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Abstract 15 

We present the TREED model (TRait Ecology and Evolution over Deep time), a trait- and optimality-based vegetation model to simulate 

vegetation structure, carbon cycling and eco-evolutionary adaptation dynamics to climate and CO2 changes across geologic time scales. The 

global grid-based vegetation model represents plant carbon allocation and trait evolution as a set of carbon economic trade-offs. Based on 

optimality principles, it is assumed that functional traits of the modelled community-representative average plants evolve towards an 

optimum that maximizes height growth while maintaining a positive carbon balance. The considered trait trade-offs resolve the potential 20 

plant height, leaf carbon pool size, leaf longevity, and phenology as the major axes of plant trait variation. Based on these key traits, whole-

plant structure and functioning are derived using functional and allometric relationships.  In its eco-evolutionary mode, vegetation-mediated 

carbon cycling can be tracked over the course of climatic transitions, testing the effects of the speed of evolutionary trait adaptation and 

dispersal dynamics. Moreover, with its generalized plant physiology, continuous trait space, and lack of pre-defined functional types, the 

model can be used to calculate metrics of biodiversity, including indices of the functional diversity and species richness potential. With a 25 

low computational demand, a flexible time stepping scheme and scalable adaptation parameters, TREED is intended to simulate biological 

and environmental transitions across time scales spanning from centuries to millions of years. Here, we present the underlying theory and 

model functions and evaluate model outputs against present-day observations. We show that the trait- and optimality-based approach 

captures major patterns in present-day vegetation-mediated carbon and water fluxes, biomass carbon storage, vegetation height, leaf traits, 

as well as the global distribution of plant biodiversity. Finally, we illustrate its application in the context of paleoclimate and palaeoecological 30 

research using the Paleocene-Eocene Thermal Maximum as a case study and show how eco-evolutionary adaptation dynamics of terrestrial 

ecosystems may strongly affect global carbon cycle dynamics during hyperthermal events. The TREED model is a step towards a more self-

https://doi.org/10.5194/egusphere-2025-6002
Preprint. Discussion started: 17 December 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

consistent and parameter-scarce representation of vegetation dynamics under environmental conditions that are fundamentally different from 

the present. In combination with geochemical and paleobotanical data, the model may help to better constrain the resilience of vegetation-

mediated Earth system functions to perturbations in the geologic past and at present.  35 

1 Introduction 

Since the emergence of plants on land, vegetation has played a fundamental role in the functioning of the Earth system, 

controlling the cycling of carbon, oxygen, water and energy on timescales ranging from seconds to millions of years. On short 

timescales, vegetation-climate interactions include biophysical interactions with the atmosphere, such as the exchange of 

energy, momentum and water (Boyce and Lee, 2017), or the assimilation and sequestration of carbon in biomass and soils 40 

(Sitch et al., 2008). On geologic timescales of millions of years, vegetation interacts with continental erosion and weathering 

processes, and contributes to the burial of organic material in marine sediments, representing long-term controls of Earth’s 

climate evolution, atmospheric composition and surface structures (Berner, 2004; Dahl and Arens, 2020; Hilton and West, 

2020). While controlling the functioning of global biogeochemical cycles, vegetation systems are at the same time highly 

sensitive to changes in the physical environment. To a certain degree of environmental change, plants can respond through 45 

acclimation and variation in the expression of plastic traits (Kristensen et al., 2020; Liu et al., 2024; Wang et al., 2020). More 

severe and persistent perturbations can trigger large-scale eco-evolutionary dynamics, including range shifts of species tracking 

their habitats, competition dynamics, and trait evolution due to the continuous selection for individuals that are best adapted 

to the new conditions (Korasidis et al., 2022; Matthaeus et al., 2023; McElwain et al., 2007; Sitch et al., 2008; Wing et al., 

2005). The physical environment and vegetation represent a co-evolutionary system through time. Understanding their 50 

dynamic interplay is key to resolving Earth’s past and future bioclimatic evolution (Beerling and Berner, 2005; Gurung et al., 

2024). 

The paleobotanical record offers several examples of how vegetation diversity and functioning have markedly changed during 

past periods of climatic change (Korasidis et al., 2022; McElwain and Punyasena, 2007; Wing and Currano, 2013; Xu et al., 

2022), and similar dynamics are expected under current anthropogenically driven climate change (Etterson and Shaw, 2001; 55 

Gonzalez et al., 2010; Sitch et al., 2008). Due to the scarcity of observational data from the deep past, and in order to project 

how land surface processes and climate will interact in the future, we generally rely on numerical models to simulate the 

behaviour and interactions between vegetation and other Earth system components (Fisher et al., 2014; Matthaeus et al., 2023; 

McElwain et al., 2024). Complex models exist to describe communities of plant species and associated biogeochemical and 

ecological processes (i.e., dynamic vegetation models), which have been fundamental to advancing our understanding of 60 

vegetation and climate interactions under global environmental change (Fisher et al., 2014; Sitch et al., 2008). An important 

drawback of most currently available vegetation models is that they are strongly parametrized around the functioning of plant 

species and communities under present-day environmental conditions. For example, most dynamic vegetation models 

represent the global diversity of plant species with a small and fixed number of plant functional types that differ in pre-defined 
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functional traits and biogeochemical parametrizations (Berzaghi et al., 2020; Fisher et al., 2014). This approach neglects eco-65 

evolutionary dynamics and natural selection that will result in vegetation systems continuously responding and adapting to 

new environmental conditions (Berzaghi et al., 2020). The static approach of plant functional type analogues is particularly 

problematic when applying the models to climatic conditions that are fundamentally different from the present, as have 

occurred during most of Earth’s past (Judd et al., 2024), or as we expect under future warmer climates (Fisher et al., 2014; 

Franklin et al., 2020). It is similarly problematic during past periods when modern-like plant traits and trait combinations had 70 

not yet evolved (Matthaeus et al., 2023; White et al., 2020; Wilson et al., 2017). Moreover, an approach that strongly focuses 

on present-day functioning will limit our ability to understand major co-evolutionary transitions in Earth’s past, where both 

biotic and abiotic environmental changes interactively reshaped the functioning of the Earth system.  

A promising approach to increase robustness in the prediction of vegetation functioning under changing environmental 

conditions is to focus on organizing principles of biological systems (Franklin et al., 2020; Harrison et al., 2021). An organizing 75 

principle describes how components of a complex system behave together, rather than characterizing the functioning of the 

individual components. Natural selection, i.e., the differential survival and reproduction success of individuals in a specific 

environment, represents such an organizing principle for vegetation systems. All plants that can persist in an environment must 

have traits that allow them to pass through the filter of natural selection, with abiotic and biotic selection processes eliminating 

uncompetitive plants. Consequently, trait-environment relationships may be predictable by considering selection to favour 80 

plant functional trait combinations that maximize fitness (Franklin et al., 2020; Harrison et al., 2021). Model-based 

implementations of such eco-evolutionary optimality concepts make use of plant carbon economics with trait and allocation 

strategies being associated with carbon gains and losses that apply across species. By maximizing a fitness measure, an optimal 

trait allocation strategy under given environmental conditions can be predicted (Franklin et al., 2020). The two major axes of 

variation in plant growth forms observed across the globe today include variation in plant size and leaf characteristics (Díaz et 85 

al., 2016). Both these functional traits are strongly associated with a plant’s carbon balance. Height growth determines the 

competitiveness in acquiring light resources for carbon assimilation, but is associated with increased construction and 

maintenance carbon losses (Falster and Westoby, 2003). Variation in leaf characteristics particularly represent the leaf 

economics spectrum, ranging from species with economically  constructed and short-lived “acquisitive” leaves of low leaf 

mass per area, to species with “conservative” leaves that have longer lifespans and increased persistence under environmental 90 

stress but are associated with a reduced carbon sequestration potential (Díaz et al., 2016; Wright et al., 2004). Mechanistic 

modelling of such carbon economic trade-offs across environmental gradients can resolve major patterns in the global 

vegetation trait distribution (Franklin et al., 2014, 2020; King, 1990; Rüger et al., 2020; Schymanski et al., 2009; Wang et al., 

2023).  

Here, we present and evaluate the model TREED (TRait Ecology and Evolution over Deep time), a vegetation model to 95 

continuously predict vegetation structure and functioning based on eco-evolutionary optimality principles across timescales 

from centuries to millions of years. The grid-based vegetation model is built around competing trait allocation strategies that 
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determine plant fitness under given environmental conditions. It is assumed that adaptation, competition, environmental 

filtering and evolution result in plants to allocate carbon and traits in a way that maximizes height growth (i.e., light 

competitiveness), while maintaining a positive carbon balance. With the current set of considered trait trade-offs, the model 100 

resolves plant height, leaf longevity, leaf carbon, and phenology (deciduous or evergreen) as the main independent axes of 

vegetation trait variation. Additional traits and whole-plant architecture are derived using functional and allometric 

relationships with these main traits, and by considering a generalized plant physiology. With a low model complexity, minimal 

necessary environmental inputs, and fast computational time, the model is primarily designed to investigate vegetation 

dynamics in Earth’s past and to test a range of eco-evolutionary hypotheses during periods of environmental change. We will 105 

describe and evaluate the following main functionalities of the model: 

1)  Predict the global vegetation structure, trait distribution, and associated carbon fluxes of a vegetation in eco-evolutionary 

equilibrium with the environment.  

2) Predict vegetation structures and functioning during climatic transitions, limited by the capacity of vegetation to adapt traits 

through evolution or a dispersal-based vegetation redistribution. 110 

Finally, testing the fitness of different functional trait combinations in an environment–as done in TREED–is strongly related 

to the concept of functional diversity, i.e., the range of functional traits that can be observed within a plant community. Using 

the generalized plant physiology and continuous trait space of the model, we use it to: 

3) Identify locations of a high potential for functional richness and co-existence of variable plant trait combinations. By 

combining local functional richness and vegetation diversity metrics at the landscape level, we further estimate locations 115 

of a high plant biodiversity potential. 

2 TREED model description  

A TREED model simulation consists of four processes executed in succession (Fig. 1): 1) initialization and allocation of plant 

functional traits, 2) calculation of carbon and water fluxes, 3) an optimization function to predict the optimal trait distribution 

under given climatic and topographic conditions, and 4) eco-evolutionary processes including trait evolution and dispersal 120 

dynamics that determine the transition speed from a prevailing vegetation trait distribution towards the predicted optimum trait 

distribution.  

TREED is a grid-based vegetation model: every grid cell is associated with a combination of traits that describe a location’s 

vegetation structure. As the model does not explicitly resolve plant individuals, cohorts or populations within the grid cell, the 

trait values can be considered to describe a community-representative average plant that occupies the entire grid cell. Four key 125 

traits fundamentally describe a location’s vegetation structure: an individual plant’s average leaf carbon pool size during the 

growing season (Cleaf; g C per individual), the community-average plant height (H; m), the dominant phenological strategy 

(phenology; deciduous or evergreen) and the average leaf longevity (all; years). Additionally, the vegetation of each location 
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is associated with a climatic niche that describes bioclimatic limits for productivity. The climatic niche is only considered in 

transient simulations as described in section 2.4. Based on these key traits and generalized allometric and functional 130 

relationships, a range of additional plant characteristics important for vegetation functioning are derived. In each location, the 

values of the key traits are determined simultaneously in an optimization procedure under consideration of local climatic 

conditions, searching for the trait combination that maximizes the community average plant height under the constraint of 

maintaining a positive annual carbon balance (balance between photosynthesis, respiration and tissue turnover carbon 

investments). Functional trait trade-offs thereby limit the possible trait space to a realistic range. By maximizing the average 135 

plant height, the model assumes that plants are in continuous competition for light, and that plant trait combinations that 

maximize photosynthetic carbon gains and height represent a stable trait strategy that is likely to persist and dominate an 

ecosystem, as explained in more details in sections 2.3-2.4.  

 

Figure 1: Schematic overview of TREED model processes. C = carbon, SLA = specific leaf area, LAI = leaf area index, 140 

FPC = foliage projective cover, GPP = gross primary productivity, AET = actual evapotranspiration, Rmaintenance = maintenance 

respiration, Rgrowth = growth respiration, NPP = net primary productivity.  

