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We sincerely thank the reviewer for their thoughtful and constructive feedback.
We have carefully considered each comment, provided point-by-point responses below,
and revised the manuscript accordingly. We believe these revisions have strengthened
the study, and we hope the updated manuscript now meets the standards for publication
in Hydrology and Earth System Sciences (HESS).
Note:
(1) In this response, the text in ifalic type is the original comments from the reviewers,
and the text in blue, headed with “Reply”, is the response from the authors.
(2) In the manuscript, the words in blue indicate the sentence is improved or revised.

Some of them are mentioned in this response via the page and line number.

Comments:

1. The manuscript should explicitly clarify the statistical/error-model assumptions
behind using the average Hausdorff distance H as the calibration target and then use
the same metric to provide a reach-wise (regional) difficulty diagnosis for the channel
prediction/surrogate. Currently, the likelihood formulation based on H (with Hobs = 0)
is presented, but the assumed distribution for H and the selection/estimation of the scale
(variance) term are not sufficiently specified, which directly affects posterior tightness
and the credibility of uncertainty bounds. Also, the paper should quantify the known
spatial heterogeneity in performance by splitting the main channel into two or three
reaches (e.g., upstream canyon vs downstream plain) and reporting H (and optionally
mean pointwise distance) per reach for both reconstruction/validation and surrogate
evaluation, since the text indicates downstream deviations are larger. This will make
the Bayesian calibration statistically transparent while also giving readers a practical,

spatially explicit statement of where the workflow is reliable.



Reply: Thank you to the reviewer for pointing out these two issues.

(D In this study, the average Hausdorff distance (H) is used to quantify the spatial
discrepancy between the simulated and observed channel centerlines (i.e., two curves).
The observed value Hgps represents the distance between the true channel and itself
(thus Hobs = 0), whereas the simulated value H represents the distance between the
modeled channel output and the true channel. In the Bayesian uncertainty analysis, we
assume that the error in H follows a zero-mean, independent and identically distributed
Gaussian distribution, and we construct the likelihood function accordingly. We have
clarified this assumption in the revised manuscript: the mean Hausdorff distance H is
treated as an average measure of the spatial deviation between the simulated and

observed channel planforms, and its observation error is assumed to be normally
distributed, i.e., H~ N (0, 5%).

(2 We agree with the suggestion to evaluate spatial heterogeneity in model
performance by assessing metrics along different segments of the main channel.
Dividing the main channel by geomorphic units—upstream canyon reach, midstream
transitional reach, and downstream alluvial-plain reach—and computing the average
Hausdorff distance (H) for each segment would explicitly account for spatial
heterogeneity and could provide a more informative diagnosis of predictive skill.
However, if segmented reaches are used within the MCMC-based parameter
uncertainty analysis, the variance/covariance specification in the likelihood (Eq. 10)
must be defined appropriately for each reach. Because geomorphic setting, channel
stability, and migration amplitude differ substantially among reaches, the variance (or
covariance-matrix elements) should be parameterized in a reach-dependent manner. An
inappropriate specification would bias the likelihood evaluation and compromise the
accuracy of the inferred posterior distributions and uncertainty bounds. For these
reasons, we performed parameter calibration and uncertainty quantification using a
basin-wide (whole-channel) computation of H. The results indicate that this whole-
channel approach can effectively characterize the channel-migration process over the

study period, and the resulting error level is adequate for the objectives of this study.



In future work, we will consider explicitly partitioning the main channel into three
reaches (upstream canyon, midstream transition, and downstream alluvial plain) and
further investigating how to specify the variance term (or covariance structure) in Eq.
(10) under a segmented formulation, with the goal of enabling a finer and more robust

characterization of reach-scale uncertainty and spatial heterogeneity.

2. The LSTM surrogate section should be expanded with minimal but essential
implementation details to ensure reproducibility, beyond the already provided training
design (LHS sample size, train/validation split, optimizer and hyperparameters).
Specifically, please add a compact description (ideally a short table plus a few
sentences) of the LSTM architecture (number of layers, hidden units,
dropout/regularization if any), the preprocessing applied to the 11 parameters (e.g.,
min—max scaling or z-score normalization), the exact output formatting of the 2,000-
point planform, and the loss definition used to train the network (e.g., coordinate-wise
MSE, any weighting along the channel). These additions are documentation-level and
do not require new experiments, but they materially improve the scientific value of the
surrogate contribution by allowing other groups to replicate and benchmark the

approach.

Reply: Thank you to the reviewer for providing this important suggestion. We have
added additional implementation details for constructing the LSTM-based surrogate
model in the revised manuscript. The surrogate model employs a two-layer LSTM
architecture followed by a linear fully connected layer, taking normalized LE-PIHM
parameters as inputs and outputting planar river-channel coordinates. The network is
trained with the Adam optimizer by minimizing the RMSE between the predicted and
reference channel planforms. Table 2 summarizes the specific LSTM configuration and

training settings as follows:



Table 2. Architecture of the LSTM surrogate model

Training design

Specification

Input parameters

Input preprocessing

Network architecture

LHS sample size
Training set size

Validation set size
LSTM layer 1
LSTM layer 2

Model output

Output format
Loss function
Optimizer
Learning rate
Batch size
Training epochs

11 key LE-PIHM parameters

Min-max normalization applied to each parameter based on its prior
range, scaled to [0, 1]

Two stacked LSTM layers followed by one fully connected a dense
layer

3000 parameter sets

2100 samples (70% of LHS sample size)

900 samples (30% of LHS sample size)

128 hidden units; return full output sequence

256 hidden units; return last time-step output only

Planform locations of river channel represented by 2000 uniformly
sampled points

(x, y) coordinates of channel points

RMSE between surrogate predicted and reference channel coordinates
Adam

0.001

100

10,000

3. The future-scenario projection component should include a clear, concise description

of how CMIP6 EC-Earth3-Veg forcings under the SSP scenarios are prepared and

mapped into LE-PIHM, because scenario-to-scenario differences in projected

migration—particularly the large response reported for SSP2-4.5—are sensitive to bias

correction, downscaling, and temporal aggregation choices. Please state explicitly

whether precipitation/temperature are used raw or bias-corrected (and name the

method at a high level if applied), how spatial downscaling/interpolation to the basin

model grid is performed, and what temporal resolution is used to drive the model during

2021-2100 (including whether any aggregation is performed before the landscape-

evolution time step). A brief paragraph should then connect the interpretation of

“threshold-like” migration behavior to these forcing-preprocessing uncertainties, this

strengthens the credibility of the scenario comparison.

Reply: Thank you for pointing out that the description of CMIP6 forcing preparation

and processing for the future-scenario simulations was insufficient in the original



manuscript. We agree that scenario-to-scenario differences in projected channel
migration may be sensitive to forcing-preprocessing choices, including bias correction,
spatial downscaling/interpolation, and temporal resolution.

Accordingly, we have added a clarifying paragraph in Section 4.2 of the revised
manuscript: “In this study, future-scenario projections are driven by CMIP6 EC-Earth3-
Veg precipitation and air-temperature data under SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5. The scenario forcing fields are mapped to the LE-PIHM basin computational
units using bilinear interpolation. To maintain consistency with the monthly time step
adopted in LE-PIHM, the forcing data are temporally aggregated to monthly resolution
prior to being used as model inputs. In addition, no bias correction is applied to the

CMIP6 forcing data in this study.”



