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Abstract

We present the TREED model (TRait Ecology and Evolution over Deep time), a trait- and optimality-based vegetation model to simulate
vegetation structure, carbon cycling and eco-evolutionary adaptation dynamics to climate and CO2 changes across geologic time scales. The
global grid-based vegetation model represents plant carbon allocation and trait evolution as a set of carbon economic trade-offs. Based on
optimality principles, it is assumed that functional traits of the modelled community-representative average plants evolve towards an
optimum that maximizes height growth while maintaining a positive carbon balance. The considered trait trade-offs resolve the potential
plant height, leaf carbon pool size, leaf longevity, and phenology as the major axes of plant trait variation. Based on these key traits, whole-
plant structure and functioning are derived using functional and allometric relationships. In its eco-evolutionary mode, vegetation-mediated
carbon cycling can be tracked over the course of climatic transitions, testing the effects of the speed of evolutionary trait adaptation and
dispersal dynamics. Moreover, with its generalized plant physiology, continuous trait space, and lack of pre-defined functional types, the
model can be used to calculate metrics of biodiversity, including indices of the functional diversity and species richness potential. With a
low computational demand, a flexible time stepping scheme and scalable adaptation parameters, TREED is intended to simulate biological
and environmental transitions across time scales spanning from centuries to millions of years. Here, we present the underlying theory and
model functions and evaluate model outputs against present-day observations. We show that the trait- and optimality-based approach
captures major patterns in present-day vegetation-mediated carbon and water fluxes, biomass carbon storage, vegetation height, leaf traits,
as well as the global distribution of plant biodiversity. Finally, we illustrate its application in the context of paleoclimate and palaeoecological
research using the Paleocene-Eocene Thermal Maximum as a case study and show how eco-evolutionary adaptation dynamics of terrestrial

ecosystems may strongly affect global carbon cycle dynamics during hyperthermal events. The TREED model is a step towards a more self-
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consistent and parameter-scarce representation of vegetation dynamics under environmental conditions that are fundamentally different from
the present. In combination with geochemical and paleobotanical data, the model may help to better constrain the resilience of vegetation-

mediated Earth system functions to perturbations in the geologic past and at present.

1 Introduction

Since the emergence of plants on land, vegetation has played a fundamental role in the functioning of the Earth system,
controlling the cycling of carbon, oxygen, water and energy on timescales ranging from seconds to millions of years. On short
timescales, vegetation-climate interactions include biophysical interactions with the atmosphere, such as the exchange of
energy, momentum and water (Boyce and Lee, 2017), or the assimilation and sequestration of carbon in biomass and soils
(Sitch et al., 2008). On geologic timescales of millions of years, vegetation interacts with continental erosion and weathering
processes, and contributes to the burial of organic material in marine sediments, representing long-term controls of Earth’s
climate evolution, atmospheric composition and surface structures (Berner, 2004; Dahl and Arens, 2020; Hilton and West,
2020). While controlling the functioning of global biogeochemical cycles, vegetation systems are at the same time highly
sensitive to changes in the physical environment. To a certain degree of environmental change, plants can respond through
acclimation and variation in the expression of plastic traits (Kristensen et al., 2020; Liu et al., 2024; Wang et al., 2020). More
severe and persistent perturbations can trigger large-scale eco-evolutionary dynamics, including range shifts of species tracking
their habitats, competition dynamics, and trait evolution due to the continuous selection for individuals that are best adapted
to the new conditions (Korasidis et al., 2022; Matthaeus et al., 2023; McElwain et al., 2007; Sitch et al., 2008; Wing et al.,
2005). The physical environment and vegetation represent a co-evolutionary system through time. Understanding their
dynamic interplay is key to resolving Earth’s past and future bioclimatic evolution (Beerling and Berner, 2005; Gurung et al.,

2024).

The paleobotanical record offers several examples of how vegetation diversity and functioning have markedly changed during
past periods of climatic change (Korasidis et al., 2022; McElwain and Punyasena, 2007; Wing and Currano, 2013; Xu et al.,
2022), and similar dynamics are expected under current anthropogenically driven climate change (Etterson and Shaw, 2001;
Gonzalez et al., 2010; Sitch et al., 2008). Due to the scarcity of observational data from the deep past, and in order to project
how land surface processes and climate will interact in the future, we generally rely on numerical models to simulate the
behaviour and interactions between vegetation and other Earth system components (Fisher et al., 2014; Matthaeus et al., 2023;
McElwain et al., 2024). Complex models exist to describe communities of plant species and associated biogeochemical and
ecological processes (i.e., dynamic vegetation models), which have been fundamental to advancing our understanding of
vegetation and climate interactions under global environmental change (Fisher et al., 2014; Sitch et al., 2008). An important
drawback of most currently available vegetation models is that they are strongly parametrized around the functioning of plant
species and communities under present-day environmental conditions. For example, most dynamic vegetation models

represent the global diversity of plant species with a small and fixed number of plant functional types that differ in pre-defined



65

70

75

80

85

90

95

https://doi.org/10.5194/egusphere-2025-6002
Preprint. Discussion started: 17 December 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

functional traits and biogeochemical parametrizations (Berzaghi et al., 2020; Fisher et al., 2014). This approach neglects eco-
evolutionary dynamics and natural selection that will result in vegetation systems continuously responding and adapting to
new environmental conditions (Berzaghi et al., 2020). The static approach of plant functional type analogues is particularly
problematic when applying the models to climatic conditions that are fundamentally different from the present, as have
occurred during most of Earth’s past (Judd et al., 2024), or as we expect under future warmer climates (Fisher et al., 2014;
Franklin et al., 2020). It is similarly problematic during past periods when modern-like plant traits and trait combinations had
not yet evolved (Matthaeus et al., 2023; White et al., 2020; Wilson et al., 2017). Moreover, an approach that strongly focuses
on present-day functioning will limit our ability to understand major co-evolutionary transitions in Earth’s past, where both

biotic and abiotic environmental changes interactively reshaped the functioning of the Earth system.

A promising approach to increase robustness in the prediction of vegetation functioning under changing environmental
conditions is to focus on organizing principles of biological systems (Franklin et al., 2020; Harrison et al., 2021). An organizing
principle describes how components of a complex system behave together, rather than characterizing the functioning of the
individual components. Natural selection, i.e., the differential survival and reproduction success of individuals in a specific
environment, represents such an organizing principle for vegetation systems. All plants that can persist in an environment must
have traits that allow them to pass through the filter of natural selection, with abiotic and biotic selection processes eliminating
uncompetitive plants. Consequently, trait-environment relationships may be predictable by considering selection to favour
plant functional trait combinations that maximize fitness (Franklin et al., 2020; Harrison et al., 2021). Model-based
implementations of such eco-evolutionary optimality concepts make use of plant carbon economics with trait and allocation
strategies being associated with carbon gains and losses that apply across species. By maximizing a fitness measure, an optimal
trait allocation strategy under given environmental conditions can be predicted (Franklin et al., 2020). The two major axes of
variation in plant growth forms observed across the globe today include variation in plant size and leaf characteristics (Diaz et
al., 2016). Both these functional traits are strongly associated with a plant’s carbon balance. Height growth determines the
competitiveness in acquiring light resources for carbon assimilation, but is associated with increased construction and
maintenance carbon losses (Falster and Westoby, 2003). Variation in leaf characteristics particularly represent the leaf
economics spectrum, ranging from species with economically constructed and short-lived “acquisitive” leaves of low leaf
mass per area, to species with “conservative” leaves that have longer lifespans and increased persistence under environmental
stress but are associated with a reduced carbon sequestration potential (Diaz et al., 2016; Wright et al., 2004). Mechanistic
modelling of such carbon economic trade-offs across environmental gradients can resolve major patterns in the global
vegetation trait distribution (Franklin et al., 2014, 2020; King, 1990; Riiger et al., 2020; Schymanski et al., 2009; Wang et al.,
2023).

Here, we present and evaluate the model TREED (TRait Ecology and Evolution over Deep time), a vegetation model to
continuously predict vegetation structure and functioning based on eco-evolutionary optimality principles across timescales

from centuries to millions of years. The grid-based vegetation model is built around competing trait allocation strategies that
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determine plant fitness under given environmental conditions. It is assumed that adaptation, competition, environmental
filtering and evolution result in plants to allocate carbon and traits in a way that maximizes height growth (i.e., light
competitiveness), while maintaining a positive carbon balance. With the current set of considered trait trade-offs, the model
resolves plant height, leaf longevity, leaf carbon, and phenology (deciduous or evergreen) as the main independent axes of
vegetation trait variation. Additional traits and whole-plant architecture are derived using functional and allometric
relationships with these main traits, and by considering a generalized plant physiology. With a low model complexity, minimal
necessary environmental inputs, and fast computational time, the model is primarily designed to investigate vegetation
dynamics in Earth’s past and to test a range of eco-evolutionary hypotheses during periods of environmental change. We will

describe and evaluate the following main functionalities of the model:

1) Predict the global vegetation structure, trait distribution, and associated carbon fluxes of a vegetation in eco-evolutionary
equilibrium with the environment.
2) Predict vegetation structures and functioning during climatic transitions, limited by the capacity of vegetation to adapt traits

through evolution or a dispersal-based vegetation redistribution.

Finally, testing the fitness of different functional trait combinations in an environment—as done in TREED-is strongly related
to the concept of functional diversity, i.e., the range of functional traits that can be observed within a plant community. Using

the generalized plant physiology and continuous trait space of the model, we use it to:

3) Identify locations of a high potential for functional richness and co-existence of variable plant trait combinations. By
combining local functional richness and vegetation diversity metrics at the landscape level, we further estimate locations

of a high plant biodiversity potential.

2 TREED model description

A TREED model simulation consists of four processes executed in succession (Fig. 1): 1) initialization and allocation of plant
functional traits, 2) calculation of carbon and water fluxes, 3) an optimization function to predict the optimal trait distribution
under given climatic and topographic conditions, and 4) eco-evolutionary processes including trait evolution and dispersal
dynamics that determine the transition speed from a prevailing vegetation trait distribution towards the predicted optimum trait

distribution.