2.1 Allometric and functional relationships  

Specific leaf area (SLA; m2 g-1 C) is related to leaf longevity, representing the leaf economics spectrum (Wright et al., 2004), 

which is based on the observation that plants across growth forms, biomes and climates show a similar range of feasible leaf 145 

investment strategies along a gradient from “acquisitive” leaves with high SLA but low leaf longevities, to “conservative” 
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leaves with low SLA but increased leaf longevity and persistence in harsh environments (Díaz et al., 2016; Wright et al., 2004). 

The generalized functional relationship used in the TREED model represents an intermediate form of the leaf economic trade-

off used for needle-leaved and broadleaved plants with prescribed leaf longevities in the LPJ dynamic vegetation model 

(Schaphoff et al., 2018; Fig. 2):  150 

 𝑆𝐿𝐴 = (2 ⋅ 10−4) ⋅  
1

𝐷𝑀𝑐
⋅ 102.25 − log(𝑎𝑙𝑙⋅12) (1) 

with DMc being an assumed average dry matter carbon content of 0.47 g C per g of dry matter and all the leaf longevity in 

years. The generalized relationship implies that modelled plants will have leaf longevity and SLA combinations in between 

two endmember strategies: short leaf longevity/high SLA strategies, representing broadleaved deciduous or evergreen plants, 

or long leaf longevity/low SLA representing evergreen, needle-leaved plants (Fig. 2). For a given leaf carbon pool, a high SLA 155 

will result in a high leaf area and light interception potential but is associated with high annual carbon investments to rebuild 

the leaf carbon pool due to the short leaf longevity. Whether such a strategy is favourable over long leaf longevities and reduced 

annual leaf carbon investments, as well as the exact duration of the leaf longevity, depend on local climatic conditions 

(precipitation, radiation and temperature) and is evaluated in the optimization procedure (see section 2.3). By affecting the 

carbon assimilation potential as well as annual carbon turnover costs, the leaf investment trade-off further contributes to 160 

determine whether an evergreen or a deciduous phenology (i.e., no leaves during part of the year) is more favourable under 

temperate climatic conditions (see section 2.2.3). The consideration of a predicted and continuous range of possible leaf 

longevities and SLA strategies represents an important difference to plant functional type-based vegetation models with 

prescribed leaf traits.  

 165 

Figure 2: Generalized relationship between leaf longevity (all) and specific leaf area (SLA). For a given size of the leaf 

carbon pool, short leaf longevities and high SLA result in a high light interception potential (e.g., total leaf area and leaf area 

index) but are associated with higher annual carbon investments to rebuild the carbon pool due to the short longevity. The 

generalized relationship employed in the model represents an intermediate form between the leaf longevity to SLA 
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relationships considered for specific plant functional types with fixed all in the LPJ vegetation model (Schaphoff et al., 2018; 170 

Sitch et al., 2003).  

Following the allometric scaling relationships from the LPJ vegetation model (Schaphoff et al., 2018; Sitch et al., 2003), the 

size of a plant individual’s average leaf carbon pool (Cleaf) and SLA determine the average leaf area of a plant (LA; m2):  

 𝐿𝐴 = 𝑆𝐿𝐴 ⋅ 𝐶𝑙𝑒𝑎𝑓  (2) 

Following the pipe model (Shinozaki et al., 1964; Waring et al., 1982), an individual’s leaf area and sapwood cross-section 175 

area (SA; m2) are assumed proportional (all pre-defined model parameters are listed in Table 1):  

 𝐿𝐴 = 𝑘𝑙𝑎:𝑠𝑎 ⋅ 𝑆𝐴 (3) 

Leaf and fine root carbon allocation (Cfineroot; g C per individual) are related by a fine root to leaf carbon ration (r:s; 

dimensionless):  

 𝐶𝑙𝑒𝑎𝑓 = 𝑟: 𝑠 ⋅ 𝐶𝑓𝑖𝑛𝑒𝑟𝑜𝑜𝑡 (4) 180 

Plant height and diameter (D; m) are assumed to relate according to (Huang et al., 1992): 

 𝐻 = 𝑘𝑎𝑙𝑙𝑜𝑚2 ⋅ 𝐷𝑘𝑎𝑙𝑙𝑜𝑚3  (5) 

Further, diameter and crown area (CA; m2) are assumed to scale following:  

 𝐶𝐴 = min(𝑘𝑎𝑙𝑙𝑜𝑚1 ⋅ 𝐷𝑘𝑟𝑝 , 𝐶𝐴𝑚𝑎𝑥) (6) 

with an assumed maximum crown area (CAmax) of 15 m2 (Sitch et al., 2003). The CA represents the average surface area 185 

occupied by a single average plant in a model grid cell.  

An average plant’s individual leaf area index (LAIindividual; m2 m-2) can be calculated as:  

   𝐿𝐴𝐼𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 =
𝐶𝑙𝑒𝑎𝑓 ⋅  𝑆𝐿𝐴

𝐶𝐴
 (7) 

It is assumed that grid cells are fully covered by the local average plant that is characterised by the five key traits (Fig 1). 

Assuming no canopy overlap, the number of plant individuals per grid cell (Nindividuals) is thus 𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 =190 

 
𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎

𝐶𝐴
. Consequently, the grid cell’s leaf area index (LAI), is equal to the leaf area index of the average individual (LAI = 

LAIindividual):  

   𝐿𝐴𝐼 =
𝐿𝐴𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ⋅𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎
=  

𝐿𝐴𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 

𝐶𝐴
=  𝐿𝐴𝐼𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙  (8) 

The light interception potential within a grid cell, i.e., the fraction of photosynthetically active radiation absorbed by leaves 

(fAPAR; dimensionless), is estimated using the Lambert-Beer law:  195 
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     𝑓𝐴𝑃𝐴𝑅 = 1 − 𝑒−𝑘⋅𝐿𝐴𝐼 (9) 

Thereby, we account for a tendency of an increased light extinction coefficient (k) for broadleaved, short-lived and high SLA 

leaves compared to needle-leaved, long-lived and low SLA leaves (Zhang et al., 2014), by linearly relating k in the range 

between 0.6 and 0.4 to the average leaf longevity, according to:  

     𝑘 = 0.6 − 0.04 ⋅ 𝑎𝑙𝑙  (10) 200 

A plant’s sapwood carbon pool (Csapwood; g C per individual) is derived from the plant’s sapwood cross section area and height, 

assuming a cylindrical geometry and a constant wood density (WD; g C m-3):  

     𝐶𝑠𝑎𝑝𝑤𝑜𝑜𝑑 = 𝑆𝐴 ⋅ 𝐻 ⋅ 𝑊𝐷 (11) 

The model considers a globally generalized plant physiology, and it is therefore assumed that for small plants that would not 

be considered trees, Csapwood describes an overall structural carbon pool that is proportional to a plant’s height. 205 

Woody tissue represents the by far most important component of global above ground biomass (Brunner and Godbold, 2007). 

Therefore, a generalized power law derived from global canopy height (Lang et al., 2023) and above ground biomass density 

estimates (Huang et al., 2021; Santoro et al., 2010) is used to describe the relationship between the modelled volume of an 

average plant in a grid cell (H ⋅ CA) and total stem biomass (Cstem = Csapwood + Cheartwood):  

     𝐶𝑠𝑡𝑒𝑚 = 𝑘𝑖𝑛𝑡 ⋅  (𝐶𝐴 ⋅ 𝐻)𝑘𝑝𝑜𝑤  (12) 210 

Coarse root carbon (Ccoarseroot; g C per individual) is assumed to be around a fourth of the stem biomass, as estimated from 

current above ground and below ground biomass data (Huang et al., 2021):  

     𝐶𝑐𝑜𝑎𝑟𝑠𝑒𝑟𝑜𝑜𝑡 = 0.25 ⋅ (𝐶ℎ𝑒𝑎𝑟𝑡𝑤𝑜𝑜𝑑 + 𝐶𝑠𝑎𝑝𝑤𝑜𝑜𝑑) (13) 

All allometric constants (kallom1, kallom2, kallom3, krp, kla:sa, kintercept, kpow) were calibrated using present-day canopy height and 

above ground biomass data and are listed in Table 1. The resulting height to biomass relationship is shown in the model 215 

evaluation section 5.3.  

Table 1: Pre-defined TREED model parameters required to approximate vegetation structure, photosynthesis, respiration, 

carbon turnover and trait evolution. Dimensionless parameters indicated by [-].  

Function Parameter Description Value 

    

Allometric relationships    

 kla:sa Leaf area to sapwood cross-section area 4000 [-] 

 kallom2 Height-diameter relationship 50 [-] 

 
 kallom3 Height-diameter relationship 0.6 [-] 

 kallom1 Diameter-crown area relationship 75 [-] 

 krp Diameter-crown area relationship 1.6 [-] 

 DMc Average dry biomass carbon content 0.47 g C / g dry biomass 
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 WD Average wood density 250000 g C / m3 

 kint Volume-biomass relationship 194 g biomass / m3 

 kpow Volume-biomass relationship 1.23 [-] 

 r:s Fumeroot to leaf carbon ratio 1 [-] 

Carbon balance    

 αleaf:stand Leaf to stand radiation use efficiency scaling 0.55 [-] 

 αC3 Intrinsic quantum efficiency for CO2 uptake 0.08 [-] 

 𝜏25 Rubisco specifity at 25°C 2600 [-] 

 q10τ Rubisco temperature sensitivity parameter 0.57 [-] 

 KC Michaelis-Menten constant for CO2 30 Pa 

 KO Michaelis-Menten constant for O2 30000 Pa 

 [O2] Partial pressure of O2 (default) 20900 Pa 

 b Leaf respiration coefficient 0.015 per day 

 𝜃 Light and Rubisco co-limitation shape factor 0.7 [-] 

 λmax Maximum leaf-atmosphere gas exchange  0.8 [-] 

 gmin Minimum canopy conductance  0.3 mm / s 

 r Base respiration rate 0.066 g C / g N / day 

 C:Nsapwood C to N ratio woody tissue 330 [-] 

 C:Nroot C to N ratio root tissue 29 [-] 

 rgr Growth respiration fraction 0.25 [-] 

 rrepr C allocation to reproduction (fraction of NPP) 0.1 [-] 

 fsapwood Sapwood carbon turnover time 1/15 per year 

 fheartwood Heartwood carbon turnover time 1/15 per year 

 fcoarseroot Coarseroot carbon turnover time 1/15 per year 

Trait dynamics    

 α Rate of trait adaptation per time step 0 to 1 [-] 

 knichebreath Impact of climate niche deviation (default) 

 

 

(default) 

0.02 

 

2.2 Carbon balance  220 

2.2.1 Photosynthesis and evapotranspiration 

Based on the derived characteristics of the vegetation at a location, photosynthetic carbon assimilation, growth and 

maintenance respiration, and tissue turnover carbon investments are calculated. The following carbon and water flux 

calculations are adapted from the LPJ vegetation model (Schaphoff et al., 2018; Sitch et al., 2003), with photosynthesis being 

modelled using the Farquhar photosynthesis model (Farquhar et al., 1980; Farquhar and Caemmerer, 1982) and under 225 

consideration of the generalizations for global modelling by Collatz et al., (1991). The “strong optimality” hypothesis 

(Haxeltine and Prentice, 1996b) is applied, assuming that nitrogen content and Rubisco activity of leaves vary seasonally and 

with canopy position in a way to maximize the net assimilation at the leaf level. The resulting model has the form of a light-

use efficiency model, depending on the photosynthetically active radiation (PAR), temperature, daylength and water 

availability.  230 

Half of the downwelling shortwave radiation at the surface (RSDS; MJ m-2 day-1) is assumed photosynthetically active radiation 

(PAR; MJ m-2 day-1):  

     𝑃𝐴𝑅 = 0.5 ⋅ 𝑅𝑆𝐷𝑆   (14) 
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The fraction of PAR absorbed by the local vegetation (APAR; MJ m-2 day-1) is calculated considering a grid cell’s fAPAR, a 

leaf to stand level scaling factor (αleaf:stand; dimensionless), and a climate niche suitability factor (Φ𝑛𝑖𝑐ℎ𝑒𝑠𝑡𝑟𝑒𝑠𝑠;  dimensionless):  235 

