## Supplementary Materials for

5

10

# Saltwater exposure accelerates ice grain growth and may increase fracture vulnerability

**Authors:** Cassandra Seltzer<sup>1,2</sup>\*, Christine McCarthy<sup>1</sup>, Andrew J. Cross<sup>2</sup>, Michelle Berkmans<sup>1,3</sup>, Noah Walls<sup>4</sup>, Joanna D. Millstein<sup>5</sup>

\*Corresponding author: cassandraseltzer@gmail.com

#### The PDF file includes:

Supplementary Text Figs. S1 to S8 Table S1

#### Supplementary text

25

#### Calculation of liquidus curves.

Our results revealed that the grain-growth parameter k for saline ice can be expressed by

$$k_{lm}(f_M, V_L, T) = \exp(A * (1 - f_M) * (V_L + 1)^B) * k_{pure} * \exp(-\frac{Q}{RT}),$$
 (Eq. S1)

$$V_L(x,T,Te) = \frac{T_L(x)-T}{T-Te},$$
 (Eq. S2)

where x is chloride salinity as a weight fraction,  $T_L(x)$  is the liquidus temperature at a given composition, 30 T is temperature in Kelvin, Te is the eutectic temperature of a chloride system in Kelvin,  $k_{0 \, mure}$  is 6.19 x  $10^{-8}$  m<sup>4</sup>/s and Q is  $68 \pm 47$  kJ, following (Wang et al., 2024). An example of calculating the melt fraction and  $V_L$ , the vertical lever (McCarthy et al., 2019) is shown in Figure S1B.

The liquidus temperature at a given composition is calculated following a modified method from (Lamas et al., 2022), such that

$$T_L(x_m, T) = 273.15 - 1.998v x_m - bx_m^{1.5} - cx_m^2,$$
 (Eq. S3)

where  $x_m$  is concentration in molality, v is the number of ions per mol of the salt inclusion, and b and care observationally derived.

We use the following parameters for the three salts considered in our models:

40

35

|       | v | b     | С    |
|-------|---|-------|------|
| NaCl  | 2 | -1.45 | 0.75 |
| KCl   | 2 | -1.6  | 0.75 |
| MgSO4 | 2 | -2.2  | 0.65 |

lightly modified from (Lamas et al., 2022) to more accurately replicate experimentally-derived eutectic points (Fortes & Choukroun, 2010) as shown in Figure S5.

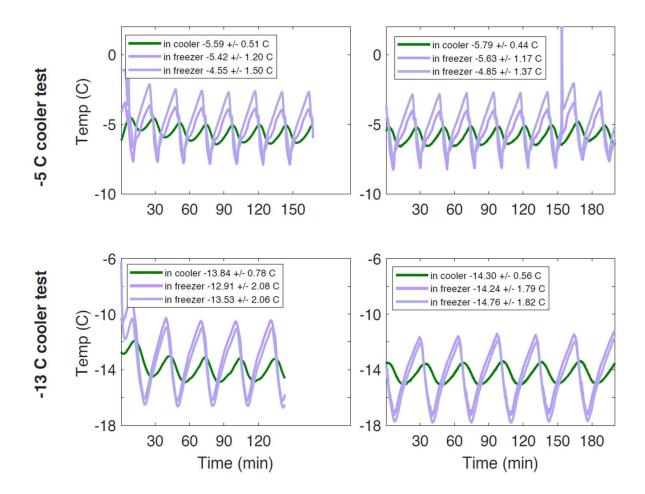



Fig. S1.
Freezer testing. Green line in all cases represents the temperature within a custom-built cooler. Two tests were conducted in each freezer, represented by each column.

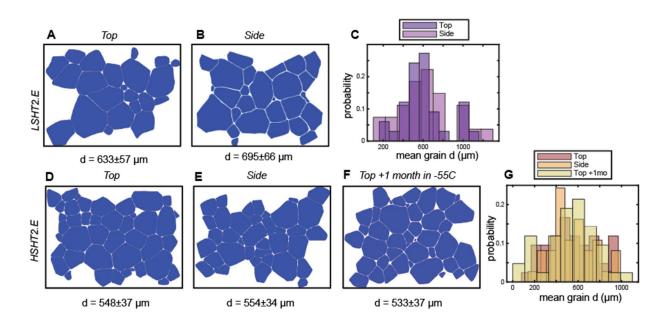



Fig. S2.