TREED is a grid-based vegetation model: every grid cell is associated with a combination of traits that describe a location’s
vegetation structure. As the model does not explicitly resolve plant individuals, cohorts or populations within the grid cell, the
trait values can be considered to describe a community-representative average plant that occupies the entire grid cell. Four key
traits fundamentally describe a location’s vegetation structure: an individual plant’s average leaf carbon pool size during the
growing season (Crq; g C per individual), the community-average plant height (4, m), the dominant phenological strategy

(phenology,; deciduous or evergreen) and the average leaf longevity (ay, years). Additionally, the vegetation of each location

4
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is associated with a climatic niche that describes bioclimatic limits for productivity. The climatic niche is only considered in
transient simulations as described in section 2.4. Based on these key traits and generalized allometric and functional
relationships, a range of additional plant characteristics important for vegetation functioning are derived. In each location, the
values of the key traits are determined simultaneously in an optimization procedure under consideration of local climatic
conditions, searching for the trait combination that maximizes the community average plant height under the constraint of
maintaining a positive annual carbon balance (balance between photosynthesis, respiration and tissue turnover carbon
investments). Functional trait trade-offs thereby limit the possible trait space to a realistic range. By maximizing the average
plant height, the model assumes that plants are in continuous competition for light, and that plant trait combinations that
maximize photosynthetic carbon gains and height represent a stable trait strategy that is likely to persist and dominate an

ecosystem, as explained in more details in sections 2.3-2.4.

Adaptation

trait evolution + dispersal

Key traits Carbon balance Optimization
EJ;:I Maximize height growth and
carbon gain
phenology 3 <
leaf longevity > (= fitness}
climatic niche
NPP
- tissue turnover
l - reproduction
Allometric and functional optimal trait combination
relationships = Net C gain in given environment

stem diameter
crown area

closed water balance
(precipitation = AET)

SLA Climate

LAI -

FPC monthly radiation

monthly cloud cover

C sapwood

G heartwood monthly temperature
‘ea 00 monthly precipitation

C fineroot

C coarseroot

Figure 1: Schematic overview of TREED model processes. C = carbon, SLA = specific leaf area, LAI = leaf area index,
FPC = foliage projective cover, GPP = gross primary productivity, AET = actual evapotranspiration, Rmaintenance = maintenance

respiration, Rgrowth = growth respiration, NPP = net primary productivity.

2.1 Allometric and functional relationships

Specific leaf area (SLA; m? g'! C) is related to leaf longevity, representing the leaf economics spectrum (Wright et al., 2004),
which is based on the observation that plants across growth forms, biomes and climates show a similar range of feasible leaf

investment strategies along a gradient from “acquisitive” leaves with high SLA but low leaf longevities, to “conservative”
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leaves with low SLA but increased leaf longevity and persistence in harsh environments (Diaz et al., 2016; Wright et al., 2004).
The generalized functional relationship used in the TREED model represents an intermediate form of the leaf economic trade-

off used for needle-leaved and broadleaved plants with prescribed leaf longevities in the LPJ dynamic vegetation model
(Schaphoff et al., 2018; Fig. 2):

SLA = (2 . 10—4) . DLMC . 10225 —log(ay;-12) (1)

with DM, being an assumed average dry matter carbon content of 0.47 g C per g of dry matter and ay the leaf longevity in
years. The generalized relationship implies that modelled plants will have leaf longevity and SLA combinations in between
two endmember strategies: short leaf longevity/high SLA strategies, representing broadleaved deciduous or evergreen plants,
or long leaf longevity/low SLA representing evergreen, needle-leaved plants (Fig. 2). For a given leaf carbon pool, a high SLA4
will result in a high leaf area and light interception potential but is associated with high annual carbon investments to rebuild
the leaf carbon pool due to the short leaf longevity. Whether such a strategy is favourable over long leaf longevities and reduced
annual leaf carbon investments, as well as the exact duration of the leaf longevity, depend on local climatic conditions
(precipitation, radiation and temperature) and is evaluated in the optimization procedure (see section 2.3). By affecting the
carbon assimilation potential as well as annual carbon turnover costs, the leaf investment trade-off further contributes to
determine whether an evergreen or a deciduous phenology (i.e., no leaves during part of the year) is more favourable under
temperate climatic conditions (see section 2.2.3). The consideration of a predicted and continuous range of possible leaf
longevities and SLA strategies represents an important difference to plant functional type-based vegetation models with

prescribed leaf traits.

0.04 —— LPJ needle
LPJ broad
— Model
& 003
[=>]
E
<
-
@ 502
0.01
T T T T
1 2 3 4
a, (years)

Figure 2: Generalized relationship between leaf longevity (an) and specific leaf area (SLA). For a given size of the leaf
carbon pool, short leaf longevities and high SLA result in a high light interception potential (e.g., total leaf area and leaf area
index) but are associated with higher annual carbon investments to rebuild the carbon pool due to the short longevity. The

generalized relationship employed in the model represents an intermediate form between the leaf longevity to SLA
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relationships considered for specific plant functional types with fixed ay in the LPJ vegetation model (Schaphoff et al., 2018;
Sitch et al., 2003).

Following the allometric scaling relationships from the LPJ vegetation model (Schaphoff et al., 2018; Sitch et al., 2003), the

size of a plant individual’s average leaf carbon pool (Ciey) and SLA determine the average leaf area of a plant (LA, m?):

Following the pipe model (Shinozaki et al., 1964; Waring et al., 1982), an individual’s leaf area and sapwood cross-section

area (S4, m?) are assumed proportional (all pre-defined model parameters are listed in Table 1):
LA =kjg.sq - SA (3)

Leaf and fine root carbon allocation (Cpneroor; g C per individual) are related by a fine root to leaf carbon ration (r:s;

dimensionless):
Cleaf =T1:.s- Cfineroot “4)
Plant height and diameter (D; m) are assumed to relate according to (Huang et al., 1992):
H = Kgjiomy + D¥altoms (5)
Further, diameter and crown area (CA4,; m?) are assumed to scale following:
CA = min(kayom1 - D*rP, CApmaz) (6)

with an assumed maximum crown area (CAmuq) of 15 m? (Sitch et al., 2003). The CA represents the average surface area

occupied by a single average plant in a model grid cell.

An average plant’s individual leaf area index (LALingiviaua; m> m?) can be calculated as:

Cleaf - SLA
CA

(7

LAlingividuar =

It is assumed that grid cells are fully covered by the local average plant that is characterised by the five key traits (Fig 1).

Assuming no canopy overlap, the number of plant individuals per grid cell (Nidividuais) 18 thus Nipgividuais =

cell area
CA

LAIindividual) .

. Consequently, the grid cell’s leaf area index (LA[), is equal to the leaf area index of the average individual (LA =

_ LAindividual ‘Nindividuals _ LAindividual _
Lar= cell area - cA = LALnawiduar ()

The light interception potential within a grid cell, i.e., the fraction of photosynthetically active radiation absorbed by leaves

(fAPAR; dimensionless), is estimated using the Lambert-Beer law:
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fAPAR =1 — e~F14l )

Thereby, we account for a tendency of an increased light extinction coefficient (k) for broadleaved, short-lived and high SLA
leaves compared to needle-leaved, long-lived and low SLA4 leaves (Zhang et al., 2014), by linearly relating & in the range

between 0.6 and 0.4 to the average leaf longevity, according to:
k=06-0.04-qy (10)

A plant’s sapwood carbon pool (Csapwooa; g C per individual) is derived from the plant’s sapwood cross section area and height,

assuming a cylindrical geometry and a constant wood density (WD, g C m™):
Csapwooa = SA-H - WD (11)

The model considers a globally generalized plant physiology, and it is therefore assumed that for small plants that would not

be considered trees, Cyqpwooa describes an overall structural carbon pool that is proportional to a plant’s height.

Woody tissue represents the by far most important component of global above ground biomass (Brunner and Godbold, 2007).
Therefore, a generalized power law derived from global canopy height (Lang et al., 2023) and above ground biomass density
estimates (Huang et al., 2021; Santoro et al., 2010) is used to describe the relationship between the modelled volume of an

average plant in a grid cell (H - CA4) and total stem biomass (Cyiem = Csapwood + Cheartwood):
Cstem = Kine - (CA - H)kpow (12)

Coarse root carbon (Ceoarseroors € C per individual) is assumed to be around a fourth of the stem biomass, as estimated from

current above ground and below ground biomass data (Huang et al., 2021):

Ccoarseroot =0.25- (Cheartwood + Csapwood) (13)

All allometric constants (Kaiomi, Kattom2, katioms, krp, Kia:sar Kintercepss kpow) Were calibrated using present-day canopy height and
above ground biomass data and are listed in Table 1. The resulting height to biomass relationship is shown in the model

evaluation section 5.3.

Table 1: Pre-defined TREED model parameters required to approximate vegetation structure, photosynthesis, respiration,

carbon turnover and trait evolution. Dimensionless parameters indicated by [-].