     𝐴𝑃𝐴𝑅 = 𝑃𝐴𝑅 ⋅ 𝑓𝐴𝑃𝐴𝑅 ⋅  𝛼𝑙𝑒𝑎𝑓:𝑠𝑡𝑎𝑛𝑑 ⋅ Φ𝑛𝑖𝑐ℎ𝑒𝑠𝑡𝑟𝑒𝑠𝑠    (15) 

The climate niche suitability factor is an introduced variable that will be described in further detail in section 2.4 and that is 

only important in non-steady state TREED simulations, considering eco-evolutionary adaptation dynamics between different 

climate states. The leaf to stand scaling factor accounts for reductions in PAR utilization at the stand level in natural ecosystems 

(Haxeltine and Prentice, 1996b).  240 

Photosynthesis is calculated as the minimum of light-limited (JE; mol C m-2 h-1) and Rubisco-limited photosynthesis (JC; mol 

C m-2 h-1) (Haxeltine and Prentice, 1996a). Light-limited photosynthesis is calculated as:  

     𝐽𝐸 = 𝐶1 ⋅  
𝐴𝑃𝐴𝑅

𝑑𝑎𝑦𝑙𝑒𝑛𝑔𝑡ℎ
   (16) 

Where daylength (h) is the number of sunshine hours per day, depending on the day of the year and geographic latitude, and  

     𝐶1 =   𝛼𝐶3
⋅ 𝑓𝑡𝑒𝑚𝑝 ⋅ (

𝑝𝑖−Γ∗

𝑝𝑖+2⋅Γ∗ 
) (17) 245 

With pi (Pa) being the leaf internal partial pressure of CO2, calculated as 𝑝𝑖 =  𝜆 ⋅ 𝑝𝑎, where pa (Pa) is the ambient partial 

pressure of CO2 and λ (dimensionless; between 0 and 0.8) describes the leaf-atmosphere water and carbon exchange. The latter 

depends on the local water availability and vegetation stomatal opening, determining the concentration ratio between 

intercellular and ambient CO2. The 𝛼𝐶3
(dimensionless) in eq. (17) is the intrinsic quantum efficiency for CO2 uptake of C3 

plants. In the current model version only C3 physiology is considered. The factor ftemp (dimensionless) describes a general 250 

temperature dependency of the efficiency of the photosynthetic pathway, adapted from Schaphoff et al., (2018) and generalized 

for all plants as:  

     𝑓𝑡𝑒𝑚𝑝,𝑙𝑜𝑤 =  
1

(1+exp (0.25 ⋅(12−𝑇))
 (18) 

     𝑓𝑡𝑒𝑚𝑝,ℎ𝑖𝑔ℎ = 1 −  
1

1+exp (−(𝑇−40.85))
 (19) 

     𝑓𝑡𝑒𝑚𝑝 =  𝑓𝑡𝑒𝑚𝑝,𝑙𝑜𝑤 ⋅  𝑓𝑡𝑒𝑚𝑝,ℎ𝑖𝑔ℎ (20) 255 

with T being the monthly average temperature. Accordingly, ftemp indicates an inhibition of photosynthesis for monthly average 

temperatures below 0 °C and higher than 45 °C, and an optimum photosynthetic rate between 25-30 °C. Finally, Γ∗ in eq. (17) 

represents the photorespiratory CO2 compensation point:  

     Γ∗ =  
[𝑂2]

2 ⋅𝜏
 (21) 
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with 𝜏 =  𝜏25 ⋅ 𝑞10𝜏

𝑇−25

10  (dimensionless) being the specificity factor that reflects the ability of Rubisco to discriminate between 260 

CO2 and O2. [O2] is the partial pressure of oxygen (Pa), 𝜏25 is the 𝜏 value at 25 °C, and 𝑞10𝜏
 a temperature sensitivity parameter.  

The Rubisco-limited photosynthesis is calculated as:  

     𝐽𝐶 = 𝐶2 ⋅ 𝑉𝑚 (22) 

with  

     𝐶2 =
𝑝𝑖−Γ∗ 

𝑝𝑖+𝐾𝑐⋅(1+ 
[𝑂2]

𝐾𝑂
) 
 (23) 265 

where KC and KO are Michaelis-Menten constants for CO2 and O2, respectively. Vm (mol C m-2 day-1) represents the maximum 

Rubisco capacity which is derived from optimizing the daily net photosynthesis at the leaf level with respect to Vm (
∂And

∂Vm
= 0, 

where And = Agd-Rleaf; Haxeltine and Prentice, 1996b) resulting in:  

     𝑉𝑚 =
1

𝑏
⋅

𝐶1

𝐶2
⋅ ((2 ⋅ 𝜃 − 1) ⋅ 𝑠 − (2 ⋅ 𝜃 ⋅ 𝑠 − 𝐶2) ⋅ 𝜎) ⋅ 𝐴𝑃𝐴𝑅 (24) 

where b (day-1) is a static leaf respiration coefficient, 𝜃 (dimensionless) a shape parameter that describes the co-limitation of 270 

light and Rubisco activity (Haxeltine and Prentice, 1996a), and  

     𝜎 =  √1 −
𝐶2−𝑠

𝐶2−𝜃⋅𝑠
 (25) 

and  

     𝑠 =
24

𝑑𝑎𝑦𝑙𝑒𝑛𝑔𝑡ℎ 
⋅ 𝑏 (26)  

The maximum Rubisco capacity is calculated under the assumption of no water limitation, thus 𝜆 = 𝜆𝑚𝑎𝑥 . 275 

Daily gross photosynthesis (Agd; g C m-2 daytime-1) is calculated as 

      𝐴𝑔𝑑 =
(𝐽𝐸+𝐽𝐶−√(𝐽𝐸+𝐽𝐶)2−4⋅𝜃⋅𝐽𝐸⋅𝐽𝐶 )

2⋅𝜃
⋅ 𝑑𝑎𝑦𝑙𝑒𝑛𝑔𝑡ℎ (27) 

Subtracting the daytime leaf respiration results in the daily net daytime photosynthesis (Adt; g C m-2 daytime-1):  

      𝐴𝑑𝑡 = 𝐴𝑔𝑑 − (
𝑑𝑎𝑦𝑙𝑒𝑛𝑔𝑡ℎ

24
) ⋅ 𝑅𝑙𝑒𝑎𝑓 (28) 

With Rleaf (g C m-2 day-1) being the leaf dark respiration. Leaf dark respiration is expected to be predominantly driven by the 280 

turnover of Rubisco proteins for photosynthesis and thus, closely scales with the maximum Rubisco capacity (Schaphoff et 

al., 2018; Wang et al., 2020):  
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      𝑅𝑙𝑒𝑎𝑓 = 𝑉𝑚 ⋅ 𝑏 (29) 

The photosynthetic carbon assimilation rate is related to the canopy conductance of water vapor (gc; mm s-1) through the CO2 

diffusion gradient between the intercellular airspace and the atmosphere, according to:  285 

      𝑔𝑐 =  
1.6 ⋅ 𝐴𝑑𝑡

𝑝𝑎⋅(1− 𝜆)
+ 𝑔𝑚𝑖𝑛  (30) 

Where gmin (mm s-1) is a minimum canopy conductance that occurs due to non-photosynthesis related processes. The maximum 

possible canopy conductance is limited by the local water availability. The exchange of water and carbon with the atmosphere 

is controlled by the parameter 𝜆 , with high 𝜆  describing non-water limited conditions and maximum water and carbon 

exchange, whereas low 𝜆 indicates stomatal closure and limited gas exchange. Eq. (30) therefore relates stomatal opening, 290 

canopy conductance and photosynthetic rate. A potential water limitation is evaluated by comparing the vegetation’s water 

demand (Edemand; mm day-1) and transpiration, with the supply of water, constrained by:  

      𝐸𝑠𝑢𝑝𝑝𝑙𝑦 =   min (𝐸𝑚𝑎𝑥 , 𝑃𝑚𝑒𝑎𝑛) (31) 

where Emax represents a maximum daily canopy-scale transpiration rate of 5 mm day-1 (Sitch et al., 2003), and Pmean is the 

average daily precipitation rate in mm day-1. 295 

Following Schaphoff et al., (2018) and Monteith (1995), Edemand is calculated as:  

      𝐸𝑑𝑒𝑚𝑎𝑛𝑑 =   𝐸𝑒𝑞 ⋅
𝛼𝑚

1+
𝑔𝑚
𝑔𝑐

 (32) 

Employing a maximum Priestley-Taylor coefficient 𝛼𝑚 of 1.391, and a conductance scaling factor gm of 3.26 mm s-1. Eeq is 

the equilibrium evapotranspiration rate calculated as:  

      𝐸𝑒𝑞 =  
𝑠𝑎

𝑠𝑎+𝛾
⋅

𝑅𝑛

𝜆𝑣𝑎𝑝
 (33) 300 

with sa (Pa K-1) being the slope of the saturation vapor pressure curve, 𝛾 (J kg-1) the psychrometric constant, Rn (J m-2 day -1) 

the daytime net radiation and 𝜆𝑣𝑎𝑝 (J kg-1) the latent heat of vaporization. 

To evaluate a potential water limitation, Edemand is first calculated using 𝜆 = 𝜆𝑚𝑎𝑥 , representing the water demand under 

maximum potential canopy conductance. In case the resulting Edemand is lower than the available water (Esupply), 𝜆 is kept at the 

maximum level resulting in carbon and water being exchanged at the maximum level possible for the local vegetation. In case 305 

the canopy conductance calculated with 𝜆 = 𝜆𝑚𝑎𝑥  results in Edemand > Esupply, a bisection algorithm is employed to find a 

canopy-atmosphere gas exchange parameter 𝜆 < 𝜆𝑚𝑎𝑥  that satisfies Eqs. (28) and (26), and that results in a closed water 

balance (Edemand = Esupply), solving for:  

      0 = 𝐴𝑑𝑡 − 𝐴𝑑𝑡 =  𝐴𝑔𝑑 − (
𝑑𝑎𝑦𝑙𝑒𝑛𝑔𝑡ℎ

24
) ⋅ 𝑅𝑙𝑒𝑎𝑓 − 𝑝𝑎 ⋅ (𝑔𝑐 − 𝑔𝑚𝑖𝑛) ⋅

(1−𝜆)

1.6
 (34) 
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For computational efficiency, the bisection algorithm is simplified to evaluating eq. (34) at 12 pre-defined levels for 𝜆 between 310 

0 and 0.8 and choosing the 𝜆 value resulting in the closest value to zero.  

Following Sitch et al., (2003), actual evapotranspiration (AET; mm day-1) is then calculated as 

      𝐴𝐸𝑇 = min (𝐸𝑠𝑢𝑝𝑝𝑙𝑦 , 𝐸𝑑𝑒𝑚𝑎𝑛𝑑) (35) 

with only water effectively being transpired contributing to AET in case 𝐸𝑑𝑒𝑚𝑎𝑛𝑑 <  𝐸𝑠𝑢𝑝𝑝𝑙𝑦 . 

