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We sincerely thank the reviewer for their thoughtful and constructive feedback. 

We have carefully considered each comment, provided point-by-point responses below, 

and revised the manuscript accordingly. We believe these revisions have strengthened 

the study, and we hope the updated manuscript now meets the standards for publication 

in Hydrology and Earth System Sciences (HESS). 

Note: 

(1) In this response, the text in italic type is the original comments from the reviewers, 

and the text in blue, headed with “Reply”, is the response from the authors. 

(2) In the manuscript, the words in blue indicate the sentence is improved or revised. 

Some of them are mentioned in this response via the page and line number. 

 

Comments: 

1. The manuscript should explicitly clarify the statistical/error-model assumptions 

behind using the average Hausdorff distance H as the calibration target and then use 

the same metric to provide a reach-wise (regional) difficulty diagnosis for the channel 

prediction/surrogate. Currently, the likelihood formulation based on H (with 𝐻𝑜𝑏𝑠 = 0) 

is presented, but the assumed distribution for H and the selection/estimation of the scale 

(variance) term are not sufficiently specified, which directly affects posterior tightness 

and the credibility of uncertainty bounds. Also, the paper should quantify the known 

spatial heterogeneity in performance by splitting the main channel into two or three 

reaches (e.g., upstream canyon vs downstream plain) and reporting H (and optionally 

mean pointwise distance) per reach for both reconstruction/validation and surrogate 

evaluation, since the text indicates downstream deviations are larger.  This will make 

the Bayesian calibration statistically transparent while also giving readers a practical, 

spatially explicit statement of where the workflow is reliable. 



Reply: Thank you to the reviewer for pointing out these two issues.  

① In this study, the average Hausdorff distance (H) is used to quantify the spatial 

discrepancy between the simulated and observed channel centerlines (i.e., two curves). 

The observed value Hobs represents the distance between the true channel and itself 

(thus Hobs = 0), whereas the simulated value H represents the distance between the 

modeled channel output and the true channel. In the Bayesian uncertainty analysis, we 

assume that the error in H follows a zero-mean, independent and identically distributed 

Gaussian distribution, and we construct the likelihood function accordingly. We have 

clarified this assumption in the revised manuscript: the mean Hausdorff distance H is 

treated as an average measure of the spatial deviation between the simulated and 

observed channel planforms, and its observation error is assumed to be normally 

distributed, i.e., H ~ N
2(0, ) . 

②We agree with the suggestion to evaluate spatial heterogeneity in model 

performance by assessing metrics along different segments of the main channel. 

Dividing the main channel by geomorphic units—upstream canyon reach, midstream 

transitional reach, and downstream alluvial-plain reach—and computing the average 

Hausdorff distance (H) for each segment would explicitly account for spatial 

heterogeneity and could provide a more informative diagnosis of predictive skill. 

However, if segmented reaches are used within the MCMC-based parameter 

uncertainty analysis, the variance/covariance specification in the likelihood (Eq. 10) 

must be defined appropriately for each reach. Because geomorphic setting, channel 

stability, and migration amplitude differ substantially among reaches, the variance (or 

covariance-matrix elements) should be parameterized in a reach-dependent manner. An 

inappropriate specification would bias the likelihood evaluation and compromise the 

accuracy of the inferred posterior distributions and uncertainty bounds. For these 

reasons, we performed parameter calibration and uncertainty quantification using a 

basin-wide (whole-channel) computation of H. The results indicate that this whole-

channel approach can effectively characterize the channel-migration process over the 

study period, and the resulting error level is adequate for the objectives of this study. 



In future work, we will consider explicitly partitioning the main channel into three 

reaches (upstream canyon, midstream transition, and downstream alluvial plain) and 

further investigating how to specify the variance term (or covariance structure) in Eq. 

(10) under a segmented formulation, with the goal of enabling a finer and more robust 

characterization of reach-scale uncertainty and spatial heterogeneity. 

