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Abstract. The Songliao Basin preserves a complete Cretaceous continental sedimentary succession. Previous researchers
have conducted extensive cyclostratigraphic studies on the Upper Cretaceous Nenjiang Formation, but paleoclimatic
research has primarily focused on the lower part of the formation. The relationship between climatic changes and
astronomical parameters in the middle and upper sections of the Nenjiang Formation has not yet been fully investigated. This
study conducted cyclostratigraphic analysis of the second to third members of Nenjiang Formation Late CretaceousfK,n>?)
in the Songliao Basin using high-resolution gamma-ray logging (GR) data, while also performing paleoclimatic analysis in
conjunction with palynological data. The fossil spores and pollen from the Kon® indicate a geological age of the HEl§
DiCECEoNSIeapaNaE. Bascd on the ecological data of the parent plants of the spores and pollen, the vegetation types,
climatic zones, and [IGINMNPES of the lower part of the Kon® were analyzed, confirming its SETemm and semi-humid
paleoclimatic characteristics.Jlilll@@serics analysis reveals persistent 405-kyr (long eccentricity), 95-kyr (short eccentricity),
38.3-kyr (obliquity), and 22.8-kyr (precession) sedimentary cycles, further validated by an optimal sedimentation rate model.
We established a 3.24-Myr floating astronomical time scale for K,n>? by tuning the GR series to [HBIGIIGIEeR. This
timescale is anchored by a volcanic ash age (83.269 = 0.044 Ma) at the K,n® base, generating an absolute age framework
spanning 83.33-80.00 Ma. NiSHHCANARSIGHS in palynofloral assemblages correspond to the 38.3-kyr obliquity cycle,

indicating significant obliquity forcing on regional paleoclimate dynamics.

1 Introduction

Gravitational interactions within the Solar System induce gradual EliSHElONS to Earth's rotational and orbital trajectories.
These changes produce periodic variations in Earth's orbital parameters—primarily eccentricity, obliquity, and precession
(Hinnov, 2013). The cyclical modulation of these parameters alters both the total solar insolation received by Earth and its
latitudinal and seasonal distribution, thereby driving global climate fluctuations on multimillennial (10,000 88i§) scales
(Milankovitch, 1941). Hays et al., (1976) employed spectral analysis on deep-sea sediment records and insolation data,
revealing consistent precession (~23 kyr) and obliquity (~41 kyr) cycles persisting over 400,000 years. This work
SRS cstablished the relationship between orbital variations and Quaternary climate change, forming the cornerstone

of cyclostratigraphy.
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Wu et al., (2007) conducted spectral analysis of natural gamma-ray logs from the K,qn and K,n'?? in the Songliao Basin,
confirming that Late Cretaceous sedimentary cycles were controlled by Milankovitch climate forcing. Wu et al., (2014) and
Ma et al., (2020) subsequently performed cyclostratigraphic analysis on Th spectral data from the SK-1n and Sk-2 boreholes,
establishing an astronomical time scale. However, the sedimentation rates they derived for the K,n?>? differed significantly
and lacked validation from other paleoclimate proxy indicators. Yang et al., (2020) and Li et al., (2022) combined high-
resolution elemental geochemical data to demonstrate that sedimentary cycles from the K,n' were driven by Milankovitch
climate forcing, though the Kon® was not addressed. Pollen fossils play a significant role in paleoclimate studies. Previous
research on pollen fossils from the Nenjiang Formation in the Songliao Basin has established that the K,n>? represent a
warm and humid climate (Tian et al., 2005; Yan et al., 2007; Jing et al., 2011; Hinnov, 2013; Zhao et al., 2014; Zhou et al.,
2023).

This study utilizes gamma-ray (GR) logging data from borehole G651 within the second and third members of the Nenjiang
Formation for cyclostratigraphic analysis, aiming to identify astronomical forcing mechanisms and establish an
astronomically calibrated timescale. In addition, palynomorph assemblages are analyzed to determine paleoenvironmental

characteristics of the Kon®, with integrated cyclostratigraphic assessment of [JElIO0Ig palcoclimate drivers.

