
The contribution of fires to PM2.5 and population1

exposure in Asia Pacific2

Hua Lu1,Min Xie2, Nan Wang3, Bojun Liu4, Jinyue Jiang5, Bingliang Zhuang6, Ying Zhang7,3
Meixuan Wu7, Jianfeng Yang8, Kunqin Lv9, Danyang Ma24

1 Chongqing Institute of Meteorological Sciences, Chongqing 401147, China5

2 School of Environment, Nanjing Normal University, Nanjing 210023, China6

3 College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China7

4 Chongqing Meteorological Observatory, Chongqing 401147, China8

5 The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China9

6 School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China10

7 School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225,11

China12

8 The People's Hospital of Kaijiang, Dazhou 636250, China13

9 The First People’s Hospital of Jiangjin District, Chongqing 402260, China14

Correspondence to: Min Xie (minxie@njnu.edu.cn) and Nan Wang (nan.wang@scu.edu.cn)15

Abstract. Forest and vegetation fires are one of the major sources of air pollution and have triggered16

air quality issues in many regions of Asia. Measures to reduce fires may be a significant yet17

under-recognized option for effeciently improving air quality and averting the related premature deaths.18

Here we isolate the fire-specific fine particulate matter (PM2.5) from monitoring concentrations19

using an observation-driven approach in the region. Fire-specific PM2.5 concentrations average 2-1520

µg/m³during the fire season, with higher values in Southeast Asia (SEA), Northeast Asia (NEA), and21

northern India. The total PM2.5 in Asia Pacific exhibits a rapid declining trend from 2014 to 2021,22

while fire-specific PM2.5 decreases in early years but begins to reverse in SEA and NEA. The23

proportions of fire-specific PM2.5 in NEA rises from 0.2 to 0.3 during the fire season, and in SEA24

increases from 0.2 in 2018 to 0.4 in 2021. Fire-specific PM2.5 exposure caused 58,000 (95 %25

confidence interval (CI) of 32,600-82,600 ), 90,000 (95 % CI of 63,700-106,000 ), 157,000 (95 %26

CI of 110,000-186,000 ), and 29,300 (95 % CI of 18,000-39,700 ) premature deaths annually in SEA,27

East Asia (EA), Central Asia (CA), and NEA, respectively, accounting for 40.9% (95 % CI of28

22.8%-57.7%), 14.9% (95% CI of 10.5%-17.6%) , 19.4% (95% CI of 13.5%-24.5%), and 24.1%29

(95% CI of 14.8%-32.5%) of numbers caused by the total PM2.5. Analysis of infant mortality rate data30

and PM2.5 exposure indicates that the total PM2.5 exposure impacted more in richer areas, while31



fire-specific PM2.5 exposure affected more populations in poorer regions. Based on the positive32

correlation between vapor pressure deficit and fire-specific PM2.5, this study suggests that without33

further regulation and policy intervention, the emerging growth trend of fire-specific PM2.5 in Asia34

Pacific is likely to continue under the influence of future climate change.35

1 Introduction36

Fine particulate matter (PM2.5) is a complex mixture of anthropogenic and natural sources,37

and has been the world’s leading environmental health risk factor (McDuffie et al., 2021).38

Observations show that emissions from forest and vegetation fires are one of the major sources of39

PM and have triggered air quality issues in many regions (Reddington et al., 2021; Romanov et al.,40

2022; Xie et al., 2022). Influenced by climate change, fires are becoming increasingly frequent41

and destructive, and fire-specific PM2.5 has begun to dominate the average annual PM2.5 trends in42

some areas (Marshall et al., 2023; Wei et al., 2023). Compared with the direct exposure to flames43

and heat of fires, exposure to fire smoke can affect much larger populations and pose significant44

public health risks (Xu et al., 2023a). The most severe public health impact of fire smoke on air45

pollution comes from the generation of toxic PM. Recent studies suggest that fire-specific PM2.546

may be more influential than equal doses of ambient PM2.5 (Xue et al., 2021; Aguilelra et al., 2023;47

Wei et al., 2023). Exposure to fire-specific PM2.5 can exacerbate a range of health problems, such48

as premature mortality, cardiovascular and respiratory and other health issues (Aguilera et al.,49

2021; Chen et al., 2021).50

Studies have analyzed changes in fire-specific PM2.5 concentrations and their health impacts51

using chemical transport models, which are valuable for assessing conditions across different52

locations and times (Reddington et al., 2021; Xue et al., 2021; Xu et al., 2023). Some studies focus53

on individual fire events, defining fire influence by threshold values of biomass burning tracers54

(e.g., PM2.5 or CO) to identify fire-influenced measurements (Bytnerowicz et al., 2016; Landis et55

al., 2018). Others use backward trajectory simulations to confirm fire influences but often56

overlook smaller-scale fire emissions, which are harder to attribute. Accurately measuring57

fire-specific PM2.5 exposure is vital for assessing health and economic impacts, yet empirical58

challenges persist. Recently, some studies have combined PM2.5 observational data with fire59



smoke observations to determine fire effects on air quality, that is trajectory-fire interception60

method (TFIM) (Schneider et al., 2021; 2024). TFIM extracts unaffected time and spatial points,61

employing statistical or machine learning techniques to estimate pollutant concentrations. This62

data-driven approach does not depend on the fire emission databases that carry significant63

uncertainties related to fuel type and location (Wiedinmyer et al., 2006; 2011; 2023), and64

enhances reliability and timeliness, conserving computational resources while isolating65

fire-specific air pollution (Aguilera et al., 2021; 2023).66

Asia Pacific is one of the most densely populated regions in the world and faces severe air67

pollution challenges (CCAC, 2024). Among the health risks associated with air pollution, Asia68

Pacific has accounted for over 70% of global deaths attributed to air pollution (Lelieveld et al.,69

2015；2020；Giannadaki et al., 2018). Fire actively in the Northeast Asia (NEA) region has70

recently become more extensive and is expected to continue escalating in the future due to climate71

change (Huang et al., 2024; Gui et al., 2024). Fires in equatorial Southeast Asia (SEA) are72

severely impacted by droughts induced by the El Niño-Southern Oscillation (Yin et al., 2020;73

Zheng et al., 2023). South Asian are among the most vulnerable globally to the impacts of climate74

change, which has increased the incidence of fire in Central Asia (CA). In addition to climate and75

natural factors, the frequencies and sizes of fires are also largely human influenced through land76

management practices in Asia Pacific. In East Asia (EA) and SEA, fires are used as agricultural77

management tools, such as to remove agricultural residues and weeds, as well as for forest78

clearance for agricultural purposes (Biswas et al., 2015; Phairuang et al., 2017). Fire activity in79

Asia Pacific may release large amounts of smoke and harmful gases, leading to elevated80

concentrations of air pollutants and negatively affecting human health and the environment81

(Reddington et al., 2021). The fire-specific air pollution in Asia Pacific not only poses a threat to82

the health of local residents but can also influence neighboring areas and even more distant83

locations through atmospheric transport (Zhu et al., 2016; Qin et al., 2024; Du et al., 2024).84

However, large disparities in geographic patterns exist in fire-specific air pollution and85

population exposure researches, with related studies most centralized in high-income economies,86

like North America and Europe (Aguilera et al., 2021; Tornevi et al., 2021; Korsiak et al., 2022;87

Wei et al., 2023). In contrast, the world’s most widely burnt regions, including the Asia Pacific,88

remain underrepresented in literature due to resource inequality and inadequate funding (Petersen,89



2021; Lin et al., 2024). On one hand, a major challenge to conduct researches on fire-related PM2.590

pollution and population exposure is how to isolate the fire-specific PM2.5 from observed91

background levels. More than 70% of studies on fire-related datasets are concentrated in North92

America and Europe, using various approaches such as chemical transport models, satellite-based93

fire smoke plume analysis and statistical approaches to quantify fire-specific PM2.5 (Aguilera et al.,94

2021; Schneider et al., 2021; Korsiak et al., 2022; Wei et al., 2023; Lin et al., 2024). However,95

there is still a lack of fire-specific PM2.5 in many other regions, including Asia Pacific, which96

accounts for 7.4% of the global burnt area and 27% of global cropland fires (Xu and You, 2023;97

Xu et al., 2023). on the other hand, associated with the socioeconomic factors, increasing evidence98

highlights the unequal distribution of exposure to and impacts of air pollution, attributed to the99

disparities in the implement of measures, effectiveness of regulations, the adoption of clean100

energy technologies, and differences in infrastructure and healthcare conditions (Tessum et al.,101

2019; Jbaily et al., 2022; Kodros et al., 2022; Southerland et al., 2021; Rentschler et al., 2023).102

However few studies have focused on how fire-specific PM2.5 exposure manifests along lines of103

inequality, thereby exacerbating health disparities. Notably, there is a lack of research focusing on104

contributions of fires activities to PM2.5 in Asia Pacific, as well as the health and socioeconomic105

impact of fire-specific PM2.5.106

This study utilized a trajectory-fire interception method (TFIM), and spatial-temporal interpolations107

through machine learning algorithm to isolate fire-specific PM2.5 from monitoring observations in Asia108

