal of Geophysical Research: Atmospheres*, 105, 4385-4398, 10.1029/1999jd900948, 2000.

605 Stöckli, R., Lawrence, D. M., Niu, G. Y., Oleson, K. W., Thornton, P. E., Yang, Z. L., Bonan, G. B.,
606 Denning, A. S., and Running, S. W.: Use of FLUXNET in the Community Land Model development,
607 *Journal of Geophysical Research: Biogeosciences*, 113, 10.1029/2007jg000562, 2008.

608 Sun, Q., Joos, F., Lienert, S., Berthet, S., Carroll, D., Gong, C., Ito, A., Jain, A. K., Kou-Giesbrecht, S.,

610 Landolfi, A., Manizza, M., Pan, N., Prather, M., Regnier, P., Resplandy, L., Séférian, R., Shi, H.,
611 Suntharalingam, P., Thompson, R. L., Tian, H., Vuichard, N., Zaehle, S., and Zhu, Q.: The Modeled
612 Seasonal Cycles of Surface N₂O Fluxes and Atmospheric N₂O, *Global Biogeochemical Cycles*, 38,
613 10.1029/2023gb008010, 2024.

614 Tian, H., Chen, G., Lu, C., Xu, X., Ren, W., Banger, K., Zhang, B., Tao, B., Pan, S., Liu, M., and Zhang,
615 C.: Global land-atmosphere exchange of methane and nitrous oxide: magnitude and spatiotemporal
616 patterns, *Biogeosciences Discuss.*, 10, 19811-19865, 10.5194/bgd-10-19811-2013, 2013.

617 Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A.,
618 Ciais, P., Jackson, R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S., Peters,
619 G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L.,
620 Bouwman, A. F., Buitenhuis, E. T., Chang, J., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky,
621 Elkins, J. W., Eyre, B. D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P. B., Landolfi, A., Laruelle,
622 G. G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet, D. B., Olin, S., Patra,
623 P. K., Prinn, R. G., Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N., Wang, J., Weiss,
624 R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y.: A comprehensive quantification of global
625 nitrous oxide sources and sinks, *Nature*, 586, 248-256, 10.1038/s41586-020-2780-0, 2020.

626 Tsai, T. R., Rose, R. A., Weidmann, D., and Wysocki, G.: Atmospheric vertical profiles of O₃, N₂O, CH₄,
627 CCl₂F₂, and H₂O retrieved from external-cavity quantum-cascade laser heterodyne radiometer
628 measurements, *Appl Opt*, 51, 8779-8792, 10.1364/AO.51.008779, 2012.

629 UNEP: Drawing Down N₂O To Protect Climate and the Ozone Layer. A UNEP Synthesis Report, United
630 Nations Environment Programme (UNEP), Nairobi, Kenya, ISBN: 978-92-807-3358-7, 2013.

631 Wang, G., Du, R., Wang, Y., Liu, G., Wang, Y., Chen, Z., and Lu, D.: Characteristics o f N₂O and CH₄
632 Fluxes and Their Seasonal Variations From Inner Mongolia G rassland, *Acta Agrestia Sinica*, 6,
633 306-311, 10.11733/j.issn.1007-0435.1998.04.010, 1998.

634 Wang, Z., Gu, T., Wen, Y., Cui, X., Jia, D., and Sun, J.: Distributions, sources, and air-sea fluxes of nitrous
635 oxide in Bohai Bay, China, *Frontiers in Marine Science*, 10, 10.3389/fmars.2023.1105016, 2023.

636 Weber, J., Keeble, J., Abraham, N. L., Beerling, D. J., and Martin, M. V.: Global agricultural N₂O
637 emission reduction strategies deliver climate benefits with minimal impact on stratospheric O₃
638 recovery, *npj Climate and Atmospheric Science*, 7, 10.1038/s41612-024-00678-2, 2024.

639 WMO: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2022,
640 <https://library.wmo.int/idurl/4/68532>, last access: 6 June 2024.

641 Xie, N., Wang, T., Xie, X., Yue, X., Giorgi, F., Zhang, Q., Ma, D., Song, R., Xu, B., Li, S., Zhuang, B.,
642 Li, M., Xie, M., Andreeva Kilifarska, N., Gadzhev, G., and Dimitrova, R.: The regional climate–
643 chemistry–ecology coupling model RegCM-Chem (v4.6)–YIBs (v1.0): development and
644 application, *Geoscientific Model Development*, 17, 3259-3277, 10.5194/gmd-17-3259-2024, 2024.

