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Figure S1. Map of Stuttgart showing the locations of the participants’ homes where sensors were deployed (yellow
diamonds), the governmental outdoor air quality monitoring stations (blue circles) and the monitoring stations that belong to
the University of Stuttgart (green circles).
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Figure S2. Measurement campaign during the pilot project for NO2 (top) and PMzs (bottom) sensors. The blue colour
indicates the periods used for co-location and the black colour the periods when the deployment in the houses of the patients

took place.



Table S1. General information of hyperparameters and grid values used for the tuning of RFR models.

Hyperparameter Symbol Function Description Grid values
Number of trees n_estimators Implement trees in the forest [70, 80, 90, ..., 150]
Maximum depth max_depth Implement depth of the tree (~levels) [5, 10, 20, 30, 40, 50]

Minimum number of
samples split
Minimum number of
samples leaf
Maximum number of
features

min_samples_split
min_samples_leaf

max_features

Implement min. number of samples to split

the internal nodes

Implement min. number of samples for a

terminal node

Implement a number of features for the best

split

[2,3,5,7,10]
[1,2,4,6]

['auto’, 'sqrt’, 'log2']

Table S2. General information of hyperparameters and grid values used for the tuning of SVR models.

Hyperparameter Symbol Function Definition Grid values

Regularization C Minimizes the error and flatness of the ~ [107, 102, 101, 1, 10, 10?]
parameter function

Kernel coefficient Y Changes kernel shape [10%, 102, 107, 1, 10, 102, 10°]
Error margin g Defines the width of the e-tube [10+4, 1073, 10, 101]

Kernel - Implement type of kernel Linear, polynomial, RBF*
Tolerance tol (&) Penalization of samples outside the tube By default (10-%)

*Radial basis function

Table S3. General information of hyperparameters and grid values used for the tuning of ANN models.

Hyperparameter

Function Definition

Element selected / Grid values

Learning rate
Number of neurons

Number of hidden layers

Find the global minimum of MSE* derivative

Implement number of neurons
Implement number of hidden layers

[3-103, 2:10%, 1-109]
[0,1,2, ..., 100]
[1,2]

Manual Tuned

Kernel initializer
Bias initializer
Momentum
Input dimension

Epochs

Batch size

Activation function
Loss function
Optimizer

Set initial random weights
Set initial value of biases

Update gradient descent (avoid being stuck in local

minimum)

Defines number of features

Implement the number of passes through the

training dataset

Implement the number of training points for one

iteration

Characterizes nonlinear patterns
Helps for optimization of model
Optimization of weights

Fixed (uniform)
Fixed (zeros)

By default (0.9)
4
[700, 1000]

Fixed (20)

Sigmoid
Mean absolute error (MAE)
Stochastic gradient descent

*Mean squared error



Table S4. Statistical indicators for the performance evaluation.

Performance Short Mathematical formula Reference literature
metrics name

Standard 1%

andar
— _ 7)2
deviation o nZ(xl x) (WMO, 2024)
i=1
Coefficient n T2
i—1(RM; — M
of - - 2oL RM— M) (WMO, 2024)
determination (RM; — RM)

Pearson % (M; — M)(RM; — RM) i |
correlation — —_ ( |mmerman etal,
coefficient r \/Z‘L(l:l(Mi _ M)Z ?zl(RMi _ RM)Z 2018; Penza, 2020)
Mean bias Wi — R (Zimmerman et al.,

error MBE 2018; Penza, 2020)
(Zimmerman et al.,
Root-mean- 2018; Penza, 2020)
square error RMSE
Centred root- .
(Zimmerman et al.,
mean-square  ~pMISE CRMSE = /RMSE? — MBE? 2018; Penza, 2020)
error ; ,
n -
Mean EZW- — RM,| (Zimmerman et al.,
absolute error MAE N4 t t 2018; Penza, 2020)
i=1
(Santos and
Model MEF = 1 RMSE)\ 2 Fernandez-Olmo,
Efficiency MEF - ( Oref ) 2016; Paas et al.,
2017)
Fractional _2(M -~ RM) (Paas et al., 2017;
Bias FB FB = M+ RM Penza, 2020)

Note: x; refers to a value measured by the sensor or the reference instrument, M; refers to a value measured by the sensor at time i, RM; refers

to a value measured by reference instrument at time i, n refers to the total number of observations.