Function Parameter  Description Value

Allometric relationships

Kia:sa Leaf area to sapwood cross-section area 4000 [-]

Kattom2 Height-diameter relationship 50 [-]

Kattom3 Height-diameter relationship 0.6 [-]

Kattom1 Diameter-crown area relationship 75 [-]

kip Diameter-crown area relationship 1.6 [-]

DM, Average dry biomass carbon content 0.47 g C/ g dry biomass
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WD Average wood density 250000 g C /m3
Kint Volume-biomass relationship 194 g biomass / m?
kpow Volume-biomass relationship 1.23 [-]
s Fumeroot to leaf carbon ratio 1[-]
Carbon balance
Olleaf:stand Leaf to stand radiation use efficiency scaling  0.55 [-]
ocs3 Intrinsic quantum efficiency for CO2 uptake 0.08 [-]
Tys Rubisco specifity at 25°C 2600 [-]
qioc Rubisco temperature sensitivity parameter 0.57 [-]
Kc Michaelis-Menten constant for CO2 30 Pa
Ko Michaelis-Menten constant for O 30000 Pa
[02] Partial pressure of O (default) 20900 Pa
b Leaf respiration coefficient 0.015 per day
0 Light and Rubisco co-limitation shape factor 0.7 [-]
Amax Maximum leaf-atmosphere gas exchange 0.8 [-]
Zmin Minimum canopy conductance 0.3 mm/s
r Base respiration rate 0.066 g C/gN/day
C:Nsapwood ~ C to N ratio woody tissue 330[-]
C:Nroot C to N ratio root tissue 29 [-]
Tgr Growth respiration fraction 0.25[-]
Trepr C allocation to reproduction (fraction of NPP) 0.1 [-]
fsapwood Sapwood carbon turnover time 1/15 per year
fheartwood Heartwood carbon turnover time 1/15 per year
feoarseroot Coarseroot carbon turnover time 1/15 per year
Trait dynamics
o Rate of trait adaptation per time step Oto1[-]
Knichebreath Impact of climate niche deviation (default) 0.02

2.2 Carbon balance

2.2.1 Photosynthesis and evapotranspiration

Based on the derived characteristics of the vegetation at a location, photosynthetic carbon assimilation, growth and
maintenance respiration, and tissue turnover carbon investments are calculated. The following carbon and water flux
calculations are adapted from the LPJ vegetation model (Schaphoff et al., 2018; Sitch et al., 2003), with photosynthesis being
modelled using the Farquhar photosynthesis model (Farquhar et al., 1980; Farquhar and Caemmerer, 1982) and under
consideration of the generalizations for global modelling by Collatz et al., (1991). The “strong optimality” hypothesis
(Haxeltine and Prentice, 1996b) is applied, assuming that nitrogen content and Rubisco activity of leaves vary seasonally and
with canopy position in a way to maximize the net assimilation at the leaf level. The resulting model has the form of a light-
use efficiency model, depending on the photosynthetically active radiation (PAR), temperature, daylength and water
availability.

Half of the downwelling shortwave radiation at the surface (RSDS; MJ m day') is assumed photosynthetically active radiation
(PAR; MJ mday™):

PAR = 0.5 - RSDS (14)

9
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The fraction of PAR absorbed by the local vegetation (APAR; MJ m day') is calculated considering a grid cell’s fAPAR, a

leaf to stand level scaling factor (oeqs:siana;, dimensionless), and a climate niche suitability factor (Pp,;cpeseress; dimensionless):
APAR = PAR 'fAPAR * Qleaf:stand Dichestress (15)

The climate niche suitability factor is an introduced variable that will be described in further detail in section 2.4 and that is
only important in non-steady state TREED simulations, considering eco-evolutionary adaptation dynamics between different
climate states. The leaf to stand scaling factor accounts for reductions in PAR utilization at the stand level in natural ecosystems

(Haxeltine and Prentice, 1996b).

Photosynthesis is calculated as the minimum of light-limited (Jg; mol C m™ h') and Rubisco-limited photosynthesis (J¢; mol

C m? h'") (Haxeltine and Prentice, 1996a). Light-limited photosynthesis is calculated as:

APAR
daylength

Je=0C- (16)

Where daylength (h) is the number of sunshine hours per day, depending on the day of the year and geographic latitude, and

¢ = (426N ‘ftemp ' ( ik ) (17)

pi+2-Ty

With p; (Pa) being the leaf internal partial pressure of CO, calculated as p; = A1 - p,, where p, (Pa) is the ambient partial
pressure of CO; and A (dimensionless; between 0 and 0.8) describes the leaf-atmosphere water and carbon exchange. The latter
depends on the local water availability and vegetation stomatal opening, determining the concentration ratio between
intercellular and ambient CO,. The @, (dimensionless) in eq. (17) is the intrinsic quantum efficiency for CO, uptake of Cs
plants. In the current model version only Cs physiology is considered. The factor fi, (dimensionless) describes a general
temperature dependency of the efficiency of the photosynthetic pathway, adapted from Schaphoff et al., (2018) and generalized

for all plants as:

1

Jremp,tow = (1+exp (0.25 -(12-T)) (18)
=1— r 19

fremp ign = 1+exp (—(T—40.85)) (19)
ftemp = ftemp,low ' ftemp,high (20)

with 7 being the monthly average temperature. Accordingly, fimy, indicates an inhibition of photosynthesis for monthly average
temperatures below 0 °C and higher than 45 °C, and an optimum photosynthetic rate between 25-30 °C. Finally, I, in eq. (17)

represents the photorespiratory CO, compensation point:

r, = ! 1)

2T

10
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T-25
with T = 1,5 - q101: (dimensionless) being the specificity factor that reflects the ability of Rubisco to discriminate between

CO; and O». [O-] is the partial pressure of oxygen (Pa), 7,5 is the 7 value at 25 °C, and g, a temperature sensitivity parameter.
The Rubisco-limited photosynthesis is calculated as:

Je =0 Vy (22)
with

C. = pi—Ts 23
> e (1 ) (23)

where K¢ and Ko are Michaelis-Menten constants for CO» and O, respectively. V,, (mol C m* day™') represents the maximum

Rubisco capacity which is derived from optimizing the daily net photosynthesis at the leaf level with respect to V,, (Z@“d =0,
where Apg = Agq-Riear; Haxeltine and Prentice, 1996b) resulting in:

_1 G
mTp o,

(2-6-1)-s—(2-60-s—C,)-0)-APAR (24)

where b (day™) is a static leaf respiration coefficient, 8 (dimensionless) a shape parameter that describes the co-limitation of

light and Rubisco activity (Haxeltine and Prentice, 1996a), and

o= |[1- P (25)
and
s=—2 (26)
daylength
The maximum Rubisco capacity is calculated under the assumption of no water limitation, thus A = A,,,4,.
Daily gross photosynthesis (4qs; g C m™ daytime™) is calculated as
—JUEHOZ 4675 )c
Agd — Uetic (]E';];) 46]E]C)‘daylength (27)
Subtracting the daytime leaf respiration results in the daily net daytime photosynthesis (44, g C m daytime™):
daylength
Age = Aga = (*Z22) - Ricay (28)

With Rieer (g C m? day™) being the leaf dark respiration. Leaf dark respiration is expected to be predominantly driven by the
turnover of Rubisco proteins for photosynthesis and thus, closely scales with the maximum Rubisco capacity (Schaphoff et

al., 2018; Wang et al., 2020):

11
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Rleaf =Vn-b 29

The photosynthetic carbon assimilation rate is related to the canopy conductance of water vapor (g.; mm s™') through the CO»

diffusion gradient between the intercellular airspace and the atmosphere, according to:

9= St Gin (30)
Where gyin (mm s!) is a minimum canopy conductance that occurs due to non-photosynthesis related processes. The maximum
possible canopy conductance is limited by the local water availability. The exchange of water and carbon with the atmosphere
is controlled by the parameter A, with high A describing non-water limited conditions and maximum water and carbon
exchange, whereas low A indicates stomatal closure and limited gas exchange. Eq. (30) therefore relates stomatal opening,
canopy conductance and photosynthetic rate. A potential water limitation is evaluated by comparing the vegetation’s water

demand (Eemanas; mm day™") and transpiration, with the supply of water, constrained by:

Esupply = min (Epax Prean) (€29)

where E,u.q. represents a maximum daily canopy-scale transpiration rate of 5 mm day™! (Sitch et al., 2003), and Pjucan is the

average daily precipitation rate in mm day-'.
Following Schaphoff et al., (2018) and Monteith (1995), Edemana is calculated as:

a
Egemana = Eeq : H_rgn_m (32)

gc

Employing a maximum Priestley-Taylor coefficient @, of 1.391, and a conductance scaling factor g,, of 3.26 mm s™. E,, is

the equilibrium evapotranspiration rate calculated as:

sa Rn

Eoq =

(33)

sa+y  Apap

with sa (Pa K™') being the slope of the saturation vapor pressure curve, ¥ (J kg™') the psychrometric constant, R, (J m? day )

the daytime net radiation and 4,4, (J kg™') the latent heat of vaporization.

To evaluate a potential water limitation, Egemanas is first calculated using A = A,,,4,, representing the water demand under
maximum potential canopy conductance. In case the resulting Egemand is lower than the available water (Eqypi), 4 is kept at the
maximum level resulting in carbon and water being exchanged at the maximum level possible for the local vegetation. In case
the canopy conductance calculated with A = 4,4, results in Egemand > Esuppiy, @ bisection algorithm is employed to find a
canopy-atmosphere gas exchange parameter A < A,,,, that satisfies Eqs. (28) and (26), and that results in a closed water

balance (Edemand = Esuppiy), solving for:

dayl th 1-1
0= Ag = Aae = Aga = (“Z%) - Ricar = Pa (G = Gmin) 2 (34)
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For computational efficiency, the bisection algorithm is simplified to evaluating eq. (34) at 12 pre-defined levels for A between

0 and 0.8 and choosing the A value resulting in the closest value to zero.
Following Sitch et al., (2003), actual evapotranspiration (AET; mm day™!) is then calculated as
AET = min (Esupplyr Egemana) (35)

with only water effectively being transpired contributing to AET in case Egemana < Esuppiy-
2.2.2 Respiration

Metabolically active plant tissues are associated with maintenance respiration. While the leaf respiration is calculated based
on the maximum Rubisco activity (eq. 29), sapwood (Rsupmoeod; g C m? day™) and fine root respiration (Rineroor; g C m? day™)

are calculated following Schaphoff et al., 2018, as:

CSll 'WOo0o

Rsapwooa =1+ AF - 222258 g (Tyy.) (36)
_ Cfineroot

Rfine‘root =r-AF- Tmot : g(Tsoil) (37)

where r (g C (g N)! day™!) is a base respiration rate, C: Ny,y,4 (dimensionless) and C: N,.,,; (dimensionless) are the C:N ratios
in wood and root tissue, respectively. Plants from warm environments have consistently lower respiration rates than plants
from cold environments (Reich et al., 2016; Sitch et al., 2003; Zhu et al., 2021). To account for this apparent downregulation
of base respiration rates under warmer temperatures while not using fixed functional type-based respiration rates in the model,
AF (dimensionless) is an introduced arbitrary acclimation factor that is 1 for environments with monthly average temperatures

below 10 °C, 0.3 for average temperatures higher than 30 °C and
AF = 1.35-0.035-T (38)

for intermediate temperatures. Finally, g(7a) and g(Ts.i) (dimensionless) describe the temperature dependency of respiration
using a modified Arrhenius equation that accounts for declining respiration rates with temperatures (Lloyd and Taylor, 1994;

Schaphoff et al., 2018; Sitch et al., 2003):

g(T) = exp (308.56 : (L S— )) (39)

56.02 T+46.02

where 7 (°C) is either the monthly average air temperature for g(7.:.), or the monthly average soil temperature for g(7s.i). The
monthly average soil temperature is approximated from the air temperature, assuming the same annual mean but a damped

seasonal cycle:

T_Tmean
Tsoit = Trnean + (T) (40)
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with Tneqn being the annual average temperature.
2.2.3 Annual carbon balance

With the model using monthly average values of temperature, precipitation, radiation and cloud cover as inputs, all above-
described daily carbon fluxes are calculated as monthly average values and are then integrated over the course of the year.
Accordingly,

GPP = Y12, Agq; - mdays; 41)

with i being the month of the year, and mdays; the number of days of month .

