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Figure S1. Map of Stuttgart showing the locations of the participants’ homes where sensors were deployed (yellow 

diamonds), the governmental outdoor air quality monitoring stations (blue circles) and the monitoring stations that belong to 

the University of Stuttgart (green circles).  

 

Figure S2. Measurement campaign during the pilot project for NO2 (top) and PM2.5 (bottom) sensors. The blue colour 

indicates the periods used for co-location and the black colour the periods when the deployment in the houses of the patients 

took place. 
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Table S1. General information of hyperparameters and grid values used for the tuning of RFR models. 

Hyperparameter Symbol Function Description Grid values 

Number of trees n_estimators Implement trees in the forest [70, 80, 90, …, 150] 

Maximum depth max_depth Implement depth of the tree (~levels) [5, 10, 20, 30, 40, 50] 

Minimum number of 

samples split 
min_samples_split 

Implement min. number of samples to split 

the internal nodes 
[2, 3, 5, 7, 10] 

Minimum number of 

samples leaf 
min_samples_leaf 

Implement min. number of samples for a 

terminal node 
[1, 2, 4, 6] 

Maximum number of 

features 
max_features 

Implement a number of features for the best 

split 
['auto', 'sqrt', 'log2'] 

 

 

Table S2. General information of hyperparameters and grid values used for the tuning of SVR models. 

Hyperparameter Symbol Function Definition Grid values 

Regularization 

parameter 

C Minimizes the error and flatness of the 

function 

[10-3, 10-2, 10-1, 1, 10, 102] 

Kernel coefficient γ Changes kernel shape [10-3, 10-2, 10-1, 1, 10, 102, 103] 

Error margin ε Def ne  the w dth of the ε-tube [10-4, 10-3, 10-2, 10-1,] 

Kernel - Implement type of kernel Linear, polynomial, RBF* 

Tolerance to  (ξi) Penalization of samples outside the tube By default (10-3) 
*Radial basis function 

 

 

Table S3. General information of hyperparameters and grid values used for the tuning of ANN models. 

Hyperparameter Function Definition Element selected / Grid values 

Learning rate Find the global minimum of MSE* derivative [3·10-3, 2·10-3, 1·10-3] 

Number of neurons Implement number of neurons [0, 1, 2, …, 100] 

Number of hidden layers Implement number of hidden layers [1, 2] 

  Manual Tuned 

Kernel initializer Set initial random weights Fixed (uniform) 

Bias initializer Set initial value of biases Fixed (zeros) 

Momentum 
Update gradient descent (avoid being stuck in local 

minimum) 
By default (0.9) 

Input dimension Defines number of features 4 

Epochs 
Implement the number of passes through the 

training dataset 
[700, 1000] 

Batch size 
Implement the number of training points for one 

iteration 
Fixed (20) 

Activation function Characterizes nonlinear patterns Sigmoid 

Loss function Helps for optimization of model Mean absolute error (MAE) 

Optimizer Optimization of weights Stochastic gradient descent 
*Mean squared error 
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Table S4. Statistical indicators for the performance evaluation.  

Performance 

metrics 

Short 

name 
Mathematical formula Ideal value Reference literature 

Standard 

deviation σ √
1

𝑛
∑(𝑥i − 𝑥̅)2

𝑛

𝑖=1

 - (WMO, 2024) 

Coefficient 

of 

determination 
R2 1 −

∑ (𝑅𝑀𝑖 − 𝑀̅)²𝑛
𝑖=1

(𝑅𝑀𝑖 − 𝑅𝑀̅̅̅̅̅)²
 1 (WMO, 2024) 

Pearson 

correlation 

coefficient 
r 

∑ (𝑀𝑖 − 𝑀̅)(𝑅𝑀𝑖 − 𝑅𝑀̅̅̅̅̅)𝑛
𝑖=1

√∑ (𝑀𝑖 − 𝑀̅)2 ∑ (𝑅𝑀𝑖 − 𝑅𝑀̅̅̅̅̅)2𝑛
𝑖=1

𝑛
𝑖=1

 
1 

(Zimmerman et al., 

2018; Penza, 2020) 

