

This manuscript is a non-peer-reviewed preprint submitted to EGUsphere. The manuscript has been submitted (under review) to Earth and Space Science for publication. Depending on the peer-review process, the content of the manuscript may change. If accepted, the final version of this manuscript will be available via the DOI link of the peer-reviewed publication.

3I/ATLAS: An Interstellar Crustal Fossil in the M-Relic (HLF) Framework for Small-Body Evolution

AKM Eahsanul Haque^{1,2*}, Ismael Lopez³
¹Department of Geoscience, UTP-PETRONAS
²SETI Institute, CA, USA
³Independent Researcher

¹ORCID:0009-0004-9459-4424 ²ORCID:0009-0008-4495-1760

*Corresponding author: AKM Eahsanul Haque (ehaque@setiap.org)

Abstract

3l/ATLAS (C/2025 N1), the third confirmed interstellar object, exhibits a unique combination of dynamical, compositional, and morphological anomalies. We reanalyze 15 observational studies and integrate them with new thermophysical, dynamical, and survival models for a 1–3 km high-density body. The combined evidence reveals: (1) a high Ni/Fe ratio (>10), (2) CO₂-dominated activity with low mass loss (<0.01%), (3) narrow jets and low non-gravitational acceleration (~5×10⁻⁷ m s⁻²), (4) weak bluing and low polarization, (5) stable rigid-body rotation, and (6) multi-modal surface heterogeneity including metallic and hydrated/mineralized domains. We evaluate three origin scenarios: a differentiated exomoon fragment, a lithified sedimentary planetary-crust fragment, and a weakly lithified comet. The first two satisfy all constraints; the cometary scenario, not quite. 3l/ATLAS is best explained as a high-strength, geologically processed crustal relic capable of surviving >10 Gyr of interstellar exposure. We propose specific JWST and ground-based tests to distinguish between exomoon-derived and sedimentary-crust origins.

Keywords: Interstellar object, Crustal fossil, Ni-rich surface, CO₂ activity, Small-body evolution.

Introduction

The discovery of 3I/ATLAS provides a rare opportunity to characterize the composition and physics of large (>1 km), non-cometary interstellar debris. Unlike 1I/'Oumuamua (low dust, strong nongravitational acceleration) and 2I/Borisov (classical comet), 3I/ATLAS displays a hybrid signature: modest CO₂-driven activity, unusually high Ni/Fe ratio, narrow collimated jets, persistent anti-tail, and low mass loss. Existing interpretations: porous comet, dormant asteroidal shard, or anomalous outgasser, fail to explain the full observational set simultaneously. To address this, we construct a unified physical framework linking: dynamical constraints (orbital parameters, non-gravitational forces), volatile budget and thermophysical evolution, mass-loss history and long-term survivability, compositional signatures (Ni-rich domains, hydrated and carbonate features), observed jet behavior and tail morphology. We then reassess 15 observational papers within this framework, refining their quantitative estimates and extracting a coherent geological interpretation.

Method Approach

A.Trajectory and Dynamical Context

To make sense of 3I/ATLAS's real-world behavior, we need to clearly look at its path, how it changes over time, along with whether it can last long out there. In this part, we set up a clear way to track

- 38 motion using data anyone can access and basic gravity rules that stay reliable when checking odd
- 39 behaviors later on.

40 <u>1. Orbital Elements and Source-Independent Geometry</u>

- The path of 3I/ATAS was taken from JPL Horizons data, with post-fit spread kept. Its Sun-
- 42 centered position details at that moment go like this:
- a) Eccentricity (e): around 1.19 to 1.22 based on different studies
- 44 b) Inclination (i): ~44°
- c) Perihelion distance (q): 0.43–0.46 AU
- d) Hyperbolic speed out past orbit (v∞): around 23 to 26 kilometers each second, same as roughly 58 km/s coming in near Earth's distance.
- 48 Longitude of the ascending node along with the perihelion's angle matches what we expect from
- a thick disk, rather than something coming in from the halo. These numbers put 3I/ATLAS in a
- similar motion group as 1l/'Oumuamua or 2l/Borisov; approach paths mostly shaped by older,
- settled-in stars from the thick disk instead of fresh throws out of nearby star zones. Its tilt near 44°
- fits well within what we see in thick-disk speed patterns.

2. Dynamical Classification and Back-tracing Limitations

- 54 Backward number crunching happened in theory through usual N-body setups, say, like
- 55 REBOUND/IAS15 or similar to MERCURY6 tools. When dealing with stuff having e above 1 while
- v∞ passes 20 km/s:

53

63

64

65

66

69

- 57 a) The errors in the covariance matrix rise fast after less than half a million years
- b) The Galactic tide, along with bumps from passing stars, shapes how the path spreads out.

59 3. Impact Ejection and Escape-Energy Constraints

- 60 For natural chunks that make it to outer space, breaking free doesn't take much energy:
- a) Giant crashes between Earth-sized or Mars-sized objects fling out debris moving faster than 20 kilometers every second
 - b) Crashes into varied exomoons might fling pieces from the surface or deeper layers out fast enough to break free, not just from the moon, but also from the planet it orbits
 - c) With chunks bigger than a kilometer, how likely they survive depends mostly on pull resistance, also linked to emptiness inside plus how layers are arranged within
- Firing off a chunk 1–5 km wide made of water-soaked sediment or nickel-heavy crust? Totally doable, whether it is flung from a planet or a moon around another star.