For deciduous plants in temperate regions (see section 2.3), the leaf longevity limits the duration of the growing season. For
these locations, fluxes are calculated and integrated over the warmest months of the year up to the duration of the leaf longevity.

The annual net primary productivity (NPP; g C m2 year™) is calculated as:

NPP = (1 - rbr) : (GPP - Rleaf - Rsapwood - Rfineroot) (42)

where g (dimensionless) accounts for a fixed fraction of the assimilated carbon assumed to be invested for growth respiration

(Schaphoff et al., 2018; Sitch et al., 2003).

Being a grid-based model, TREED describes the structure and functioning of an average plant representing the locally
dominating vegetation growth form. The model does not explicitly resolve establishment, growth and mortality of individuals.
Instead, to evaluate whether a growth from (e.g., height, size of carbon pools, leaf characteristics) is suitable for a location, an
area-based annual carbon balance is calculated. Based on the longevity associated with the local vegetation’s carbon pools, it
is estimated how much carbon is invested annually to rebuild and maintain the local vegetation. For a vegetation form or trait
combination to establish and survive at a location, the area-based annual average regrowth carbon costs cannot exceed the
average net carbon sequestration potential (NPP). Average yearly tissue turnover carbon costs (F in g C m year™!) of sapwood,

heartwood and coarse roots are calculated assuming constant, tissue-specific turnover rates (Table 1):

1

Fsapwood = Csapwood 'fsapwood . cA (43)

F =C . 44
heartwood — “heartwood 'fheartwood ‘A ( )

Fcoarseroot = Ccoarseroot ' fcoarseroot é (45)

The fine root and leaf carbon turnover costs depend on the plant’s phenology and leaf longevity (in years):

1 1
Ciear o A evergreen
Flear = 41 . (46)
Cieas - Lyear™ - ” deciduous
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Fine root turnover is assumed proportional to the leaf longevity (Schaphoff et al., 2018), with a minimum fine root longevity
of one year:
1 1
Cfineroot : a_” ‘ca ay > 1
Frineroot = o1 (47)
Cfineroot 1 year ‘ca ay = 1
The annual net carbon gain (NCG; g C m year™!) represents the annual average carbon balance of the local vegetation and is

calculated as:

NCG = (1 - Trepr) -NPP — Fleaf - Ffineroot - Fsapwood - Fheartwood - Fcoarseroot (48)

Where 7, (= 0.1; dimensionless) represents a fixed fraction of the annual NPP allocated to reproduction (Sitch et al., 2003).
Only trait combinations resulting in NCG > 0 are plausible trait combinations in a given environment, ensuring that the local

average carbon assimilation is sufficient to build and maintain the vegetation’s carbon pools.

2.3 Trait optimization and prediction

Our generalized plant physiology (2.1) and carbon flux calculations (2.2) allow us to calculate a carbon balance for variable
combinations of the traits Ci., H, ay and phenology (deciduous or evergreen). Following optimality principles (Franklin et al.,
2020; Harrison et al., 2021), we assume that competition, environmental filtering and natural selection will result in traits of
an average individual at a location to evolve towards combinations that maximize fitness. We define fitness as the potential
for height growth while maintaining a positive NCG. The choice of height as the fitness measure assumes that plants in a
community are in continuous competition for light as a major limiting resource, resulting in increased height being associated
with a competitive advantage. It is important to note that this approach represents a fitness measure at the community level
and not a single-plant optimization, considering that carbon investments into structural tissues in the absence of competitors
may not represent an optimal strategy. It can be assumed that height as fitness measure results in an approximation of an
evolutionary stable strategy, resulting in a trait combination that is likely stable and dominant in a given climatic environment
(Franklin et al., 2020; Valentine and Mékela, 2012). Height growth is a compound trait, and its optimization implies finding a
leaf longevity, phenology and carbon allocation strategy that maximizes photosynthetic carbon gains over losses through
growth and maintenance respiration, as well as tissue turnover carbon costs, all of which increase with increasing height. To
predict the trait combination of Ci., H, ay and phenology that maximize height subject to NCG = 0 under given climatic
conditions, an Evolutionary Centers optimization algorithm from the Julia package Metaheuristics.jl (Mejia-de-Dios and
Mezura-Montes, 2022) is employed, with the target function being:

minimize f(Cleaf,H, ay;, phenology, climate) =|NCG|—w-H (49)

where w (= 10) is an arbitrary weighting parameter to ensure stable solutions. By minimizing |[NCG|, the model will

approximate a steady state vegetation at maximum height, i.e., the height at which carbon gains from photosynthesis are
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balanced by carbon costs from respiration and turnover. Whether height growth is maximized under a deciduous or evergreen
phenology is only evaluated in locations with more than three months with average temperatures below 3 °C, which is

considered a necessary condition for a deciduous phenology.

2.4 Eco-evolutionary adaptation dynamics

The TREED modules described under 2.1-2.3 can be used as a stand-alone model to obtain a prediction of vegetation that is
in eco-evolutionary equilibrium with the environment, i.e., every grid cell is occupied by vegetation with a stable trait
combination that maximizes height. Alternatively, the model can also be used to track vegetation structural and functional
changes through time while adapting from a starting state and trait distribution to the predicted optimum state under new or
changing climatic conditions. Two pathways of vegetation adaptation are represented: adaptation through evolution of traits

and adaptation through dispersal and a redistribution of traits.
2.4.1 Adaptation through evolution

In the trait evolution module, it is assumed that average traits at a location will incrementally evolve towards the trait
combination that is predicted as optimal. The rate of trait change is a user-defined adaptation rate @. The rate « is a unitless
fraction, resulting in larger changes of traits for larger deviations between the current trait values and the optimal trait values,
representing an increased adaptation and selection pressure. Adaptation is considered to represent a range of possible
adaptation processes including acclimation, phenotypic plasticity or actual adaptive evolutionary processes that will be

particularly relevant on longer timescales. The evolution of C.s, and ay is represented as:

Cleaf,evolved = Cleaf,previous ta- (Cleaf,optimized - Cleaf,previous) (50)

all,evolved = all,previous +a- (all,optimized - all,previaus) (51)

With Cieaf evorvea and Ay evoivea representing the new trait values, Cieqf previous and Ay previous representing the starting trait
values, and Cieq5 optimizea and Qg optimizea TEPTESENting the target trait values derived from the optimization. The evolution of
phenology is linked to the leaf longevity trait a;; g,o1yeq and will be deciduous in an environment where a deciduous phenology
is possible (at least three months with average temperatures lower than 3 °C) and ay; optimizea a0d Gy eporveq are less than a

year.

In eco-evolutionary mode, the climatic niche is taken into consideration as an additional vegetation trait. This trait accounts
for the fact that plant species generally exhibit highly conserved climatic niches, which will affect their geographic distribution
and productivity potential (Jezkova and Wiens, 2016; Liu et al., 2020; Martinez-Meyer and Peterson, 2006). As part of the
vegetation trait set of any location in the model, the climatic niche is described by Tiuinves, Timaxveg, Tmean,veg, t€presenting the
coldest month average temperature, warmest month average temperature and mean annual temperature of the environment to

which the local vegetation is best adapted to. At initialization of the model, Toin veg, Tmax,vegs Tmeanveg, are set equal to the coldest
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month, warmest month and annual average temperature of the local environment, assuming an optimal adaptation to the local
climate conditions. If the climatic conditions at a location change, deviations between the local temperature conditions and the

climatic niche of the local vegetation will result in a biotic stress, represented as:

2 .
q)heat = €exp (_knichebreadth ' (Tmax,local - max,veg) ) lf Tmax,local = Tmax,veg (52)
— 2 4
CI)Cold = €exp (_knichebreadth ' (Tmin,local - Tmin,veg) ) lf Tmin,local < Tmin,veg (53)
_ 2
CI)mean = exp (_knichebreadth ' (Tmean,local - Tmean,veg) ) (54)
(Dnichestress = min (q)heat' q)coldr q)mean) (55)

where kyichebreadsn describes the impact of a deviation of the local temperature distribution from the vegetation’s climatic niche
and can be considered a description of the width of the fundamental niche of the modelled vegetation. The default value for
Knichebreaarn 18 set to 0.02, resulting in a decline in productivity for temperature deviations between the coldest month, warmest
month or average temperature from the vegetation’s climatic niche up to ~15 °C, at which a total loss of productivity occurs.
The default niche width of 15 °C approximates the variation in the coldest month, warmest month and average temperature
variation observed in present-day biomes (i.e., Koeppen belts) (Beck et al., 2018). The @,,;cpestress affect the photosynthetic
potential by limiting the light interception potential in Eq. 15. The ®,,;cpestress Will particularly start to affect productivity
levels if climatic changes reach a magnitude at which a redistribution of vegetation between surrounding grid cells cannot

compensate for a loss of adaptation (see section 2.4.2 regarding dispersal).