Mean bias 

error MBE 
𝑀̅ − 𝑅𝑀̅̅ ̅̅̅ 0 

(Zimmerman et al., 

2018; Penza, 2020) 

Root-mean-

square error RMSE √
1

𝑛
∑(𝑀𝑖 − 𝑅𝑀𝑖)2

𝑛

𝑖=1

 0 

(Zimmerman et al., 

2018; Penza, 2020) 

Centred root-

mean-square 

error 
CRMSE CRMSE = √RMSE2 − MBE2 0 

(Zimmerman et al., 

2018; Penza, 2020) 

Mean 

absolute error MAE 

1

𝑛
∑|𝑀𝑖 − 𝑅𝑀𝑖|

𝑛

𝑖=1

 0 
(Zimmerman et al., 

2018; Penza, 2020) 

Model 

Efficiency  MEF MEF = 1 − (
RMSE

𝜎ref
)

2

 1 

(Santos and 

Fernández-Olmo, 

2016; Paas et al., 

2017) 

Fractional 

Bias  FB FB =
2(𝑀̅ − 𝑅𝑀̅̅̅̅̅)

𝑀̅ + 𝑅𝑀̅̅ ̅̅̅
 0 

(Paas et al., 2017; 

Penza, 2020) 

Note: xi refers to a value measured by the sensor or the reference instrument, Mi refers to a value measured by the sensor at time i, RMi refers 

to a value measured by reference instrument at time i, n refers to the total number of observations. 

 

Calculation of the relative expanded uncertainty (REU) 

The following equations are based on the DIN CEN/TS 17660-1 (2021), the DIN CEN/TS 17660-2 (2025) and the 

guidelines VDI 4202 Part 1 (2018) for gases and VDI 4202 Part 3 (2019) for particulate matter for automated 

measuring systems for air quality monitoring. These documents are based on the methodology described in JCGM 

(2008). 
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To calculate the REU of the sensor Equations S1 and S2 are used. 

 
𝑢𝑠

2(𝑦𝑖) =
𝑅𝑆𝑆

(𝑛 − 2)
− 𝑢2(𝑥𝑖) + [𝑎 + (𝑏 − 1)𝑥𝑖]

2 Eq. S1 

 𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑎 − 𝑏 𝑥𝑖)2 Eq. S2 

Where 𝑢𝑠
2(𝑦𝑖) is the relative uncertainty of the NO2 or the PM2.5 sensor determined by comparison with the 

reference instrument for a concentration level 𝑦𝑖  measured by the sensor, RSS is the sum of the residuals of the 

orthogonal regression, n is the number of measurements, u(xi) is the random uncertainty of the reference 

instrument, a and b are the intercept and slope of the orthogonal regression, respectively, and xi is the ith measured 

value of reference instrument. Equation S2 can only be used if (𝑦𝑖 − 𝑎 − 𝑏 𝑥𝑖)
2= const. For further information, 

the reader is referred to the VDI 4202-1:2018. 

The random uncertainty of the reference instrument 𝑢(𝑥𝑖) is calculated with Equation S3. The uncertainty 

corresponding uncertainty of the reference instrument 𝑢𝑏𝑠,𝑅𝑀  between the two measuring systems 𝑥𝑖,1 and 𝑥𝑖,2 shall 

be calculated following Equation S4. A list of values for different reference-grade instruments is listed in Table 

J.1 of the CEN/TS 17660-1:2021. 