Comparison of grain size from multiple angles of sample. Tracings from (A) top of sample LSHT2.E, (B) side of sample LSHT2.E, and (C) histogram of grain sizes from A-B. (D) Tracings from top of sample HSHT2.E, (E) tracings from side of sample 2.E, (F) tracings from side of sample HSHT2.E after a month of being left in the -55 freezer, where no grain growth should have occurred, (G) histogram of grain sizes from D-F.

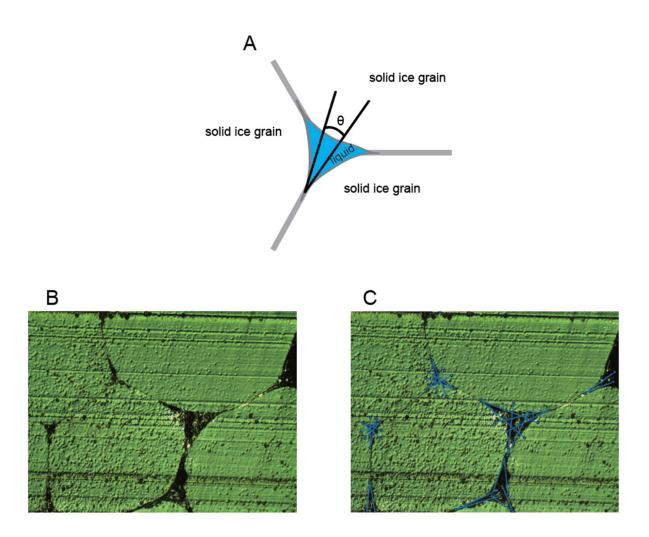



Fig. S3.

(A) Schematic of dihedral angle measurement in a theoretical system. (B) 10x image of LSLT2.E (C) Dihedral angle measurements of image.

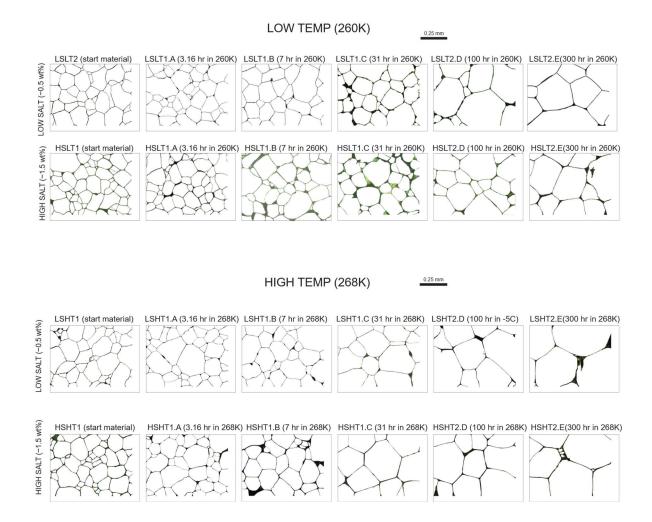
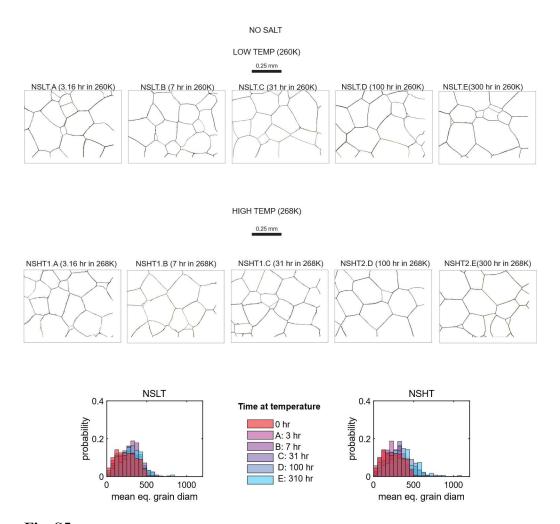
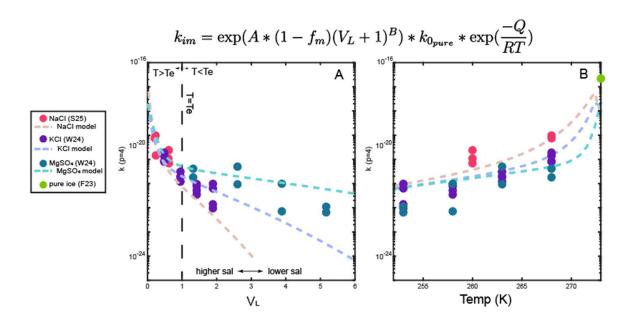
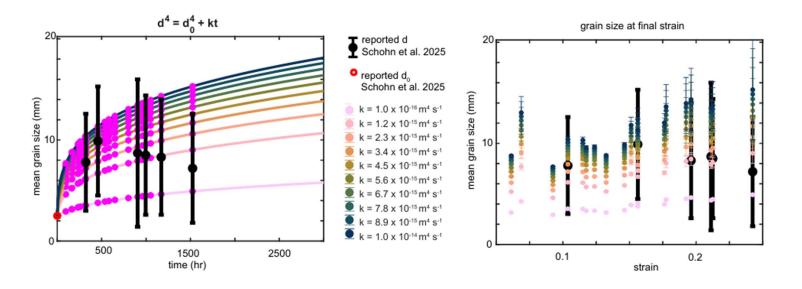