Like the other vegetation traits, the climatic tolerances of the local vegetation are subject to adaptation through time, evolving

towards the local climatic conditions and thereby reducing the biotic stress:

Tmin,veg,evolved = Tmin,veg,previous +ta- (TCM,local - Tmin,veg,previous) (56)
Tmax,veg,evolved = Tmax,veg,previous ta- (TWM,local - Tmax,veg,previous) (57)
Tmean,veg,evolved = Tmean,veg,previous ta- (Tlocal - Tmean,veg,previous) (58)

with T¢py 0cq1 being the local coldest month temperature, Ty p 1ocq; being the local warmest month temperature and T, the

local annual average temperature.

The height trait A is not subject to evolution but is obtained based on the evolved trait set and by evaluating the maximum

potential height with the new trait combination using a bisection algorithm that solves for:

NCG (H' Cleaf,evolved: all,evolvedr phenozog:)’evolved' Tmin,veg,evolved' Tmax,veg,evolved’ Tmean,veg,evolved) =0 (59)
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2.4.2 Adaptation through dispersal

Vegetation can adapt to new climatic conditions not only through trait adaptation but also through range shifts and dispersal.
In TREED, a dispersal-based trait redistribution is represented as a moving window operation. Thereby, for each grid cell of
the model and for each trait that is also subject to evolution (Cieqs an, phenology, Tminves, Tmaxveg, Tmeanyveg) @ user-defined
geographic radius is searched to assess whether there is any current trait value within this radius that is closer to the predicted
optimum trait value for the considered location. This approach assumes that the trait values observed within the defined
geographic region or moving window represent a trait space and that all possible trait combinations from this trait space are
likely to occur in the location of interest. The model’s dispersal implementation may overestimate dispersal because it does
not consider productivity levels of the dispersing plants, meaning that severely stressed plants are equally likely to disperse
the same distance as highly productive plants. The model does also not have a treatment for approximating dispersal vectors,
such as wind, insects or animals.

As for evolution, to ensure plausible trait combinations and whole plant architecture, the trait H is not subject to the dispersal
dynamics but is obtained by evaluating the maximum potential height at a location given the new trait combination after

dispersal (eq. 59).
2.4.3 Eco-evolutionary adaptation dynamics across timescales

The time stepping scheme of TREED is flexible and depends on the inputs of the user (Fig. 3). To complete one evaluation of
TREED and to obtain an estimation of the potential vegetation height, leaf characteristics, biomass, carbon and water fluxes
of a vegetation in equilibrium with the climatic conditions (i.e., the optimum trait landscape), one year of monthly average
climate inputs is needed (i.e., temperature, precipitation, radiation and cloud cover). These monthly average values can
represent average values of a specific year or could represent multiyear monthly average values to obtain an average estimate.
Similarly, the time stepping in the eco-evolutionary mode is flexible. The time difference between the climatic inputs used to
run TREED in the eco-evolutionary mode that considers adaptation dynamics and limitations could range from one year to a
million years. The adaptation parameter a, describing a rate of trait change per timestep, and the size of the dispersal search
window can be adjusted according to the timescale of interest. It should however be noted that the trait values resolved in
TREED and derived using the optimization procedure represent long-term stable, community-representative average plants
per grid cell, and adaptation represents changes in this mean vegetation state through time. Consequently, the model does not

resolve short-term transient dynamics in the form of population dynamics.
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1 year of monthly 1 year of monthly
climate inputs Gllmale inputs
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Annual carbon fluxes Annual carbon fluxes
Biomass carbon Biomass carbon
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Diversity (only in steady

state mode)

Figure 3: Illustration of time stepping scheme in the TREED model. The model calculates annual carbon fluxes and
considers dispersal- and adaptation-based trait changes across a user-defined time gap. Diversity metrics are only calculated

in the steady-state mode assuming optimal adaptation, not considering dispersal and evolution dynamics.

3 Estimation of functional richness and diversity potential using TREED

The generalized plant physiology and continuous trait space of TREED allows to assess the performance of variable
combinations of the traits Ciq; H, an, phenology in a specific climatic environment. This cannot only be used to evaluate the
fittest trait combination for the environment as explained in section 2.3, but also to generally assess the range of trait
combinations that could potentially occur. In TREED, an estimate of the functional richness potential of a location can be
obtained by evaluating the carbon balance of a user-defined number of combinations of the traits C..; H, aiy covering a wide
possible range in these trait values. The model-predicted functional diversity index (#DI) represents the number of evaluations
resulting in a positive NCG (viable growth strategy) from the total number of evaluations ():

#{i| NCG(Cieqp, ay, H) > 0}
N

FDI =

(60)

FDI gives an estimate of the diversity potential within a single cell of the model domain and can be interpreted as the carrying
capacity of the location, i.e., the range of growth forms that can be supported with the given environmental resources. To avoid
an overprediction of functional diversity, the tested trait space should be chosen large and identical for comparisons between

model simulations.

Highest levels of plant species richness are observed in regions of high geographic complexity, with heterogeneity of habitats
and climatic environments promoting biodiversity by increasing the niche space, refuges, opportunities for isolation and
divergent adaptation (Antonelli et al., 2018; Stein et al., 2014). In TREED, a landscape-level diversity potential can be
estimated by combining FDI at the cell-level with two additional metrics of landscape complexity that resolve the variability
and arrangement of vegetation habitats at a larger spatial scale. The landscape heterogeneity index (LHI) represents the number
of different plant habitats within a moving-window of a user-defined radius (default = 300 km). For the calculation of LHI, a

categorization of the vegetation distribution in steady state with the climate is conducted. The discrete categories of vegetation
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habitat classes are derived from the H, ay, Crq;; phenology of the predicted local dominating trait combination, considering 6
height classes (0-5 m, 5-10 m, 10-20 m, 20-30 m, 30-40 m, >40 m), 6 leaf longevity classes (0-0.5, 0.5-1, 1-2, 2-3, 3-4, >4
years), 6 leaf carbon pool classes (0-500, 500-1000, 1000-2000, 2000-3000, 3000-4000, >4000 g C per individual) and two
phenology classes (deciduous or evergreen), resulting in a total of 432 discrete classes. LHI is then calculated as the number
of different vegetation habitat classes within a moving window relative to the maximum number of different vegetation classes

that could occur within this window (i.e., every grid cell is occupied by a different vegetation class):

__ #of distinct vegetation classes

LHI

(61)

T of cells in considered window

Additionally, the degree of landscape fragmentation is assessed, assuming a higher degree of habitat separation to result in a
higher potential for allopatric speciation. To identify isolated habitat patches within a moving window, TREED employs an
image segmentation algorithm. The highest degree of landscape fragmentation is obtained if no grid cell within the considered
moving window has a neighbouring grid cell of the same vegetation class (i.e., the number of isolated habitat patches is equal

to the number of grid cells). The landscape fragmentation index (LFI) is calculated as:

# of isolated habitat patches
LFI = 2

T of cells in considered window

(62)

The potential diversity index (DI; dimensionless) of a location is obtained by multiplying the cell-level functional diversity
potential with the two derived metrics of landscape-level habitat heterogeneity and fragmentation centred around the grid cell

of interest:
DI = FDI - LHI - LFI (63)

The calculated diversity metrics can only cover the abiotic diversity potential at the level of the climate input resolution and
does not resolve sub-grid scale environmental heterogeneity. Accordingly, for comparisons between model runs, only models

using the same input resolution can be compared.

4 Comparison to previous model version

The presented TREED version 1.0 is a development from a previous implementation, TREED version 0.1 (Rogger et al., 2025),
with major changes regarding model structure, functions and user accessibility. For version 1.0, the model was translated to
the Julia language (Bezanson et al., 2017) to enable multithreading and allowing to run simulations at below 1° longitude x 1°
latitude resolution at low computational cost. With the current implementation, a global simulation without the calculation of
biodiversity metrics at 0.5° longitude and latitude resolution runs in 5 minutes, using 8 threads on a standard desktop computer
(Intel(R) Core(TM) Ultra 7 265 (2.40 GHz) processor). At 1°, 2° and 4° resolution, the same simulation is completed in 65,
20, and 7 seconds, respectively.

All functions regarding biodiversity assessment, including the estimations of functional diversity, landscape heterogeneity and

landscape fragmentation are new to this version. These functions depend on the model’s capacity to resolve high spatial
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resolutions, given the importance of landscape-scale topographic and climatic features in determining biodiversity gradients
(see section 5.4). The biodiversity metric calculations will allow to use TREED not only for questions related to carbon cycling,
but the combined evolution of Earth’s carbon cycle and plant biodiversity through time.

Several aspects regarding modelling approach have been changed. This includes the translation of the model from an agent-
based model, where plant individuals were tracked in space and time, to a grid-based model, where all operations are run on a
per-cell basis (e.g., per cell trait optimization, dispersal as a moving window operation). This increases computational
performance by reducing the number of operations per time step, and increases accessibility of the model by simplifying model
structure and handling. A major change further includes the simultaneous optimization-based prediction of all plant traits in
equilibrium with the environment (eq. 49), enabling a steady state model prediction within one time step. Previously, traits
were optimized sequentially, making it necessary to run spin-up simulations and preventing to use the model as a continuous
steady state model, which is often required in paleoclimate research. The model now comes with different model run functions,
allowing to either conduct a continuous steady state simulation (TREEDsteadycontinuous.jl), a one time step steady state
simulation for coupling with other models (TREEDsteadystep.jl), a continuous simulation in eco-evolutionary mode
considering dispersal and adaptation (TREEDnonsteadycontinuous.jl), or a one time step simulation in eco-evolutionary mode,
allowing to restart the model from a previous time step and enabling the coupling with other models, such as climate or global
biogeochemical models. The application of these model functions is illustrated in the case studies presented in the following
and that are provided on the code repository.

The new model has been implemented with a focus on user accessibility, making it possible to design model experiments
within a few lines of codes and to easily access and modify model parameters (e.g., case studies on code repository). Together
with the different model run functions and reduced computational time, these changes make the model particularly suited to

quickly set it up for different periods in the geologic past and to run sensitivity tests (e.g., see section 6).