4. Long-Term Galactic Transport and Survival

- On long space journeys lasting billions of years, the object goes through:
- a) Cosmic-ray erosion: around 10⁻⁴ to 10⁻³ mm each year
- b) Interstellar dust sputtering: depth loss of ~meters over Gyr timescales
- c) Thermal cycling: hardly affects big pieces
- d) Stress on structure? Less likely when small things stick together tightly

104

105

- A chunk 2–5 km wide can last over 10 billion years, maybe losing just some surface dust or top
- rock, thanks to its sturdy makeup. If the thing started out bigger, say 10 to 20 clicks wide like that
- moon-remnant idea suggests, space radiation would shave off several klicks from its size but still
- 79 leave the core mostly intact. If they started small, say 2 to 5 km wide; the idea fits with what those
- rock-chip theories suggest, yet movement patterns don't rule it out. So, either kind of crust history,
- metal-rich or layered rock, can still work, thanks to similar lasting forces over time.

5. Implications for Compositional Interpretation

- The orbit does not accurately tell us much about what it's made of, yet still means the object must:
- a) Handles billions of years around space radiation
- b) Handles high-speed space dust hits, keeps going without failing
- c) Keeps enough gases to show slight changes when close to the sun, though not much happens until it gets nearest
- These limits line up with:
- 89 a) Ni-rich crustal layers surviving as erosion-resistant surfaces (lunar-relic scenario)
- b) Hydrated sedimentary minerals surviving subsurface and being exposed intermittently through fracturing (sedimentary-fragment scenario).
- Either group fits the same motion story if the surface isn't uniform using differences helps explain it.

94 B.Volatile Budget, Mass Loss, and Long-Term Survival

- 95 To figure out how 3I/ATLAS changed over time, we need to measure its stored gases, how much
- 96 mass it sheds when close to the Sun, how tough it is physically, plus what wearing down happened
- 97 during around ten billion years flying between stars. Here, we look at gas levels and material loss
- 98 using regular comet science, heat-based simulations, along with models of space erosion, not
- 99 strange or unusual ideas. We're checking if a chunk several kilometers wide, maybe broken off an
- alien moon's interior layer or hardened world surface, could last across such huge stretches of time.

101 1. Bulk Volatile Inventory and Thermophysical Context

- 102 The shaky funding for 3I/ATLAS depends on what we've seen in its tail makeup, how much dust it
- 103 tosses out, also the extra push from gases. Observations from Earth keep pointing to:
 - a) Mostly carbon dioxide fuels the comet's haze
 - b) Secondary volatiles: trace H₂O and possible CO or CO-bearing complexes
- 106 c) Dust-to-gas ratio: uncertain yet fits mild to average outbursts
- 107 d) Nucleus size can span from half a km to three km, sometimes more if conditions get wild, upto four or even five km.
- 109 CO₂ turns straight to gas since the closest sun approach, around 0.44 AU, brings enough heat to
- keep it active, despite a tough outer layer. That matches what we see on some solar system bodies,
- where water stays locked under surface material while CO₂ escapes into space.
- 112 The key thing? The amount of unstable material needed to match what we see is not much at all.
- 113 Take a space rock around 1–3 km wide; just about one in ten thousand to one in a hundred thousand
- of its mass being volatile stuff could drive the output we've measured. That little bit hardly affects how
- it moves or changes over billions of years.

116 **2. Near-Perihelion Mass Loss During the 2024 Passage**

- 117 The observed activity implies the following approximate upper-bound mass-loss rates:
- a) CO_2 gas production: 40-70 kg/s,
- b) Dust production: 6–60 kg/s (size-distribution dependent)

120

- 121 Total mass-loss rate:
- $\dot{M} \approx 50-120 \text{ kg/s}$

123

- 124 Assuming active sublimation persists for ~70 days around perihelion:
- $M_{\rm loss, \, orbit} \approx (50-120) \times (6.048 \times 10^6 \, \rm s)$
- $M_{\rm loss,\,orbit} \approx 3 \times 10^8 7 \times 10^8 \text{ kg}$

127

- For reasonable density values ($\rho = 1.5-3 \text{ g/cm}^3$), the bulk mass of a 1–3 km nucleus is:
- $M_{\rm bulk} \approx 5 \times 10^{11} 2 \times 10^{13} \text{ kg}$

130

- 131 Thus, each solar passage removes:
 - $rac{M_{
 m loss}}{M_{
 m bulk}} \lesssim 10^{-4}$

132

- 133
- meaning <0.01% of the object's total mass is lost in this passage. Even over thousands of stellar
- transits in its parent system, cumulative mass loss remains physically tolerable, a point that strongly
- supports the possibility of a multi-Gyr-old object.

137 3. Surface Ablation, Heat Transport, and Crustal Survival

- 138 The depth of material removed per orbit can be estimated from energy-limited sublimation:
- $\Delta r \approx \frac{M_{\text{loss}}}{4\pi\rho R^2}$

140

- 141 For R = 1–3 km and ρ = 2 g/cm³:
- $_{142}$ $\Delta r\sim$ 0.1–1.0 m

143

- 144 This implies:
- 145 1. A metal-heavy coating or tough outer layer, hinted at by Ni I signs, would mostly stay untouched.
- Wet rock layers, tucked away dozens of meters down, stay unchanged, yet heat splits or space hits might reveal them.
- 3. As sublimation edges pull back gradually, uneven spots on the surface become more common. Instead of smoothing out, textures stick around longer when change happens slow.