Pacific. With the fire-specific PM2.5, variations in contributions of fire activities to PM2.5 in the109

Asia Pacific are analyzed. The health impacts caused by fire-specific PM2.5, and the relationship110

between poverty levels and fire-specific PM2.5 exposure in Asia Pacific were also examined.111

Based on the climate factors related to fire activities, this study aims to demonstrate whether the112

changing trends of fire-specific PM2.5 will go on due to climate change.113

2 Data and Methods114

2.1 Data115

2.1.1 Air quality Data116



The continuous air quality observation data were obtained from the OpenAQ website117

(http://openaq.org/), while data for the China region primarily comes from the Chinese National118

Environmental Monitoring Center (http://www.cnemc.cn/en/). The total PM2.5 between 2014 and119

2020 were measured using observation data from 1,810 monitoring stations (Figure 1) located120

throughout the Asia Pacific (65-133°E, 5-55°N). Additionally, the CO measurements from these121

monitoring stations were utilized to validate the definition of fire influence using the TFIM122

method.123

2.1.2 Fire Point Data124

The location of fires were obtained from the Fire Information for Resource Management125

System (FIRMS). Rrchived fire pixels from the Moderate Resolution Imaging Spectroradiometer126

(MODIS) on the Aqua and Terra satellites for Asia Pacific from 2010 to 2021 were downloaded.127

The standard fire products with a resolution of 1 km×1 km for each fire pixel were utilized. More128

information about MODIS measurements can be found in Giglio et al. (2003) and Justice et al.129

(2011).130

2.1.3 Additional Variables131

To estimate fire-specific PM2.5 concentrations, the study firstly used spatial-temporal132

interpolation approach to calculate counterfactual PM2.5 that is in absence of fire smoke. The133

spatial-temporal interpolation approach was realized based on a machine learning methods with134

multiple potential explanatory variables, including aerosol optical depth (AOD) data,135

meteorological data, land use data, and other auxiliary information.136

For AOD data, the reliability of the MODIS products onboard the U.S. Terra and Aqua137

satellites has been extensively validated (Lyapustin et al. 2018; Mhawish et al., 2019; Choi et al.,138

2019; Huang et al., 2020; Jin et al., 2023 ). The high resolution AOD product, with a resolution of139

1 km, is derived using the Multi-Angle Implementation of Atmospheric Correction (MAIAC)140

algorithm, which enhances the accuracy and spatial resolution of the AOD product (Lyapustin and141

Wang, 2018). The MAIAC AOD data has recently been widely applied to retrieve ground-level142

PM2.5 concentrations (He et al., 2020; Li et al., 2020; Wei et al., 2023).143

Satellite remote sensing offers uniform coverage, but satellite data is only feasible under144

clear-sky conditions. MAIAC AOD contains large data gaps due to ubiquitous presence of clouds.145

To fill spatial-temporal gaps of MAIAC AOD, this study also supplemented MERRA-2 AOD146



products. MERRA-2 is the first global reanalysis dataset of the satellite era, provided by NASA’s147

Modeling and Assimilation Data and Information Services Center. It assimilates ground-based148

aerosol observations, with a horizontal resolution of 0.625° × 0.5° and a temporal resolution of 1149

hour (Gelaro et al., 2017). Studies have used MERRA-2 aerosol products to conduct in-depth150

researches on atmospheric environmental issues in Asia (Jia et al., 2019; Feng et al., 2020).151

Additionally, MERRA-2 provides 50 aerosol products, including AOD, surface black carbon mass152

concentration, surface organic carbon mass concentration, and surface dust mass concentration.153

This study utilizes MERRA-2 reanalysis aerosol products as input data for constructing the154

AOD-PM2.5 model.155

Meteorological variables affect air pollution, therefore meteorological data provided by ERA5156

reanalysis data serve as input factors for estimating the PM2.5 in absence of fire smoke. ERA5157

reanalysis data comes from ECMWF and assimilates as comprehensive observational data as158

possible (including ground observations, soundings, aircraft data, satellite observations, etc.). It is159

widely used in weather and climate-related research, with a horizontal resolution of 0.25° × 0.25°160

and divided into 37 vertical layers, with a resolution of 25 hPa from 750 to 1000 hPa and 50 hPa161

from 750 to 250 hPa, and a temporal resolution of 1 hour. The data used in the study included162

surface air pressure, 10-meter U and V wind fields, 2-meter temperature and dew point163

temperature, as well as specific humidity and temperature at 500 hPa and 850 hPa.164

Land-use variables are proxies for emissions and background PM2.5. In this study, the land-use165

coverage types collected from the MCD12Q1 Version 6 products, and the 16-day composite166

Normalized Difference Vegetation Index (NDVI) derived from MODIS were utilized as input167

factors for PM2.5 estimation. In addition, the population counts obtained from LandScan was168

included to represent impact of human activities on air pollution. The gross domestic product169

(GDP) data are obtained from Wang and Sun (2023), measured in PPP 2005 international dollars.170

Table 1 summerizes the original input features used in construction of machine learning171

method estimating fire-specific PM2.5. Although the resolutions of different datasets in the172

machine learning method are quite distinct, the target data are spatially and temporally dispersed173

points. Therefore, the construction of machine learning method is essentially point-to-point. The174

input and output datasets are matched based on their relative positions, meaning that the input data175

are temporally and spatially closet to the output data.176



Table 1. The original input features used in construction of machine learning method estimating177

fire-specific PM2.5178

Variation Content
Spatial

Resolution
Temporal
Resolution

Source

PM2.5 PM2.5 absent of fires In situ Hourly OpenAQ, CNEMC

AOD MAIACAOD 1km × 1km Daily MCD19A2

Aerosol 50 aerosol products 0.62°× 0.5° Hourly MERRA-2

Meteorology

surface air pressure

10m U and V wind fields

2m temperature

2m dew point temperature,

specific humidity at 500 hPa and 850

hPa

temperature at 500 hPa and 850 hPa

0.25°× 0.25° Hourly ERA5

Land use Land coverage types 500m × 500m Yearly MCD12Q1

NDVI
Normalized difference vegetation

index
1km × 1km Monthly MOD13A3

POP Population counts 1km × 1km Yearly LandScan

GDP Gross domestic product 1km × 1km Yearly
Wang and Sun

(2023)

179

2.1.4 Health Data180

To estimate the health impacts at a specific ambient PM2.5 exposure, population data from181

LandScan and mortality rate data from the online Global Burden of Disease (GBD) database182

(http://ghdx.healthdata.org/gbd-results-tool) covering Asia Pacific from 2014 to 2020 were183

collected and used. The GBD database provides baseline mortality data for male and female184

populations across five-year age groups. This study considers health endpoints for four diseases:185

stroke (STROKE), chronic obstructive pulmonary disease (COPD), ischemic heart disease (IHD)186

and lung cancer (LC).187

2.1.5 Infant Mortality Rates188

The Infant Mortality Rates (IMR) dataset from NASA Socioeconomic Data and Applications189

Center was used as a proxy for population poverty levels in this study. The IMR is defined as the190

number of children who die before their first birthday for every 1000 live births in a given year191

(Barbier and Hochard, 2019; Reddington et al., 2021). IMR dataset has been widely used as192

poverty indicators, with specific thresholds to assess and categorized poverty levels ( Barlow et al.,193

2016; Barbier and Hochard, 2019). This study define population with IMR≤40 to be relatively not194



poor, 41≤IMZ≤60 to be moderately poor, IMR≥61 to be relatively poor, which is similar to the195

definition in Barbie and Hochard (2019).196

197

Figure 1. (a) Distribution of air quality monitoring stations in Asia Pacific, with shading color in198
background indicating green vegetation fraction. (b) The specific areas of sub-regions including199
Southeas Asia (SEA), East Asia (EA), Northeast Asia (NEA) and Central Asia (CA).200

2.1.6 The Coupled Model Intercomparison Project Phase 6 data201

Referring to previous researches, the positive relationship may exist between the vapor202

pressure deficit (VPD) and the fire-specific PM2.5 (Abatzoglou et al., 2016; Burke et al., 2023). To203

validate this relationship and quantify the future trend of fire-specific PM2.5 in Asia Pacific, VPD204

was calculated using the projected temperature and relative humidity data from climate model205

(GCM) ensembles under various emissions scenarios. The study examined VPD changes under206

three commonly used climate scenarios (SSP1-2.6, SSP2-4.5, and SSP3-7.0) , based on monthly207

data provided by 34 GCMs. To minimized uncertainty and account for internal variability, the208

average VPD values for different regions in Asia Pacific were computed for each GCM and209

emissions scenario.210

2.2 Methods211

2.2.1 Fire Influence definition212

To understand how fire impact air quality, whether an ambient PM2.5 measurement has been213

influenced by fire should be determined. Following the TFIM method proposed by Schneider et al.214

(2021), this study calculated the backward trajectories for monitoring stations over a 72-hour215

period. The FLEXPART model (version 10.4), a Lagrangian particle dispersion model developed216

by the Norwegian Institute for Air Research, was used for back-trajectories calculation.217