 𝑢(𝑥𝑖) =
𝑢𝑏𝑠,𝑅𝑀

√2
 Eq. S3 

 

 
𝑢𝑏𝑠,𝑅𝑀

2 =
∑ (𝑥𝑖,1 − 𝑥𝑖,2)

2𝑛
𝑖=1

2 × 𝑛
 Eq. S4 

The combined uncertainty 𝑢𝑐,𝑓𝑖𝑒𝑙𝑑
2 (𝑦𝑖) is calculated using Equation S5: 

 
𝑢𝑐,𝑓𝑖𝑒𝑙𝑑

2 (𝑦𝑖) =
𝑢𝑠

2(𝑦𝑖)

𝑦𝑖
2  Eq. S5 

The expanded uncertainty 𝑈𝑓𝑖𝑒𝑙𝑑(𝑦𝑖) is finally obtained by multiplying the combined standard uncertainty 

𝑢𝑐,𝑓𝑖𝑒𝑙𝑑(𝑦𝑖) by a coverage factor k which is in this case 2 as in Eq. S6:  

 
𝑈𝑓𝑖𝑒𝑙𝑑(𝑦𝑖) = 𝑘 × 𝑢𝑐,𝑓𝑖𝑒𝑙𝑑(𝑦𝑖) = 2 × √𝑢𝑐,𝑓𝑖𝑒𝑙𝑑

2 (𝑦𝑖) Eq. S6 

To calculate the parameters of the orthogonal regression (Eq. S7), Eq. 8-14 are been used as demonstrated in 

Annex D of the VDI 4202 Part 1 (2018) considering the sum of squares (SS): 

 𝑦 = 𝑎 + 𝑏 𝑥 Eq. S7 

 𝑎 = 𝑦̅ − 𝑏 𝑥̅ Eq. S8 

 

𝑏 =  
𝑆𝑦𝑦 − 𝑆𝑥𝑥 + √(𝑆𝑦𝑦 − 𝑆𝑥𝑥)

2
+ 4 (𝑆𝑥𝑦)

2

2 𝑆𝑥𝑦

 

with 

Eq. S9 

 𝑆𝑥𝑥 = ∑(𝑥𝑖 − 𝑥̅)2 Eq. S10 
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 𝑆𝑦𝑦 = ∑(𝑦𝑖 − 𝑦̅)2 Eq. S11 

 𝑆𝑥𝑦 = ∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅) Eq. S12 

 
𝑥̅ =

1

𝑛
∑𝑥𝑖  Eq. S13 

 
𝑦̅ =

1

𝑛
∑𝑦𝑖  Eq. S14 
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Table S5. General information of the linear correction of indoor and outdoor PM2.5 sensors.  

Patient ID P5 P1 P2 P3 P4 P6 P7 

Indoor AQSS B01 B02 B04 B04 B01 B02 B03* 

Training data 

Correction factor  0.97 1.15 0.89 2.34 1.06 1.01 0.93 

Offset 0.20 -0.14 0.42 -1.38 1.74 3.24 2.33 

PM2.5 range (µg m−³) 5 - 114 0 - 151 2 - 84 1 - 110 3 - 179 3 - 134 4 - 25 

Averaging time (min) 1 1 1 1 1 1 30 

Number of data points 180 555 314 69 88 88 433 

Testing data 

Averaging period (min) 1 1 1 1 1 1 30 

PM2.5 range (µg m−³) 1 - 110 0 - 54 1 - 64 11 - 117 0 - 115 1 - 128 5 - 21 

R²  0.99 0.82 0.97 1.00 0.98 0.98 0.90 

Outdoor AQSS - B03 B05 B03 B05 B06 B08 B06 

Training data 

Correction factor - 0.83 0.37 0.93 0.96 0.55 0.86 0.79 

Offset - 4.66 8.96 2.33 1.04 1.15 1.40 2.92 

Temperature range (°C) - -0.5 - 11.3 -1.9 - 7.3 3.0 - 27.9 3.3 - 18.1 0.4 - 16.5 2 - 25 11.5 - 26.1 

Relative humidity range (%) - 51.5 - 78.6 47.7 - 73.9 15.1 - 60.2 24.4 - 82.9 40.8 - 77.4 19 - 65 12.7 - 68.0 