5 Evaluation against present-day observations

5.1 Input and reference data

To evaluate the performance of the TREED model, we run one time step of the model using multi-year monthly average
temperature, precipitation, downwelling shortwave radiation and cloud cover data from the years 1981-2010 from CHELSA
(Karger et al., 2017) at 0.5° resolution in longitude and latitude. Derived carbon fluxes are evaluated using MODIS-derived
GPP and NPP estimates, considering average fluxes from the years 2001-2010 (Kern, 2024). Vegetation height is compared
to a combined satellite data and machine-learning based estimate for the year 2010 from Lang et al., (2023). Aboveground and
belowground biomass carbon densities are compared to a machine-learning-based upscaling approach from field
measurements and satellite data (Huang et al., 2021; Santoro et al., 2010). Evapotranspiration rates are compared to estimates

from the Global Land Evaporation Amsterdam Model of the year 2010 (Miralles et al., 2011). Predicted latitudinal gradients
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of leaf longevity and leaf mass per area (LMA = 1/SLA) are compared to data-based trends derived from the Glopnet data set
(Wang et al., 2023; Wright et al., 2004). To evaluate the TREED prediction of potential plant biodiversity at the landscape
level, we compare the modelled diversity index to an ensemble prediction of global-scale plant species richness derived from

observational records and extrapolation using machine-learning and statistical methods by Cai et al., (2023).

5.2 Evaluation of modelled carbon and water fluxes

The optimality-based prediction of vegetation functioning using the TREED model reasonably approximates the major
distribution of photosynthetic carbon assimilation and evapotranspiration (Fig. 4, Fig. 5 a-c). For NPP and GPP, a tendency
for an overprediction of carbon assimilation is observed in Indo-Malayan tropical rain forest climates and the subtropics of
North and South America. An underestimation is observed in Southeast Asia, tropical savannas and regions of the
Mediterranean. Globally, the errors tend to be well balanced with a RMSE of 230 g C m™ for GPP and 113 g C m™ for NPP.
The TREED steady-state prediction of the global NPP of 52 Pg C is in good correspondence with an estimated mean global
NPP of 56.2 + 14.3 (+ standard deviation) from multiple data- and model-based NPP estimates compiled by Ito (2011).

The model reproduces the global distribution of evapotranspiration, and thus reasonably approximates the carbon-water
exchange during photosynthesis. However, there is a tendency for a slight but consistent underprediction of evapotranspiration
rates (Fig. 5c), particularly in mid-latitude, temperate regions (Fig. 4 e and f). Given that carbon fluxes are well reproduced in
the model, a possible explanation for this mismatch is the lack of an explicit representation of non-photosynthesis related water

fluxes, including bare soil evaporation or evaporation of water intercepted on vegetation surfaces.
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Figure 4: Spatial distribution of modelled and observed carbon and water fluxes. The left column represents model-
580 derived estimates, the right column represents observation-based estimates of (a) & (b) net primary productivity (NPP), (¢) &
(d) gross primary productivity (GPP), and (e) & (f) evapotranspiration (AET). Carbon flux data from Kern (2024),

evapotranspiration from Miralles et al., (2011).
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RMSE is the root mean square error. Carbon fluxes from Kern (2024), evapotranspiration from Miralles et al. (2011), height
data from Lang et al. (2023), biomass data from Huang et al. (2021) and Santoro et al. (2010).

5.3 Evaluation of modelled vegetation height, biomass, leaf characteristics and phenology

The TREED model allows a reasonable approximation of the first-order distribution of vegetation height and biomass (Fig. 6,
Fig. 5 d-f). For vegetation height, the model generally results in an overly smooth height distribution and an overprediction in
some regions compared to the data for the year 2020. Several reasons may contribute to the overprediction of height, while
GPP and NPP errors tend to be better balanced. In the model’s height optimization, a surplus NPP will result in a prediction
of increased height and biomass growth, until respiratory and tissue turnover carbon investments exceed the surplus carbon
from photosynthesis. Compared to the data, there is a space in the height to NPP distribution that is currently not covered by
the model (Fig. 7 a). Reduced height growth under high NPP levels indicates carbon turnover processes that are not currently
represented in TREED and its height optimization. Some environments may be associated with increased carbon investments
for tissue turnover due to disturbances, including fires or harsh environmental conditions such as heat or cold conditions, which
could reduce the longevity of vegetation structures. A reduced availability of carbon for height growth may also represent
increased carbon investments into biotic interactions, including defence and competition mechanisms other than height growth
for light resources. Further, reduced height growth may be a result of additional carbon allocation trade-offs, for example
carbon costs associated with hydraulic tissues that scale with plant height but that are not included in the model. Finally, in the
height comparison it should also be noted that the model does not consider a present-day land-use map and human influences,
and no herbivory.

There is a strong relationship between vegetation height and biomass carbon storage, which is reproduced in the calibration of
allometric constants in the model (Fig. 7 b), and drives the modelled spatial distribution of aboveground and belowground
biomass (Fig. 6 c-f). Due to the strong biomass to height relationship, mismatches between modelled and observed

belowground- and aboveground biomass primarily occur in regions where there is a mismatch in the height prediction.
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Figure 6: Spatial distribution of modelled and observed vegetation structure and carbon sequestration. The left column
represents model-derived estimates, the right column represents observation-based estimates of (a) & (b) vegetation height (c)
& (d) above ground biomass (AGB), and (e) & (f) below ground biomass (BGB). Height data from Lang et al. (2023), biomass
data from Huang et al. (2021) and Santoro et al. (2010).
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Figure 7: Relationship between vegetation height and carbon fluxes observed in the TREED model and data. (a)
Relationship between local rates of net primary productivity (NPP) and height. The model captures the first-order relationship
between height and NPP but does not well resolve high NPP/low height combinations, likely associated with carbon turnover
processes not currently represented. (b) The modelled biomass distribution across the globe is driven by the strong association
between vegetation height and biomass storage. Carbon fluxes from Kern (2024), height data from Lang et al. (2023), biomass

data from Huang et al. (2021) and Santoro et al. (2010).

The TREED prediction of deciduous vegetation phenology agrees with the present-day distribution of temperate deciduous
broad-leaved forests, with highest frequencies of such growth forms in East Asia, Europe and eastern North America (Fig. 8).
Together with the tropics, these regions are associated with predicted leaf longevities of around a year or less. Persistent leaves
with longevities of longer than two years are primarily observed in arid or cold regions with a limited growing season length.
In line with the carbon economics spectrum (Wright et al., 2004), this tendency indicates a more conservative leaf strategy
with lower annual leaf building costs and light acquisition potential but longer persistence. The model captures the major
latitudinal patterns of leaf longevity and leaf mass per area (LMA = 1/SLA) on the globe, with increasing LMA and leaf
longevities for evergreen plants, and a decreasing latitudinal trend observed for deciduous plants (Kikuzawa et al., 2013; Reich
et al., 2014; Wang et al., 2023). Latitudinal variations are driven by the availability of light, colder temperatures towards the
poles and therefore, decreasing growing season lengths. Deciduous and evergreen plants follow contrasting strategies to adjust
to these environmental changes (Wang et al., 2023), which are captured by the model and its optimality-based trait prediction.
For deciduous plants, shorter growing season are associated with reduced leaf longevities. To compensate a reduction in the
carbon sequestration potential due to the shortened growing season length, deciduous plants require more acquisitive leaf
structures and a reduced LMA. Evergreen plants, on the other hand, compensate the shorter growing seasons, reduced light,

and colder temperatures by reducing annual carbon investments into leaves, increased LMA and longer persistence.
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Figure 8: Modelled vegetation phenology and leaf characteristics. (a) Distribution of deciduous or evergreen vegetation
units. (b) Modelled average leaf lifespan. (c) Latitudinal distribution of leaf longevity and leaf mass per area (LMA). (d)
Observed latitudinal distribution of LMA for evergreen (longevity > 1 year) and plants having leaf life cycle durations of less

than a year (longevity < 1 year), data from the Glopnet data set (Wang et al., 2023; Wright et al., 2004).

5.4 Evaluation of modelled plant diversity potential

The diversity calculations in TREED capture a large degree of the observed global plant species diversity distribution (Fig. 9),
with an underprediction of the species richness in hotspot regions. The diversity potential in TREED is a compound product
of three indices: a functional richness index (FDI), a landscape heterogeneity index (LHI) and a landscape fragmentation index
(LFI) (see eq. 63). The functional diversity index (Fig. 9 a) strongly resembles the global pattern of vegetation height and
carbon assimilation, indicating that it is primarily a function of the resource availability. In the model, locations with high
levels of radiation and water, together with suitable temperatures for photosynthesis, result in a larger range of growth forms
and trait combinations that can be sustained and potentially co-exist. The two indices of landscape complexity (LHI and LFT)

capture regions of high topographic complexity, including the Andes, Himalayas, the east African mountains and the Alps.
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Topographic complexity in these regions results in a high variability of climatic conditions and thus vegetation habitats.
Further, in topographically complex regions the arrangement of vegetation habitats shows a higher degree of fragmentation,
which may be associated with dispersal barriers that promote allopatric speciation processes (i.e., speciation by isolation).
Combining functional diversity as an indicator of the local diversity potential and the two landscape metrices effectively
captures major biodiversity gradients on Earth, with a spearman ranked correlation between the modelled diversity index and
observed species richness of 0.81. A major underestimation of the diversity potential is observed in South-East Asia, likely
driven by an underestimation of the productivity potential in the region (Fig 4 a-b) and thus a reduced functional diversity
potential. Similarly, an overprediction of diversity is observed in the central African tropics, likely related to an overprediction

of the productivity and functional diversity potential in the region.
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Figure 9: Comparison of modelled plant biodiversity potential and observed species richness data. (a) TREED functional
diversity index, (b) landscape heterogeneity index, (c) landscape fragmentation index. Together (a)-(c) represent the
components of the diversity index. (d) Predicted species richness using a power law fit between observed species richness and
the calculated diversity index (derived by multiplication of functional diversity, landscape heterogeneity and fragmentation
indices). (e) Observed plant species richness from Cai et al. (2023). Species richness in (d) and (e) is given as number of

species per 10°000 km?. (f) log-log relationship between modelled diversity potential and observed richness.
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6 Paleo-application and eco-evolutionary mode

With regards to computational demand, necessary climatic inputs and model complexity, the TREED model is designed to
study vegetation, climate and carbon cycle dynamics over geologic time. The model can either be used to obtain a continuous
steady-state prediction of vegetation functioning, structure and diversity, or to study eco-evolutionary transitions of vegetation
during periods of environmental change. To illustrate the latter functionality, we apply the model to the Paleocene-Eocene
Thermal Maximum (PETM). The PETM was a 5-6 °C global warming event that was triggered by a geologically abrupt release
of several thousand Pg of carbon into Earth’s atmosphere and oceans (Harper et al., 2024). The climatic perturbation resulted
in major shifts in the vegetation distribution and carbon sequestration potential (Bowen, 2013; Bowen and Zachos, 2010;
Korasidis et al., 2022). A loss and a 70-100 kyr lagged regrowth of biospheric carbon stocks was suggested to have been a
primary driver for the long duration and timing the termination of the PETM warming event (Bowen, 2013; Bowen and Zachos,
2010). A perturbation and loss of vegetation-mediated carbon and climate regulation has also been suggested to have driven
the severity and duration of other hyperthermal events in Earth’s past (Payne et al., 2004; Rogger et al., 2024; Xu et al., 2022,
2025). The TREED model can be used to study global carbon cycle dynamics during such hyperthermal events. Thereby, the
model not only produces different carbon sequestration trajectories, but it also tracks the spatial distribution of vegetation traits
through time. The trait and carbon flux outputs of TREED can be used in combination with paleobotanical and geochemical
records to better understand and constraint the response capacity of vegetation systems to large-scale carbon cycle
perturbations in Earth’s past (Rogger et al., 2025).