FLEXPART v10.4 was driven using ERA5 reanalysis data at a temporal interval of 1 hour. These218

trajectories were then spatially and temporally matched with fire hotspot data reported by FIRMS.219

If the distance between the two was within 0.5°, an interception was considered to occur. If a220

trajectory had more than the interception threshold, the PM2.5 measurement at that time was221

deemed to be influenced by fire. A schematic of the TFIM method is shown in Figure 2.222

223

Figure 2. The schematic of trajectory-fire interception method (TFIM), where the blue lines224
represent backward trajectories and red points indicate fire hotspots225

2.2.2 Fire-specific PM2.5 estimation226

To estimate fire-specific PM2.5 covering Asia Pacific from 2014 to 2020, the counterfactual227

PM2.5 unaffected by fire was interpolated through machine learning method, and then compared228

with the ambient PM2.5 measurement to get the fire-specific PM2.5. The specific steps in Figure 3229

were followed. Since there are no direct fire smoke observation data over Asia Pacific, the TFIM230

method described in 2.2.1 was used as a substitute. First, using the TFIM method, the fire231

influence periods for a given monitoring station time were determined. If a station experienced232

over 6 hours of fire influence in a day, it was considered exposed to fire smoke on that day. Based233

on the exposure definition, the station days exposed to fire were temporarily removed. Next, the234

random forest method was employed to interpolate non-fire-affected PM2.5 for all station days235

categorized as fire-affected. Random forests are a combination of tree predictors, such that each236

tree depends on the values of a random vector sampled independently and with the same237

distribution for all trees in the forest (Breiman 2001). Since it is relatively robust to noise, random238

forests are not prone to overfftting, so that it is carried in various fields of data mining (Lu et al.,239

2021). In this study, we utilize random forest to estimate PM2.5 that is absent of fire with multiple240



input features. The algorithm provides insights into feature importance, allowing us to understand241

which variables contribute most significantly to predictions. In our study, the feature importance242

of 60 original input datasets (Table 1) were calculated based on random forest, and then PM2.5243

absent of fire was then estimated with the algorithm. This step provided background PM2.5244

estimation unrelated to fire contributions. The PM2.5 from non-fire-affected station days was used245

as the training, testing, and validation datasets to build the model, and interpolation estimation was246

performed for background PM2.5 for fire-affected station days. Finally, by subtracting the247

non-fire-affected part from the ambient PM2.5 measurement, the fire-specific PM2.5 was estimated.248

249

Figure 3. Flowchart of steps followed to estimate fire-specific PM2.5250

2.2.3 PM2.5 health impact assessment251

The disease burden attributable to PM2.5 exposure was assessed using Health Impact Function252

(HIF). The expression for this function is as follows:253

∆���� = �� × ��� × (1 − 1/���)

where ∆Mort denotes the premature death due to PM2.5 exposure for health endpoint i , Bi254

represents mortality rate for endpoint i , POP is the exposed population, and RRi is the relative255

risk associated with PM2.5 exposure for health endpoint i .256

With the advancement of epidemiological research, an Integrated Exposure-Response (IER)257

equation integrates available RR information from multiple exposure-response functions,258

including air pollution, active smoking, passive secondhand smoke exposure, and indoor cooking259

fuel combustion scenarios. The IER equation combines findings from studies on both low and260



high exposure concentrations to consider four major health endpoints (STROKE, COPD,IHD, and261

LC). The expression for the IER has the following form:262

�� = 1 + �(1 − ���( − �(� − �0)�))

Where C represents the PM2.5 concentration, C0 is the concentration threshold below which263

health risks are negligible, and the parameters α、γ and δ represent the fitted parameters for health264

endpoint i to describe the relative risk curve. The values for parameters can be found in studies by265

Burnett et al. (2014) and Song et al. (2017). The values of these key parameters and their 95%266

confidence intervals (CI) used in this study are also provided in Table S1.267

3 Results268

3.1 Estimating fire-specific PM2.5269

Fire hotspots number derived from the FIRMS products in Asia Pacific peaked during270

February to April (with daily counts exceeding 1000), therefore we defined this period as fire271

season in this study (Figure 4). In terms of spatial distribution, fire hotspots number in SEA is272

more than double that of the other three regions during fire season. Fires in SEA mainly occur273

during the pre-monsoon period (roughly February to April), due to widespread forest fires and274

agricultural residues burning in preparation for planting before the arrival of the Asian summer275

monsoon (Huang et al., 2017; Phairuang et al., 2017). The increase in fire activity coincides with276

the establishment of stable temperature inversions over large areas of Thailand, Vietnam, Laos,277

and southern China, while northern Thailand experiences hot, dry, and calm conditions that278

facilitate the formation of haze (Reddington et al., 2021). Fire activities significantly decrease279

after the onset of summer monsoon rainfall (in late April) and remain low until the beginning of280

the dry season (in November). The fire occurrences in this region exhibit a certain degree of281

interannual variability (Figures 4c and 4d), which is related to changes in atmospheric circulation282

patterns, such as the India-Burma trough (Huang et al., 2017). In addition to climatic influences,283

local fire management policies also play a role; for example, the implementation of stricter284

agricultural burning policies in SEA mainland between 2016 and 2017 was associated with a285

significant reduction in fire point counts. However, after 2018, the number of fire points once286

again showed an upward trend.287



Fire hotspots number in CA is slightly higher than EA during the fire season (Figures 4b and288

4d). The dry and hot conditions before the monsoon in CA create favorable conditions for forest289

fires in the dense vegetation of the Indian Peninsula. Additionally, the dry winter climate in CA290

can also contribute to fire occurrences (Barik and Baidya, 2023). As a result, the peak fire point291

counts in CA primarily occur in March-April and October-November. The climate conditions in292

EA are complex. During spring and autumn, North China and Southwest China experience clear293

weather, low precipitation, and dry vegetation, making them prone to forest fires, especially294

during windy conditions. In the western Xinjiang region, the peak period for forest fires is295

concentrated in the summer, particularly those caused by lightning, with a significant number296

occurring in July-August. The NEA region is located relatively further north, with the start of the297

growing season lagging behind the other three regions, while the end of the growing season occurs298

earlier than in the other regions. As a result, the peak fire point period in NEA is delayed in spring299

(March-May) compared to the other three regions, but slightly advanced in autumn. The average300

daily number of fire points in CA, EA, and NEA has shown a slow increasing trend from 2014 to301

2021.302

303
Figure 4. The variations from 2014 to 2021 of (a) day-to-day fire hotspots in Asia Pacific, (b)304
day-to-day fire hotspots in four sub-regions, (c) annual averaged fire hotspots and (d) averaged305
fire hotspots during fire season in different regions. .306



To isolate the fire-specific PM2.5 based on TFIM, we should firstly justify the usability of307

TFIM in the Asia Pacific, and then set a suitable threshold of fire hotspots interception for the308

region. In this study, we select PM2.5 as the fire emission tracer, as it is well know that PM2.5 can309

be emitted by fires. CO can also serve as a tracer for fire influence for CO can be produced from310

incomplete combustion and has a long atmospheric lifetime. However, the range in CO is not as311

large as it is for PM2.5. The variations of PM2.5 during high influence fires can be over 100 µg/m3,312

which is more than double that of clean period, while CO varies much milder. Besides, the much313

more widespread PM2.5 measurements compared to CO in Asia Pacific is another reason why314

PM2.5 is chosen as the tracer for fire emissions. We then compared the number of interception fire315

hotspots with the measured PM2.5 in Figure 5. In Figure 5a, correlation between the interception316

number and PM2.5 is not strong, indicating that identifying fire influence based on trajectory317

interception of a single fire hotspot is not effective. When we set the interception threshold to 50,318

the correlation significantly improves. This improvement may be due to larger and more fires319

generating more PM2.5. Figure 5c illustrates how the correlations varies as the interception320

threshold changes. The correlation reaches it maximum at a threshold of 50. Therefore we set the321

interception threshold to be 50 in measuring the fire influence on PM2.5 in Asia Pacific. Compared322

to the threshold of 20 in the North America proposed by Schneider et al. (2021), the interception323

threshold in Asia Pacific is higher, because the study area is much larger and the relative smaller324

scale of fires. This method eliminates fire hotspots that contribute minimally to PM2.5 variations,325

while including as many measurements as possible.326

327



328

Figure 5. (a) and (b) scatter distributions of PM2.5 concentrations against the number of fire329
hotspots when interception threshold is set to be 1 and 50, respectively. (c)correlation coefficient330
between PM2.5 and the number of fire hotspots as a function of the interception threshold.331

