Table S1. List of the CMIP6 ESMs used in this research

	Model	Modelling Center (or Group)											
	ACCESS-CM2	Commonwealth Scientific and Industrial Research Organization, Australia											
A	ACCESS-ESM1-5	Commonwealth Scientific and Industrial Research Organization, Australia											
A	AWI-CM-1-1-MR	Alfred Wegener Institute, Germany											
I	BCC-CSM2-MR	Beijing Climate Center, China											
(CAMS-CSM1-0	China Meteorological Administration, China											
	CAS-ESM2-0	Chinese Academy of Sciences, China											
C	CESM2-WACCM	National Centre for Atmospheric Research, USA											
C	CMCC-CM2-SR5	Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy											
	CMCC-ESM2	Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy											
	CanESM5	Canadian Centre for Climate Modelling and Analysis, Canada											
	EC-Earth Consortium, Europe												
	EC-Earth3-Veg	EC-Earth Consortium, Europe											
Е	C-Earth3-Veg-LR	EC-Earth Consortium, Europe											
	FGOALS-f3-L	Chinese Academy of Sciences, China											
	FGOALS-g3	Chinese Academy of Sciences, China											
	GFDL-ESM4	NOAA Geophysical Fluid Dynamics Laboratory, USA											
	IITM-ESM	Indian Institute of Tropical Meteorology, India											
	INM-CM4-8	Russian Academy of Science, Russia											
	INM-CM5-0	Russian Academy of Science, Russia											
]	IPSL-CM6A-LR	Institute Pierre Simon Laplace, France											
	KACE-1-0-G	Korea Meteorological Administration, Korea											
	MIROC6 Japan Agency for Marine-Earth Science and Technology,												
N	MPI-ESM1-2-HR	Max Planck Institute for Meteorology, Germany											
N	MPI-ESM1-2-LR	Max Planck Institute for Meteorology, Germany											
	MRI-ESM2-0	Meteorological Research Institute, Japan											
	NorESM2-LM	Norwegian Research Centre, Norway											
	NorESM2-MM	Norwegian Research Centre, Norway											
	TaiESM1	Research Center for Environmental Changes, Taiwan, China											

Table S2. Mangrove species combinations in the three zones

Zone	Species combination					
Northern zone	Kandelia obovata, Aegiceras corniculatum, Avicennia marina, Sonneratia apetala,					
Northern Zone	Laguncularia racemosa					
Middle zone	Bruguiera gymnoihiza, Sonneratia caseolaris, Rhizophora stylosa, K. obovata, A.					
Wilduie Zolle	corniculatum, A. marina, S. apetala, L. racemosa					
	Bruguiera sexangula, Rhizophora apiculata, Lumnitzera racemose, Sonneratia					
Southern zone	alba, Ceriops tagal, B. gymnoihiza, S. caseolaris, R. stylosa, K. obovata, A.					
	corniculatum, A. marina, S. apetala, L. a racemosa					

^{*}Data from Zhao, C., Jia, M., Zhang, R., Wang, Z., Ren, C., Mao, D., and Wang, Y.: Mangrove species mapping in coastal China using synthesized Sentinel-2 high-separability images, Remote Sensing of Environment, 307, 114151, https://doi.org/10.1016/j.rse.2024.114151, 2024.

Table S3. Comparison of time-lagged effects of climatic factors between mangroves and forests

Zone	Northern				Middle				Southern				
Lag (months)		0	1	2	3	0	1	2	3	0	1	2	3
	DJF	F	F										
Mean temperature	MAM		M	M					M		M	M	M
weam temperature	JJA	F											
	SON	M	M										
	DJF									M			
Solar radiation	MAM	F					F				M		
Solar radiation	JJA	F		M	M	M							
	SON									F	M/F		

^{*}This result is based on the time-lagged effect test for both mean temperature and solar radiation on mangroves and forests. The filled-in means the time-lagged effect is significant, with the letter and background color indicating the vegetation type: F with green background stands for forests, M with red background stands for mangroves, M/F with blue background stands for both mangroves and forests.