2 Geological Setting

The Songliao Basin, located in northeastern China (Figure 1a), has a length of approximately 500 km and a width of 330—
370 km, covering an area of ~260,000 km? During the Cretaceous, it occupied a mid-to-high paleolatitude position in the
Northern Hemisphere (Sewall et al., 2007). Stratigraphic architecture subdivides the basin into six first-order tectonic units:
the Northern Tilted Zone, Central Depression Zone, Northeastern Uplift Zone, Southeastern Uplift Zone, Southwestern
Uplift Zone, and Western Slope Zone (Figure 1b; Wang et al., 2013; Wu et al., 2023). The basin contains Jurassic,
Cretaceous, Paleogene, and Neogene strata, with Cretaceous successions constituting the dominant sedimentary fill.
INSIBESSHISHEl comprises Paleozoic metamorphic and igneous rocks. [HiCHSCOiCHGNSIcCcssONMSHOIGCONNTONITes
[CEIOHeSHaHSTapINGISEEes: | ) the fault depression stage (Early Cretaceous), including the Huoshiling (K h), Shahezi (K;sh),
and Yingcheng (K;yc) Formations; 2) the depression stage (Cretaceous), containing the Denglouku (K:d), Quantou (K»q),
Qingshankou (K»qn), Yaojia (Kay), and Nenjiang (K,n) Formations; and 3) the tectonic inversion stage (Late Cretaceous),
including the Sifangtai (K»s), Mingshui (Kom), and Yi'an Formations (Feng et al., 2010; Li et al., 2021).

The Kon' and Kjn? consist predominantly of [EiKIEGSIONCoMoIacklsnaIes, and oil shale interbeds, indicative of deep-
lacustrine deposition. K;n® and Kon* record a shift to shallow-lacustrine and deltaic facies, while Kon® comprises meandering
river deposits, collectively forming a basin-fill succession transitioning from deep-water to shallow-water to subaerial
environments. The lithologic assemblages of the Kon3 and the Kon* are similar. The Kon? consists of interbedded grayish-
black silty mudstone and mudstone with grayish-white argillaceous siltstone and sandstone. The K,n* is composed of

interbedded grayish-green and grayish-white sandstone and siltstone with grayish-green mudstone, containing purplish-red
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and brownish-red mudstone in the upper part, and intercalated grayish-black and gray mudstone in the lower part. The Kon®
primarily consists of grayish-green and brownish-red mudstone intercalated with grayish-green and grayish-white sandstone
and siltstone (Wang ct alfii011; Wu et alfi@i14).

High-precision U-Pb CA-ID-TIMS (Uranium-Lead Chemical Abrasion-Isotope Dilution-Thermal Ionization Mass
Spectrometry) dating of volcanic ash SHIMliBle from the base of the K,n? interval in borehole SK-1s yielded an age of 83.269
+ 0.044 Ma.



yangwa
Highlight

yangwa
Highlight

yangwa
Highlight

yangwa
Highlight
Needs clarification.

Is the sample from another well? If so, how the age was correlated to this well in this study?


70

https://doi.org/10.5194/egusphere-2025-5799
Preprint. Discussion started: 18 December 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere®

Stratum Depth ) Age
Systems |Stage :gg:' Member (m) thhOIogy (Ma)
K,n®
1000
Pacific Ocean Kzn“
1100
c
{ a
(7208 '] ®)
3 ==, =
(@ g @® K;n
8 Q g 1200
@® % o
ey L
b o |O
Songliao Basin - ! . ! Y Iso°n O g’
o © 1300
(D) =
J49°N (=] C | K.n?
n
o a1 e
o . o =z
1400
H47°N 83.6 83.269
+0.044)
1™ = K,n'[1500
=
445°N o
—
[
5 ©
I ik %) K,y’|1600
122°E 124°E
==1 =1 [~ -]
= =] [ HE = = =5
I___l |_.._| ]......l
: First-order ;
Basin ; : : Fine Research
Bliindaes Ztruc:jural Well City Olishale Mudstone  Siltstone SErHEtGHE m—
oundary

Figure 1: Regional geological map of the study area. (a) . (b) Tectonic framework of
the Songliao Basin and location of borehole G651. (¢) Composite stratigraphy of the Nenjiang Formation (K:n) with SSi6Hi8
dating horizons.
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3 Materials and methods
3.1 Natural Gamma-ray (GR) Logging