Using the TFIM method, we isolate the station days influenced by fires. To estimating the332

fire-specific PM2.5, we employed a random forest model for interpolation to estimate the333

counterfactual PM2.5 that is absence of fire influence, and then compare the PM2.5 observation with334

the counterfactual PM2.5 to get the fire-specific PM2.5.335

With muti-source data of station days that are absence of fires, we generate the datasets for336

machine learning model construction. There are totally 60 initial input variations, including 50337

aerosol variables from MERRA2, MAIAC AOD, meteorological factors, land use, the NDVI and338

the GDP data. We ranked the importance of these variables using random forest, with the most 15339

influential variables in Figure 6a. The most influential variables for PM2.5 that are absence of fire340

is the surface black carbon mass (BCSMASS from MERRA2), followed by the surface mass341

concentrations of various PM2.5 components, like organic carbon and dust. Meteorological factors342

contribute to explain variations in background PM2.5. Temperature, pressure and humidity near343

ground can affect the formation of particles by influencing on chemical actions between344

precursors, while large-scale weather circulations also impact on pollutants transport and345



accumulation through high level meteorological factors. In addition, other variations such as GDP346

and NDVI also play a role in calculating background PM2.5. GDP is expected to reflect the347

economic conditions and background anthropogenic emissions among various regions, while348

NDVI represents the vegetation cover status, which not only reflects the vegetation emissions but349

also indicates the interception and deposition of PM2.5 by vegetation. It is indeed important to350

acknowledge the significant role of anthropogenic emissions in ambient PM2.5 concentrations351

across Asian countries. To comprehensively account for anthropogenic aerosols in this study, we352

considered not only indirect reflection features, such as GDP and population, during the353

construction of machine learning model, but also various aerosol data that directly reflect354

anthropogenic sources. This includes black carbon, organic carbon, SO2 surface mass355

concentrations and so on. These data are derived from the MERRA-2 reanalysis, which356

assimilates multiple aerosol remote sensing, emissions, and meteorological datasets using the357

Goddard Earth Observing System Model. With these advances, MERRA-2 aerosol products can358

provide reliable anthropogenic and natural aerosols (like dust). We then established an estimation359

model using random forest with the 15 most influential input data to calculate the PM2.5 that is360

absence of fire. The background PM2.5 estimates derived from the model were compared with361

observations, with an estimating R2 of 0.8958 and RMSE of 0.3370 µg/m3 (Figure 6b). A little362

under-estimation of the background PM2.5 as it shows, the estimation has been highly correlated363

with observations compared with the similar studies (Aguilera et al., 2021; 2023; Wei et al.,364

2023).365

366

Figure 6. (a) Variation importance for the top 15 variables in estimating background PM2.5; (b)367
Scatter distribution between modeled and observed PM2.5 that is absence of fire. Dashed blue lines368
represents the reference, and red line is the linear model fit.369



3.2 The spatial and temporal distributions of PM2.5 and fire-specific PM2.5370

The fire-specific PM2.5 was then estimated through subtracting the background PM2.5 that is371

absence of fire from the monitoring PM2.5. Figure 7a and 7b show spatial distributions of the372

8-year mean total PM2.5 and fire-specific PM2.5 in Asia Pacific, respectively. PM2.5 in Asia Pacific373

mostly has exceeded the health concentration standards for PM2.5 set by the WHO (annual average374

not exceeding 10 µg/m³). The highest mean concentrations for total PM2.5 are observed in northern375

India and Pakistan, followed by the Northeastern China, Indochina Peninsula, Mongolia and376

central India. To improve air quality, various measurements and particulate matter environmental377

standards have been implemented in countries of Asia Pacific, such as China’s ‘Air Pollution378

Prevention and Control Action Plan’ since 2013, South Korea’s enacting of the special act on the379

reduction and management of fine dust in 2018, India’s launching of the National Clean Air380

Programme in 2019 and Thailand’s amending the Enhancement and Conservation of National381

Environmental Quality Act in 2018, and so on. From 2014 to 2021, observed PM2.5 concentrations382

saw substantial decrease in various regions of Asia Pacific (Figure 9). The highest PM2.5 was383

monitored in EA during early period, but since 2018 PM2.5 in CA began to exceed that of EA. In384

contrast, NEA and SEA have experienced lower annual average PM2.5 concentrations.385

The spatial distribution of fire-specific PM2.5 is quite different with total PM2.5, with highest386

concentrations appearing in SEA and Mongolia. As shown in Figure 4, fire hotspots number in387

SEA is more than twice as much as in other regions, which may partly explain the higher388

fire-specific PM2.5 in this region. Mongolia has a large area of semi-arid forests with grass389

understories. Forests those located in mid to high latitude areas and dominated by a few coniferous390

tree species, are prone to a series of fire behaviors during droughts. Due to limited funding,391

firefighting efforts for forest fires in Mongolia are somewhat limited, leading to large-scale,392

long-duration forest and grassland fires during the dry season. Climate change, especially droughts,393

has intensified fire activities in Southern Siberia (including Mongolia), leading to a notable394

increase in fire numbers and shorter fire intervals (Hessl et al., 2016; Huang et al., 2024; Gui et al.,395

2024). As a result, higher fire-specific PM2.5 can be found in the region of Asia Pacific. Besides,396

northern India is susceptible to fires before the monsoon and during the dry winter season, and397

northeastern and southwestern China are prone to forest fires in spring and autumn.398



The annual average concentration of fire-specific PM2.5 ranges from 2 to 8 µg/m ³ , surging to399

between 2 and 15 µg/m³ during the fire season. Areas where the concentration of fire-specific400

PM2.5 surpasses 10 µg/m³ encompass northern India, the northeastern and southwestern China, as401

well as several countries across SEA during fire seasons, as depicted in Figure 7 and 8. The values402

for each region in Figure 8 are derived from the average values for sites within the region. In areas403

with sparse stations (like Mongolia and Tibetan Plateau in Figure 1 ), while the calculation results404

may not accurately reflect the fine spatial distribution within the region, using these averages to405

represent the regional mean is still relatively reasonable.Contrary to the distribution of total PM2.5,406

fire-specific PM2.5 is notably higher in NEA an SEA both in terms of annual average and during407

the fire season. In addition, fire-specific PM2.5 saw an increase trend in NEA since 2016, and in408

SEA since 2018, with this trend more pronounced during the fire season. In contrast, fire-specific409

PM2.5 in EA and CA show slow decline. The total PM2.5 has seen a significant decline thanks to410

efforts in controlling anthropogenic emissions from industry and transportation. However,411

fire-specific PM2.5 decreases more slowly or even rebounds, leading to a gradual increase in the412

proportion of fire-specific PM2.5 within total concentrations. In NEA, the proportion during the413

fire season has grown from 0.2 to 0.3, while in SEA it has risen from 0.2 in 2018 to 0.4 in 2021.414

Proportions of fire-specific PM2.5 in Malaysia, Cambodia and Brunei even exceeded 0.5 during the415

fire season. (Figure 8). The proportions in the EA and CA also display gradual upward trends.416

417

Figure 7. Distributions of (a) Mean PM2.5 from all sources; (b) Mean fire-specific PM2.5.418



419
Figure 8. Regional averaged distributions of (a) annual mean and (b) fire season mean fire-specific420
PM2.5; Proportion of (c) annual mean and (d) fire season mean fire-specific PM2.5 to total PM2.5.421
The values for each region in Figure 8 are derived from the average values for sites within the422
region.423

424
Figure 9. Temporal variations of (a) annual mean PM2.5 and (b) fire season mean PM2.5 in different425
regions; (c)(d) similar to (a)(b), but for fire-specific PM2.5; (e)(f) similar to (a)(b), but for426
proportions of fire-specific PM2.5 to total PM2.5.427



3.3 The fire-specific PM2.5 exposure and health impact428

To illustrate the population exposure, we then calculated the population-weighted PM2.5 and429

fire-specific PM2.5 from 2014 to 2021 (Figure S1). Population-weighted PM2.5 in different regions430

saw a significant decline during the 8 years, with reductions of 30.5% in SEA, 41.1% in EA,431

31.4% in NEA and 7.9% for CA, amounting to an overall decrease of 39.9% for the entire region.432

PM2.5 concentrations are high in densely populated areas of CA, such as northern India,433

Bangladesh, and Pakistan (Figure S2), resulting in higher population-weighted PM2.5. This434

indicates that population in CA is more likely to be exposed to PM2.5. In EA, population-weighted435

PM2.5 concentrations are higher in the east and lower in the west, which is consistent with the436

distribution of population density in the region. The distributions of population-weighted PM2.5 in437

SEA and NEA are similar to their averaged PM2.5. During fire seasons, distributions of population438

exposure to PM2.5 differ from those of total PM2.5. Population-weighted fire-specific PM2.5 in SEA439

is higher than mean PM2.5, indicating populations in SEA is more vulnerable to fire-specific PM2.5440

exposure. However, population-weighted PM2.5 in CA is slightly lower than mean PM2.5.441

We then estimated the averted premature deaths due to changes in exposure to PM2.5 from442

eliminating fire emissions. Eliminating fire-specific PM2.5 can avert approximately 58,000 (95 %443

CI of 32,600-82,600 ) premature deaths annually in SEA, 90,000 (95 % CI of 63,700-106,000 ) in444

EA, 157,000 (95 % CI of 110,000-186,000 ) in CA and 29,300 (95 % CI of 18,000-39,700 ) in445

NEA. These account for about 40.9% (95 % CI of 22.8%-57.7%), 14.9% (95% CI of446

10.5%-17.6%), 19.4% (95% CI of 13.5%-24.5%), and 24.1% (95% CI of 14.8%-32.5%) of the447

total annual premature deaths attributed to PM2.5. During fire season, these proportions can rise to448