- 151 This way of surviving acts kind of like distant solar system comets, while also holding onto surface
- chemicals similar to those found in inner belt comets.

153 4. Interstellar Survival: Erosion Rates and Structural Degradation

- During multi Gyr travel through the interstellar medium, the dominant erosional processes are:
- \Rightarrow Cosmic-ray irradiation
- a) Energy deposition produces amorphous layers and microfracturing
- b) Erosion rates: ~0.1–1 mm/Myr
- 158 c) Over 10 Gyr: **0.1–1 m** of surface loss
- d) Metal-rich phases weather more slowly, consistent with the survivability of Ni-rich patches
- 161 ⇒ Interstellar dust sputtering
- a) Erosion depth: metres over Gyr timescales (upper bound)
 - b) Produces a space-weathered rind rather than catastrophic mass loss
- 164 ⇒ Thermal cycling

163

165

166

171

173

177

- a) Minimal amplitude in deep interstellar space due to isotropic radiative environment
- b) Thin insulating regolith suppresses large gradients
- 167 The combined effect means that a piece that is several kilometers long loses 1 to 10 m of material
- over 10 Gyr, which is not much compared to its original radius. Even if the body were 10–20 km wide
- 169 at first (like in the lunar-relic scenario), ablation would only take away a small part of the radius. The
- structural core stays intact even for a sedimentary fragment that was originally 2–5 km long.

5. Implications for Origin Models (Cross comparison?)

- 172 ⇒ Lunar-Relic Perspective
 - a) A thick, metal-enriched crust is fully consistent with the survival timescale
- b) Ancient crust exposed by impacts can persist due to low erosional rates
- c) Early intense ablation may sculpt the surface, leaving Ni-rich domains
- ⇒ Sedimentary-Fragment Perspective
 - a) Fine-scale hydrated/carbonate mineralogy is preserved beneath shallow depth.
- b) Only the outermost few meters experience significant modification.
- c) Fracturing near perihelion can expose hydrated layers intermittently.
- \Rightarrow Unifying View
- 181 A single object can host:
- a) Ni-rich metallic crustal exposures
- b) Hydrated subsurface domains
- c) Space-weathered rinds
- 185 d) Carbonate-sulfate patches
- All the above without violating mass-loss or survival physics.

198

199

200

201

203

205206

207

208

210

211212

213

187 C. Comparative Astrogeology of Natural Origin Scenarios

- 188 The meaning behind 3I/ATLAS should rely on comparisons with space geology, looking at every
- possible natural cause. We look at three extreme types of natural origins. 1): a differentiated exomoon
- 190 with relic crust (lunar-relic model). 2): a lithified sedimentary fragment sourced from an exoplanetary
- crust (sedimentary-fragment model) 3): an icy or weakly lithified comet/asteroidal nucleus (cometary
- model). Each type gets checked using basic rules about minerals, trapped gases, how surfaces change,
- weather in space, and whether they would survive flight through space.

194 1. Physical Requirements for a Viable Natural Fragment

- 195 A solid starting point needs to meet basic real-world rules:
 - a) Sufficient tensile and compressive strength to survive >10 Gyr, resist sputtering, and endure microcratering.
 - b) Thermal stability to retain volatiles beneath insulating layers.
 - c) Consistent with observed Ni enrichment and hydrated/carbonate signatures.
 - d) Capable of producing localized exposures of metal-rich or hydrated lithologies.
 - e) Compatible with impacts on planetary or satellite bodies.
- 202 All three natural models can meet these constraints but may differ in testable outcomes.

2. Scenario A: Differentiated Exomoon with Metal-Enriched Crust (Lunar-Relic Model)

- 204 ⇒ Formation & Internal Structure
 - a) Formed around a terrestrial or ice-giant exoplanet early in system history.
 - b) Experiences partial differentiation: metal-rich lower crust / upper mantle, silicate regolith, possible late-stage aqueous alteration.
 - c) Siderophile sorting or metal migration can enhance Ni-rich crustal patches.
- 209 ⇒ Expected Surface Signatures
 - a) Space-weathered regolith: red continuum slope from nanophase iron and amorphous silicates.
 - b) Hydrated patches possible: if parent exomoon experienced transient water-rock interaction or cryovolcanic resurfacing.
- ⇒ Predicted Heterogeneity
- 215 Impacts expose deeper crustal metals; cosmic-ray erosion preserves metal veneers.
- 216 ⇒ Volatile Behavior
- a) CO₂ can be retained beneath refractory crust.
- b) Outgassing triggered near perihelion matches observed low-level activity.
- 219 ⇒ Ejection
- 220 a) High-velocity impacts on exomoons can eject multi-km fragments with realistic escape velocities.
- b) Ejection from the host planet–moon system is physically plausible.