2.2.2 Respiration 315 

Metabolically active plant tissues are associated with maintenance respiration. While the leaf respiration is calculated based 

on the maximum Rubisco activity (eq. 29), sapwood (Rsapwood; g C m-2 day-1) and fine root respiration (Rfineroot; g C m-2 day-1)  

are calculated following Schaphoff et al., 2018,  as:  

      𝑅𝑠𝑎𝑝𝑤𝑜𝑜𝑑 = 𝑟 ⋅ 𝐴𝐹 ⋅
𝐶𝑠𝑎𝑝𝑤𝑜𝑜𝑑

𝐶:𝑁𝑤𝑜𝑜𝑑
⋅ 𝑔(𝑇𝑎𝑖𝑟) (36) 

      𝑅𝑓𝑖𝑛𝑒𝑟𝑜𝑜𝑡 = 𝑟 ⋅ 𝐴𝐹 ⋅
𝐶𝑓𝑖𝑛𝑒𝑟𝑜𝑜𝑡

𝐶:𝑁𝑟𝑜𝑜𝑡
⋅ 𝑔(𝑇𝑠𝑜𝑖𝑙) (37) 320 

where r (g C (g N)-1 day-1) is a base respiration rate, 𝐶: 𝑁𝑤𝑜𝑜𝑑 (dimensionless) and 𝐶: 𝑁𝑟𝑜𝑜𝑡 (dimensionless) are the C:N ratios 

in wood and root tissue, respectively. Plants from warm environments have consistently lower respiration rates than plants 

from cold environments (Reich et al., 2016; Sitch et al., 2003; Zhu et al., 2021). To account for this apparent downregulation 

of base respiration rates under warmer temperatures while not using fixed functional type-based respiration rates in the model, 

AF (dimensionless) is an introduced arbitrary acclimation factor that is 1 for environments with monthly average temperatures 325 

below 10 °C, 0.3 for average temperatures higher than 30 °C and  

      𝐴𝐹 =  1.35 − 0.035 ⋅ 𝑇 (38) 

for intermediate temperatures. Finally, g(Tair) and g(Tsoil) (dimensionless) describe the temperature dependency of respiration 

using a modified Arrhenius equation that accounts for declining respiration rates with temperatures (Lloyd and Taylor, 1994; 

Schaphoff et al., 2018; Sitch et al., 2003):  330 

      𝑔(𝑇) = exp (308.56 ⋅ (
1

56.02
−

1

𝑇+46.02
)) (39) 

where T (°C) is either the monthly average air temperature for g(Tair), or the monthly average soil temperature for g(Tsoil). The 

monthly average soil temperature is approximated from the air temperature, assuming the same annual mean but a damped 

seasonal cycle:   

      𝑇𝑠𝑜𝑖𝑙 = 𝑇𝑚𝑒𝑎𝑛 + (
𝑇−𝑇𝑚𝑒𝑎𝑛

2
) (40) 335 
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with Tmean being the annual average temperature.   

2.2.3 Annual carbon balance 

With the model using monthly average values of temperature, precipitation, radiation and cloud cover as inputs, all above-

described daily carbon fluxes are calculated as monthly average values and are then integrated over the course of the year. 

Accordingly,  340 

      𝐺𝑃𝑃 =  ∑ 𝐴𝑔𝑑,𝑖 ⋅ 𝑚𝑑𝑎𝑦𝑠𝑖
12
𝑖=1  (41)  

with i being the month of the year, and mdays,i the number of days of month i. 

For deciduous plants in temperate regions (see section 2.3), the leaf longevity limits the duration of the growing season. For 

these locations, fluxes are calculated and integrated over the warmest months of the year up to the duration of the leaf longevity. 

The annual net primary productivity (NPP; g C m-2 year-1) is calculated as:  345 

      𝑁𝑃𝑃 = (1 − 𝑟𝑔𝑟) ⋅ (𝐺𝑃𝑃 − 𝑅𝑙𝑒𝑎𝑓 − 𝑅𝑠𝑎𝑝𝑤𝑜𝑜𝑑 − 𝑅𝑓𝑖𝑛𝑒𝑟𝑜𝑜𝑡) (42) 

where rgr (dimensionless) accounts for a fixed fraction of the assimilated carbon assumed to be invested for growth respiration 

(Schaphoff et al., 2018; Sitch et al., 2003).  

Being a grid-based model, TREED describes the structure and functioning of an average plant representing the locally 

dominating vegetation growth form. The model does not explicitly resolve establishment, growth and mortality of individuals. 350 

Instead, to evaluate whether a growth from (e.g., height, size of carbon pools, leaf characteristics) is suitable for a location, an 

area-based annual carbon balance is calculated. Based on the longevity associated with the local vegetation’s carbon pools, it 

is estimated how much carbon is invested annually to rebuild and maintain the local vegetation. For a vegetation form or trait 

combination to establish and survive at a location, the area-based annual average regrowth carbon costs cannot exceed the 

average net carbon sequestration potential (NPP). Average yearly tissue turnover carbon costs (F in g C m-2 year-1) of sapwood, 355 

heartwood and coarse roots are calculated assuming constant, tissue-specific turnover rates (Table 1):  

      𝐹𝑠𝑎𝑝𝑤𝑜𝑜𝑑 = 𝐶𝑠𝑎𝑝𝑤𝑜𝑜𝑑 ⋅ 𝑓𝑠𝑎𝑝𝑤𝑜𝑜𝑑 ⋅  
1

𝐶𝐴
 (43) 

      𝐹ℎ𝑒𝑎𝑟𝑡𝑤𝑜𝑜𝑑 = 𝐶ℎ𝑒𝑎𝑟𝑡𝑤𝑜𝑜𝑑 ⋅ 𝑓ℎ𝑒𝑎𝑟𝑡𝑤𝑜𝑜𝑑  ⋅  
1

𝐶𝐴
 (44) 

      𝐹𝑐𝑜𝑎𝑟𝑠𝑒𝑟𝑜𝑜𝑡 = 𝐶𝑐𝑜𝑎𝑟𝑠𝑒𝑟𝑜𝑜𝑡 ⋅ 𝑓
𝑐𝑜𝑎𝑟𝑠𝑒𝑟𝑜𝑜𝑡 ⋅ 

1

𝐶𝐴

 (45) 

The fine root and leaf carbon turnover costs depend on the plant’s phenology and leaf longevity (in years):  360 

      𝐹𝑙𝑒𝑎𝑓 =  {
𝐶𝑙𝑒𝑎𝑓 ⋅

1

𝑎𝑙𝑙
⋅  

1

𝐶𝐴
        𝑒𝑣𝑒𝑟𝑔𝑟𝑒𝑒𝑛

𝐶𝑙𝑒𝑎𝑓 ⋅ 1 𝑦𝑒𝑎𝑟−1  ⋅  
1

𝐶𝐴
           𝑑𝑒𝑐𝑖𝑑𝑢𝑜𝑢𝑠

 (46) 
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Fine root turnover is assumed proportional to the leaf longevity (Schaphoff et al., 2018), with a minimum fine root longevity 

of one year:  

      𝐹𝑓𝑖𝑛𝑒𝑟𝑜𝑜𝑡 =  {
𝐶𝑓𝑖𝑛𝑒𝑟𝑜𝑜𝑡 ⋅

1

𝑎𝑙𝑙
⋅  

1

𝐶𝐴
        𝑎𝑙𝑙 > 1

𝐶𝑓𝑖𝑛𝑒𝑟𝑜𝑜𝑡 ⋅ 1  𝑦𝑒𝑎𝑟−1  ⋅  
1

𝐶𝐴
           𝑎𝑙𝑙  ≤ 1

 (47) 

The annual net carbon gain (NCG; g C m-2 year-1) represents the annual average carbon balance of the local vegetation and is 365 

calculated as:  

      𝑁𝐶𝐺 = (1 − 𝑟𝑟𝑒𝑝𝑟) ⋅ 𝑁𝑃𝑃 − 𝐹𝑙𝑒𝑎𝑓 − 𝐹𝑓𝑖𝑛𝑒𝑟𝑜𝑜𝑡 − 𝐹𝑠𝑎𝑝𝑤𝑜𝑜𝑑 −  𝐹ℎ𝑒𝑎𝑟𝑡𝑤𝑜𝑜𝑑 − 𝐹𝑐𝑜𝑎𝑟𝑠𝑒𝑟𝑜𝑜𝑡    (48) 

Where rrepr (= 0.1; dimensionless) represents a fixed fraction of the annual NPP allocated to reproduction (Sitch et al., 2003). 

Only trait combinations resulting in 𝑁𝐶𝐺 ≥ 0 are plausible trait combinations in a given environment, ensuring that the local 

average carbon assimilation is sufficient to build and maintain the vegetation’s carbon pools. 370 

2.3 Trait optimization and prediction 

Our generalized plant physiology (2.1) and carbon flux calculations (2.2) allow us to calculate a carbon balance for variable 

combinations of the traits Cleaf, H, all and phenology (deciduous or evergreen). Following optimality principles (Franklin et al., 

2020; Harrison et al., 2021), we assume that competition, environmental filtering and natural selection will result in traits of 

an average individual at a location to evolve towards combinations that maximize fitness. We define fitness as the potential 375 

for height growth while maintaining a positive NCG. The choice of height as the fitness measure assumes that plants in a 

community are in continuous competition for light as a major limiting resource, resulting in increased height being associated 

with a competitive advantage. It is important to note that this approach represents a fitness measure at the community level 

and not a single-plant optimization, considering that carbon investments into structural tissues in the absence of competitors 

may not represent an optimal strategy. It can be assumed that height as fitness measure results in an approximation of an 380 

evolutionary stable strategy, resulting in a trait combination that is likely stable and dominant in a given climatic environment 

(Franklin et al., 2020; Valentine and Mäkelä, 2012). Height growth is a compound trait, and its optimization implies finding a 

leaf longevity, phenology and carbon allocation strategy that maximizes photosynthetic carbon gains over losses through 

growth and maintenance respiration, as well as tissue turnover carbon costs, all of which increase with increasing height. To 

predict the trait combination of Cleaf, H, all and phenology that maximize height subject to 𝑁𝐶𝐺 ≥ 0 under given climatic 385 

conditions, an Evolutionary Centers optimization algorithm from the Julia package Metaheuristics.jl (Mejía-de-Dios and 

Mezura-Montes, 2022) is employed, with the target function being:  

      𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝐶𝑙𝑒𝑎𝑓 , 𝐻, 𝑎𝑙𝑙 , 𝑝ℎ𝑒𝑛𝑜𝑙𝑜𝑔𝑦, 𝑐𝑙𝑖𝑚𝑎𝑡𝑒) = |𝑁𝐶𝐺| − 𝜔 ⋅ 𝐻  (49) 

where 𝜔 (= 10)  is an arbitrary weighting parameter to ensure stable solutions. By minimizing |𝑁𝐶𝐺| , the model will 

approximate a steady state vegetation at maximum height, i.e., the height at which carbon gains from photosynthesis are 390 
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balanced by carbon costs from respiration and turnover. Whether height growth is maximized under a deciduous or evergreen 

phenology is only evaluated in locations with more than three months with average temperatures below 3 °C, which is 

considered a necessary condition for a deciduous phenology.   

2.4 Eco-evolutionary adaptation dynamics 

The TREED modules described under 2.1-2.3 can be used as a stand-alone model to obtain a prediction of vegetation that is 395 

in eco-evolutionary equilibrium with the environment, i.e., every grid cell is occupied by vegetation with a stable trait 

combination that maximizes height. Alternatively, the model can also be used to track vegetation structural and functional 

changes through time while adapting from a starting state and trait distribution to the predicted optimum state under new or 

changing climatic conditions. Two pathways of vegetation adaptation are represented: adaptation through evolution of traits 

and adaptation through dispersal and a redistribution of traits.  400 

2.4.1 Adaptation through evolution  

In the trait evolution module, it is assumed that average traits at a location will incrementally evolve towards the trait 

combination that is predicted as optimal. The rate of trait change is a user-defined adaptation rate 𝛼. The rate 𝛼 is a unitless 

fraction, resulting in larger changes of traits for larger deviations between the current trait values and the optimal trait values, 

representing an increased adaptation and selection pressure. Adaptation is considered to represent a range of possible 405 

adaptation processes including acclimation, phenotypic plasticity or actual adaptive evolutionary processes that will be 

particularly relevant on longer timescales. The evolution of Cleaf, and all is represented as:  

      𝐶𝑙𝑒𝑎𝑓,𝑒𝑣𝑜𝑙𝑣𝑒𝑑 =   𝐶𝑙𝑒𝑎𝑓,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝛼 ⋅ (𝐶𝑙𝑒𝑎𝑓,𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 − 𝐶𝑙𝑒𝑎𝑓,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) (50) 

      𝑎𝑙𝑙,𝑒𝑣𝑜𝑙𝑣𝑒𝑑 =   𝑎𝑙𝑙,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝛼 ⋅ (𝑎𝑙𝑙,𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 − 𝑎𝑙𝑙,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) (51) 

With 𝐶𝑙𝑒𝑎𝑓,𝑒𝑣𝑜𝑙𝑣𝑒𝑑 and 𝑎𝑙𝑙,𝑒𝑣𝑜𝑙𝑣𝑒𝑑  representing the new trait values, 𝐶𝑙𝑒𝑎𝑓,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 and 𝑎𝑙𝑙,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 representing the starting trait 410 

values, and 𝐶𝑙𝑒𝑎𝑓,𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑  and 𝑎𝑙𝑙,𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑  representing the target trait values derived from the optimization. The evolution of 

phenology is linked to the leaf longevity trait 𝑎𝑙𝑙,𝑒𝑣𝑜𝑙𝑣𝑒𝑑  and will be deciduous in an environment where a deciduous phenology 

is possible (at least three months with average temperatures lower than 3 °C) and 𝑎𝑙𝑙,𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 and 𝑎𝑙𝑙,𝑒𝑣𝑜𝑙𝑣𝑒𝑑  are less than a 

year. 