Calculation of the relative expanded uncertainty (REU)

The following equations are based on the DIN CEN/TS 17660-1 (2021), the DIN CEN/TS 17660-2 (2025) and the
guidelines VDI 4202 Part 1 (2018) for gases and VDI 4202 Part 3 (2019) for particulate matter for automated
measuring systems for air quality monitoring. These documents are based on the methodology described in JCGM

(2008).



To calculate the REU of the sensor Equations S1 and S2 are used.

) RSS ) )
us(yi) = CED N (x) +[a+ (b—1Dx] Eq.S1
RSS = Y.(y; —a — b x;)? Eq. S2

Where u2(y;) is the relative uncertainty of the NO, or the PM_s sensor determined by comparison with the
reference instrument for a concentration level y; measured by the sensor, RSS is the sum of the residuals of the
orthogonal regression, n is the number of measurements, u(xi) is the random uncertainty of the reference
instrument, a and b are the intercept and slope of the orthogonal regression, respectively, and x; is the i measured
value of reference instrument. Equation S2 can only be used if (y; — a — b x;)?= const. For further information,
the reader is referred to the VDI 4202-1:2018.

The random uncertainty of the reference instrument u(x;) is calculated with Equation S3. The uncertainty
corresponding uncertainty of the reference instrument uy; gy, between the two measuring systems x; ; and x; , shall
be calculated following Equation S4. A list of values for different reference-grade instruments is listed in Table
J.1 of the CEN/TS 17660-1:2021.

Ups,RM

u(x;) = Eq. S3
( L) \/E q
2
w2 _ i (i — xi2) Eq. S4
bs,RM 2 Xn

The combined uncertainty uZ ;.4 (y;) is calculated using Equation S5:

ui (o)
ui rieta(Vi) = % Eqg. S5
L

The expanded uncertainty Ug;.,4 (y;) is finally obtained by multiplying the combined standard uncertainty
U rieta (¥;) 0y @ coverage factor k which is in this case 2 as in Eq. S6:

Usieta Vi) = k X U fie1a(yi) = 2 X /uﬁ_ﬁem(yi) Eq. S6

To calculate the parameters of the orthogonal regression (Eq. S7), Eq. 8-14 are been used as demonstrated in
Annex D of the VDI 4202 Part 1 (2018) considering the sum of squares (SS):

y=a+bx Eq. S7

a=y—bx Eq. S8

Syy = Sxx \/(Syy - Sxx)2 +4 (Sxy)z

b= 25, Eq. S9
with
Sex = X(x; — %)° Eq. S10



Syy = Z(yi - )_’)2

Sxy = Z(xi - f)(yi - ?)

X = ;sz
_ 1
y—nZ%

Eq. S11

Eq. S12

Eq. S13

Eq. S14



Table S5. General information of the linear correction of indoor and outdoor PM2.5 sensors.