Gamma-ray (GR) intensity in stratigraphic sequences primarily reflects concentrations of radioactive isotopes uranium (U),
thorium (Th), and potassium (K). Potassium is enriched in clay minerals, feldspars, micas, and evaporites, while U and Th
accumulate predominantly in clays, heavy minerals, feldspars, and phosphate minerals. GR logging measures natural

gamma-ray emissions from sediments, serving as a sensitive proxy for clay content that records subtle paleoclimatic and

paleoenvironmental variations (Baumgarten and Wonik, 2015). Siicialijcipiscalcompansonsioipalcocliiaicapiosics

100

3.2 Time-Series methods

In this study, the long-term trend of gamma-ray (GR) data was removed iiSiiacincEcEs G EiEhEd
scatterplot smoothing (LOESS) trend, as recommended by Cleveland and Devlin (1988). I'ollowing preprocessing (outlier
iSRS ERINRSREs), dctrended GR data underwent spectral analysis via the multitaper

method (MTM; Thomson, 1982). Significant periodic components were identified by testing MTM power spectra against a

robust first-order autoregressive [AR (1)] noise model at the 95% confidence level (Mann and Lees, 1996).

e piaseaichiateonNaies wcrc determined using the Eoiclalionpooenneien (COCO) method, which assumes

constant sedimentation rates within the target interval. Variable sedimentation rates were identified using the evolutionary

correlation coefficient (eCOCO) method (Li et al., 20148 ). |1 e S SO Ao RS e

Depth-to-time conversion was implemented using [@EHilgd orbital tuning targets, establishing a high-resolution [ISEHRE time
scale. All analyses employed Acycle v2.8 software (Li et al., 2019), ensuring reproducibility.

3.3 Palynology

Palynological examination of 17 samples from borehole G651 in the central Gulong Sag identified 57 fossil taxa spanning 36

genera. The results of pollen analysis are from the State Key Laboratory of Petroleum Resources and Engineering in China

5
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University of Petroleum | Beijifi@88@mple processing employed standardized acid-digestion protocols: mechanical
disaggregation followed by sequential chemical treatment with 30% hydrochloric acid (HCI) to dissolve carbonates and 40%
hydrofluoric acid (HF) for silicate removal, with subsequent filtration through 10-um nylon mesh using ultrasonic agitation,

centrifugation at 3,000 rpm for 5 minutes, and

4 Results
4.1 Time-Series Analysis

By comparing the ratios of the dominant peaks in the power spectrum analysis (Figure 2a) with the ratios of the Earth's
orbital parameters from the Late Cretaceous (Figure 2b), we identified an astronomical forcing signal in the gamma-ray (GR)
log data. Based on the La2004 and La2010 astronomical solutions, we obtained the theoretical periods for the 80-84 Ma
interval (Laskar et al., 2004; Laskar et al., 2011). As shown in Figure 3¢, the Late Cretaceous Earth's orbital parameters [Higig:
405 kyr (E: eccentricity), 125 kyr (el: eccentricity), 95 kyr (e2: eccentricity), 38.5 kyr (O: obliquity), 22.8 kyr (P1:

precession), 21.5 kyr (P2: precession), and 18.5 kyr (P3: precession). [N SN case e
of the detrended GR series from the Kon®? interval of well G651 (Figure 2b) shows significant peaks (>99% confidence level)

S G OGNNSR By comparing the two, it can be tentatively
inferred that the 46.51 m cycle corresponds to the 405 kyr (E) cycle, the 12.20 m cycle corresponds to the 95 kyr (e2) cycle,

the 4.64 m cycle corresponds to the 38.5 kyr (O) cycle, the 2.90 m cycle corresponds to the 22.8 kyr (P1) cycle, and the 2.32
m cycle corresponds to the 18.5 kyr (P3) cycle. However, these correlations still require further verification through analysis
of the sedimentation rate. The evolutionary FFT power spectrum reflects Jigilllga@l changes in the sedimentation rate (Figure
2¢).