In eco-evolutionary mode, the climatic niche is taken into consideration as an additional vegetation trait. This trait accounts 415 

for the fact that plant species generally exhibit highly conserved climatic niches, which will affect their geographic distribution 

and productivity potential (Jezkova and Wiens, 2016; Liu et al., 2020; Martínez‐Meyer and Peterson, 2006). As part of the 

vegetation trait set of any location in the model, the climatic niche is described by Tmin,veg, Tmax,veg, Tmean,veg, representing the 

coldest month average temperature, warmest month average temperature and mean annual temperature of the environment to 

which the local vegetation is best adapted to. At initialization of the model, Tmin,veg, Tmax,veg, Tmean,veg, are set equal to the coldest 420 
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month, warmest month and annual average temperature of the local environment, assuming an optimal adaptation to the local 

climate conditions. If the climatic conditions at a location change, deviations between the local temperature conditions and the 

climatic niche of the local vegetation will result in a biotic stress, represented as:  

      Φℎ𝑒𝑎𝑡 =  exp (−𝑘𝑛𝑖𝑐ℎ𝑒𝑏𝑟𝑒𝑎𝑑𝑡ℎ ⋅ (𝑇𝑚𝑎𝑥,𝑙𝑜𝑐𝑎𝑙 − 𝑇𝑚𝑎𝑥,𝑣𝑒𝑔)
2

)        𝑖𝑓 𝑇𝑚𝑎𝑥,𝑙𝑜𝑐𝑎𝑙  ≥ 𝑇𝑚𝑎𝑥,𝑣𝑒𝑔 (52) 

      Φ𝑐𝑜𝑙𝑑 =  exp (−𝑘𝑛𝑖𝑐ℎ𝑒𝑏𝑟𝑒𝑎𝑑𝑡ℎ ⋅ (𝑇𝑚𝑖𝑛,𝑙𝑜𝑐𝑎𝑙 − 𝑇𝑚𝑖𝑛,𝑣𝑒𝑔)
2

)        𝑖𝑓 𝑇𝑚𝑖𝑛,𝑙𝑜𝑐𝑎𝑙  ≤ 𝑇𝑚𝑖𝑛,𝑣𝑒𝑔 (53) 425 

      Φ𝑚𝑒𝑎𝑛 =  exp (−𝑘𝑛𝑖𝑐ℎ𝑒𝑏𝑟𝑒𝑎𝑑𝑡ℎ ⋅ (𝑇𝑚𝑒𝑎𝑛,𝑙𝑜𝑐𝑎𝑙 − 𝑇𝑚𝑒𝑎𝑛,𝑣𝑒𝑔)
2

)                                                          (54) 

      Φ𝑛𝑖𝑐ℎ𝑒𝑠𝑡𝑟𝑒𝑠𝑠 =   min (Φℎ𝑒𝑎𝑡 , Φ𝑐𝑜𝑙𝑑 , Φ𝑚𝑒𝑎𝑛) (55) 

where knichebreadth describes the impact of a deviation of the local temperature distribution from the vegetation’s climatic niche 

and can be considered a description of the width of the fundamental niche of the modelled vegetation. The default value for 

knichebreadth is set to 0.02, resulting in a decline in productivity for temperature deviations between the coldest month, warmest 430 

month or average temperature from the vegetation’s climatic niche up to ~15 °C, at which a total loss of productivity occurs. 

The default niche width of 15 °C approximates the variation in the coldest month, warmest month and average temperature 

variation observed in present-day biomes (i.e., Koeppen belts) (Beck et al., 2018). The Φ𝑛𝑖𝑐ℎ𝑒𝑠𝑡𝑟𝑒𝑠𝑠 affect the photosynthetic 

potential by limiting the light interception potential in Eq. 15. The Φ𝑛𝑖𝑐ℎ𝑒𝑠𝑡𝑟𝑒𝑠𝑠 will particularly start to affect productivity 

levels if climatic changes reach a magnitude at which a redistribution of vegetation between surrounding grid cells cannot 435 

compensate for a loss of adaptation (see section 2.4.2 regarding dispersal). 

Like the other vegetation traits, the climatic tolerances of the local vegetation are subject to adaptation through time, evolving 

towards the local climatic conditions and thereby reducing the biotic stress:  

      𝑇𝑚𝑖𝑛,𝑣𝑒𝑔,𝑒𝑣𝑜𝑙𝑣𝑒𝑑 =   𝑇𝑚𝑖𝑛,𝑣𝑒𝑔,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝛼 ⋅ (𝑇𝐶𝑀,𝑙𝑜𝑐𝑎𝑙 − 𝑇𝑚𝑖𝑛,𝑣𝑒𝑔,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) (56) 

      𝑇𝑚𝑎𝑥,𝑣𝑒𝑔,𝑒𝑣𝑜𝑙𝑣𝑒𝑑 =   𝑇𝑚𝑎𝑥,𝑣𝑒𝑔,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝛼 ⋅ (𝑇𝑊𝑀,𝑙𝑜𝑐𝑎𝑙 − 𝑇𝑚𝑎𝑥,𝑣𝑒𝑔,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) (57) 440 

      𝑇𝑚𝑒𝑎𝑛,𝑣𝑒𝑔,𝑒𝑣𝑜𝑙𝑣𝑒𝑑 =   𝑇𝑚𝑒𝑎𝑛,𝑣𝑒𝑔,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝛼 ⋅ (𝑇𝑙𝑜𝑐𝑎𝑙 − 𝑇𝑚𝑒𝑎𝑛,𝑣𝑒𝑔,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) (58) 

with 𝑇𝐶𝑀,𝑙𝑜𝑐𝑎𝑙  being the local coldest month temperature, 𝑇𝑊𝑀,𝑙𝑜𝑐𝑎𝑙  being the local warmest month temperature and 𝑇𝑙𝑜𝑐𝑎𝑙 the 

local annual average temperature.  

The height trait H is not subject to evolution but is obtained based on the evolved trait set and by evaluating the maximum 

potential height with the new trait combination using a bisection algorithm that solves for:  445 

      𝑁𝐶𝐺(𝐻, 𝐶𝑙𝑒𝑎𝑓,𝑒𝑣𝑜𝑙𝑣𝑒𝑑 , 𝑎𝑙𝑙,𝑒𝑣𝑜𝑙𝑣𝑒𝑑 , 𝑝ℎ𝑒𝑛𝑜𝑙𝑜𝑔𝑦𝑒𝑣𝑜𝑙𝑣𝑒𝑑 , 𝑇𝑚𝑖𝑛,𝑣𝑒𝑔,𝑒𝑣𝑜𝑙𝑣𝑒𝑑 , 𝑇𝑚𝑎𝑥,𝑣𝑒𝑔,𝑒𝑣𝑜𝑙𝑣𝑒𝑑 , 𝑇𝑚𝑒𝑎𝑛,𝑣𝑒𝑔,𝑒𝑣𝑜𝑙𝑣𝑒𝑑) = 0  (59) 
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2.4.2 Adaptation through dispersal 

Vegetation can adapt to new climatic conditions not only through trait adaptation but also through range shifts and dispersal. 

In TREED, a dispersal-based trait redistribution is represented as a moving window operation. Thereby, for each grid cell of 

the model and for each trait that is also subject to evolution (Cleaf, all, phenology, Tmin,veg, Tmax,veg, Tmean,veg) a user-defined 450 

geographic radius is searched to assess whether there is any current trait value within this radius that is closer to the predicted 

optimum trait value for the considered location. This approach assumes that the trait values observed within the defined 

geographic region or moving window represent a trait space and that all possible trait combinations from this trait space are 

likely to occur in the location of interest. The model’s dispersal implementation may overestimate dispersal because it does 

not consider productivity levels of the dispersing plants, meaning that severely stressed plants are equally likely to disperse 455 

the same distance as highly productive plants. The model does also not have a treatment for approximating dispersal vectors, 

such as wind, insects or animals. 

As for evolution, to ensure plausible trait combinations and whole plant architecture, the trait H is not subject to the dispersal 

dynamics but is obtained by evaluating the maximum potential height at a location given the new trait combination after 

dispersal (eq. 59).  460 

2.4.3 Eco-evolutionary adaptation dynamics across timescales 

The time stepping scheme of TREED is flexible and depends on the inputs of the user (Fig. 3). To complete one evaluation of 

TREED and to obtain an estimation of the potential vegetation height, leaf characteristics, biomass, carbon and water fluxes 

of a vegetation in equilibrium with the climatic conditions (i.e., the optimum trait landscape), one year of monthly average 

climate inputs is needed (i.e., temperature, precipitation, radiation and cloud cover). These monthly average values can 465 

represent average values of a specific year or could represent multiyear monthly average values to obtain an average estimate. 

Similarly, the time stepping in the eco-evolutionary mode is flexible. The time difference between the climatic inputs used to 

run TREED in the eco-evolutionary mode that considers adaptation dynamics and limitations could range from one year to a 

million years. The adaptation parameter 𝛼, describing a rate of trait change per timestep, and the size of the dispersal search 

window can be adjusted according to the timescale of interest. It should however be noted that the trait values resolved in 470 

TREED and derived using the optimization procedure represent long-term stable, community-representative average plants 

per grid cell, and adaptation represents changes in this mean vegetation state through time. Consequently, the model does not 

resolve short-term transient dynamics in the form of population dynamics.  
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Figure 3: Illustration of time stepping scheme in the TREED model. The model calculates annual carbon fluxes and 475 

considers dispersal- and adaptation-based trait changes across a user-defined time gap. Diversity metrics are only calculated 

in the steady-state mode assuming optimal adaptation, not considering dispersal and evolution dynamics. 

3 Estimation of functional richness and diversity potential using TREED 

The generalized plant physiology and continuous trait space of TREED allows to assess the performance of variable 

combinations of the traits Cleaf, H, all, phenology in a specific climatic environment. This cannot only be used to evaluate the 480 

fittest trait combination for the environment as explained in section 2.3, but also to generally assess the range of trait 

combinations that could potentially occur. In TREED, an estimate of the functional richness potential of a location can be 

obtained by evaluating the carbon balance of a user-defined number of combinations of the traits Cleaf, H, all covering a wide 

possible range in these trait values. The model-predicted functional diversity index (FDI) represents the number of evaluations 

resulting in a positive NCG (viable growth strategy) from the total number of evaluations (N):  485 

      𝐹𝐷𝐼 =
# { 𝑖 ∣∣

∣  𝑁𝐶𝐺(𝐶𝑙𝑒𝑎𝑓 , 𝑎𝑙𝑙 , 𝐻) > 0 }

𝑁
 (60) 

FDI gives an estimate of the diversity potential within a single cell of the model domain and can be interpreted as the carrying 

capacity of the location, i.e., the range of growth forms that can be supported with the given environmental resources. To avoid 

an overprediction of functional diversity, the tested trait space should be chosen large and identical for comparisons between 

model simulations. 490 

Highest levels of plant species richness are observed in regions of high geographic complexity, with heterogeneity of habitats 

and climatic environments promoting biodiversity by increasing the niche space, refuges, opportunities for isolation and 

divergent adaptation (Antonelli et al., 2018; Stein et al., 2014). In TREED, a landscape-level diversity potential can be 

estimated by combining FDI at the cell-level with two additional metrics of landscape complexity that resolve the variability 

and arrangement of vegetation habitats at a larger spatial scale. The landscape heterogeneity index (LHI) represents the number 495 

of different plant habitats within a moving-window of a user-defined radius (default = 300 km). For the calculation of LHI, a 

categorization of the vegetation distribution in steady state with the climate is conducted. The discrete categories of vegetation 
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habitat classes are derived from the H, all, Cleaf, phenology of the predicted local dominating trait combination, considering 6 

height classes (0-5 m, 5-10 m, 10-20 m, 20-30 m, 30-40 m, >40 m), 6 leaf longevity classes (0-0.5, 0.5-1, 1-2, 2-3, 3-4, >4 

years), 6 leaf carbon pool classes (0-500, 500-1000, 1000-2000, 2000-3000, 3000-4000, >4000 g C per individual) and two 500 

phenology classes (deciduous or evergreen), resulting in a total of 432 discrete classes. LHI is then calculated as the number 

of different vegetation habitat classes within a moving window relative to the maximum number of different vegetation classes 

that could occur within this window (i.e., every grid cell is occupied by a different vegetation class):  