Patient ID P5 P1 P2 P3 P4 P6 P7
Indoor AQSS B0O1 B02 B04 B04 BO1 B02 B03*
Training data
Correction factor 0.97 1.15 0.89 2.34 1.06 1.01 0.93
Offset 0.20 -0.14 0.42 -1.38 1.74 3.24 2.33
PM2s range (ug m3) 5-114 0-151 2-84 1-110 3-179 3-134 4-25
Averaging time (min) 1 1 1 1 1 1 30
Number of data points 180 555 314 69 88 88 433
Testing data
Averaging period (min) 1 1 1 1 1 1 30
PM2s range (ug m=) 1-110 0-54 1-64 11-117 0-115 1-128 5-21
R2 0.99 0.82 0.97 1.00 0.98 0.98 0.90
Outdoor AQSS - B03 B05 B03 B05 B06 B08 B06
Training data
Correction factor - 0.83 0.37 0.93 0.96 0.55 0.86 0.79
Offset - 4.66 8.96 2.33 1.04 1.15 1.40 2.92
Temperature range (°C) - -0.5-11.3 -1.9-73  3.0-279 3.3-18.1 0.4-165 2-25 115-26.1
Relative humidity range (%) - 51.5-78.6 477-739 15.1-60.2 24.4-82.9 408-77.4 19-65 12.7-68.0
PMzs range (ug m=) - 2-123 6-35 4-25 1-11 1-39 2-32 5-21
Averaging time (min) - 30 30 30 30 30 10 30
Number of data points - 406 219 433 356 626 263 294
Testing data
Averaging period (min) - 30 30 30 30 30 10 30
Temperature range (°C) - 0.0-154 4.2-16.6 34-16.9 6.6 -19.8 2.6-27.2 1-21 11-30.6
Relative humidity range (%6) - 45.0-78.4 326-71.7 21.2-771.7 38.4-724 18.7-71.3 13-57 19.4-76.5
PM2s range (ug m=) - 2-31 3-25 1-11 1-6 2-32 9-19 2-9

*Note that BO3 is an outdoor AQSS that was calibrated outdoor but used indoors in the house of patient P7.
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Figure S3. Relative expanded uncertainties of indoor NO: sensors for the tested models and different averaging times against
reference concentrations. The dashed line indicates the DQO for indicative measurements while the dash-dot lines represent
the DQOs for objective estimation (black for EU Directive 2008/50/EC and red for EU Directive 2024/2881).
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Figure S4. Relative expanded uncertainties of outdoor NO2 sensors for the tested models for different averaging times against
reference NO2 concentrations. The dashed line indicates the DQO for indicative measurements while the dash-dot lines
represent the DQOs for objective estimation (black for EU Directive 2008/50/EC and red for EU Directive 2024/2881). B03-
P7 is an outdoor AQSS that was used for indoor measurements as part of an experiment to test calibration methods for indoor

measurements.
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Figure S5. Target diagrams for indoor NO2 sensors for the tested models and different averaging times.
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Figure S8. Time series of hourly outdoor NO2 concentrations calculated using four sensor models (MLR, RFR, SVR and
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during deployment in the house of patient P4 (garden), NO2 concentrations measured at the monitoring station in Stuttgart
Hohenheimer Street (traffic station) and T and RH measurements of the AQSS.

11



MLR ——RFR ——SVR ——ANN Hohenheimer - T ---RH
90 T - 80
] 170 5
70 | FeoE
& ] &
t 50 1 {505
= ] +40 ®
< 3¢ 300
Q o
= 1 T
+ 20
10 + <Y E
Mty 1o
13-03 15-03 1703 1903 2103 23-03 25-03 27-03

Date (dd-mm)

Figure S10. Time series of hourly outdoor NO2 concentrations calculated using four sensor models (MLR, RFR, SVR and
ANN) during deployment in the house of patient P4 (street), NO2 concentrations measured at the monitoring station in Stuttgart
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Figure S11. Time series of hourly outdoor NO2 concentrations calculated using four sensor models (MLR, RFR, SVR and
ANN) during deployment in the house of patient P6, NO2 concentrations measured at the monitoring station in Bad Cannstatt
(urban station) and T and RH measurements of the AQSS.
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Figure S12. Time series of hourly outdoor NO2 concentrations calculated using four sensor models (MLR, RFR, SVR and

ANN) during deployment in the house of patient P7, NO2 concentrations measured at the monitoring station in Neckartor
(traffic station) and T and RH measurements of the AQSS.
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