Fig. S4.


Traced grain boundaries from experimental grain growth series at low (top, 260K) and high (bottom, 268K) temperature. All grains are shown at same magnification.



**Fig. S5.**Traced grain images from no-salt experiments at low (260K, top) and high (268K, bottom) temperatures. Histograms from both experimental series are shown in the last row.



**Fig. S6.** Modeled equation (6) from main text applied to three different H<sub>2</sub>O-salt systems. S25 indicates this work, W24 and F23 from (Fan et al., 2023; Wang et al., 2024), respectively. (**A**)  $k_{im}$  as a function of vertical lever (Fig. S1). (**B**)  $k_{im}$  as a function of temperature.



**Fig. S7.** Reported final grain sizes (black) from Schohn et al, 2025, against theoretical grain-growth curves with variable range of k values and p=4.




Fig. S8. Effective tensile strength of ices exposed to warm water or saltwater, using a value of (A- C) K =  $0.0247 \text{MPa}^{\frac{1}{2}}$ , on initial tensile strength ( $\sigma_0$ ) values of (A) 0.05 MPa, (B) 0.52 MPa, and (C) 5 MPa, and normalized to the strength before water infiltration, or (D - F) K =  $0.052 \text{MPa}^{\frac{1}{2}}$ , on initial tensile strength ( $\sigma_0$ ) values of (D) 0.05 MPa, (E) 0.52 MPa, and (F) 5 MPa. Each line shows a mean value with one standard deviation above and below.