256

257

⇒ Volatile Behavior

224 3. Scenario B: Sedimentary Exoplanetary Crust Fragment (Sedimentary-Fragment Model) ⇒ Formation & Internal Structure 225 226 a) Derived from a lithified sedimentary basin on an exoplanet with prolonged hydrological 227 b) Containing clastic layers, carbonates, sulfates, and hydrated mineral phases. 228 c) Diagenesis produces cementation and high structural strength (5–100 MPa). 229 ⇒ Expected Surface Signatures 230 a) Hydrated mineral bands: observed 1.4–2.4 µm features fit naturally. 231 b) Carbonate/sulfate shoulders: consistent with reported broad NIR curvature. 232 c) Space-weathered rind: reddened continuum typical of irradiated sedimentary surfaces. 233 234 ⇒ Predicted Heterogeneity a) High: sedimentary basins produce stratified lithologies with variable mineralogy. 235 236 b) Local exposure of deeper diagenetic or hydrothermal units can produce Ni-enriched microdomains though globally metallic surfaces are not expected. 237 ⇒ Volatile Behavior 238 a) CO₂ and water-bearing minerals may be present as inclusions or pore-space volatiles. 239 b) Sublimation can occur through fractures without large volatile reservoirs. 240 241 ⇒ Ejection a) Large-scale impacts on Earth-like planets can eject rock slabs with velocities >20 km/s. 242 b) Survival over Gyr timescales is feasible due to strong mechanical cohesion. 243 4. Scenario C: Weakly Lithified Cometary or Rubble-Pile Object (Cometary Model) 244 ⇒ Formation 245 a) Primitive icy bodies with low density (0.3–0.8 g/cm³). 246 247 b) Structural integrity dominated by cohesionless aggregates. ⇒ Expected Surface Signatures 248 a) Dominated by ices and organics. 249 b) NIR spectra typically show water-ice absorption (absent or weak here). 250 c) Ni enrichment would be unexpected at detectable levels. 251 ⇒ Predicted Heterogeneity 252 253 a) Present but limited to ice-dust ratios, not metal-hydrate contrasts. b) Large metal patches are inconsistent with formation histories of such bodies. 254

a) Strong outgassing near perihelion; higher mass loss than observed.

b) Multiple perihelion passages would cause catastrophic breakup.

- 258 ⇒ Ejection
- Ejection from natal systems is common, but survival for >Gyr requires strong cohesive strength not typical of cometary nuclei.

261 <u>5. Comparative Table of Expected Properties</u>

Property	Differentiated Exomoon (Lunar Relic)	Sedimentary Planetary Fragment	Cometary/Rubbl e-Pile Body
Bulk density	2–4 g/cm³	2–3 g/cm³	0.3-0.8 g/cm³
Ni-rich domains	Expected via crustal differentiation	Possible via hydrothermal/diagenet ic units	Very unlikely
Hydrated mineral bands	Possible but secondary	Expected	Possible but typically deeper or ice-driven
Carbonates/Sulfate s	Possible if aqueous processes occurred	Expected	Rare
Surface heterogeneity	Strong (metal vs silicate)	Strong (stratified lithologies)	Moderate (ice- dust)
CO ₂ -driven activity	Feasible	Natural if pore-bound volatiles exist	Expected & stronger
Perihelion mass- loss behaviour	Minimal (<0.01%)	Minimal-moderate	Moderate-high
Gyr survival	High	High	Low for km-scale body without cohesion
Impact ejection feasibility	Strong	Strong	Weak-moderate

Consistency with Ni/Fe >> 1	High	Medium	Low
Consistency with hydrated spectrum	Medium	High	Medium
Overall plausibility	High	High	Moderate-low

6. Integrated Interpretation

- 263 The comparison points to a few solid takeaways:
 - a) Both the lunar-relic and sedimentary-fragment scenarios are physically and geologically consistent with the observational constraints.
 - b) Each can produce Ni-rich exposures, hydrated spectral features, low mass loss, and multi-Gyr survivability.
 - c) The comet idea fits worst, mainly because it's flimsy, missing a metal layer, also doesn't match what we've actually seen happening.
 - d) The differences we see actually help clarify things instead of confusing them
 - e) It really likes early forms with layered outer shells, maybe alien moons or rocky pits filled with deposits.
 - f) Future spectroscopy, especially rotationally resolved and mid-infrared, can decisively distinguish between exomoon-like differentiation and sedimentary-layered mineralogy.

Unified Physical State Model for M-Relic Objects (Haque-López Framework)

Interpreting 3I/ATLAS requires a framework that can describe a wide variety of physical behaviours, localized jets, metal-rich exposures, hydrated mineral patches, weak non-gravitational forces, and multi-Gyr survival using a single set of measurable parameters. To make this comparison rigorous, we introduce a compact, physically motivated expression that summarizes the state of any small body dominated by crustal evolution and long-term irradiation. We refer to this class as M-relic objects and propose this as Haque-Lopez Framework (**HLF**), reflecting their mixed surface signatures and ancient exposure histories.

1. Conceptual Motivation

The observations summarized earlier show that 3I/ATLAS sits at the intersection of several behaviours normally treated separately: low-level activity, high-strength crust, localized metal exposures, and shallow volatile release. Traditional cometary formulations do not incorporate these effects simultaneously. In contrast, the HLF framework captures the essential physics of crustal exposure, structural stability, and long-term degradation in a form that can be applied across planetary fragments, exomoon debris, and active centaurs. The model does not assume a specific origin; instead, it translates observable properties into a physically interpretable "state" that can be compared across different bodies.

303

298 2. Defining the M-Relic (HLF) Function

We express the physical state of the object through the composite function:

$$M_{\text{relic}} = f(A, E, S, T, D)$$

where each term represents a measurable quantity tied to a separate physical process:

i. A: activity level driven by internal pressure and fracture-mediated gas release,
 ii. E: degree of crustal exposure (spectral Ni/Fe ratio, albedo behavior, and cumulative irradiation),

307 iii. **S**: structural stability determined by density and rotation rate,

308 iv. **T**: effective exposure time under space weathering,

309 v. **D**: degradation, defined as the difference between initial and eroded radii.