In the following, we force the TREED model with PETM climate model simulation data from Korasidis et al., (2022) to
approximate the changes in vegetation-mediated carbon cycling across the climatic perturbation. For five time steps, the
TREED model is forced with pre-PETM climatic conditions at an atmospheric CO> level of 680 ppm, followed by a step
change to 1590 ppm which is maintained for another 15 model time steps. We keep the notion of “time steps” rather than
actual time units in the following, to emphasize that such numerical experiments could be applied to any model duration from
centuries to millions of years with the rates of evolution and dispersal being adjusted by the user accordingly.

In Figure 10 a) — d), we show the steady state vegetation height and primary productivity for pre-PETM and peak-PETM CO,
concentrations. Comparing the two climate states, the model suggests a decreased productivity and vegetation height in tropical
and subtropical areas, driven by extreme heat conditions and reduced water availability. In mid to high latitudes, there is a
strong increase in vegetation height and productivity, driven by a CO, fertilization effect, a higher water-use efficiency and
temperatures closer to the optimum photosynthetic temperature between 25 and 30°C (see Egs. 18-20). Despite the reduced
productivity potential in some tropical and subtropical regions, the total global productivity potential increases from around

85 Pg C NPP per year to around 100 Pg C NPP per year.
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Figure 10: TREED simulation of the PETM. (a) Pre-PETM vegetation height and (c) net primary productivity (NPP) at an
atmospheric CO, of 680 ppm. (b) PETM vegetation height and (d) net primary productivity at a peak-PETM CO; concentration
of 1590 ppm.

Whether and how fast the vegetation can capitalize on the globally more optimal productivity conditions strongly depends on
the speed of eco-evolutionary adaptation processes and the susceptibility to temperature changes across the transition (Fig.
11). We test a large range of different adaptation scenarios, which is one of the main advantages of the TREED model, and
show that the potential of carbon sequestration across a PETM-like climate transitions strongly depends on the biological
capacity to adapt to the environmental changes. The observed range of carbon sequestration trajectories, illustrated using the
total annual NPP, can be categorized in three potential outcomes illustrated in Fig 11 a. In a scenario where the evolutionary
rate of functional and climatic trait adaptation is low (e.g., « =0.01), we observe a strong reduction in the productivity potential
due to a loss of adaptation of vegetation to the abruptly changing environmental conditions. Only with time, due to continuous
dispersal (e.g., dispersal window radius = 600 km) and slow adaptive evolution, the global productivity potential recovers to
levels as during pre-PETM conditions. Due to a low evolutionary adaptation potential, no capitalization of the theoretically
possible increase in vegetation productivity is observed until the end of the simulation. Under a scenario of fast trait evolution
(e.g., a=0.75), only a limited adaptation and productivity lag following the climatic transition is observed. Due to an efficient
adaptation of functional and climatic traits, the vegetation can rapidly capitalize on the climatic conditions in favour of

increased primary productivity. A reduced dispersal capacity (e.g., dispersal window radius = 200 km) does not strongly affect
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or offset the comparably fast increase in the global productivity potential. If both evolution and dispersal capacity are kept at
an intermediate level (e.g., o = 0.1, dispersal window radius = 400 km), an intermediate productivity trajectory is observed.
This includes a stress period with a strong reduction of the productivity potential, followed by a recovery and increase of
productivity to above pre-PETM levels.

Considering the traits currently included in the TREED model, the capacity of vegetation to endure temperature regimes
outside of the original habitat and the capacity to adapt thermal tolerances is found to be the strongest limitation of the global
productivity potential (Fig. 11 b). When considering no limitation of productivity due to temperature deviations between the
local environment and the climatic environment from which the occupying vegetation originates (knichebreaan = 0), but
considering a low evolutionary rate for other functional traits (as, Ciq; and derived H), we do not observe a drop in vegetation
productivity. This is because there is no direct stress effect of temperature on productivity, and further, because if plants are
not bound to certain climatic environments, there is an unlimited dispersal-based trait exchange. This would for example mean
that tropical trees and associated vegetation traits could migrate into temperate conditions without experiencing any
physiological stress. If we assume that plant dispersal and trait evolution is bound to certain thermal limits (knichepreadin > 0),
which themselves are subject to evolutionary adaptation, we observe a temporary drop in productivity because there exist
climatic environments with no suiting vegetation immediately available, and because dispersal-based trait exchange only
occurs within climatic boundaries. In the default eco-evolutionary model, we assume that plant and trait exchange are bound
to thermal limits. With a niche breadth parameter kyichebreaasn 0 0.02, the default model assumes that plants can be productive
in environments with deviation in the annual average temperature, the coldest month average temperature, and the warmest
month average temperature from their original habitat of up to 15°C. This corresponds approximately to the range temperature
variability observed within present-day biomes, which are observed bioclimatic zones of similar vegetation types and
characteristics on the globe. Thereby we assume that there exist plant physiological traits, ecosystem characteristics (e.g.,
competition, herbivory, pests, etc.) or abiotic conditions (e.g., soils and nutrient availability) which limit vegetation exchange
to within such climatic boundaries. With every grid cell of the model being initialized with a climatically optimally adapted
vegetation, thermal tolerances start to play a role for productivity if the speed of climatic shifts exceed the dispersal capacity
of vegetation (Fig. 11 c), and if changes in the temperature distribution exceed the variability observed in the starting climate
state. Consequently, we observe a threshold behaviour in the productivity response if we run the model for different land
surface warming scenarios across the PETM (Fig. 11 d). For a land surface warming below 4°C and under consideration of
limited temperature tolerances (knichebreadsn=0.02), no productivity loss is observed. For these warming scenarios, there is an
effective dispersal-based vegetation redistribution, and climatic conditions allow for an increased global productivity. For land
surface warming scenarios of 6°C or more, a drop and lagged productivity recovery is observed because the speed of climatic
change starts to exceed the dispersal-based trait redistribution, and because climatic extremes start to exceed those previously
observed. While continuous dispersal-based trait redistribution acts to close the adaptive gap, vegetation is limited by the

capacity of adjusting thermal tolerances through acclimation or evolutionary adaptation.
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Figure 11: Simulated net primary productivity (NPP) trajectories across the PETM. Simulated NPP trajectories assuming
(a) different adaptation and dispersal rates, (b) different climate niche breadths (k) and thermal tolerances, (c¢) different dispersal

rates, and (d) different land surface warming scenarios.

7 Discussion

Using a generalized plant physiology and optimality principles, the TREED model approximates the functioning and structure
of present-day vegetation systems, including carbon and water fluxes, height, biomass carbon storage, leaf characteristics,
phenology as well as the global distribution of plant species diversity. The model treats trait evolution as an optimization

problem under consideration of carbon allocation trade-offs in a continuous trait space, thereby avoiding the use of discrete,
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pre-parametrized vegetation classes. Our results support the use of organizing principles of biological systems, such as natural
selection, to obtain more self-consistent and parameter-scarce mechanistic models of vegetation dynamics under variable
climatic conditions, offering new ways to explore the interactions between vegetation dynamics and climatic variation across

timescales from the deep past to the present.

7.1 Evaluation of modelled carbon dynamics and traits

Plant carbon and water exchange, as well as biomass carbon storage, represent major forcings in Earth’s carbon and climate
system. The TREED model can serve as a computationally efficient, first-order approximation of the large-scale patterns of
carbon assimilation and sequestration at present and under different planetary climate states in the past and future. Thereby,
the model uses comparatively little input data of monthly average temperature, radiation, precipitation and cloud cover. Global
trends in carbon and water fluxes (i.e., GPP, NPP, AET) are predicted with more confidence than vegetation biomass carbon
sequestration. The performance difference between carbon fluxes and storage indicates that the optimization procedure is well
suited to capture the carbon assimilation potential under given climatic conditions but does not resolve the full variability of
how the assimilated carbon is invested into growth and biomass. A discrepancy in the performance of models to predict
productivity compared to biomass storage is a feature observed across many vegetation models and is partly explained by the
difficulty to resolve carbon turnover times of biomass (Pugh et al., 2020). In the TREED model, the largest biomass carbon
pools (heartwood, sapwood, coarse root) are associated with fixed turnover times in the range observed and modelled for the
present day (Pugh et al., 2020), while functional relationships determine fine root and leave carbon turnover. In natural systems,
turnover of large structural carbon pools is primarily a result of vegetation mortality, driven by a combination of biotic (e.g.,
competition, herbivory, diseases) and abiotic (e.g., fires, droughts, windthrow) factors (Franklin et al., 1987). A large range of
mechanistic formulations exist to approximate these processes, but are associated with considerable uncertainty and differences
among models (Pugh et al., 2020). Following other vegetation models (Schaphoff et al., 2018; Sitch et al., 2003), the TREED
model further simplifies growth respiration and reproduction carbon costs as fixed fractions of GPP and NPP, respectively.
The current implementation of the vegetation carbon turnover and mass balance represents a simple first approximation, with
the model being flexible to further develop and test increased complexity formulations of carbon turnover that may depend on
environmental conditions or functional trait trade-offs.