These correlations require verification through sedimentation rate optimization, as the evolutionary FFT spectrum (Figure 2c)
indicates significant vertical sedimentation rate variations.
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Wu et al. (2014) reported an average sedimentation rate of 13.99 cm/kyr for the K,n>? in borehole SK-1n. To determine the
optimal sedimentation rate, a [ analysis with 5000 Monte Carlo simulations was conducted for sedimentation rates
ranging from 0 to 20 cm/kyr, using a sliding window length of 100 (HifiiEESiacaianscIoSUE2IICHREENS
SSCaiCHaCNEIRESs). As shown in Figure 3a, the COCO sedimentation rate plot for the detrended GR series exhibits
a peak correlation coefficient at 12.1 cm/kyr. This result demonstrates statistical significance exceeding the 99.9%
confidence level (p < 0.001) against the IIINPOISSISIEN (Figure 3b) and ENSHSINENR 211 seven theoretically predicted
orbital parameters contributing to the signal (Figure 3c).

Evolutionary COCO (eCOCO) analysis (Li et al., 2018) resolves significant sedimentation rate variations with pronounced
peaks in the 7-14 cm/kyr range (Figure 3g), exhibiting high correlation coefficients (p > 0.85), null hypothesis (Ho) rejection
exceeding 99.9% confidence (p < 0.001), and alignment with all seven theoretical orbital parameters (Figure 3d-f), thereby

corroborating conventional COCO results; consequently, astronomical tuning assigns depth intervals as follows: 58.82—
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plot for eCOCO analysis. (f) D|
FEOIRERAHORNEGE spectrogram from eCOCO analysis.

(2) OMPOSIEE

4.2 Astronomically Calibrated Timescale

A series of filtering results were obtained by SIS ENEoNONECHeHCHNSRIEaE. A mong

them, the 405 kyr long eccentricity result was obtained within the FEilGiGTanEcIONOOIESOINPBISHEISHER, the 95 kyr short
eccentricity result within 0.078—0.092 cycle/m, the 38.3 kyr obliquity result within 0.209-0.223 cycle/m, and the 22.8 kyr

precession result within 0.342—0.349 cycle/m. A total of 8 cycles of 405 kyr, 34 cycles of 95 kyr, 86 cycles of 38.3 kyr, and
138 cycles of 22.8 kyr were identified. G ISHGIcccenmciylcyelchvasInscaouneIcacHneaesuTsIo oINS
DIO2BISYBIBIR viclding a floating astronomical time scale for Kon?3. Using the volcanic ash age (83.269 + 0.044 Ma) at the
base of KEIESIaIancHompom (He et al., 2012; Wang et al., 2016), the absolute astronomical time scale for Kon?? was
established (Figure 4).
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Figure 4: Astronomically tuned timescale for the K:n in borehole G651.

4.3 Palynological Characteristics

Seventeen palynological samples were collected at 0.5 intervals from the lower Kon® [IZIDISSEIZNSIBONRN in borchole
G651, with microscopic analysis identifying 57 taxa representing 36 genera; pteridophyte spores (12 genera, 23 species)
comprised 22.34-41.12% (mean 33.95%) of the total assemblage, dominated by Deltoidospora (9.52—17.54%; mean
12.92%MFigure 5a), followed by Cyathidites (5.62—17.73%; mean 10.00%)(Figure 5b), Cicatricosisporites (1.97-11.64%;
mean 7.08%liFigure 5¢), and Impardecispora (0.44-3.95%; mean 1.71%Jf{Figure 5d), while all other genera each constituted

<1% (mean) with discontinuous occurrence across samples (Table 1).