57.7% (95% CI of 27.3%-81.6% ), 19.5% (95% CI of 12.3%-24.6% ), 21.6% (95% CI of449

14.8%-27.4% ), and 31.6% (95% CI of 17.2%-44.4% ). Distributions of premature deaths due to450

PM2.5 in CA and NEA (Figure 10) are closely aligned with population distribution (Figure S2),451

because in these regions areas with higher population density tend to expose in higher PM2.5. The452

highest number of premature deaths attributed to fire-specific PM2.5 occur in Myanmar, Vietnam,453

northern India, and Pakistan, with notable increases during the fire season in Thailand and454

southwestern China. Distributions of premature deaths attributed to PM2.5 relative to regional455

population proportions closely resembles the PM2.5 distribution, with areas exceeding 50 per456



100,000 mainly located in regions where annual mean PM2.5 exceeds 40 µg/m ³ . Similarly, the457

distribution of premature deaths caused by fire-specific PM2.5 aligns closely with PM2.5458

distribution (Figure 10d), with areas exceeding 20 per 100,000 predominantly found in the459

fire-prone Southeast Asian Peninsula, Mongolia, and northeastern China. The number of annual460

premature deaths due to fire-specific PM2.5 in the whole study region is around 1.7 million,461

accounting for 47.2 per 100,000 of the total population.462

463

Figure 10. Distribution of premature deaths numbers due to (a) PM2.5 and (b) fire-specific PM2.5,464
and the proportion of premature deaths relative to the local populations due to (c) PM2.5 and (d)465
fire-specific PM2.5.466

We further examined the poverty levels of Asia Pacific's population exposed to PM2.5.467

Figure 11 illustrates total PM2.5 and fire-specific PM2.5 plotted against poverty proxy (IMR) data468

in Asia Pacific. For total PM2.5, regions with IMR ≤ 60 show a gradual decrease in PM2.5469

exposure levels as IMR values increase. In low IMR areas (IMR ≤ 10), the average PM2.5 (44.2470

µg/m³) is significantly higher than that in regions with relatively higher IMR (41 ≤ IMR ≤ 60),471

where the PM2.5 averages at 28.3 µg/m³. In high IMR areas (IMR ≥ 61), the PM2.5 exposure level472

increases again to 37.0 µg/m³. While for fire-specific PM2.5 the trend is reversed, with higher IMR473

regions (IMR ≥ 40) are exposed to higher PM2.5, while lower IMR regions (IMR < 40)474



experience relatively lower PM2.5. During fire season, populations in regions with IMR ≥ 41 and475

≤60 are exposed to the highest fire-specific PM2.5.476

It is found that populations in “not poor” areas (IMR < 40) are exposed to higher mean PM2.5477

from all sources, but lower fire-specific PM2.5. This indicates that PM2.5 pollution during the study478

period is primarily driven by economic and urban development. Conversely, “moderately poor”479

populations (41 ≤ IMR ≤ 60) experience lower total PM2.5 exposure, but higher fire-specific480

PM2.5 exposure. In “very poor” areas (IMR ≥ 61), both total PM2.5 and fire-specific PM2.5 are481

high, making populations in these areas more susceptible to health impact of PM2.5.482

483

Figure 11. Annual mean (a) total PM2.5 and (c) fire-specific PM2.5 versus binned infant mortality484
rate (IMR) values across the Asia Pacific. (b) (d) are similar to (a)(c), but for fire season mean.485

3.4 Future trends of fire-specific PM2.5 under climate change486

Previous analysis indicates that fire-specific PM2.5 in different regions have rebounded to487

some extent, with more significant increase in SEA and NEA. Whether this trend will continue or488

be altered by occasional climate conditions is uncertain. Many studies have attempted to489

understand the climate drivers of increased fire activities and how these factors may change in the490

future (Abatzoglou and Williams, 2016; Xie et al., 2022; Barik et al., 2023; Burke et al., 2023; Gui491

et al., 2024). These studies provide strong evidence that interannual variations in climate factors492

are drivers of fire activities and changes in fire-specific PM2.5. Based on future change of these493

climate drivers predicted by GCMs, assuming no intervention, fire activities may increase with494

global warming . With numerical model simulation, researches reveal that fire-specific PM2.5 will495



see rise in the future. To corroborate the future changes in fire-specific PM2.5 of Asia Pacific, we496

calculated mean VPD during fire season for different regions, and relate these values to497

fire-specific PM2.5. It is obvious that VPD is positively related to log of fire-specific PM2.5 (Figure498

13a). Climate drivers can explain 35% of fire-specific PM2.5 variations in Asia Pacific, with499

variation in CA most sensitive to VPD (65%). The multi-model ensemble mean of 34 GCM500

projections indicates a future increasing trend in VPD, with a pronounced rise in SEA, followed501

by EA and CA, while the increase is weaker in NEA. These results suggest that the emerging502

growth trend of fire-specific PM2.5 in Asia Pacific is likely to continue under the influence of503

future climate change. For more dynamic and spatially detailed characteristics, more data will504

have to be integrated into modelling calculations to better understand the evolution of fire505

occurrences and pollutants release under future climate impacts.506

507
Figure 12. (a) Interannual variations of vaper pressure deficit (VPD) versus the log of averaged508
fire-specific PM2.5 during fire season; (b) future VPD derived from multi-model ensemble mean of509
34 GCM projections510



4 Conclusion and discussion511

In this study, we explored the contribution of forest and vegetation fires to air quality and512

public health across the Asia Pacific. We isolate fire-specific PM2.5 from the monitoring data for513

Asia Pacific using TFIM and spatiotemporal interpolation in this study. One advantage of this514

dataset is that it is driven by monitoring concentrations rather than relying on emission databases,515

which may probably ignore contributions of pollutants from smaller-scale fire emissions, and516

carry considerable uncertainty, especially with the evident underestimation of agricultural fire517

emissions. Moreover, this method offers reliability and timeliness, effectively saving518

computational resources and storage space for isolating fire-related air pollution.519

Our analysis reveals geographical disparities in population exposure to PM2.5 and fire-related520

air pollution in Asia Pacific. Thanks to the the establishment of PM2.5 air quality standards and521

pollution control measurement by countries, PM2.5 population exposure saw an obvious declining522

trend from 2014 to 2021 in Asia Pacific, with population-weighted PM2.5 in 2021 reduced by523

39.9% compared to 2014. High PM2.5 concentrations are observed in EA and CA, concentrated in524

densely populated areas, leading to substantially higher population-weighted concentrations than525

mean PM2.5. In contrast, fire-specific PM2.5 decreased in the early years but began to reverse526

recently in Asia Pacific. SEA and NEA experienced the most obvious increase in fire-specific527

PM2.5 in recent years, while EA and CA saw a slight increase. As a result, a gradual increase in the528

proportion of fire-specific PM2.5 within total concentrations can be observed.529

We found that fire-related PM2.5 could pose a significant public health threat in Asia Pacific,530

contributing to approximately 334,300 (95 % CI of 224,000-414,000) premature deaths each year.531

The annual disease burden due to PM2.5 exposure can be reduced by 40.9% (95 % CI of532

22.8%-57.7%), 14.9% (95% CI of 10.5%-17.6%), 19.4% (95% CI of 13.5%-24.5%), and 24.1%533

(95% CI of 14.8%-32.5%) in SEA, EA, CA, and NEA, respectively, averting 58,000 (95 % CI of534

32,600-82,600 ), 90,000 (95 % CI of 63,700-106,000 ), 157,000 (95 % CI of 110,000-186,000 ) ,535

and 29,300 (95 % CI of 18,000-39,700 ) premature deaths. It is important to note that our536

calculations do not account for the potentially higher toxicity of fire-specific PM2.5 compared to537

other sources, which could lead to an even greater number of premature deaths and related538

illnesses. Using infant mortality rates as a poverty proxy, we found that populations in Asia539



Pacific are disproportionately exposed to PM2.5. Populations in “not poor” areas (IMR ≤ 40) are540

exposed to higher total PM2.5, while poor populations are more vulnerable to health impacts of541

fire-specific PM2.5. Our study indicates that the fire-related air pollution is also a serious issue in542

many poverty areas, yet it receives less attention. This situation warrants further investigation to543

explore the underlying causes and characteristics, ultimately providing more scientific evidence544

for effective management strategies. Based on the positive correlation between VPD and545

fire-specific PM2.5, the study suggests that without further regulatory and policy intervention, the546

emerging growth trend in fire-specific PM2.5 in Asia Pacific is likely to continue under the547

influence of future climate change.548

Interestingly, the increasing trend in fire-specific PM2.5 appears inconsistent with the549

declining trend in the number of fire points in Asia Pacific. In earlier years, vegetation fires in the550

region were dominated by agricultural fires, characterized with smaller-scale burning areas but551

more fire point numbers. Countries have implemented various policies to reduce agricultural fires,552

such as China's measures to minimize straw burning and Thailand's alternative energy553

development plans, like zero-burning policy. The enforcement of these policies has, to some554

extent, reduced fire point numbers and emissions from agricultural fires in Asia Pacific (Kumar et555

al., 2020; Panda et al., 2023). However, fire emissions in the region are also influenced by wildfire556

emissions related to climate change. Wildfires usually occur in natural vegetation and are557

characterized by larger-scale burning areas that are more challenging to extinguish (Gui et al.,558