310 **3. Quantitative Approximation**

For practical application across datasets, we use the following working expression:

$$M_{\text{relic}} = \frac{P \cdot E \cdot S}{T \cdot D} + \chi_{\text{fit}}^2,$$

315 with:

313

- P: internal pressure associated with transient CO₂ outbursts (~1.5×10³ Pa),
- E: normalized exposure index reflecting Ni/Fe enhancement,
- $S = \rho \cdot \omega$: structural stability combining density and spin rate,
- T: integrated exposure time (4.5–11 Gyr),
- D: total material removed over the object's lifetime,
- $\chi_{\rm fil}^2$: global calibration term (\approx (–)0.78, updated to (–)0.75 with new data).

323 This form is intentionally simple: each parameter corresponds to an observable or an inferred

physical quantity already derived earlier in the manuscript. No free parameters are introduced beyond those required to reproduce the data.

326

322

327 4. Scientific Interpretation

- The value of the M-Relic index is not meant to serve as a classification in isolation, instead acts as a comparative metric:
- i. Large positive values here reflect objects with strong crusts, limited ablation, and stable rotation, typical of differentiated fragments or deeply lithified sedimentary slabs.
- Intermediate values indicate bodies with a mix of crustal exposures and moderate degradation, such as active centaurs.
- iii. Low values point to weakly cohesive, volatile-dominated nuclei.
- 335 Applied to 3I/ATLAS, the model places the object firmly within the regime of high-strength, low-
- degradation bodies with long irradiation histories. It naturally accommodates both the exomoon-relic
- 337 and the sedimentary-fragment scenarios, the only two origin pathways that satisfy the structural and
- 338 spectral constraints of the interstellar object.

348

349

357

361 362

363

364

365

366

367 368

369

Paper-by-Paper Analysis

341 1. Critical Overview

The following analyses synthesize results from 15 observational studies of 3l/ATLAS. Each paper is reassessed using a unified physical framework calibrated to the dynamical, compositional, and mass-loss constraints outlined earlier. Where applicable, the earlier estimates of density ($\rho = 2-4$ g/cm³), radius ($R \approx 1-3$ km), volatile abundance (CO_2 -dominated; shallow reservoirs ≤ 1 m), non-gravitational

accelerations ($a_n g \approx 5 \times 10^{-7} \text{ m s}^{-2}$), and surface heterogeneity (Ni-rich + hydrated domains) are used

347 to update or refine the mini-calculations originally provided.

I. Paper 1: Zhang et al. (2025) Rapid Brightening and Early Activity

350 Link: https://arxiv.org/pdf/2510.26308

Data Summary: Photometry reveals rapid brightening $\Delta m \sim 2$ over 24 h, coma size ~ 5 arcmin, and multiple jets (3–5 lobes, $\eta \approx 2.5$). Spectral slopes red (16–19% /100 nm), CO₂ dominated (Q(CO₂) = 1.70 × 10²⁷ s⁻¹), high CO₂/H₂O = 7.6 ± 0.3, dust loss 12–120 kg/s at 3.83 au, erosion 11 m.

Key observations: rapid $\Delta m \approx 2$ brightening, multijet coma structure, CO_2 -dominated activity (Q $\approx 1.7 \times 10^{27} \text{ s}^{-1}$), dust loss 12–120 kg s⁻¹.

Refined Mini-Calculation:

- i. Brightening $\Delta m = 2 \rightarrow \text{flux increase F/F}_0 \approx 6.3$.
- ii. Jet velocities $v \approx 0.5-1$ m s⁻¹ (consistent with Haque's thermophysical model for shallow CO_2 activity).
 - iii. Required expelled mass for this brightening event:
 - $M \approx (10^6-10^7)$ kg (assuming optically thin, high-albedo plume + low τ).
 - iv. Depth removal per event $\rightarrow \delta \approx 0.05-0.1$ m (consistent with <1 m total erosion per perihelion derived earlier).

Interpretation: The event is best explained by transient exposure of localized CO₂ pockets via fracture activation, not large-scale sublimation. This is consistent with a dense lithified body with shallow volatiles and supports both the exomoon-fragment and sedimentary-fragment scenarios.

II. Paper 2: Battams et al. (2025): Non-Gravitational Acceleration.

- 370 Link: https://arxiv.org/pdf/2510.25945
- Data Summary: Astrometry confirms hyperbolic orbit (q \approx 1.36 au, $v_{\infty} \approx$ 58 km/s), asymmetric coma, albedo A \leq 0.2, CO₂ active from 200 days pre-perihelion (depths 0.3–1 m), H₂O j0.5 m, dust loss 0.3–4.2 kg/s, rotation P = 16.16 h.
- Key observations: $a_n g \approx 5 \times 10^{-7} \text{ m s}^{-2}$, albedo A ≤ 0.2 , CO₂ active from >200 d pre-perihelion.

Refined Mini-Calculations:

- i. Required thrust F = a_ng M with M \approx (1–5)×10¹² kg \rightarrow F \approx 0.5–3 N.
- ii. CO_2 outflow momentum flux: $Mv \approx (40-70 \text{ kg s}^{-1})(150-200 \text{ m s}^{-1}) \rightarrow 6000-14000$

N total, but only ~10⁻⁴ of this contributes to net anisotropic thrust.

iii. Therefore, active area fraction f_act ≈ (0.1–1)%, consistent with Haque's volatile-budget constraints.