      𝐿𝐻𝐼 =
# 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

# 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑤𝑖𝑛𝑑𝑜𝑤
 (61) 

Additionally, the degree of landscape fragmentation is assessed, assuming a higher degree of habitat separation to result in a 505 

higher potential for allopatric speciation. To identify isolated habitat patches within a moving window, TREED employs an 

image segmentation algorithm. The highest degree of landscape fragmentation is obtained if no grid cell within the considered 

moving window has a neighbouring grid cell of the same vegetation class (i.e., the number of isolated habitat patches is equal 

to the number of grid cells). The landscape fragmentation index (LFI) is calculated as:  

      𝐿𝐹𝐼 =
# 𝑜𝑓 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 ℎ𝑎𝑏𝑖𝑡𝑎𝑡 𝑝𝑎𝑡𝑐ℎ𝑒𝑠

# 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑤𝑖𝑛𝑑𝑜𝑤
 (62) 510 

The potential diversity index (DI; dimensionless) of a location is obtained by multiplying the cell-level functional diversity 

potential with the two derived metrics of landscape-level habitat heterogeneity and fragmentation centred around the grid cell 

of interest:  

      𝐷𝐼 = 𝐹𝐷𝐼 ⋅ 𝐿𝐻𝐼 ⋅ 𝐿𝐹𝐼 (63) 

The calculated diversity metrics can only cover the abiotic diversity potential at the level of the climate input resolution and 515 

does not resolve sub-grid scale environmental heterogeneity. Accordingly, for comparisons between model runs, only models 

using the same input resolution can be compared. 

4 Comparison to previous model version   

The presented TREED version 1.0 is a development from a previous implementation, TREED version 0.1 (Rogger et al., 2025), 

with major changes regarding model structure, functions and user accessibility. For version 1.0, the model was translated to 520 

the Julia language (Bezanson et al., 2017) to enable multithreading and allowing to run simulations at below 1° longitude x 1° 

latitude resolution at low computational cost. With the current implementation, a global simulation without the calculation of 

biodiversity metrics at 0.5° longitude and latitude resolution runs in 5 minutes, using 8 threads on a standard desktop computer 

(Intel(R) Core(TM) Ultra 7 265 (2.40 GHz) processor). At 1°, 2° and 4° resolution, the same simulation is completed in 65, 

20, and 7 seconds, respectively.  525 

All functions regarding biodiversity assessment, including the estimations of functional diversity, landscape heterogeneity and 

landscape fragmentation are new to this version. These functions depend on the model’s capacity to resolve high spatial 
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resolutions, given the importance of landscape-scale topographic and climatic features in determining biodiversity gradients 

(see section 5.4). The biodiversity metric calculations will allow to use TREED not only for questions related to carbon cycling, 

but the combined evolution of Earth’s carbon cycle and plant biodiversity through time.  530 

Several aspects regarding modelling approach have been changed. This includes the translation of the model from an agent-

based model, where plant individuals were tracked in space and time, to a grid-based model, where all operations are run on a 

per-cell basis (e.g., per cell trait optimization, dispersal as a moving window operation). This increases computational 

performance by reducing the number of operations per time step, and increases accessibility of the model by simplifying model 

structure and handling. A major change further includes the simultaneous optimization-based prediction of all plant traits in 535 

equilibrium with the environment (eq. 49), enabling a steady state model prediction within one time step. Previously, traits 

were optimized sequentially, making it necessary to run spin-up simulations and preventing to use the model as a continuous 

steady state model, which is often required in paleoclimate research. The model now comes with different model run functions, 

allowing to either conduct a continuous steady state simulation (TREEDsteadycontinuous.jl), a one time step steady state 

simulation for coupling with other models (TREEDsteadystep.jl), a continuous simulation in eco-evolutionary mode 540 

considering dispersal and adaptation (TREEDnonsteadycontinuous.jl), or a one time step simulation in eco-evolutionary mode, 

allowing to restart the model from a previous time step and enabling the coupling with other models, such as climate or global 

biogeochemical models. The application of these model functions is illustrated in the case studies presented in the following 

and that are provided on the code repository. 

The new model has been implemented with a focus on user accessibility, making it possible to design model experiments 545 

within a few lines of codes and to easily access and modify model parameters (e.g., case studies on code repository). Together 

with the different model run functions and reduced computational time, these changes make the model particularly suited to 

quickly set it up for different periods in the geologic past and to run sensitivity tests (e.g., see section 6).  

5 Evaluation against present-day observations  

5.1 Input and reference data  550 

To evaluate the performance of the TREED model, we run one time step of the model using multi-year monthly average 

temperature, precipitation, downwelling shortwave radiation and cloud cover data from the years 1981-2010 from CHELSA 

(Karger et al., 2017) at 0.5° resolution in longitude and latitude. Derived carbon fluxes are evaluated using MODIS-derived 

GPP and NPP estimates, considering average fluxes from the years 2001-2010 (Kern, 2024). Vegetation height is compared 

to a combined satellite data and machine-learning based estimate for the year 2010 from Lang et al., (2023). Aboveground and 555 

belowground biomass carbon densities are compared to a machine-learning-based upscaling approach from field 

measurements and satellite data (Huang et al., 2021; Santoro et al., 2010). Evapotranspiration rates are compared to estimates 

from the Global Land Evaporation Amsterdam Model of the year 2010 (Miralles et al., 2011). Predicted latitudinal gradients 
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of leaf longevity and leaf mass per area (LMA = 1/SLA) are compared to data-based trends derived from the Glopnet data set 

(Wang et al., 2023; Wright et al., 2004). To evaluate the TREED prediction of potential plant biodiversity at the landscape 560 

level, we compare the modelled diversity index to an ensemble prediction of global-scale plant species richness derived from 

observational records and extrapolation using machine-learning and statistical methods by Cai et al., (2023). 

5.2 Evaluation of modelled carbon and water fluxes   

The optimality-based prediction of vegetation functioning using the TREED model reasonably approximates the major 

distribution of photosynthetic carbon assimilation and evapotranspiration (Fig. 4, Fig. 5 a-c). For NPP and GPP, a tendency 565 

for an overprediction of carbon assimilation is observed in Indo-Malayan tropical rain forest climates and the subtropics of 

North and South America. An underestimation is observed in Southeast Asia, tropical savannas and regions of the 

Mediterranean. Globally, the errors tend to be well balanced with a RMSE of 230 g C m-2 for GPP and 113 g C m-2 for NPP. 

The TREED steady-state prediction of the global NPP of 52 Pg C is in good correspondence with an estimated mean global 

NPP of 56.2 ± 14.3 (± standard deviation) from multiple data- and model-based NPP estimates compiled by Ito (2011).  570 

The model reproduces the global distribution of evapotranspiration, and thus reasonably approximates the carbon-water 

exchange during photosynthesis. However, there is a tendency for a slight but consistent underprediction of evapotranspiration 

rates (Fig. 5c), particularly in mid-latitude, temperate regions (Fig. 4 e and f). Given that carbon fluxes are well reproduced in 

the model, a possible explanation for this mismatch is the lack of an explicit representation of non-photosynthesis related water 

fluxes, including bare soil evaporation or evaporation of water intercepted on vegetation surfaces.  575 
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Figure 4: Spatial distribution of modelled and observed carbon and water fluxes. The left column represents model-

derived estimates, the right column represents observation-based estimates of (a) & (b) net primary productivity (NPP), (c) & 580 

(d) gross primary productivity (GPP), and (e) & (f) evapotranspiration (AET). Carbon flux data from Kern (2024), 

evapotranspiration from Miralles et al., (2011).  
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Figure 5: Comparison of modelled and observed carbon and water fluxes (left), and carbon storage (right). (a) Gross 

primary productivity (GPP), (b), net primary productivity (NPP) and evapotranspiration (AET). (d) Canopy height, (e) above 585 

ground biomass carbon storage (AGB), and (f) below ground biomass carbon storage (BGB). The 1:1 line is indicated in red. 
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RMSE is the root mean square error. Carbon fluxes from Kern (2024), evapotranspiration from Miralles et al. (2011), height 

data from Lang et al. (2023), biomass data from Huang et al. (2021) and Santoro et al. (2010).  

5.3 Evaluation of modelled vegetation height, biomass, leaf characteristics and phenology 

The TREED model allows a reasonable approximation of the first-order distribution of vegetation height and biomass (Fig. 6, 590 

Fig. 5 d-f). For vegetation height, the model generally results in an overly smooth height distribution and an overprediction in 

some regions compared to the data for the year 2020. Several reasons may contribute to the overprediction of height, while 

GPP and NPP errors tend to be better balanced. In the model’s height optimization, a surplus NPP will result in a prediction 

of increased height and biomass growth, until respiratory and tissue turnover carbon investments exceed the surplus carbon 

from photosynthesis. Compared to the data, there is a space in the height to NPP distribution that is currently not covered by 595 

the model (Fig. 7 a). Reduced height growth under high NPP levels indicates carbon turnover processes that are not currently 

represented in TREED and its height optimization. Some environments may be associated with increased carbon investments 

for tissue turnover due to disturbances, including fires or harsh environmental conditions such as heat or cold conditions, which 

could reduce the longevity of vegetation structures. A reduced availability of carbon for height growth may also represent 

increased carbon investments into biotic interactions, including defence and competition mechanisms other than height growth 600 

for light resources. Further, reduced height growth may be a result of additional carbon allocation trade-offs, for example 

carbon costs associated with hydraulic tissues that scale with plant height but that are not included in the model. Finally, in the 

height comparison it should also be noted that the model does not consider a present-day land-use map and human influences, 

and no herbivory. 

There is a strong relationship between vegetation height and biomass carbon storage, which is reproduced in the calibration of 605 

allometric constants in the model (Fig. 7 b), and drives the modelled spatial distribution of aboveground and belowground 

biomass (Fig. 6 c-f). Due to the strong biomass to height relationship, mismatches between modelled and observed 

belowground- and aboveground biomass primarily occur in regions where there is a mismatch in the height prediction. 
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 610 

Figure 6: Spatial distribution of modelled and observed vegetation structure and carbon sequestration. The left column 

represents model-derived estimates, the right column represents observation-based estimates of (a) & (b) vegetation height (c) 

& (d) above ground biomass (AGB), and (e) & (f) below ground biomass (BGB). Height data from Lang et al. (2023), biomass 

data from Huang et al. (2021) and Santoro et al. (2010). 

 615 
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Figure 7: Relationship between vegetation height and carbon fluxes observed in the TREED model and data. (a) 

Relationship between local rates of net primary productivity (NPP) and height. The model captures the first-order relationship 

between height and NPP but does not well resolve high NPP/low height combinations, likely associated with carbon turnover 

processes not currently represented. (b) The modelled biomass distribution across the globe is driven by the strong association 620 

between vegetation height and biomass storage. Carbon fluxes from Kern (2024),  height data from Lang et al. (2023), biomass 

data from Huang et al. (2021) and Santoro et al. (2010). 

 

The TREED prediction of deciduous vegetation phenology agrees with the present-day distribution of temperate deciduous 

broad-leaved forests, with highest frequencies of such growth forms in East Asia, Europe and eastern North America (Fig. 8). 625 

Together with the tropics, these regions are associated with predicted leaf longevities of around a year or less. Persistent leaves 

with longevities of longer than two years are primarily observed in arid or cold regions with a limited growing season length. 

In line with the carbon economics spectrum (Wright et al., 2004), this tendency indicates a more conservative leaf strategy 

with lower annual leaf building costs and light acquisition potential but longer persistence. The model captures the major 

latitudinal patterns of leaf longevity and leaf mass per area (LMA = 1/SLA) on the globe, with increasing LMA and leaf 630 

longevities for evergreen plants, and a decreasing latitudinal trend observed for deciduous plants (Kikuzawa et al., 2013; Reich 

et al., 2014; Wang et al., 2023). Latitudinal variations are driven by the availability of light, colder temperatures towards the 

poles and therefore, decreasing growing season lengths. Deciduous and evergreen plants follow contrasting strategies to adjust 

to these environmental changes (Wang et al., 2023), which are captured by the model and its optimality-based trait prediction. 