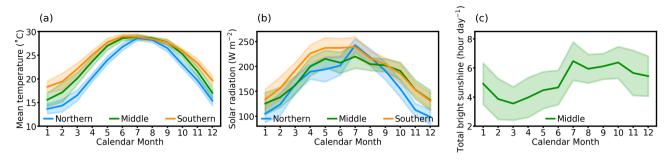


Figure S1. Seasonal trend of climatic factors from 2001 to 2022. The three climatic factors are mean temperature (a), solar radiation (b) and total bright sunshine (c). The data of the former two climatic factors were obtained from ERA5 data, while the total bright sunshine was accessed from Hong Kong Observatory which located in the middle zone.

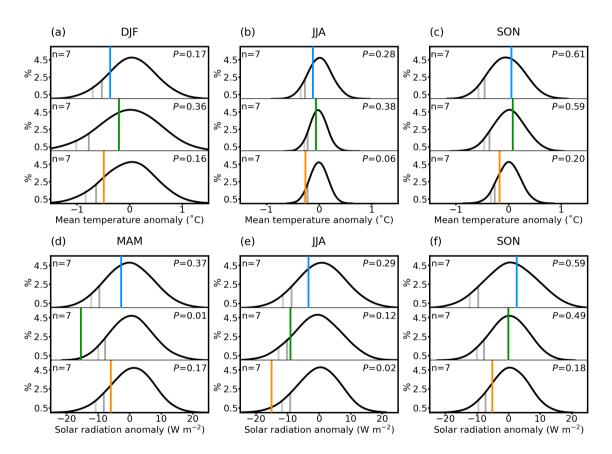


Figure S2. Simultaneous impact of mean temperature and solar radiation on mangrove growth. Bootstrap distribution for mean temperature and the significance test for extreme low cases are shown for DJF (a), JJA (b), SON (c), while (d), (e) and (f) are for solar radiation. Light gray lines represent P=0.05, and dark gray lines represent P=0.1. In the top left corner, n represents the number of cases selected. In the top right corner, P indicates the P-value result for the cases. Different colors indicate different zones: blue for northern zone, green for middle zone and orange for southern zone.

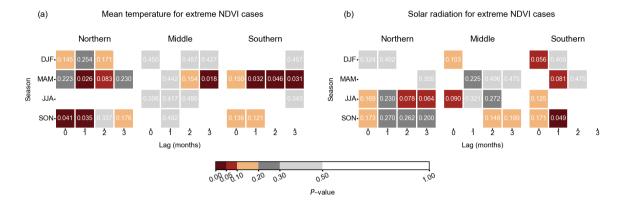


Figure S3. Time-lagged effect of mean temperature and solar radiation on mangrove growth at seasonal composite. Significance test for extreme NDVI cases to mean temperature (a), solar radiation (b). Each lag represents a 1-month period. Statistical significance here (P<0.05) indicates that mean temperature/solar radiation demonstrates a strong lagged correlation with the NDVI extremes with certain months of time lags.

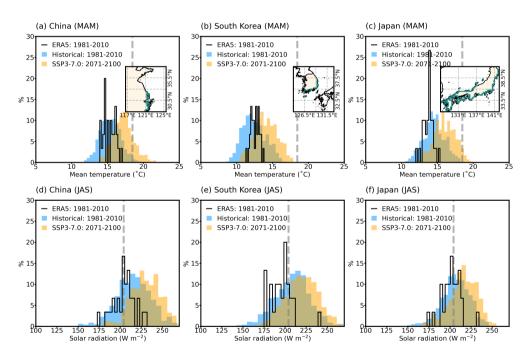


Figure S4. Changes in temperature and solar radiation in future potential mangrove habitats. Histogram of mean temperature comparing ERA5 (1981–2010), CMIP historical (1981–2010) and SSP1-2.6 (2071–2100) for future potential mangrove habitats in China (a), South Korea (b) and Japan (c). Same but for solar radiation in China (d), South Korea (e) and Japan (f). The grey dashed lines represent the threshold criteria for high mean temperature (top row) and low solar radiation (bottom row), using the northern zone as the reference standard. The maps delineate potential mangrove habitats under SSP1-2.6 by integrating: (1) current non-mangrove shorelines, and (2) projected expansion zones where winter (DJF) mean temperatures reach \geq 10°C in SSP1-2.6 (2071–2100).