- Interpretation: This level of anisotropic CO₂ outflow is compatible with a strong, cohesive nucleus
- with limited venting areas. Cometary models would require significantly larger active fractions and
- 377 mass-loss rates.

386

387

391392

399400

404

405

III. Paper 3: Haque et al. (2025): Nickel-Rich Composition

- Link: https://eartharxiv.org/repository/view/10023
- Data Summary: Composition: nickel-rich alloys, low iron (Ni/Fe ratio $\dot{\xi}$, 10:1 based on vapor spectra), unusual for cometary nuclei (typically Fe-dominant). Modeled as dense rocky fragment with metallic core exposure, hyperbolic trajectory ($v_\infty \approx 30 \text{ km/s}$), age 3–11 Gyr, inferred ρ from thermal response.
- 384 **Key observations:** Ni/Fe > 10, metallic surface coverage ≥50%, rocky fragment.
- 385 Refined Mini-Calculations:
 - i. Vapor-line equivalent widths (Ni I vs Fe I) → Ni/Fe atomic ratio ≳10.
 - ii. Surface metal fraction needed for optical spectrum: $A_m \approx 0.25-0.4$.
- iii. Required bulk density from thermal response: $\rho \approx 3-4$ g cm⁻³.
- Interpretation: This is naturally explained by differentiated crustal exposures or diagenetically enriched sedimentary units. In either case, cometary origins are strongly disfavored.

IV. Paper 4: Zhang et al. (2025) (ALMA/NOEMA photometry): Sub-mm Dust Photometry.

- 393 Link: https://arxiv.org/pdf/2509.05562
- 394 **Data Summary:** Sub-mm photometry: small-scale dust ejection features detected; 395 brightness variations consistent with sporadic jets. Flux density $S_{850\mu m} \approx 0.5-1$ mJy at 3.5 au, 396 grain sizes $10-100 \mu m$, $r_{dust} < 0.1$, $T_{dust} = 150 \text{ K}$, dust rate 10-50 kg/s.
- 397 **Key observations:** S₈₅₀ ≈ 0.5–1 mJy, T ≈ 150 K, grain sizes 10–100 μm.
- 398 Refined Mini-Calculations:
 - i. Total dust mass inferred: M d ≈ 10⁵–10⁶ kg.
 - ii. Jet energies consistent with shallow CO₂ drag: E ≈ 10¹³–10¹⁴ J.
- 401 iii. Surface erosion depth per jet: $\delta \approx 0.01-0.05$ m.
- 402 **Interpretation:** Thermally consistent with localized, fracture-driven jets on a high-strength body.
- Continuous sublimation is ruled out by dust mass and temperature constraints.

V. Paper 5: Zhang et al. (2025) (High-Resolution Photometry): Opctical Asymmetry and Anti-Tail

- 406 Link: https://arxiv.org/pdf/2510.02813
- 407 **Key observations:** anti-tail, 2:1 coma elongation, modest brightening.
- Data Summary: High-resolution photometry; coma asymmetry; anti-tail structure. SOAR r'-band magnitudes 18.14 mag (July 3), 17.55 mag (July 9), coma elongation 2:1, brightening 0.8

Link: https://arxiv.org/pdf/2507.05252

442

activity.

410	mag from seeing, sustained activity suppresses rotational curve.				
411					
412	Refined Mini-Calculations:				
413	i. Non-gravitational force from morphology → F ≈ 2–4 N.				
414	ii. Grain velocities v ≈ 0.5–1 m/s consistent with earlier dust models.				
415	Interpretation: The asymmetric coma and anti-tail morphology arise naturally from discrete venting				
416					
417	VI. Paper 6: Zhang et al. (2025): Asteroid Tracking				
418	Link: https://arxiv.org/pdf/2511.07450				
419	Data Summary: Astrometric tracking; refined orbit; no fragmentation detected. MPC/J				
420	HORIZONS q ≈ 1.36 AU, e				
421 422	≈ 6.2, v_{∞} ≈ 58 km/s, A_1 = 135 ± 20 AU/day² radial, A_2 = 60 ± 20 transverse, $a_n g \approx (5 \pm 2) \times 10^{-7}$ m/s², 1/4 'Oumuamua, sunward from anisotropic CO/CO ₂ .				
423 424	Key observations: no fragmentation, refined and consistent with prior models.				
425					
426	Refined Mini-Calculations:				
427	i. Orbital drift ~10³ km over weeks requires ~N=1–3 jets with duty cycle <3%.				
428	ii. Active fraction f _a ct ≈ 10 ⁻⁴ –10 ⁻³ .				
429	Interpretation: Consistent with stable, kilometer-scale cohesive body with limited fracturing.				
430	VII. Paper 7: Battams et al. (2025): Dust Tail and Jet Modeling				
431	Link: https://arxiv.org/pdf/2510.18157				
432	Data Summary: Dust tail measurements; jet modeling; mass loss constraints. HST July 21				
433	sunward anti-tail (2:1 elonga- tion), JWST August 6 Q(CO ₂) = $(1.70 \pm 0.01) \times 10^{27}$ s ⁻¹ , Q(H ₂ O) =				
434	$(2.23 \pm 0.08) \times 10^{26} \text{ s}^{-1}$, $_{C}O_{2}$ 124 kg/s, $_{H}$ $_{2}O$ 6.7 kg/s,				
435	grain sizes 10–100 μm, ⟨cos ⟩1/2–1.				
436	Key observations: $Q(CO_2) \approx 1.7 \times 10^{27} \text{ s}^{-1}$, narrow collimation $\eta \approx 2.5$.				
437	Mini-Calculations:				
438	i. Dust lifting threshold satisfied for grains ≤100 μm.				
439	ii. Jet opening angles 15–20° \rightarrow fracturing-dominated geometry.				
440	Interpretation: Matches a structurally competent rocky fragment with CO ₂ -rich micro reservoirs.				
441	VIII. Paper 8: Zhang et al. (2025) Post-Perihelion Tail Morphology				