Table 1: Quantitative summary of pteridophyte spore taxa

num depth 3 = % *§ § 8 ) g § ] 5
8
BF-38 1210.89 14 7 1 18 2 42
BF-37 1211.39 16 2 12 6 1 20 1 58
BF-36 1211.89 16 3 6 5 24 5 59
BF-35 1212.39 10 1 14 4 1 18 1 49
BF-34 1212.89 26 1 12 5 27 71
BF-33 1213.39 18 1 16 2 20 57
BF-32 1213.89 23 2 24 1 40 1 91
BF-31 1214.39 8 13 4 19 1 45
BF-30 1214.89 50 17 2 38 2 109
BF-29 1215.39 1 16 2 22 3 18 1 1 64
BF-28 1215.88 36 1 18 2 27 2 1 88
BF-27 1216.39 16 2 14 5 2 21 6 1 67
BF-26 1216.89 28 5 22 4 34 2 95
BF-25 1217.39 20 2 15 1 2 27 1 68
BF-24 1217.89 1 21 18 1 33 4 78
BF-23 1218.39 10 1 6 6 3 23 1 50
BF-22 1218.89 | 2 18 1 3 1 1 1 25 1 53
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Gymnosperm pollen (14 genera, 21 species) constituted 55.07-75.00% (mean 61.49%) of the total palynoflora, with
Classopollis ranking first in abundance (2.21-22.43%; mean 14.38%)(Figure Se), Pinuspollenites second (7.89—18.23%;
mean 11.34%)(Figure 5f), Ephedripites third (2.66—13.37%; mean 8.05%)(Figure 5g), Cycadopites fourth (1.97-11.70%;
mean 7.44%)(Figure 5h), Podocarpidites fifth (1.60—-14.92%; mean 5.64%)(Figure 51), Perinopollenites sixth (0.55-9.21%;
mean 3.45%)(Figure 5j), Taxodiaceaepollenites seventh (0.00-6.42%; mean 2.68%)(Figure 5k), Tsugaepollenites eighth
(0.79-5.85%; mean 2.64%)(Figure 51), Chasmatosporites ninth (0.47-7.24%; mean 2.61%)(Figure 5m), and Parvisaccites
tenth (0.73—4.23%; mean 1.81%)(Figure 5n), while all other genera each constituted <1% (mean) (Table 2).

Table 2: Quantitative summary of gymnosperm pollen taxa

> T 8 T f § 2 T F §F T F ¢ ¢
s s 2z £ 3 &8 &8 ®§ &% § 5§ ®w® 8§ & =8
g § S ¥ £ §&® § F Y} £ %3 § & °§© s
S 3 2 S S 8 3. = = S 3 S 5
8 s < (? 3 ] ) IS 8 S = S, S R
s &8 ¥ = § & % 8 = = § 8 g
© & x =. = S N S =
num depth @ @ s S, = o & =
t? S “ S
S
§.
BF-38  1210.89 | 7 22 21 10 8 5 1 29 11 22 141
BF-37 1211.39 2 11 7 14 3 11 1 25 5 3 89
BF-36  1211.89 | 3 27 1 6 3 20 1 1 33 4 10 1 114
BF-35 1212.39 2 7 18 4 4 4 8 16 17 8 8 1 97
BF-34 1212.89 2 3 28 7 12 1 25 1 1 15 4 11 2 112
BF-33 1213.39 3 7 38 1 2 12 5 20 1 1 23 6 19 1 139
BF-32 1213.89 3 6 47 4 13 2 12 1 1 18 6 17 1 131
BF-31 121439 | 1 5 23 6 5 3 10 15 2 10 80
BF-30 121489 | 6 17 43 6 2 35 1 25 8 16 2 161
BF-29 121539 | 8 6 28 2 7 2 3 19 1 16 4 20 2 118
BF-28 121588 | 3 48 5 1 15 17 2 22 120
BF-27 1216.39 2 14 42 7 9 5 19 24 6 17 1 146
BF-26 1216.89 | 3 16 45 2 7 4 10 1 26 2 24 140
BF-25 1217.39 6 15 29 8 6 11 21 1 28 6 15 1 147
BF-24  1217.89 | 3 17 18 4 13 6 11 2 22 4 11 2 114
BF-23 1218.39 4 7 26 5 6 18 1 21 3 16 2 117
BF-22  1218.89 | 3 27 5 8 2 18 5 11 86
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Angiosperm pollen (10 genera, 13 species) comprised 2.14-8.55% (mean 4.56%) of the total palynoflora, with

185  Agquilapollenites being predominant (0.00-2.94%; mean 1.31%)(Figure 50), Complexiopollis the second most abundant
(0.00-1.97%; mean 0.88%)(Figure 5p), and Callistopollenites the third (0.00-2.25%; mean 0.78%)(Figure 5q), while all
other genera individually constituted <0.50% (mean) (Table 3).