 

2. The LSTM surrogate section should be expanded with minimal but essential 

implementation details to ensure reproducibility, beyond the already provided training 

design (LHS sample size, train/validation split, optimizer and hyperparameters). 

Specifically, please add a compact description (ideally a short table plus a few 

sentences) of the LSTM architecture (number of layers, hidden units, 

dropout/regularization if any), the preprocessing applied to the 11 parameters (e.g., 

min–max scaling or z-score normalization), the exact output formatting of the 2,000-

point planform, and the loss definition used to train the network (e.g., coordinate-wise 

MSE, any weighting along the channel). These additions are documentation-level and 

do not require new experiments, but they materially improve the scientific value of the 

surrogate contribution by allowing other groups to replicate and benchmark the 

approach. 

Reply: Thank you to the reviewer for providing this important suggestion. We have 

added additional implementation details for constructing the LSTM-based surrogate 

model in the revised manuscript. The surrogate model employs a two-layer LSTM 

architecture followed by a linear fully connected layer, taking normalized LE-PIHM 

parameters as inputs and outputting planar river-channel coordinates. The network is 

trained with the Adam optimizer by minimizing the RMSE between the predicted and 

reference channel planforms. Table 2 summarizes the specific LSTM configuration and 

training settings as follows: 

  



Table 2. Architecture of the LSTM surrogate model 

Training design Specification 

Input parameters 11 key LE-PIHM parameters  

Input preprocessing 
Min-max normalization applied to each parameter based on its prior 

range, scaled to [0, 1] 

Network architecture 
Two stacked LSTM layers followed by one fully connected a dense 

layer 

LHS sample size 3000 parameter sets 

Training set size 2100 samples (70% of LHS sample size) 

Validation set size 900 samples (30% of LHS sample size) 

LSTM layer 1 128 hidden units; return full output sequence 

LSTM layer 2 256 hidden units; return last time-step output only 

Model output 
Planform locations of river channel represented by 2000 uniformly 

sampled points 

Output format (x, y) coordinates of channel points 

Loss function RMSE between surrogate predicted and reference channel coordinates 

Optimizer Adam 

Learning rate 0.001 

Batch size 100 

Training epochs 10,000 

 

3. The future-scenario projection component should include a clear, concise description 

of how CMIP6 EC-Earth3-Veg forcings under the SSP scenarios are prepared and 

mapped into LE-PIHM, because scenario-to-scenario differences in projected 

migration—particularly the large response reported for SSP2-4.5—are sensitive to bias 

correction, downscaling, and temporal aggregation choices.  Please state explicitly 

whether precipitation/temperature are used raw or bias-corrected (and name the 

method at a high level if applied), how spatial downscaling/interpolation to the basin 

model grid is performed, and what temporal resolution is used to drive the model during 

2021–2100 (including whether any aggregation is performed before the landscape-

evolution time step). A brief paragraph should then connect the interpretation of 

“threshold-like” migration behavior to these forcing-preprocessing uncertainties; this 

strengthens the credibility of the scenario comparison. 

Reply: Thank you for pointing out that the description of CMIP6 forcing preparation 

and processing for the future-scenario simulations was insufficient in the original 



manuscript. We agree that scenario-to-scenario differences in projected channel 

migration may be sensitive to forcing-preprocessing choices, including bias correction, 

spatial downscaling/interpolation, and temporal resolution. 

Accordingly, we have added a clarifying paragraph in Section 4.2 of the revised 

manuscript: “In this study, future-scenario projections are driven by CMIP6 EC-Earth3-

Veg precipitation and air-temperature data under SSP1-2.6, SSP2-4.5, SSP3-7.0, and 

SSP5-8.5. The scenario forcing fields are mapped to the LE-PIHM basin computational 

units using bilinear interpolation. To maintain consistency with the monthly time step 

adopted in LE-PIHM, the forcing data are temporally aggregated to monthly resolution 

prior to being used as model inputs. In addition, no bias correction is applied to the 

CMIP6 forcing data in this study.” 