2024; Huang et al., 2024). As a result, the emissions per unit of biomass burned in wildfires far559

exceed those from agricultural fires (Reddington et al., 2021; Jones et al., 2024). In this study, we560

analyzed historical data and found the positive relationship existing between VPD and561

fire-specific PM2.5 across different regions of Asia Pacific. Based on this, we can roughly infer562

future trend in fire-specific PM2.5 through examining the VPD future trends, assuming that563

relationship between future VPD and fire-specific PM2.5 continues to exist. Of course, studying the564

future trends of fire-specific PM2.5 will require integrating more data and methods for a more565

precise analysis, which is a direction for our future research. To explain the inconsistent of566

changes in fire point numbers and emissions, it is proposed that increasing emissions from natural567

wildfires driven by climate change are have contributed to the rise in fire-specific PM2.5 in Asia568



Pacific, although less fire points are found. This hypothesis may be further verified in the future569

studies.570

This study indicate that the contributions of fire-specific PM2.5 to air quality and health571

impact are becoming increasingly significant and deserve more attention when developing air572

pollution standards and control measurements in Asia Pacific. These variations suggest that the573

decreases in pollutant concentrations from traffic and industrial sources and the associated health574

benefits may be offset by increases in pollutant concentrations from fires. Measures to reduce fires575

may be a significant yet under-recognized option for effeciently improving air quality and averting576

the related premature deaths.577

Data Available Statement578

Air quality observation data can be acquired from http://openaq.org/ and http://www.cnemc.cn/en/.579

The ERA5 data can be respectively downloaded from580

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels. The fire point581

data are available at https://earthdata.nasa.gov/firms. The health data can be accessed in582

http://ghdx.healthdata.org/gbd-results-tool. The infant mortality rates data can be found at583

https://www.earthdata.nasa.gov/data/catalog/sedac-ciesin-sedac-pmp-imr-v2.01-2.01. The584

Coupled Model Intercomparison Project Phase 6 data can be get from585

https://aims2.llnl.gov/search/cmip6/. The aerosol optical depth data are available at586

https://www.earthdata.nasa.gov/data/catalog/lancemodis-mcd19a2n-6.1nrt and587

https://disc.gsfc.nasa.gov/datasets?project=MERRA-2. The landuse data can be accessed in588

https://lpdaac.usgs.gov/products/mcd12q1v006/. And the population data can be found at589

https://landscan.ornl.gov/.590

Author contributions. HL, MX and NW conceived the study, designed the experiments, conducted591
the data isolation and prepared the initial draft manuscript. JJ, JY and KL collected the data and592
assessed the health impacts of air pollution. HL, BL and BZ perform the analysis, engaged in593
constructive discussions, reviewed and edited the manuscript. HL, MX and BL secured financial594
support for the project leading to this publication. DM, MX, YZ and MW provided additional manuscript595
reviews.596

Competing Interest: The authors declare no conflict of interest.597



Financial support: This work was supported by the National Natural Science Foundation of China598

(42205186, 42275102), Chengdu Plain Urban Meteorology and Environment Observation and599

Research Station of Sichuan Province open fund (CPUME202405), the Chongqing Natural Science600

Foundation (cstc2021jcyj-msxmX1007, 2024NSCQ-KJFZMSX0258), Special Science and601

Technology Innovation Program for Carbon Peak and Carbon Neutralization of Jiangsu Province602

(BE2022612), the key technology research and development of Chongqing Meteorological Bureau603

(YWJSGG-202215; YWJSGG-202303) and the research start-up fund for the talented person604

recruitment of Nanjing Normal University (184080H201B57).605

Reference606

Abatzoglou, J. T.; Williams, A. P., (2016). Impact of anthropogenic climate change on wildfire across western US607
forests. Proceedings of the National Academy of Sciences, 113, (42), 11770-11775.608

Aguilera, R., Corringham, T., Gershunov, A., Benmarhnia, T., (2021). Wildfire smoke impacts respiratory health609
more than fine particles from other sources: observational evidence from Southern California. Nat.610
Commun. 12 (1), 1–8.611

Aguilera R, Luo N, Basu R, Wu J, Clemesha R, Gershunov A, Benmarhnia T., (2022). A novel ensemble-based612
statistical approach to estimate daily wildfire-specific PM2.5 in California (2006-2020). Environ Int. 2023613
Jan;171:107719. doi: 10.1016/j.envint.2022.107719. Epub Dec 24. PMID: 36592523; PMCID:614
PMC10191217.615

Barbier, E. B.; Hochard, J. P., (2019). Poverty-Environment Traps. Environmental and Resource Economics, 74,616
(3), 1239-1271.617

Barik, A.; Baidya Roy, S., (2023). Climate change strongly affects future fire weather danger in Indian forests.618
Communications Earth & Environment, 4, (1), 452.619

Barlow, M.; Zaitchik, B.; Paz, S.; Black, E.; Evans, J.; Hoell, A., (2016). A Review of Drought in the Middle East620
and Southwest Asia. Journal of Climate, 29, (23), 8547-8574.621

Biswas, S., Vadrevu, K. P., Lwin, Z. M., Lasko, K., & Justice, C. O. (2015). Factors controlling vegetation fires in622
protected and non-protected areas of Myanmar. PLoS One, 10, e0124346.623
https://doi.org/10.1371/journal.pone.0124346.624

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.625

Burke, M.; Childs, M. L.; de la Cuesta, B.; Qiu, M.; Li, J.; Gould, C. F.; Heft-Neal, S.; Wara, M., (2023). The626
contribution of wildfire to PM2.5 trends in the USA. Nature , 622, (7984), 761-766.627

Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C. A.; Apte, J. S.; Brauer, M.; Cohen, A.;628
Weichenthal, S.; Coggins, J.; Di, Q.; Brunekreef, B.; Frostad, J.; Lim, S. S.; Kan, H.; Walker, K. D.;629
Thurston, G. D.; Hayes, R. B.; Lim, C. C.; Turner, M. C.; Jerrett, M.; Krewski, D.; Gapstur, S. M.; Diver,630
W. R.; Ostro, B.; Goldberg, D.; Crouse, D. L.; Martin, R. V.; Peters, P.; Pinault, L.; Tjepkema, M.; van631

https://doi.org/10.1371/journal.pone.0124346.


Donkelaar, A.; Villeneuve, P. J.; Miller, A. B.; Yin, P.; Zhou, M.; Wang, L.; Janssen, N. A. H.; Marra,632
M.; Atkinson, R. W.; Tsang, H.; Quoc Thach, T.; Cannon, J. B.; Allen, R. T.; Hart, J. E.; Laden, F.;633
Cesaroni, G.; Forastiere, F.; Weinmayr, G.; Jaensch, A.; Nagel, G.; Concin, H.; Spadaro, J. V., (2018).634
Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter.635
Proceedings of the National Academy of Sciences, 115, (38), 9592-9597.636

Bytnerowicz, A.; Hsu, Y.-M.; Percy, K.; Legge, A.; Fenn, M. E.; Schilling, S.; Frączek, W.; Alexander, D. (2016).637
Ground-Level Air Pollution Changes during a Boreal Wildland Mega-Fire. Sci. Total Environ. 572,638
755−769.639

Campbell-Lendrum, D.; Prüss-Ustün, A., (2019). Climate change, air pollution and noncommunicable diseases.640
Bulletin of the World Health Organization, 97, (2), 160-161.641

Chen, G., Guo, Y., Yue, X., Tong, S., Gasparrini, A., Bell, M.L., Armstrong, B., Schwartz, J., Jaakkola, J.J.K.,642
Zanobetti, A., Lavigne, E., Nascimento Saldiva, P.H., Kan, H., Royé, D., Milojevic, A., Overcenco, A.,643
Urban, A., Schneider, A., Entezari, A., Vicedo-Cabrera, A.M., Zeka, A., Tobias, A., Nunes, B., Alahmad,644
B., Forsberg, B., Pan, S.-C., Íñiguez, C., Ameling, C., De la Cruz Valencia, C., Åström, C., Houthuijs,645
D., Van Dung, D., Samoli, E., Mayvaneh, F., Sera, F., Carrasco-Escobar, G., Lei, Y., Orru, H., Kim, H.,646
Holobaca, I.-H., Kyselý, J., Teixeira, J.P., Madureira, J., Katsouyanni, K., Hurtado-Díaz, M.,647
Maasikmets, M., Ragettli, M.S., Hashizume, M., Stafoggia, M., Pascal, M., Scortichini, M., de Sousa648
Zanotti Stagliorio Coêlho, M., Valdés Ortega, N., Ryti, N.R.I., Scovronick, N., Matus, P., Goodman, P.,649
Garland, R.M., Abrutzky, R., Garcia, S.O., Rao, S., Fratianni, S., Dang, T.N., Colistro, V., Huber, V.,650
Lee, W., Seposo, X., Honda, Y., Guo, Y.L., Ye, T., Yu, W., Abramson, M.J., Samet, J.M., & Li, S.651
(2021). Mortality risk attributable to wildfire-related PM2.5 pollution: a global time series study in 749652
locations. The Lancet Planetary Health, 5, e579-e587.653