For deciduous plants, shorter growing season are associated with reduced leaf longevities. To compensate a reduction in the 635 

carbon sequestration potential due to the shortened growing season length, deciduous plants require more acquisitive leaf 

structures and a reduced LMA. Evergreen plants, on the other hand, compensate the shorter growing seasons, reduced light, 

and colder temperatures by reducing annual carbon investments into leaves, increased LMA and longer persistence.   
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 640 

Figure 8: Modelled vegetation phenology and leaf characteristics. (a) Distribution of deciduous or evergreen vegetation 

units. (b) Modelled average leaf lifespan. (c) Latitudinal distribution of leaf longevity and leaf mass per area (LMA). (d) 

Observed latitudinal distribution of LMA for evergreen (longevity > 1 year) and plants having leaf life cycle durations of less 

than a year (longevity ≤ 1 year), data from the Glopnet data set (Wang et al., 2023; Wright et al., 2004).  

5.4 Evaluation of modelled plant diversity potential   645 

The diversity calculations in TREED capture a large degree of the observed global plant species diversity distribution (Fig. 9), 

with an underprediction of the species richness in hotspot regions. The diversity potential in TREED is a compound product 

of three indices: a functional richness index (FDI), a landscape heterogeneity index (LHI) and a landscape fragmentation index 

(LFI) (see eq. 63). The functional diversity index (Fig. 9 a) strongly resembles the global pattern of vegetation height and 

carbon assimilation, indicating that it is primarily a function of the resource availability. In the model, locations with high 650 

levels of radiation and water, together with suitable temperatures for photosynthesis, result in a larger range of growth forms 

and trait combinations that can be sustained and potentially co-exist. The two indices of landscape complexity (LHI and LFI) 

capture regions of high topographic complexity, including the Andes, Himalayas, the east African mountains and the Alps. 
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Topographic complexity in these regions results in a high variability of climatic conditions and thus vegetation habitats. 

Further, in topographically complex regions the arrangement of vegetation habitats shows a higher degree of fragmentation, 655 

which may be associated with dispersal barriers that promote allopatric speciation processes (i.e., speciation by isolation). 

Combining functional diversity as an indicator of the local diversity potential and the two landscape metrices effectively 

captures major biodiversity gradients on Earth, with a spearman ranked correlation between the modelled diversity index and 

observed species richness of 0.81. A major underestimation of the diversity potential is observed in South-East Asia, likely 

driven by an underestimation of the productivity potential in the region (Fig 4 a-b) and thus a reduced functional diversity 660 

potential. Similarly, an overprediction of diversity is observed in the central African tropics, likely related to an overprediction 

of the productivity and functional diversity potential in the region.  
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Figure 9: Comparison of modelled plant biodiversity potential and observed species richness data. (a) TREED functional 

diversity index, (b) landscape heterogeneity index, (c) landscape fragmentation index. Together (a)-(c) represent the 665 

components of the diversity index. (d) Predicted species richness using a power law fit between observed species richness and 

the calculated diversity index (derived by multiplication of functional diversity, landscape heterogeneity and fragmentation 

indices). (e) Observed plant species richness from Cai et al. (2023). Species richness in (d) and (e) is given as number of 

species per 10’000 km2. (f) log-log relationship between modelled diversity potential and observed richness.  
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 6 Paleo-application and eco-evolutionary mode 670 

With regards to computational demand, necessary climatic inputs and model complexity, the TREED model is designed to 

study vegetation, climate and carbon cycle dynamics over geologic time. The model can either be used to obtain a continuous 

steady-state prediction of vegetation functioning, structure and diversity, or to study eco-evolutionary transitions of vegetation 

during periods of environmental change. To illustrate the latter functionality, we apply the model to the Paleocene-Eocene 

Thermal Maximum (PETM). The PETM was a 5-6 °C global warming event that was triggered by a geologically abrupt release 675 

of several thousand Pg of carbon into Earth’s atmosphere and oceans (Harper et al., 2024). The climatic perturbation resulted 

in major shifts in the vegetation distribution and carbon sequestration potential (Bowen, 2013; Bowen and Zachos, 2010; 

Korasidis et al., 2022). A loss and a 70-100 kyr lagged regrowth of biospheric carbon stocks was suggested to have been a 

primary driver for the long duration and timing the termination of the PETM warming event (Bowen, 2013; Bowen and Zachos, 

2010). A perturbation and loss of vegetation-mediated carbon and climate regulation has also been suggested to have driven 680 

the severity and duration of other hyperthermal events in Earth’s past (Payne et al., 2004; Rogger et al., 2024; Xu et al., 2022, 

2025). The TREED model can be used to study global carbon cycle dynamics during such hyperthermal events. Thereby, the 

model not only produces different carbon sequestration trajectories, but it also tracks the spatial distribution of vegetation traits 

through time.  The trait and carbon flux outputs of TREED can be used in combination with paleobotanical and geochemical 

records to better understand and constraint the response capacity of vegetation systems to large-scale carbon cycle 685 

perturbations in Earth’s past (Rogger et al., 2025).  

 In the following, we force the TREED model with PETM climate model simulation data from Korasidis et al., (2022) to 

approximate the changes in vegetation-mediated carbon cycling across the climatic perturbation. For five time steps, the 

TREED model is forced with pre-PETM climatic conditions at an atmospheric CO2 level of 680 ppm, followed by a step 

change to 1590 ppm which is maintained for another 15 model time steps. We keep the notion of “time steps” rather than 690 

actual time units in the following, to emphasize that such numerical experiments could be applied to any model duration from 

centuries to millions of years with the rates of evolution and dispersal being adjusted by the user accordingly. 

In Figure 10 a) – d), we show the steady state vegetation height and primary productivity for pre-PETM and peak-PETM CO2 

concentrations. Comparing the two climate states, the model suggests a decreased productivity and vegetation height in tropical 

and subtropical areas, driven by extreme heat conditions and reduced water availability. In mid to high latitudes, there is a 695 

strong increase in vegetation height and productivity, driven by a CO2 fertilization effect, a higher water-use efficiency and 

temperatures closer to the optimum photosynthetic temperature between 25 and 30°C (see Eqs. 18-20). Despite the reduced 

productivity potential in some tropical and subtropical regions, the total global productivity potential increases from around 

85 Pg C NPP per year to around 100 Pg C NPP per year. 

 700 
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Figure 10: TREED simulation of the PETM. (a) Pre-PETM vegetation height and (c) net primary productivity (NPP) at an 

atmospheric CO2 of 680 ppm. (b) PETM vegetation height and (d) net primary productivity at a peak-PETM CO2 concentration 

of 1590 ppm.  

 705 

Whether and how fast the vegetation can capitalize on the globally more optimal productivity conditions strongly depends on 

the speed of eco-evolutionary adaptation processes and the susceptibility to temperature changes across the transition (Fig. 

11). We test a large range of different adaptation scenarios, which is one of the main advantages of the TREED model, and 

show that the potential of carbon sequestration across a PETM-like climate transitions strongly depends on the biological 

capacity to adapt to the environmental changes. The observed range of carbon sequestration trajectories, illustrated using the 710 

total annual NPP, can be categorized in three potential outcomes illustrated in Fig 11 a. In a scenario where the evolutionary 

rate of functional and climatic trait adaptation is low (e.g., α = 0.01), we observe a strong reduction in the productivity potential 

due to a loss of adaptation of vegetation to the abruptly changing environmental conditions. Only with time, due to continuous 

dispersal (e.g., dispersal window radius = 600 km) and slow adaptive evolution, the global productivity potential recovers to 

levels as during pre-PETM conditions. Due to a low evolutionary adaptation potential, no capitalization of the theoretically 715 

possible increase in vegetation productivity is observed until the end of the simulation. Under a scenario of fast trait evolution 

(e.g., α = 0.75), only a limited adaptation and productivity lag following the climatic transition is observed. Due to an efficient 

adaptation of functional and climatic traits, the vegetation can rapidly capitalize on the climatic conditions in favour of 

increased primary productivity. A reduced dispersal capacity (e.g., dispersal window radius = 200 km) does not strongly affect 
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or offset the comparably fast increase in the global productivity potential. If both evolution and dispersal capacity are kept at 720 

an intermediate level (e.g., α = 0.1, dispersal window radius = 400 km), an intermediate productivity trajectory is observed. 

This includes a stress period with a strong reduction of the productivity potential, followed by a recovery and increase of 

productivity to above pre-PETM levels. 

Considering the traits currently included in the TREED model, the capacity of vegetation to endure temperature regimes 

outside of the original habitat and the capacity to adapt thermal tolerances is found to be the strongest limitation of the global 725 

productivity potential (Fig. 11 b). When considering no limitation of productivity due to temperature deviations between the 

local environment and the climatic environment from which the occupying vegetation originates (knichebreadth = 0), but 

considering a low evolutionary rate for other functional traits (all, Cleaf, and derived H), we do not observe a drop in vegetation 

productivity. This is because there is no direct stress effect of temperature on productivity, and further, because if plants are 

not bound to certain climatic environments, there is an unlimited dispersal-based trait exchange. This would for example mean 730 

that tropical trees and associated vegetation traits could migrate into temperate conditions without experiencing any 

physiological stress. If we assume that plant dispersal and trait evolution is bound to certain thermal limits (knichebreadth > 0), 

which themselves are subject to evolutionary adaptation, we observe a temporary drop in productivity because there exist 

climatic environments with no suiting vegetation immediately available, and because dispersal-based trait exchange only 

occurs within climatic boundaries. In the default eco-evolutionary model, we assume that plant and trait exchange are bound 735 

to thermal limits. With a niche breadth parameter knichebreadth of 0.02, the default model assumes that plants can be productive 

in environments with deviation in the annual average temperature, the coldest month average temperature, and the warmest 

month average temperature from their original habitat of up to 15°C. This corresponds approximately to the range temperature 

variability observed within present-day biomes, which are observed bioclimatic zones of similar vegetation types and 

characteristics on the globe. Thereby we assume that there exist plant physiological traits, ecosystem characteristics (e.g., 740 

competition, herbivory, pests, etc.) or abiotic conditions (e.g., soils and nutrient availability) which limit vegetation exchange 

to within such climatic boundaries. With every grid cell of the model being initialized with a climatically optimally adapted 

vegetation, thermal tolerances start to play a role for productivity if the speed of climatic shifts exceed the dispersal capacity 

of vegetation (Fig. 11 c), and if changes in the temperature distribution exceed the variability observed in the starting climate 

state.  Consequently, we observe a threshold behaviour in the productivity response if we run the model for different land 745 

surface warming scenarios across the PETM (Fig. 11 d). For a land surface warming below 4°C and under consideration of 

limited temperature tolerances (knichebreadth=0.02), no productivity loss is observed. For these warming scenarios, there is an 

effective dispersal-based vegetation redistribution, and climatic conditions allow for an increased global productivity. For land 

surface warming scenarios of 6°C or more, a drop and lagged productivity recovery is observed because the speed of climatic 

change starts to exceed the dispersal-based trait redistribution, and because climatic extremes start to exceed those previously 750 

observed. While continuous dispersal-based trait redistribution acts to close the adaptive gap, vegetation is limited by the 

capacity of adjusting thermal tolerances through acclimation or evolutionary adaptation.  
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Figure 11: Simulated net primary productivity (NPP) trajectories across the PETM. Simulated NPP trajectories assuming 755 

(a) different adaptation and dispersal rates, (b) different climate niche breadths (k) and thermal tolerances, (c) different dispersal 

rates, and (d) different land surface warming scenarios.   

7 Discussion  

Using a generalized plant physiology and optimality principles, the TREED model approximates the functioning and structure 

of present-day vegetation systems, including carbon and water fluxes, height, biomass carbon storage, leaf characteristics, 760 

phenology as well as the global distribution of plant species diversity. The model treats trait evolution as an optimization 

problem under consideration of carbon allocation trade-offs in a continuous trait space, thereby avoiding the use of discrete, 
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pre-parametrized vegetation classes. Our results support the use of organizing principles of biological systems, such as natural 

selection, to obtain more self-consistent and parameter-scarce mechanistic models of vegetation dynamics under variable 

climatic conditions, offering new ways to explore the interactions between vegetation dynamics and climatic variation across 765 

timescales from the deep past to the present. 