Table 3: Quantitative summary of angiosperm pollen taxa

= F T T T T T 07 ¢
Q Q 3. S N = S S ;;“ 3 UE-
s £ § 5 S § & §F Z % %
s ¥ § 8 § § § g % § %
S £ F 5 T =T = 3
num depth = T & § = § 8 B
= Q X = = )

=~ [ Q )

& “

BF-38  1210.89 2 3 5
BF-37  1211.39 1 2 1 1 5
BF-36 1211.89 | 2 1 1 2 1 1 8
BF-35  1212.39 1 1 2 1 5
BF-34 1212.89 1 1 2 4
BF-33 1213.39 1 1 2 4 1 9
BF-32 1213.89 | 3 1 1 1 6
BF-31 1214.39 1 1 4 1 11
BF-30 121489 | 2 1 2 1 1 3 2 12
BF-29 1215.39 1 1 3 1 1 7
BF-28 1215.88 1 2 1 1 1 6

BF-27 1216.39 1 2 1 1
BF-26 1216.89 3 2 2 5 2 3 17
BF-25 1217.39 1 3 4 3 11
BF-24 1217.89 | 2 2 1 3 3 4 15
BF-23 1218.39 1 1 2 4 3 11
BF-22  1218.89 2 1 4 3 3 13
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Figure 5: Typical palynomorphs from Kan. a. Deltoidospora; b. Cyathidites; c. Cicatricosisporites; d. Impardecispora; e. Classopollis;
f. Pinuspollenites; g. Ephedripites; h. Cycadopites; i. Podocarpidites; j. Perinopollenites; k. Taxodiaceaepollenites; 1. Tsugaepollenites;
m. Chasmatosporites; n. Parvisaccites; o. Aquilapollenites; p. Complexiopollis; q. Callistopollenites.
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5. Discussion
5.1 Astronomical Timescale for the K2n?*3 Interval in the [BEllBHg Area

Current zircon ages from volcanic ash layers in the Songliao Basin are predominantly constrained within the lower NSHjlang

Formation (Kon), lower Qingshankou Formation(Kxqn), and lower Yingcheng Formation(K yc) (Wu ct al.. 2024). with
chronostratigraphic benchmarks including U-Pb SIMS dating of volcanic ash at the base of K;n? in borehole SREISHECIENg

providing 83.3
+ 0.6 Ma (Yu et al., 2019).

The concentration of absolute ages within the [iSHERGSSEOREINSHBEEES of the Nenjiang Formation, coupled with continuous
sedimentation and the absence of identifiable unconformities from K,n? to [l challenges precise age determination for the
Kon®~Kon® (Wu et al., 2024).

Wu et al. (2014) derived an age range of 82.392-83.823 Ma (duration: 1.431 Myr) for the K,n? and 81.595-82.392 Ma
(duration: 0.797 Myr) for the Kon? in borehole SK-1n through cyclostratigraphic analysis of thorium (Th) spectral logging
data. Subsequently, Ma et al. (2020) obtained ages of 81.02—83.28 Ma (duration: 2.26 Myr) for K;n? and 79.68-81.02 Ma
(duration: 1.34 Myr) for K,n? in borehole SK-2 using similar methods.

This study utilizes the highest-precision zircon age of 83.269 + 0.044 Ma to define the base of the K,n?. Comparative
analysis of the 2 MTM power spectrum and COCO-derived sedimentation rates (Figure 2a vs. Figure 3a) confirms

methodological consistency, while evolutionary spectral analysis and eCOCO sedimentation rate profiles both exhibit higher

sedimentation rates at FOHIBONNGANSS han oS e s = A eNRSuesE

220

225

(thickness 209.46 m) spanning 81.591-83.333 Ma (duration 1.742 Myr), and Kon® at 1090.78-1240.54 m (thickness 149.76
m) spanning 80.376-81.591 Ma (duration 1.215 Myr).