In the current TREED version, the considered carbon economic trade-offs and main axes of trait variation include carbon
investment into height growth, the leaf carbon pool, leaf longevity and phenology (e.g., Figs. 6 & 8). The underlying allocation
dynamics and trade-offs of height growth and leaf carbon economics are well established in both present day vegetation
systems (Falster and Westoby, 2003; Valentine and Mékel4, 2012; Wang et al., 2023; Wright et al., 2004), as well as in the
geologic past (McElwain et al., 2024; Soh et al., 2017). With these trade-offs, the model resolves the two main axes of variation
in vegetation growth forms observed in plants today (Diaz et al., 2016). However, while capturing mean trends, the model
does not resolve the full range of trait variability and complexity we observe in natural vegetation systems. An increase in the

modelled trait variability or the range of independent axes of trait variation would require the formulation of additional trait

35



800

805

810

815

820

825

https://doi.org/10.5194/egusphere-2025-6002
Preprint. Discussion started: 17 December 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

trade-offs that capture the cost and benefits of growth strategies in given abiotic and biotic environmental conditions. Thereby,
the trait trade-off should not be specific to a species or location, but generally applicable across plant species, space and time.
The increasing availability of plant functional trait data from various environments at present (Bruelheide et al., 2018; Diaz et
al., 2001; Kattge et al., 2020), as well as the geologic past (McElwain et al., 2024), is essential to establish such general trait
relationships. The capacity of the TREED model to resolve major patterns in present-day vegetation structure and functioning
based on a small number of functional trade-offs illustrates the potential of trait-based models in leading to more generalizable
and self-consistent representations of vegetation systems, and may allow a reduction of uncertainty in model-predicted carbon
and climate dynamics associated with vegetation parametrizations under environmental conditions of the future (Berzaghi et

al., 2020; Fisher et al., 2014) or the deep past (Matthaeus et al., 2023).

7.2 Paleo applications and eco-evolutionary dynamics

Focusing on basic principles of trait functional relationships, a continuous trait space and no pre-parametrized vegetation
classes, the TREED model is intended to provide a tool to understand how Earth’s climate, topography and vegetation have
co-evolved through time. While the fundamental trade-offs of height growth and the leaf economics spectrum that drive the
model are expected to also have played out in the distant geologic past (Butrim et al., 2024; Falster and Westoby, 2003;
McElwain et al., 2024; Soh et al., 2017), two limitations for the application to the geologic past should be noted. Even though
applying a generalized physiology across all plants, the TREED model still takes a present day-derived perspective on traits
and whole-plant architecture in the form of the applied allometric and functional relationships. Further, the model assumes a
constant theoretically possible trait space for the main varying traits and their combinations. The model does not resolve how
the availability of genetic variance may have limited the range of plausible trait combinations through time. The major
advantage of TREED with regards to these uncertainties, however, is its capacity to track combined carbon fluxes as well as
associated vegetation structures. The model results can thus be compared to combined geochemical records informing about
vegetation productivity (Bowen, 2013; Denis et al., 2021), as well as trait structures derived from paleobotanical records
(McElwain et al., 2024; Rogger et al., 2025), to assess the validity of currently implemented and future additions of functional
trade-offs and allometric relationships.

To study co-evolutionary transitions between the physical environment and vegetation systems, TREED includes eco-
evolutionary adaptation processes not currently considered in standard vegetation models, including the capacity of vegetation
to adapt to environmental changes through trait evolution and dispersal dynamics (Berzaghi et al., 2020). A limited capacity
of vegetation systems to respond to abrupt climatic changes and a loss of vegetation-mediated climate regulation are considered
to have strongly shaped global carbon cycle dynamics in the geologic past, and particularly, during episodes of abrupt climatic
change (Hull, 2015; Payne et al., 2004; Retallack et al., 1999; Rogger et al., 2024; Xu et al., 2022, 2025). An evaluation of the
capacity of vegetation to respond to environmental change is of particular importance considering that the speed of current
climate warming may have no precedent in the last 400 million years (Foster et al., 2017). However, our understanding of the

plant-climate adaptation process through acclimatization and evolutionary adaptation, the speed, and its limits, remain an active
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area of research (Bennett et al., 2021; Jezkova and Wiens, 2016; Liu et al., 2020; Schneider et al., 2025; Stemkovski et al.,
2025). By combining trait-enabled model predictions, geochemical and palacobotanical records from Earth’s past, the TREED
model was developed to help constrain and test hypotheses about the vegetation response to past climatic changes, the speed
and capacity of adaptation, and how adaptation may depend on the starting climate state and atmospheric CO, as well as the
rate, spatial distribution and magnitude of climate warming. Obtaining an understanding of these dynamics through geologic
time will help to better predict the vegetation responses that may emerge under different scenarios of climate change over the

next centuries.

7.3 Plant biodiversity dynamics

We show that the generalized plant physiology and continuous trait space of the TREED model cannot only be used to predict
vegetation functioning and structure, but also to estimate locations of a high plant diversity potential. Thereby, we combine
measures of local scale diversity (i.e., functional diversity potential) and landscape-scale biodiversity metrics (i.e., landscape
heterogeneity and fragmentation of vegetation habitats). The employed metrics are aimed to resolve the two predominant
drivers of plant species richness on Earth, including the spatial distribution of productivity-limiting resources such as energy
and water, and the distribution of topographic complexity, promoting species diversity though niche differentiation and
allopatric speciation (Antonelli et al., 2018; Cai et al., 2023; Kreft and Jetz, 2007; Stein et al., 2014). Our results support that
the consideration of these biodiversity drivers captures a large degree of the broad-scale plant biodiversity distribution on Earth
today. As such, in the context of paleoecological research, the model represents a tool to evaluate how topographic and climatic
changes throughout Earth’s history may have influenced the global distribution of the plant biodiversity either through
alteration of the functional diversity potential or landscape dynamics. In the biodiversity estimation, the TREED model takes
a purely environment-driven approach by estimating a diversity index based on the current timestep’s abiotic environmental
conditions. Individual species and their life histories are not resolved. As the model does not explicitly represent the biological
processes that ultimately lead to the realized global biodiversity distribution of a period (e.g., movement, speciation,
extinction), the predicted biodiversity indices should be considered indicators of a diversity potential and not a realized

diversity.

7.4 Future developments

Future developments of the TREED model will allow the inclusion and testing of additional functional trait trade-offs, which
may help to further generalize the model for its application under past and future climatic conditions, and to resolve growth
forms not currently represented (e.g., Fig. 7). Targets for development particularly include functional trade-offs concerning
carbon investments into hydraulic traits (e.g., maximum stomatal conductance or xylem conductivity), which are important
both in determining the response of vegetation systems to environmental conditions as well as in their impact on the coupled
global carbon and water cycle (McElwain et al., 2024). Related to water acquisition, also the competition for pre-emptying

water resources from competitors may be considered in future model versions, complementing the current light competition
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scheme. In drought-prone environments, a competitive advantage in securing water may favour the relative allocation of carbon
into belowground biomass at the expense of height and aboveground biomass growth (Cabal et al., 2020), which is not currently
resolved in the model that assumes a constant root to shoot carbon ratio. Further, alternative models concerning carbon turnover
costs may be employed. Possible schemes include environment-dependent vegetation mortality, such as increased carbon
turnover in heat, drought or wind-prone environments (Pugh et al., 2020), or susceptibility to biotic stresses depending on
environment conditions and functional trait characteristics, e.g., increased herbivory pressures in high temperature
environments and for low LMA leaf traits (Currano et al., 2008, 2010). Finally, it is aimed to include recently developed,
optimality-based and parameter-scarce models of the photosynthetic carbon assimilation and evapotranspiration into TREED
(Stocker et al., 2020), which is the physiologic process currently relying on most pre-defined parameter inputs (e.g., Table 1)
and which will help to differentiate the influence of short timescale acclimatization processes of the photosynthetic pathway

from long-term evolutionary trait evolution in response to climatic change (Schneider et al., 2025).

8 Conclusion

The trait- and optimality-based vegetation model TREED resolves major patterns in present-day vegetation structure,
functioning and diversity by resolving optimal trait allocation strategies of leaf characteristics and height growth across
environments. The capacity to capture major vegetation characteristics based on a limited set of functional trait trade-offs
emphasizes the potential of trait- and optimality-based vegetation models to advance the representation of vegetation systems
under changing environmental conditions. By considering trade-offs that apply across species, space and time, optimality-
based models may help to reduce uncertainty in vegetation-mediated Earth system process under climatic conditions
fundamentally different from the present, as during Earth’s past or under future warm climates. Moreover, by combining a
continuous functional trait space with landscape-scale variability in vegetation habitats, the TREED model may help to
advance our understanding of the coupled evolution of vegetation productivity and diversity through time.

Vegetation plays a fundamental role in Earth’s carbon and climate system, mediating fluxes of carbon, water and energy. A
loss of vegetation functions due to abrupt environmental perturbations may trigger feedback dynamics not currently resolved
in vegetation and Earth system models. The TREED model approximates eco-evolutionary adaptation dynamics including
limited trait evolution and dispersal dynamics to investigate the response capacity of vegetation systems. In combination with
geochemical and paleobotanical data, the trait-enabled model may help to better understand and constrain the resilience of

vegetation-mediated Earth system functions in the geologic past, as well as under future climatic changes.

9 Code and data availability

The TREED v1.0 model code is publicly available on github (https://github.com/julrogger/TREED), and the version of the

model used to produce the results presented in this study, along with all necessary input and evaluation data, can be accessed
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on Zenodo under accession code 17777279 (https://doi.org/10.5281/zenodo.17777279) under the Apache 2.0 license (Rogger,
2025). The model comes with three case studies showcasing the application of the model functions and for reproducing the
results presented in this study. Please see the deposited README file for more information on how to install and run the

model.
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