645 Xie, X., Wang, T., Yue, X., Li, S., Zhuang, B., and Wang, M.: Effects of atmospheric aerosols on
646 terrestrial carbon fluxes and CO₂ concentrations in China, *Atmospheric Research*, 237,
647 10.1016/j.atmosres.2020.104859, 2020.

648 Xie, X., Wang, T., Yue, X., Li, S., Zhuang, B., Wang, M., and Yang, X.: Numerical modeling of ozone
649 damage to plants and its effects on atmospheric CO₂ in China, *Atmospheric Environment*, 217,
650 10.1016/j.atmosenv.2019.116970, 2019.

651 Xu, B., Wang, T., Ma, D., Song, R., Zhang, M., Gao, L., Li, S., Zhuang, B., Li, M., and Xie, M.: Impacts
652 of regional emission reduction and global climate change on air quality and temperature to attain
653 carbon neutrality in China, *Atmospheric Research*, 279, 10.1016/j.atmosres.2022.106384, 2022.

654 Xu, B., Wang, T., Gao, L., Ma, D., Song, R., Zhao, J., Yang, X., Li, S., Zhuang, B., Li, M., and Xie, M.:
655 Impacts of meteorological factors and ozone variation on crop yields in China concerning carbon
656 neutrality objectives in 2060, *Environ Pollut*, 317, 120715, 10.1016/j.envpol.2022.120715, 2023.
657 Yang, S., Chang, B. X., Warner, M. J., Weber, T. S., Bourbonnais, A. M., Santoro, A. E., Kock, A.,
658 Sonnerup, R. E., Bullister, J. L., Wilson, S. T., and Bianchi, D.: Global reconstruction reduces the
659 uncertainty of oceanic nitrous oxide emissions and reveals a vigorous seasonal cycle, *Proc Natl
660 Acad Sci U S A*, 117, 11954-11960, 10.1073/pnas.1921914117, 2020.
661 Yin, C., Wang, T., Solmon, F., Mallet, M., Jiang, F., Li, S., and Zhuang, B.: Assessment of direct radiative
662 forcing due to secondary organic aerosol over China with a regional climate model, *Tellus B: Chemical and Physical Meteorology*, 67, 10.3402/tellusb.v67.24634, 2015.
663 Yue, X. and Unger, N.: The Yale Interactive terrestrial Biosphere model version 1.0: description,
664 evaluation and implementation into NASA GISS ModelE2, *Geoscientific Model Development*, 8,
665 2399-2417, 10.5194/gmd-8-2399-2015, 2015.
666 Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large - scale
667 applications, *Journal of Geophysical Research: Atmospheres*, 104, 30387-30415,
668 10.1029/1999jd900876, 1999.
669 Zeng, X. and Wang, T.: RegCM-Chem-YIBS-vN2O. Zenodo. <https://doi.org/10.5281/zenodo.15043206>,
670 2025
671 Zhang, G. J., Kiehl, J. T., and Rasch, P. J.: Response of Climate Simulation to a New Convective
672 Parameterization in the National Center for Atmospheric Research Community Climate Model
673 (CCM3)*, *Journal of Climate*, 11, 2097-2115, 10.1175/1520-
674 0442(1998)011<2097:Rocsta>2.0.Co;2, 1998.
675 Zhang, Q., Wang, T., Wu, H., Qu, Y., Xie, M., Li, S., Zhuang, B., Li, M., and Kilifarska, N. A.: Radiative
676 and Chemical Effects of Non-Homogeneous Methane on Terrestrial Carbon Fluxes in Asia, *Journal
677 of Geophysical Research: Atmospheres*, 129, 10.1029/2023jd040204, 2024.
678 Zhang, Y., Wang, W., and Yao, H.: Urea-based nitrogen fertilization in agriculture: a key source of N₂O
679 emissions and recent development in mitigating strategies, *Archives of Agronomy and Soil Science*,
680 69, 663-678, 10.1080/03650340.2022.2025588, 2022.
681 Zhou, F., Cui, X., Shang, Z., and Wang, Q.: Spatiotemporal pattern of cropland nitrous oxide emissions:
682 Driving factors and global assessment, *Journal of Agro-Environment Science*, 39, 680-690,
683 10.11654/jaes.2020-0113, 2020.
684 Zhou, F., Shang, Z., Ciais, P., Tao, S., Piao, S., Raymond, P., He, C., Li, B., Wang, R., Wang, X., Peng,
685 S., Zeng, Z., Chen, H., Ying, N., Hou, X., and Xu, P.: A new high-resolution N₂O emission inventory
686 for China in 2008, *Environ Sci Technol*, 48, 8538-8547, 10.1021/es5018027, 2014.
687