7.1 Evaluation of modelled carbon dynamics and traits   

Plant carbon and water exchange, as well as biomass carbon storage, represent major forcings in Earth’s carbon and climate 

system. The TREED model can serve as a computationally efficient, first-order approximation of the large-scale patterns of 

carbon assimilation and sequestration at present and under different planetary climate states in the past and future. Thereby, 770 

the model uses comparatively little input data of monthly average temperature, radiation, precipitation and cloud cover. Global 

trends in carbon and water fluxes (i.e., GPP, NPP, AET) are predicted with more confidence than vegetation biomass carbon 

sequestration. The performance difference between carbon fluxes and storage indicates that the optimization procedure is well 

suited to capture the carbon assimilation potential under given climatic conditions but does not resolve the full variability of 

how the assimilated carbon is invested into growth and biomass. A discrepancy in the performance of models to predict 775 

productivity compared to biomass storage is a feature observed across many vegetation models and is partly explained by the 

difficulty to resolve carbon turnover times of biomass (Pugh et al., 2020). In the TREED model, the largest biomass carbon 

pools (heartwood, sapwood, coarse root) are associated with fixed turnover times in the range observed and modelled for the 

present day (Pugh et al., 2020), while functional relationships determine fine root and leave carbon turnover. In natural systems, 

turnover of large structural carbon pools is primarily a result of vegetation mortality, driven by a combination of biotic (e.g., 780 

competition, herbivory, diseases) and abiotic (e.g., fires, droughts, windthrow) factors (Franklin et al., 1987). A large range of 

mechanistic formulations exist to approximate these processes, but are associated with considerable uncertainty and differences 

among models (Pugh et al., 2020). Following other vegetation models (Schaphoff et al., 2018; Sitch et al., 2003), the TREED 

model further simplifies growth respiration and reproduction carbon costs as fixed fractions of GPP and NPP, respectively. 

The current implementation of the vegetation carbon turnover and mass balance represents a simple first approximation, with 785 

the model being flexible to further develop and test increased complexity formulations of carbon turnover that may depend on 

environmental conditions or functional trait trade-offs. 

In the current TREED version, the considered carbon economic trade-offs and main axes of trait variation include carbon 

investment into height growth, the leaf carbon pool, leaf longevity and phenology (e.g., Figs. 6 & 8). The underlying allocation 

dynamics and trade-offs of height growth and leaf carbon economics are well established in both present day vegetation 790 

systems (Falster and Westoby, 2003; Valentine and Mäkelä, 2012; Wang et al., 2023; Wright et al., 2004), as well as in the 

geologic past (McElwain et al., 2024; Soh et al., 2017). With these trade-offs, the model resolves the two main axes of variation 

in vegetation growth forms observed in plants today (Díaz et al., 2016). However, while capturing mean trends, the model 

does not resolve the full range of trait variability and complexity we observe in natural vegetation systems. An increase in the 

modelled trait variability or the range of independent axes of trait variation would require the formulation of additional trait 795 
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trade-offs that capture the cost and benefits of growth strategies in given abiotic and biotic environmental conditions. Thereby, 

the trait trade-off should not be specific to a species or location, but generally applicable across plant species, space and time. 

The increasing availability of plant functional trait data from various environments at present (Bruelheide et al., 2018; Diaz et 

al., 2001; Kattge et al., 2020), as well as the geologic past (McElwain et al., 2024), is essential to establish such general trait 

relationships. The capacity of the TREED model to resolve major patterns in present-day vegetation structure and functioning 800 

based on a small number of functional trade-offs illustrates the potential of trait-based models in leading to more generalizable 

and self-consistent representations of vegetation systems, and may allow a reduction of uncertainty in model-predicted carbon 

and climate dynamics associated with vegetation parametrizations under environmental conditions of the future (Berzaghi et 

al., 2020; Fisher et al., 2014) or the deep past (Matthaeus et al., 2023).  

7.2 Paleo applications and eco-evolutionary dynamics   805 

Focusing on basic principles of trait functional relationships, a continuous trait space and no pre-parametrized vegetation 

classes, the TREED model is intended to provide a tool to understand how Earth’s climate, topography and vegetation have 

co-evolved through time. While the fundamental trade-offs of height growth and the leaf economics spectrum that drive the 

model are expected to also have played out in the distant geologic past (Butrim et al., 2024; Falster and Westoby, 2003; 

McElwain et al., 2024; Soh et al., 2017), two limitations for the application to the geologic past should be noted. Even though 810 

applying a generalized physiology across all plants, the TREED model still takes a present day-derived perspective on traits 

and whole-plant architecture in the form of the applied allometric and functional relationships. Further, the model assumes a 

constant theoretically possible trait space for the main varying traits and their combinations. The model does not resolve how 

the availability of genetic variance may have limited the range of plausible trait combinations through time. The major 

advantage of TREED with regards to these uncertainties, however, is its capacity to track combined carbon fluxes as well as 815 

associated vegetation structures. The model results can thus be compared to combined geochemical records informing about 

vegetation productivity (Bowen, 2013; Denis et al., 2021), as well as trait structures derived from paleobotanical records 

(McElwain et al., 2024; Rogger et al., 2025), to assess the validity of currently implemented and future additions of functional 

trade-offs and allometric relationships. 

To study co-evolutionary transitions between the physical environment and vegetation systems, TREED includes eco-820 

evolutionary adaptation processes not currently considered in standard vegetation models, including the capacity of vegetation 

to adapt to environmental changes through trait evolution and dispersal dynamics (Berzaghi et al., 2020). A limited capacity 

of vegetation systems to respond to abrupt climatic changes and a loss of vegetation-mediated climate regulation are considered 

to have strongly shaped global carbon cycle dynamics in the geologic past, and particularly, during episodes of abrupt climatic 

change (Hull, 2015; Payne et al., 2004; Retallack et al., 1999; Rogger et al., 2024; Xu et al., 2022, 2025). An evaluation of the 825 

capacity of vegetation to respond to environmental change is of particular importance considering that the speed of current 

climate warming may have no precedent in the last 400 million years (Foster et al., 2017). However, our understanding of the 

plant-climate adaptation process through acclimatization and evolutionary adaptation, the speed, and its limits, remain an active 
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area of research (Bennett et al., 2021; Jezkova and Wiens, 2016; Liu et al., 2020; Schneider et al., 2025; Stemkovski et al., 

2025). By combining trait-enabled model predictions, geochemical and palaeobotanical records from Earth’s past, the TREED 830 

model was developed to help constrain and test hypotheses about the vegetation response to past climatic changes, the speed 

and capacity of adaptation, and how adaptation may depend on the starting climate state and atmospheric CO2, as well as the 

rate, spatial distribution and magnitude of climate warming. Obtaining an understanding of these dynamics through geologic 

time will help to better predict the vegetation responses that may emerge under different scenarios of climate change over the 

next centuries.  835 

7.3 Plant biodiversity dynamics   

We show that the generalized plant physiology and continuous trait space of the TREED model cannot only be used to predict 

vegetation functioning and structure, but also to estimate locations of a high plant diversity potential. Thereby, we combine 

measures of local scale diversity (i.e., functional diversity potential) and landscape-scale biodiversity metrics (i.e., landscape 

heterogeneity and fragmentation of vegetation habitats). The employed metrics are aimed to resolve the two predominant 840 

drivers of plant species richness on Earth, including the spatial distribution of productivity-limiting resources such as energy 

and water, and the distribution of topographic complexity, promoting species diversity though niche differentiation and 

allopatric speciation (Antonelli et al., 2018; Cai et al., 2023; Kreft and Jetz, 2007; Stein et al., 2014). Our results support that 

the consideration of these biodiversity drivers captures a large degree of the broad-scale plant biodiversity distribution on Earth 

today. As such, in the context of paleoecological research, the model represents a tool to evaluate how topographic and climatic 845 

changes throughout Earth’s history may have influenced the global distribution of the plant biodiversity either through 

alteration of the functional diversity potential or landscape dynamics. In the biodiversity estimation, the TREED model takes 

a purely environment-driven approach by estimating a diversity index based on the current timestep’s abiotic environmental 

conditions. Individual species and their life histories are not resolved. As the model does not explicitly represent the biological 

processes that ultimately lead to the realized global biodiversity distribution of a period (e.g., movement, speciation, 850 

extinction), the predicted biodiversity indices should be considered indicators of a diversity potential and not a realized 

diversity.  

7.4 Future developments   

Future developments of the TREED model will allow the inclusion and testing of additional functional trait trade-offs, which 

may help to further generalize the model for its application under past and future climatic conditions, and to resolve growth 855 

forms not currently represented (e.g., Fig. 7). Targets for development particularly include functional trade-offs concerning 

carbon investments into hydraulic traits (e.g., maximum stomatal conductance or xylem conductivity), which are important 

both in determining the response of vegetation systems to environmental conditions as well as in their impact on the coupled 

global carbon and water cycle (McElwain et al., 2024). Related to water acquisition, also the competition for pre-emptying 

water resources from competitors may be considered in future model versions, complementing the current light competition 860 
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scheme. In drought-prone environments, a competitive advantage in securing water may favour the relative allocation of carbon 

into belowground biomass at the expense of height and aboveground biomass growth (Cabal et al., 2020), which is not currently 

resolved in the model that assumes a constant root to shoot carbon ratio. Further, alternative models concerning carbon turnover 

costs may be employed. Possible schemes include environment-dependent vegetation mortality, such as increased carbon 

turnover in heat, drought or wind-prone environments (Pugh et al., 2020), or susceptibility to biotic stresses depending on 865 

environment conditions and functional trait characteristics, e.g., increased herbivory pressures in high temperature 

environments and for low LMA leaf traits (Currano et al., 2008, 2010). Finally, it is aimed to include recently developed, 

optimality-based and parameter-scarce models of the photosynthetic carbon assimilation and evapotranspiration into TREED 

(Stocker et al., 2020), which is the physiologic process currently relying on most pre-defined parameter inputs (e.g., Table 1) 

and which will help to differentiate the influence of short timescale acclimatization processes of the photosynthetic pathway 870 

from long-term evolutionary trait evolution in response to climatic change (Schneider et al., 2025).  

8 Conclusion  

The trait- and optimality-based vegetation model TREED resolves major patterns in present-day vegetation structure, 

functioning and diversity by resolving optimal trait allocation strategies of leaf characteristics and height growth across 

environments. The capacity to capture major vegetation characteristics based on a limited set of functional trait trade-offs 875 

emphasizes the potential of trait- and optimality-based vegetation models to advance the representation of vegetation systems 

under changing environmental conditions. By considering trade-offs that apply across species, space and time, optimality-

based models may help to reduce uncertainty in vegetation-mediated Earth system process under climatic conditions 

fundamentally different from the present, as during Earth’s past or under future warm climates. Moreover, by combining a 

continuous functional trait space with landscape-scale variability in vegetation habitats, the TREED model may help to 880 

advance our understanding of the coupled evolution of vegetation productivity and diversity through time. 

Vegetation plays a fundamental role in Earth’s carbon and climate system, mediating fluxes of carbon, water and energy. A 

loss of vegetation functions due to abrupt environmental perturbations may trigger feedback dynamics not currently resolved 

in vegetation and Earth system models. The TREED model approximates eco-evolutionary adaptation dynamics including 

limited trait evolution and dispersal dynamics to investigate the response capacity of vegetation systems. In combination with 885 

geochemical and paleobotanical data, the trait-enabled model may help to better understand and constrain the resilience of 

vegetation-mediated Earth system functions in the geologic past, as well as under future climatic changes.   

9 Code and data availability  

The TREED v1.0 model code is publicly available on github (https://github.com/julrogger/TREED), and the version of the 

model used to produce the results presented in this study, along with all necessary input and evaluation data, can be accessed 890 
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on Zenodo under accession code 17777279 (https://doi.org/10.5281/zenodo.17777279) under the Apache 2.0 license (Rogger, 

2025). The model comes with three case studies showcasing the application of the model functions and for reproducing the 

results presented in this study. Please see the deposited README file for more information on how to install and run the 

model.  
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