PM2.5 range (µg m−³) - 2 - 123 6 - 35 4 - 25 1 – 11 1 - 39 2 - 32 5 - 21 

Averaging time (min) - 30 30 30 30 30 10 30 

Number of data points - 406 219 433 356 626 263 294 

Testing data 

Averaging period (min) - 30 30 30 30 30 10 30 

Temperature range (°C) - 0 .0 - 15.4 4.2 - 16.6 3.4 - 16.9 6.6 - 19.8 2.6 - 27.2 1 - 21 11 - 30.6 

Relative humidity range (%) - 45.0 - 78.4 32.6 - 71.7 21.2 - 77.7 38.4 - 72.4 18.7 - 71.3 13 - 57 19.4 - 76.5 

PM2.5 range (µg m−³) - 2 - 31 3 - 25 1 - 11 1 - 6 2 - 32 9 - 19 2 - 9 

*Note that B03 is an outdoor AQSS that was calibrated outdoor but used indoors in the house of patient P7.
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Figure S3. Relative expanded uncertainties of indoor NO2 sensors for the tested models and different averaging times against 

reference concentrations. The dashed line indicates the DQO for indicative measurements while the dash-dot lines represent 

the DQOs for objective estimation (black for EU Directive 2008/50/EC and red for EU Directive 2024/2881). 
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Figure S4. Relative expanded uncertainties of outdoor NO2 sensors for the tested models for different averaging times against 

reference NO2 concentrations. The dashed line indicates the DQO for indicative measurements while the dash-dot lines 

represent the DQOs for objective estimation (black for EU Directive 2008/50/EC and red for EU Directive 2024/2881). B03-

P7 is an outdoor AQSS that was used for indoor measurements as part of an experiment to test calibration methods for indoor 

measurements. 
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Figure S5. Target diagrams for indoor NO2 sensors for the tested models and different averaging times.  
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Figure S6. Target diagrams for outdoor NO2 sensors for the tested models and different time aggregations. B03-P7 is an 

outdoor AQSS that was used for indoor as part of an experiment to test calibration methods for indoor measurements. 
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Figure S7. Average number of data points for the different time aggregations.  

 

Figure S8. Time series of hourly outdoor NO2 concentrations calculated using four sensor models (MLR, RFR, SVR and 

ANN) during deployment in the house of patient P3, NO2 concentrations measured at the monitoring station in Hauptstätter 

Street (traffic station) and T and RH measurements of the AQSS. 

 

 

Figure S9. Time series of hourly outdoor NO2 concentrations predicted with four sensor models (MLR, RFR, SVR and ANN) 

during deployment in the house of patient P4 (garden), NO2 concentrations measured at the monitoring station in Stuttgart 

Hohenheimer Street (traffic station) and T and RH measurements of the AQSS. 
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Figure S10. Time series of hourly outdoor NO2 concentrations calculated using four sensor models (MLR, RFR, SVR and 

ANN) during deployment in the house of patient P4 (street), NO2 concentrations measured at the monitoring station in Stuttgart 

Hohenheimer Street (traffic station) and T and RH measurements of the AQSS. 

 

 

Figure S11. Time series of hourly outdoor NO2 concentrations calculated using four sensor models (MLR, RFR, SVR and 

ANN) during deployment in the house of patient P6, NO2 concentrations measured at the monitoring station in Bad Cannstatt 

(urban station) and T and RH measurements of the AQSS. 

 

 

Figure S12. Time series of hourly outdoor NO2 concentrations calculated using four sensor models (MLR, RFR, SVR and 

ANN) during deployment in the house of patient P7, NO2 concentrations measured at the monitoring station in Neckartor 

(traffic station) and T and RH measurements of the AQSS. 
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Figure S13. Hourly PM2.5 concentration and RH of outdoor sensors during deployment near the houses and the reference 

station (Stuttgart Hauptstätter Str.). The monitoring station is located from 1 to 6 km away from the houses. Sensor B08-P6 

stopped working on the 19-04-2020. 

 

 

Figure S14. Comparison of the validation results of the R2, RMSE and MAE for outdoor NO2 sensors before deployment in 

the houses of the patients P1 and P7 with and without additional ozone data as input for the regression and ML models for 5- 

and 10-min averages. MAE and RMSE in ppb. 
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