The floating astronomical timescale established in this study exhibits discrepancies with previous works: while the Kon? age
model aligns closely with Wu et al. (2014), significant divergence occurs in K,n?, primarily attributable to the identification
of three HBBESE cycles within Kon® in this study versus approximately two cycles in Wu et al. (2014), despite [l
differences in sedimentation rates between the two models. Conversely, SlESiantaGISpantcSRnNScoImcNAIONNTaIes
between this study and Ma et al. (2020) result in low similarity between their respective age models.

EUESIESENSeE of ncw zircon ages from volcanic ashes within the Kon?>-Kon® will be essential to resolve current

controversies regarding stratigraphic ages across the basin.

5.2 Palynostratigraphic Age Assignment

Within the Kon®, palynomorphs including Pinuspollenites, Cyathidites, Podocarpidites, Exesipollenites, Cicatricosisporites,

Classopollis, Foveotriletes, and Parvisaccites represent characteristic Cretaceous taxa (Tian et al., 2005; Xu et al., 2021; Gao
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et al., 2023). Gao et al. (1999) established two palynological assemblages for the Nenjiang Formation: the lower Kon'
features a Proteacidites-Cyathidites-Dictyotriletes assemblage, while the upper Kon?-Kon® are characterized by the
Lythraites-Aquilapollenites-Schizaeoisporites assemblage. Crucially, Lythraites first appears in Koyn?, whereas
Aquilapollenites serves as a diagnostic taxon for K;n>-Kon® (Wan et al., 2013). This genus exhibits cosmopolitan distribution

with peak abundance during the Late Cretaceous, particularly the Campanian to Maastrichtian stages.

5.3 Palynological Characteristics and Paleoclimate Reconstruction

Based on ecological attributes of parent plants, the palynoflora was classified into five categories: coniferous plants, shrubby
plants, evergreen broad-leaved plants, herbaceous plants, and deciduous broad-leaved plants. Note that no definitive
deciduous broad-leaved types were identified in the K,n? of borehole G651.

Using modern thermal zonation as an analog, Cretaceous palynomorphs in the Songliao Basin [§igl§ grouped into five
climatic types: tropics, tropics-subtropics, tropics-temperate, subtropics, and tropics-temperate plants. For moisture
preferences, we adopted Jing et al. (2011)’s classification: xerophytic, mesophytic, helophytic, hygrophytic, and hydrophytic
taxa, with an absence of true hydrophytes in the study area (Table 4).

Within the vegetation classification (Figure 6), coniferous taxa predominated (28.88—48.40%; mean 36.78%), followed by
shrubby taxa as the second most abundant (8.51-25.40%; mean 18.78%), evergreen broad-leaved taxa ranked third (11.92—
26.98%; mean 17.43%), while herbaceous taxa constituted the smallest proportion (10.24—-18.86%; mean 14.64%).

In the climatic belt classification (Figure 6), [i@ji8§ taxa predominated (23.68-39.53%; mean 32.21%), followed by tropics-
subtropics taxa as the second most abundant (16.57-38.60%; mean 28.91%), [iGpicSnicmpenae taxa ranked third (9.63—
24.31%; mean 14.78%), while subtropics taxa constituted a quantitatively minor component (0.93—7.95%; mean 3.40%) and
temperate taxa represented the smallest proportion (2.66—13.90%; mean 8.26%).

Within the moisture preference classification (Figure 6), hygrophytic taxa predominated (30.90—46.10%; mean 39.22%),
followed by mesophytic taxa as the secondary dominant (15.51-32.45%; mean 21.86%), xerophytic taxa ranked third (9.87—
30.24%; mean 23.20%), while helophytic taxa constituted a negligible component (0.00-3.31%; mean 1.12%).
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Table 4: Classification of palynomorph-derived vegetation types, climatic belts, and moisture preference classes