Choi, M., Lim, H., Kim, J., Lee, S., Eck, T.F., Holben, B.N., Garay, M.J., Hyer, E.J., Saide, P.E., & Liu, H. (2019).654
Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth655
over East Asia during the 2016 KORUS-AQ campaign. Atmos. Meas. Tech., 12, 4619-4641.656

Climate & Clean Air Coalition. (n.d.). Air pollution measures for Asia and the Pacific. Retrieved November 25,657
2024, from https://www.ccacoalition.org/content/air-pollution-measures-asia-and-pacific.658

Dreessen, J.; Sullivan, J.; Delgado, R. (2015). Observations and Impacts of Transported Canadian Wildfire Smoke659
on Ozone and Aerosol Air Quality in the Maryland Region on June 9-12, J. Air Waste Manag. Assoc.660

Du X, Chen R, Kan H. (2024). Challenges of Air Pollution and Health in East Asia. Curr Environ Health Rep.661
Jun;11(2):89-101. doi: 10.1007/s40572-024-00433-y. Epub 2024 Feb 7. PMID: 38321318.662

Fairburn, J.; Schüle, S. A.; Dreger, S.; Karla Hilz, L.; Bolte, G., (2019). Social Inequalities in Exposure to Ambient663
Air Pollution: A Systematic Review in the WHO European Region. In International Journal of664
Environmental Research and Public Health. Vol. 16.665

Feng, X., Mao, R., Gong, D., Zhao, C., wu, C., Zhao, C., Wu, G., Lin, Z., Liu, X., Wang, K., and Sun, Y. (2020).666
Increased Dust Aerosols in the High Troposphere Over the Tibetan Plateau From 1990s to 2000s ,667
Journal of Geophysical Research: Atmospheres, 125(13): 1-11.668

Gelaro, R., and Coauthors. (2017). The Modern-Era Retrospective Analysis for Research and Applications,669
Version 2 (MERRA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.670

https://www.ccacoalition.org/content/air-pollution-measures-asia-and-pacific
https://doi.org/10.1175/JCLI-D-16-0758.1


Giannadaki D, Giannakis E, Pozzer A, Lelieveld J. (2018). Estimating health and economic benefits of reductions671
in air pollution from agriculture. Sci Total Environ. May 1;622-623:1304-1316. doi:672
10.1016/j.scitotenv.2017.12.064. Epub 2017 Dec 13. PMID: 29890597.673

Giglio, L.; Descloitres, J.; Justice, C. O.; Kaufman, Y. J. (2003). An Enhanced Contextual Fire Detection674
Algorithm for MODIS. Remote Sens. Environ. 87, 273−282.675

Gui, K.; Zhang, X.; Che, H.; Li, L.; Zheng, Y.; Zhao, H.; Zeng, Z.; Miao, Y.; Wang, H.; Wang, Z.; Wang, Y.; Ren,676
H.-L.; Li, J.; Zhang, X., (2024). Future climate-driven escalation of Southeastern Siberia wildfires677
revealed by deep learning. npj Climate and Atmospheric Science, 7, (1), 263.678

He, Q., Gu, Y., and Zhang, M. (2020). Spatiotemporal trends of PM2.5 concentrations in central China from 2003679
to 2018 based on MAIAC-derived high-resolution data [J], Environment International, 137: 105536.680

Hessl, A. E.; Brown, P.; Byambasuren, O.; Cockrell, S.; Leland, C.; Cook, E.; Nachin, B.; Pederson, N.; Saladyga,681
T.; Suran, B., (2016) Fire and climate in Mongolia (1532–2010 Common Era). Geophysical Research682
Letters, 43, (12), 6519-6527.683

Huang, G., Chen, Y., Li, Z., Liu, Q., Wang, Y., He, Q., Liu, T., Liu, X., Zhang, Y., Gao, J., & Yao, Y. (2020).684
Validation and Accuracy Analysis of the Collection 6.1 MODIS Aerosol Optical Depth Over the685
Westernmost City in China Based on the Sun-Sky Radiometer Observations From SONET. Earth and686
Space Science, 7, e2019EA001041.687

Huang, R.; Liu, Y.; Du, Z.; Chen, J.; Huangfu, J., (2017). Differences and links between the East Asian and South688
Asian summer monsoon systems: Characteristics and Variability. Advances in Atmospheric Sciences ,689
34, (10), 1204-1218.690

Huang, X.; Xue, L.; Wang, Z.; Liu, Y.; Ding, K.; Ding, A., (2024) Escalating Wildfires in Siberia Driven by691
Climate Feedbacks Under a Warming Arctic in the 21st Century. AGU Advances, 5, (4),692
e2023AV001151.693

Jia, R., Min, L., Liu, Y., Qingzhe, Z., Hua, S., Wu, C., and Shao, T. (2019). Anthropogenic Aerosol Pollution over694
the Eastern Slope of the Tibetan Plateau [J], Advances in Atmospheric Sciences, 36(9): 847-862.695

Jin, S., Ma, Y., Huang, Z., Huang, J., Gong, W., Liu, B., Wang, W., Fan, R., & Li, H. (2023). A comprehensive696
reappraisal of long-term aerosol characteristics, trends, and variability in Asia. Atmos. Chem. Phys., 23,697
8187-8210.698

Jones, M. W., Veraverbeke, S., Andela, N., Doerr, S. H., Kolden, C., Mataveli, G., Pettinari, M. L., Le Quéré, C.,699
Rosan, T. M., van der Werf, G. R., van Wees, D., and Abatzoglou, J. T. (2024) Global rise in forest fire700
emissions linked to climate change in the extratropics, Science, 386, eadl5889, 10.1126/science.adl5889.701

Justice, C. O.; Giglio, L.; Roy, D.; Boschetti, L.; Csiszar, I.; Davies, D.; Korontzi, S.; Schroeder, W.; O’Neal, K.;702
Morisette, J. (2011). MODIS-Derived Global Fire Products. In Land Remote Sensing and Global703
Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS,704
Ramachandran, B.; Justice, C. O.; Abrams, M. J., Eds.; Springer New York: New York, NY,705
pp661−679.706

Korsiak, Jill & Pinault, Lauren & Christidis, Tanya & Burnett, Richard & Abrahamowicz, Michal & Weichenthal,707
Scott. (2022). Long-term exposure to wildfires and cancer incidence in Canada: a population-based708



observational cohort study. The Lancet Planetary Health. 6. e400-e409.709
10.1016/S2542-5196(22)00067-5.710

Kumar, I., Bandaru, V., Yampracha, S., Sun, L., and Fungtammasan, B.: Limiting rice and sugarcane residue711
burning in Thailand: Current status, challenges and strategies, Journal of Environmental Management,712
276, 111228, https://doi.org/10.1016/j.jenvman.2020.111228, 2020.713

Landis, M. S.; Edgerton, E. S.; White, E. M.; Wentworth, G. R.; Sullivan, A. P.; Dillner, A. M. (2018). The Impact714
of the 2016 Fort McMurray Horse River Wildfire on Ambient Air Pollution Levels in the Athabasca Oil715
Sands Region, Alberta, Canada. Sci. Total Environ. 618, 1665−1676.716

Lelieveld, J., Evans, J., Fnais, M. et al. (2015). The contribution of outdoor air pollution sources to premature717
mortality on a global scale. Nature 525, 367–371 https://doi.org/10.1038/nature15371.718

Lelieveld, J.; Pozzer, A.; Pöschl, U.; Fnais, M.; Haines, A.; Münzel, T., (2020). Loss of life expectancy from air719
pollution compared to other risk factors: a worldwide perspective. Cardiovascular Research, 116, (11),720
1910-1917.721

Li, L., Franklin, M., Girguis, M., Lurmann, F., Wu, J., Pavlovic, N., Breton, C., Gilliland, F., and Habre, R. (2020).722
Spatiotemporal imputation of MAIAC AOD using deep learning with downscaling [J], Remote Sensing723
of Environment, 237: 111584.724

Lu, H., Xie, M., Liu, X., Liu, B., Jiang, M., Gao, Y., & Zhao, X. (2021). Adjusting prediction of ozone725
concentration based on CMAQ model and machine learning methods in Sichuan-Chongqing region,726
China. Atmospheric Pollution Research, 12, 101066.727

Lyapustin, A., Wang, Y., Korkin, S., and Huang, D. (2018). MODIS Collection 6 MAIAC algorithm, Atmos.728
Meas. Tech., 11, 5741–5765, https://doi.org/10.5194/amt-11-5741-2018.729