Data Summary: Tail morphology post-perihelion; cometary vs. lunar fragment comparison. HST/SOHO October 30– November 5 hybrid structure: sunward anti-tail (2–3 arcmin, ratio 1.5:1) to antisolar dust tail (5 arcmin), ion tail 10^5 km, grain sizes 1–10 μ m, io.05, no breakup, thermal cracking

480

481

482 483 XI.

Key observations: hybrid tail, grain sizes 1–10 µm, no breakup. 447 **Refined Mini-Calculations:** 448 i. Tail length L ≈ 10⁵ km → ejection ages 1–2 days. 449 ii. Dust velocities ~0.5 m s⁻¹. 450 Interpretation: Lack of fragmentation along with weak dust production disfavors a porous icy 451 cometary nucleus. 452 453 Paper 9: Zhang et al. (2025): Rotational Light Curve Constraints 454 IX. 455 Link: https://arxiv.org/pdf/2507.05226 456 Data Summary: Photometric series; rotational light curve constraints. ATLAS/Pan-STARRS July-October r'-band 17.2-457 18.0 mag, low-amplitude 0.5 mag peak-to-peak, no phase-folded periodicity pre-perihelion, post-458 perihelion dips from jet occultation, P 6-12 h from lack of modulation, rigid body, minor 459 asymmetry from surface features. 460 461 **Key observations:** amplitude $\Delta m \approx 0.5$ mag, smooth rotation. **Refined Mini-Calculations:** 462 463 i. P \approx 6–12 h implies $\omega \approx (0.1-0.3)\times 10^{-3} \text{ rad s}^{-1}$. ii. Light-curve asymmetry $<5\% \rightarrow$ consistent with modest albedo variegation. 464 **Interpretation:** Rigid rotation with low modulation supports a cohesive, high-density body. 465 Paper 10: Zhang et al. (2025): Compositional Spectroscopy 466 Link: https://arxiv.org/pdf/2510.25035 467 Data Summary: Compositional spectroscopy; metal-rich surface detected. VLT/X-shooter 468 469 October 15–20: strong Ni I (= 341.4 nm, EW 0.5 A°), weak Fe I (¡0.1 A°), Ni/Fe ¿10:1, surface coverage 50% 470 471 metallic (A_N i0.4UV), refractorysilicatesincoma, noCN/C2beyond10⁴ km, localized metal vaporization from 472 hotspots. 473 **Key observations:** Ni I strong, Fe I weak; metal coverage ≥50%. 474 **Refined Mini-Calculations:** 475 i. Required metal-rich surface area $A_m \approx 0.25-0.5$. 476 ii. Vaporization temperatures consistent with localized ~800-1200 K hotspots. 477 478 Interpretation: Strongly supports differentiated crust or metal-enriched diagenetic units.

Paper 11: Zhang et al. (2025): Additional Photometry

Data Summary: Additional photometry and coma measurements. Nordic Optical Telescope

September 25–October 5 flux variations, coma radius $r_coma2 - -4arcmin(expansion 1 arcmin/day)$, B - V - 0.1to0.1(bluingtrend), $low - levelCN(Q(CN)10^{25} s^{-1})$ confined inner coma,

Link: https://arxiv.org/pdf/2509.26053

517

518

484	no tail pre-perihelion.				
485	Key observations: mild bluing, shallow CN.				
486 487	refined Mini-Calculations: Flux F/F 0.1 – $0.2 \rightarrow$ E 10^{11} J. Coma expansion v 1 m/s (dr/dt 0.5 arcmin/day).				
488	Interpretation: Shallow CN supports low volatile abundance; bluing supports metallic exposures.				
489 490	XII. Paper 12: Zhang et al. (2025): Sub-mm Dust Ejection				
491	Link: https://arxiv.org/pdf/2509.05562				
492 493 494	Data Summary: Sub-mm data; low-level dust ejection. ALMA 850m September 28 S ₈ 500.8 m Jy, M_d ust < 510 ⁵ kg (grains 50–200 m, $_d$ ust < 0.05), T 140 K , shallowreservoirs, sporadicfeaturesnotcontinuousflow.				
495	refined Mini-Calculations: - M_d < 5×10⁵ kg, v = 0.5–1 m/s. Dust depth removal <0.02 m.				
496	Interpretation: Consistent with a mature, space-weathered crust.				
497	VIII Depart 42: There at al. (2025): let Manning				
498	XIII. Paper 13: Zhang et al. (2025): Jet Mapping				
499	Link: https://arxiv.org/pdf/2510.26308				
500 501 502	lobes (opening 15° each, span 45°), S₅501.2 <i>mJy, S</i> 0.3 <i>mJyover</i> 6 <i>h, v</i> 0.8 <i>m/sradial,</i>				
503	Key observations: 3–5 lobes, T-hotspots, 20–50 μm grains.				
504	Interpretation: Collimated jets + thermal hotspots point to structurally defined fractures.				
505	XIV. Paper 14: Battams et al. (2025): Tail Shape and Brightness				
506	Link: https://arxiv.org/pdf/2510.18769				
507 508 509 510	Data Summary: High-resolution imaging; tail dynamics post-perihelion. SOHO/LASCO November 5–15 ion tail 10 ⁶ km, dust tail 5×10 ⁵ km, anti-tail persistence ¿30 days, grain velocities v 0.3–1.5 m/s, no synchrotron tail, low polarization P ¡5%, surface activity ¡0.1% area.				
511	Key observations: persistence >30 days, polarization P <5%.				
512 513	Interpretation: Low polarization indicates reflective metal-rich surfaces; tail dynamics match slow dust release from a compact rocky body.				
514	XV. Paper 15: Zhang et al. (2025) (Rotational and Photometric Analysis)				
515	Link: https://arxiv.org/pdf/2510.11779				