Spores and pollen Vegetation type Climate type Humidity type
Neoraistrickia herb - -
Cyathidites evergreen broad-leaf forest tropics humidogene
Osmundacidites herb tropics-temperate  helophyte
Cicatricosisporites shrub tropics humidogene
Impardecispora shrub tropics humidogene
Klukisporites shrub tropics humidogene
Pilosisporites shrub - humidogene
Deltoidospora herb tropics-subtropics humidogene
Foveotriletes herb tropics-temperate  mesophyte
Parvisaccites coniferous forest tropics-temperate  mesophyte
Podocarpidites coniferous forest tropics humidogene
Classopollis coniferous forest tropics-subtropics xerophyte
Exesipollenites coniferous forest subtropics helophyte
Taxodiaceaepollenites coniferous forest subtropics helophyte
Ephedripites shrub temperate xerophyte
Cedripites coniferous forest subtropics mesophyte
Jiaohepollis coniferous forest temperate -
Pinuspollenites coniferous forest tropics-temperate  mesophyte
Tsugaepollenites coniferous forest subtropics -
Cycadopites - tropics mesophyte
Lythraites herb - -
Beaupreaidites shrub tropics humidogene
Proteacidites shrub tropics humidogene
Cranwellia shrub - -
Translucentipollis shrub tropics-subtropics humidogene
Aquilapollenites shrub tropics-subtropics humidogene
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Figure 6: Palynomorph-derived vegetation types, Elilllaificielis] and moisture preference classes with quantitative distributions.

5.4 Astronomically Paced Climate Periodicity

Spectral comparison between palynomorph-defined climatic belt [jilGlSHienees and astronomically filtered cycles reveals
distinct periodic fluctuations in the two dominant types: tropics taxa exhibit variation patterns synchronous with the 38.3kyr
obliquity filter output, while tropics-subtropics taxa display an opposite phase relationship to obliquity forcing (Figure 7).

IEBEBIEHEE affccts the latitudinal distribution of solar radiation by adjusting the Earth's axial tilt. By comparing the La2004
slope with the annual solar radiation distribution at 45° N (close to the latitude of the Songliao Basin during the Cretaceous
Beriod) (Laskar et al., 2004), it was found that both exhibit similar variation cycles. Shi et al. (2011) proposed that the East
Asian summer monsoon is primarily influenced by the precession cycle (approximately 20,000 years), while thSHNEeH
[BHSE8H is mainly driven by the obliquity cycle (around 40,000 years). The obliquity forcing affects the evolution of the
East Asian winter monsoon by modulating the meridional difference in solar radiation. When [iCHSIGHEHSIRISHSE mid-
latitude regions receive more annual solar radiation, resulting in warm and humid climates, higher populations of tropical
climate-type plant species, and lower populations of tropical-subtropical climate-type plant species. DiiiigiiliSipeRoGake
S S S Sl S NG RS SRS INORSIEINENg]. Converscly, when the slope is
lower, mid-latitude regions receive less annual solar radiation, leading to cold and dry climates, lower populations of tropical
climate-type plant species, and higher populations of tropical-subtropical climate-type plant species. During this period, lake

water bodies contract, muddy sediments decrease, and the GR readings in well logs are lower.
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Due to the relatively thin stratigraphic thickness covered by the palynological data in this study, [iiSIGHIBSSSIBIE to
determine the controlling effect of longer-term climate changes on sedimentary cycles. Further verification with better data

is needed in the future.
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Figure 7: [DiBifaIESEaIEISy Sl city in palynomorph-derived climatic belt preferences and its phase relationship with obliquity forcing

6. Conclusions

Cyclostratigraphic analysis of gamma-ray (GR) logging data from borehole G651 confirms prominent ~405kyr long
eccentricity, ~95kyr short eccentricity, ~38.3kyr obliquity, and 22.8kyr precession cycles within the central Songliao Basin's
Kon?3, [ICHIOHSIang 2stronomical forcing on its deposition. Construction of a floating astronomical time scale (FATS) via
GR tuning, anchored by high-precision volcanic ash zircon ages, yields the following key results:

(1) The Kon? spans 1240.54-1450.00 m (thickness: 209.46 m), corresponding to 81.591-83.333 Ma (duration: 1.742 Myr).
The Kon® extends from 1090.78-1240.54 m (thickness: 149.76 m), spanning 80.376-81.591 Ma (duration: 1.215 Myr).

(2) Palynomorphs at the K,n® base indicate a [ EiCIOIciaccousIOampananags 2nd reconstruct a warm-humid paleoclimate.
(3) Integration of cyclostratigraphic and palynological data [SHig@l§ obliquity forcing (38.3-kyr cycles) as the primary driver

of cyclic climate shifts at the K,n® base.
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