McDuffie, E. E.; Martin, R. V.; Spadaro, J. V.; Burnett, R.; Smith, S. J.; O’Rourke, P.; Hammer, M. S.; van730
Donkelaar, A.; Bindle, L.; Shah, V.; Jaeglé, L.; Luo, G.; Yu, F.; Adeniran, J. A.; Lin, J.; Brauer, M.,731
(2021). Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple732
spatial scales. Nature Communications, 12, (1), 3594.733

Mhawish, A., Banerjee, T., Sorek-Hamer, M., Lyapustin, A., Broday, D.M., & Chatfield, R. (2019). Comparison734
and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol735
product over South Asia. Remote Sensing of Environment, 224, 12-28.736

Panda, A., & Yamano, T. (2023). Asia’s Transition to Net Zero: Opportunities and Challenges in Agriculture.737
SSRN.738

Phairuang, W., Hata, M., & Furuuchi, M. (2017). Influence of agricultural activities, forest fires and739
agro-industries on air quality in Thailand. Journal of Environmental Sciences, 52, 85–97.740
https://doi.org/10.1016/j.jes.2016.02.007.741

Qin, Y.; Wang, H.; Wang, Y.; Lu, X.; Tang, H.; Zhang, J.; Li, L.; Fan, S., (2024). Wildfires in Southeast Asia742
pollute the atmosphere in the northern South China Sea. Science bulletin, 69, (8), 1011-1015.743

Reddington, C. L., Conibear, L., Robinson, S., Knote, C., Arnold, S. R., & Spracklen, D. V. (2021). Air pollution744
from forest and vegetation fires in Southeast Asia disproportionately impacts the poor. GeoHealth, 5,745
e2021GH000418. https://doi.org/10.1029/2021GH000418.746

https://doi.org/10.1038/nature15371.
https://doi.org/10.1016/j.jes.2016.02.007.


Romanov, A. A.; Tamarovskaya, A. N.; Gusev, B. A.; Leonenko, E. V.; Vasiliev, A. S.; Krikunov, E. E., (2022)747
Catastrophic PM2.5 emissions from Siberian forest fires: Impacting factors analysis. Environmental748
Pollution, 306, 119324.749

Schneider, S. R., Lee, K., Santos, G., & Abbatt, J. P. D. (2021). Air quality data approach for defining wildfire750
influence: Impacts on PM2.5, NO2, CO, and O3 in western Canadian cities. Environmental Science &751
Technology, 55(20), 13709–13717. https://doi.org/10.1021/acs.est.1c04042.752

Schneider, S. R., Shi, B., & Abbatt, J. P. D. (2024). The measured impact of wildfires on ozone in Western Canada753
from 2001 to 2019. Journal of Geophysical Research: Atmospheres, 129, e2023JD038866.754
https://doi.org/10.1029/2023JD038866.755

Song, C., He, J., Wu, L., Jin, T., Chen, X., Li, R., Ren, P., Zhang, L., & Mao, H. (2017). Health burden attributable756
to ambient PM2.5 in China. Environmental Pollution, 223, 575-586.757

Tornevi A, Andersson C, Carvalho AC, Langner J, Stenfors N, Forsberg B. (2021). Respiratory Health Effects of758
Wildfire Smoke during Summer of 2018 in the Jämtland Härjedalen Region, Sweden. Int J Environ Res759
Public Health. Jun 29;18(13):6987. doi: 10.3390/ijerph18136987. PMID: 34210080; PMCID:760
PMC8297091.761

Wang, T., & Sun, F. (2023). Global gridded GDP under the historical and future scenarios [Data set].762
Zenodo. https://doi.org/10.5281/zenodo.7898409.763

Wei, J.; Wang, J.; Li, Z.; Kondragunta, S.; Anenberg, S.; Wang, Y.; Zhang, H.; Diner, D.; Hand, J.; Lyapustin, A.;764
Kahn, R.; Colarco, P.; da Silva, A.; Ichoku, C., (2023). Long-term mortality burden trends attributed to765
black carbon and PM2.5 from wildfire emissions across the continental USA from 2000 to 2020: a deep766
learning modelling study. The Lancet Planetary Health, 7, (12), e963-e975.767

Wiedinmyer, Christine, Brad Quayle, Chris Geron, Angle Belote, Don McKenzie, Xiaoyang Zhang, Susan O'Neill,768
and Kristina Klos Wynne. (2006). Estimating Emissions from Fires in North America for Air Quality769
Modeling, Atmospheric Environment, 40, 3419-32.770

Wiedinmyer, C., S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-Saadi, J. J. Orlando, and A. J. Soja. (2011).771
The Fire Inventory from NCAR (FINN): A High Resolution Global Model to Estimate the Emissions772
from Open Burning, Geoscientific Model Development, 4, doi:10.5194/gmd-4-625-2011.773

Wiedinmyer, C., Kimura, Y., McDonald-Buller, E. C., Emmons, L. K., Buchholz, R. R., Tang, W., Seto, K.,774
Joseph, M. B., Barsanti, K. C., Carlton, A. G., and Yokelson, R. (2023). The Fire Inventory from NCAR775
version 2.5: an updated global fire emissions model for climate and chemistry applications, Geosci.776
Model Dev., 16, 3873–3891, https://doi.org/10.5194/gmd-16-3873-2023.777

World Bank. (2016). East Asia and Pacific cities: Expanding opportunities for the urban poor.778
https://openknowledge.worldbank.org/handle/10986/25074.779

World Health Organization. "Ambient (Outdoor) Air Quality and Health." World Health Organization, 24 Oct.780
2024, https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.781

World Health Organization. (2022). World Health Statistics 2022.782
https://www.who.int/data/gho/publications/world-health-statistics.783

https://doi.org/10.1029/2023JD038866.
https://doi.org/10.5281/zenodo.7898409
https://openknowledge.worldbank.org/handle/10986/25074.
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
https://www.who.int/data/gho/publications/world-health-statistics.


Xie, Y.; Lin, M.; Decharme, B.; Delire, C.; Horowitz, L. W.; Lawrence, D. M.; Li, F.; Séférian, R., (2022).784
Tripling of western US particulate pollution from wildfires in a warming climate. Proceedings of the785
National Academy of Sciences, 119, (14), e2111372119.786

Xie, Y.; Zhou, M.; Hunt, K. M. R.; Mauzerall, D. L., (2024). Recent PM2.5 air quality improvements in India787
benefited from meteorological variation. Nature Sustainability, 7, (8), 983-993.788

Xu, F.; Huang, Q.; Yue, H.; Feng, X.; Xu, H.; He, C.; Yin, P.; Bryan, B. A., (2023b). The challenge of population789
aging for mitigating deaths from PM2.5 air pollution in China. Nature Communications, 14, (1), 5222.790

Xu, R., Ye, T., Yue, X. et al. (2023a). Global population exposure to landscape fire air pollution from 2000 to791
2019. Nature 621, 521–529. https://doi.org/10.1038/s41586-023-06398-6.792

Xue, T., Geng, G., Li, J., Han, Y., Guo, Q., Kelly, F. J., Wooster, M. J., Wang, H., Jiangtulu, B., Duan, X., Wang,793
B., and Zhu, T. (2021). Associations between exposure to landscape fire smoke and child mortality in794
low-income and middle-income countries: a matched case-control study, The Lancet Planetary Health, 5,795
e588-e598, 10.1016/S2542-5196(21)00153-4,.796

Yin, S., (2020). Biomass burning spatiotemporal variations over South and Southeast Asia. Environment797
International, 145, 106153.798

Yue, H.; He, C.; Huang, Q.; Yin, D.; Bryan, B. A., (2020). Stronger policy required to substantially reduce deaths799
from PM2.5 pollution in China. Nature Communications, 11, (1), 1462800

Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; Ding, Y.; Lei,801
Y.; Li, J.; Wang, Z.; Zhang, X.; Wang, Y.; Cheng, J.; Liu, Y.; Shi, Q.; Yan, L.; Geng, G.; Hong, C.; Li,802
M.; Liu, F.; Zheng, B.; Cao, J.; Ding, A.; Gao, J.; Fu, Q.; Huo, J.; Liu, B.; Liu, Z.; Yang, F.; He, K.; Hao,803
J., D. (2019). rivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the804
National Academy of Sciences, 116, (49), 24463-24469.805

Zheng, H.; Xue, L.; Ding, K.; Lou, S.; Wang, Z.; Ding, A.; Huang, X., (2023). ENSO-Related Fire Weather806
Changes in Southeast and Equatorial Asia: A Quantitative Evaluation Using Fire Weather Index. Journal807
of Geophysical Research: Atmospheres, 128, (21), e2023JD039688.808

Zhu, J., Xia, X., Che, H., Wang, J., Zhang, J., & Duan, Y. (2016). Study of aerosol optical properties at Kunming809
in southwest China and long-range transport of biomass burning aerosols from North Burma.810
Atmospheric Research, 169, 237–247. https://doi.org/10.1016/j.atmosres.2015.10.012.811

https://doi.org/10.1038/s41586-023-06398-6.

	1 Introduction
	2 Data and Methods
	2.1 Data
	2.2 Methods

	3 Results
	3.1 Estimating fire-specific PM2.5 

	4 Conclusion and discussion