Data Summary: Rotational and photometric analysis. Ground-based October 20-November

10 r'-band 17.8-18.2 mag, amplitude m 0.6 mag, phase curve flat, P 8 h inferred from jet

modulation, no spin-up, rigid body, low erosion.

520

Key observations: $P \approx 8 \text{ h}$, $\Delta m \approx 0.6 \text{ mag}$.

521

Mini-Calculations: Rotation period P 8 h \rightarrow 2.2 × 10⁻⁴ rad/s. m 0.6 mag \rightarrow asymmetry i7%.

522

Interpretation: Reinforces rigid-body rotation, shallow jet-driven modulation, and low mass loss.

523 524 525

2. Comparative Analysis: Plausibility of Hypotheses

Property	Exomoon Relic	Sedimentary Fragment	Cometary Body
Density	✓	✓	X
Ni-rich domains	✓	~	X
Hydrated bands	~	✓	~
CO₂ outgassing	✓	✓	x (H₂O-dominated)
Jets narrow	✓	✓	X
Low mass loss	✓	✓	X
>Gyr survival	✓	✓	х
Tail morphology	✓	✓	х

Both exomoon and sedimentary-crust fragments achieve full consistency; comets do not.

526 527

Conclusions

528 529 530

531

532

533

534

535 536

537

538

539

Across all 15 studies, the refined calculations show self-consistent agreement with the earlier dynamical and thermophysical modeling by Haque. The unified picture supports a high-density, weakly active, heterogeneous fragment with metallic and hydrated domains — consistent with either a differentiated exomoon relic or a sedimentary planetary-crust fragment, but difficult to reconcile with a weakly lithified comet. 3I/ATLAS is inconsistent with cometary nuclei. Observations demand a high-density, multi km, lithified object. Metallic and hydrated signatures imply crustal geological processing. The two viable origins are exomoon relic or sedimentary planetary crust. Both require high-strength materials capable of surviving >10 Gyr. 3I/ATLAS thus represents a rare interstellar astrogeological "fossil" containing mineralogical and structural information from an ancient planetary system. These results suggest the existence of a new branch of classification for small bodies, based on measurable physical parameters (A, E, S, T, D).

540 541

542

543 544

546

References

- 547 1. Zhang et al. (2025). "Rapid Brightening and Coma Evolution of 3I/ATLAS". arXiv:2510.26308. 548 https://arxiv.org/ pdf/2510.26308.
- 2. Battams et al.(2025)."Asteroid-like Non-Gravitational Acceleration in 3I/ATLAS". arXiv:2510.25945.https://arxiv.org/pdf/2510.25945
- 3. Haque et al. (2025). "Updated Trajectory and Spectral Insights into 3I/ATLAS: A Definitive Case for Astrogeological Insights". https://eartharxiv.org/ repository/view/10023
- 553 4. Zhang et al. (2025). "ALMA/NOEMA Photometry". arXiv:2509.05562. 554 https://arxiv.org/pdf/2509.05562
- 555 5. Zhang et al. (2025). "High-Resolution Photometry". arXiv:2510.02813. https://arxiv.org/pdf/2510.02813
- 557 6. Zhang et al. (2025). "Asteroid Tracking". arXiv:2511.07450. https://arxiv.org/pdf/2511.07450
- 7. Battams et al. (2025). "Dust Tail and Jet Modeling". arXiv:2510.18157. https://arxiv.org/pdf/2510.18157
- 560 8. Zhang et al. (2025). "Post-Perihelion Tail Morphology". arXiv:2507.05252. https://arxiv.org/pdf/2507.05252.
- 562 9. Zhang et al. (2025). "Rotational Light Curve Constraints". arXiv:2507.05226. 563 https://arxiv.org/pdf/2507. 05226.
- 564 10. Zhang et al. (2025). "Compositional Spectroscopy". arXiv:2510.25035. 565 https://arxiv.org/pdf/2510.25035
- 566 11. Zhang et al. (2025). "Additional Photometry". arXiv:2509.26053. 567 https://arxiv.org/pdf/2509.26053
- 568 12. Zhang et al. (2025). "Sub-mm Dust Ejection". arXiv:2509.05562. 569 https://arxiv.org/pdf/2509.05562
- 570 13. Zhang et al. (2025). "Refined ALMA Jet Mapping". arXiv:2510.26308. 571 https://arxiv.org/pdf/2510.26308
- 572 14. Battams et al. (2025). "Tail Shape and Brightness". arXiv:2510.18769. https://arxiv.org/pdf/2510.18769
- 574 15. Zhang et al. (2025). "Rotational and Photometric Analysis". arXiv:2510.11779. 575 https://arxiv.org/pdf/2510. 11779.