|      |                          |        |          | -                 | -                |                  |                                         |           | -          |                         |                          |        |            |                   | -                |                  |         |           |                   | i                       |
|------|--------------------------|--------|----------|-------------------|------------------|------------------|-----------------------------------------|-----------|------------|-------------------------|--------------------------|--------|------------|-------------------|------------------|------------------|---------|-----------|-------------------|-------------------------|
|      | k(p=4)                   | bestp  | n grains | standard<br>error | mean deq<br>(µm) | Duration<br>(hr) |                                         |           |            |                         | k (p = 4)                | bestp  | n grains   | error             | mean deq<br>(µm) | Duration<br>(hr) |         |           |                   |                         |
|      | 9.51 x 10 <sup>-20</sup> | 3.52   | 714      | 6.08              | 165              |                  | LSHT1                                   |           |            | 2.43 x 10 <sup>20</sup> |                          |        | 4.9<br>883 | 193.3             |                  | LSLT1            |         |           |                   |                         |
|      |                          |        | 582      | 6.86              | 177.9            | ,                | LSHT2                                   |           |            |                         |                          | 4.34   | 738        | 5.74              | 183.7            |                  | LSLT2   |           |                   | ŀ                       |
|      |                          |        | 727      | 6.15              | 208.5            | 3.16             | LSHT1.A                                 | LOW SALT  |            |                         | 2.43 x 10 <sup>-2</sup>  |        | 880        | 5.27              | 198.2            | 3.16             | LSLT1.A |           |                   |                         |
|      |                          |        | 337      | 10.1              | 230.5            | 7                | -                                       |           |            |                         |                          |        | 692        | 6.5               | 206.3            | 7                | LSLT1.B |           |                   |                         |
|      |                          |        | 229      | 18.5              | 325.75           | 31.6             | LSHT1.B LSHT1.C LSHT2.D                 |           |            |                         | 8                        |        | 274        | 11.9              | 266.13           | 31.6             | LSLT1.C | _         |                   | -                       |
|      |                          |        | 225      | 27.9              | 442.8            | 100              | LSHT2.D                                 |           |            |                         |                          | 332    | 15.4       | 311.5             |                  | LSLT2.D          |         |           |                   |                         |
|      |                          |        | 226      | 35.2              | 615.2            | 310              | LSHT2.E                                 |           |            |                         |                          |        | 334        | 20.7              | 405.9            | 310              | LSLT2.E |           |                   |                         |
|      |                          |        |          |                   |                  |                  |                                         |           |            |                         |                          |        |            |                   |                  |                  |         |           |                   |                         |
|      | k(p = 4)                 | best p | n grains | standard          | mean deq<br>(µm) | Duration<br>(hr) |                                         |           | ı          |                         | k(p=4)                   | best p | n grains   | standard<br>error | mean deq<br>(µm) | Duration<br>(hr) |         |           |                   |                         |
|      |                          | 4.31   | 274      | 8.22              | 141.7            |                  | HSHT1                                   |           | Ŧ          | HIGH TEMPERATURE (268 K |                          |        | 284        | 7.3               | 138.4            |                  | HSLT1   |           | LO                | LOW TEMPERATURE (268 K) |
|      | 6.82 x 10 <sup>-20</sup> |        | 710      | 5.05              | 132.9            | ,                | HSHT2                                   | HIGH SALT | 3H TEMPER  |                         |                          |        | 284        | 7.27              | 138.4            |                  | HSLT2   |           | WTEMPER           |                         |
|      |                          |        | 372      | 7.8               | 184.9            | 3.16             | HSHT1.A                                 |           | ATURE (268 |                         | 1.07 x 10 <sup>-20</sup> |        | 941        | 4.6               | 143.9            | 3.16             | HSLT1.A |           | <b>ATURE (268</b> |                         |
|      |                          |        | 372      | <u>82</u>         | 221.1            | 7                | HSHT1.A HSHT1.B HSHT1.C HSHT2.D HSHT2.E |           | 85         |                         |                          | 3.09   | 446        | 7.13              | 165.9            | 7                | HSLT1.B | HIGH SALT | 3                 |                         |
|      |                          |        | 310      | 12.1              | 305.9            | 31.6             | HSHT1.C                                 |           |            |                         |                          |        | 735        | 6.4               | 195.9            | 31.6             | HSLT1.C |           |                   |                         |
|      |                          |        | 299      | 20.4              | 374.6            | 100              | HSHT2.D                                 |           |            |                         |                          |        | 374        | 10.9              | 257.2            | 100              | HSLT2.D |           |                   |                         |
|      |                          |        | 262      | 29.2              | 524              | 310              | HSHT2.E                                 |           |            |                         |                          |        | 315        | 19.1              | 359.8            | 310              | HSLT2.E | -         |                   |                         |
|      |                          |        |          |                   |                  |                  |                                         |           |            |                         |                          |        |            |                   |                  |                  |         |           |                   |                         |
| 1100 |                          |        | 333      | 13                | 274.4            | 3.16             | NSHT.A                                  |           |            | l                       |                          |        | 359        | 13.2              | 272.7            | 3.16             | NSLT.A  |           |                   |                         |
|      | n/a                      | 12.79  | 230      | 18.3              | 290.7            | 7                | NSHT.B                                  |           |            |                         |                          | 15     | 568        | 10.3              | 283.9            | 7                | NSLT.B  |           |                   |                         |
|      |                          |        | 333      | 15.3              | 305.4            | 31.6             | NSHT.C                                  |           |            |                         | n/a                      |        | 591        | 10.1              | 276.3            | 31.6             | NSLT.C  |           |                   |                         |
|      |                          |        | 273      | 17.4              | 334.3            | 100              | NSHT.D                                  |           |            |                         |                          |        | 492        | 10.5              | 269.8            | 100              | NSLT.D  | -         |                   |                         |
|      |                          |        | 336      | 16.7              | 330.5            | 310              | NSHT.E                                  |           |            |                         |                          |        | 490        | 11.7              | 296.8            | 310              | NSLT.E  |           |                   | ŀ                       |

### Table S1.

105

Summary of experimental grain growth data on ice with (HS, LS) and without (NS) saltwater present.