Supplementary Material for

Longitudinal Wave Power as a Proxy for Coastal Change Detection

Marta Aragón¹, Óscar Ferreira², Alejandro López-Ruiz³, Miguel Ortega-Sánchez¹

Correspondence to: Marta Aragón (maragon@ugr.es)

Contents of this file

Tables S1 to S3 and Figures S1 to S10.

Introduction

This file includes: Table A1, which provides information related to Van Rijn's formulation; Table S2, which details the Delft3D-SWAN model settings; Table S3, which outlines POT combinations for morphological and climatic event; and, Figures S1 and S10 of are the equivalent of figures 4 and 5 of the paper that shows the comparation between Climatic Events of LWP and Hs with the Morpho Events, for 1990-91 (S1 and S2), 1999-2000 (S3 and S4), 2000-2001 (S5 and S6), 2010-11 (S7 and S8) and 2019-20 (S9 and S10)

¹Andalusian Institute for Earth System Research, University of Granada, Granada, 18006, Spain.

²Centro de Investigação Marinha e Ambiental (CIMA/ARNET), Universidade do Algarve, Faro, 8005-139, Portugal.

³Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Seville, 41092, Spain.

Information related to the Van Rijn formulation

Table S1. Parameters used for the sediment formulation. [-] indicated non-dimensional and [log] indicated a logical value.

Parameter	Value	Definition		
IopSus	0 [log]	Suspended particle diameter determination		
Pangle	51 [deg]	Phase lead for bed shear stress		
Fpco	1 [-]	Phase lag effect in wave-induced suspended transport		
Subiw	51 [-]	Wave period subdivision		
EpsPar	0 [log]	Van Rijn's parabolic mixing coefficient		
GamTcr	1.5 [-]	Power of the grain size ratio in the critical shear stress expression		
SalMax	0 [-]	Salinity for saline settling velocity		
BetaM	0 [-]	Exponent used for effect of mud fraction on critical shear stress		
Wform	1 [log]	Wave form used		

Model set-up.

Table S2. Overview of the Delft3D and SWAN model parameters.

Parameter	Value	Units	Description	
General				
Tstart	0	min	Start time	
Tstop	525600	min	Stop time	
Dt	0.1	min	Timestep	
Ag	9.81	ms ⁻²	Gravitational Acceleration	
Flow				
Rhow	1000	kgm ⁻³	Water Density	
Tempw	15	C	Water Temperature	
Salw	31	ppt	Salinity	
Rouwav	FR84		Bottom Stress formulation due to wave action	
Rhoa	1	kgm ⁻³	Air Density	
Ccofu	65	$m^{0.5}s^{-1}$	Chezy roughness u	
Ccofv	65	$m^{0.5}s^{-1}$	Chezy roughness v	
Vicouv	2		Uniform horizontal eddy viscosity	
Dicouv	10		Uniform vertical eddy diffusivity	
Irov	0		Wall roughness (slip condition)	
Dryflc	0.05	m	Threshold depth for drying and flooding	
Tlfsmo	60	S	Time interval to smooth hydrodynamic boundary conditions	
North	Neumann		North boundary condition	
RettisNorth	0	min	North Thatcher Harlemann return time	
East	water level	m	East boundary condition	
South	Neumann		South boundary condition	
RettisEast	0	min	South Thatcher Harlemann return time	
River	discharge	m ³ /s	River boundary condition	
RettisRiver	0	min	River Thatcher Harlemann return time	
Waves				
MinimumDepth	0.05	m	Minimum depth	
GenModePhysics	3		Generation mode of physics	
Breaking	true		Include wave breaking	
BreakAlpha	1		Alpha coefficient for wave breaking	
BreakGamma	0.73		Gamma coefficient for wave breaking	
BedFriction	jonswap		Bed friction type	
BedFricCoef	0.067		Bed friction coefficient	
Diffraction	false		Include diffraction	

Parameter	Value	Units	Description	
WindGrowth	false		Include wind growth	
WhiteCapping	Komen		White capping formulation	
Quadruplts	false		Include quadruplets	
Refraction	true		Include refraction	
FreqShift	true		Include frequency shifting in frequency space	
WaveForces	Dissipation 3d		Method of wave force computation	
FlowBedLevel 1	0		Use bed level from FLOW in WAVE domain but do not extend	
FlowWaterLevel 1	0		Use water level from FLOW and extend across WAVE domain	
FlowVelocity 1	0		Use water level from FLOW and extend across WAVE domain	
FlowBedLevel 2	use / extend (2)		Use bed level from FLOW and extend across WAVE domain	
FlowWaterLevel 2	use / extend (2)		Use water level from FLOW and extend across WAVE domain	
FlowVelocity 2	use / extend (2)		Use flow velocity from FLOW and extend across WAVE domain	
DirSpace	circle		Default directional space	
Ndir	36		Number of directional bins	
FreqMin	0.05	s ⁻¹	Minimum frequency	
FreqMax	1	s ⁻¹	Maximum frequency	
Nfreq	24		Number of frequencies	
SpectrumSpec	parametric		Spectrum type	
SpShapeType	jonswap		Spectrum shape	
PeriodType	peak		Wave period type	
DirSpreadType	power		Directional spreading type	
PeakEnhanceFac	3.3		Peak enhancement factor	
WaveHeight	var	m	Wave height at boundaries	
PeriodType	var	s	Wave period at boundaries	
Direction	var	deg	Wave direction at boundaries	
DirSpreading	4	deg	Directional spreading	
Morphology				
EpsPar	false		Vertical mixing distribution according to van Rijn	
			<u> </u>	

· I · · · · · · · · · · · · · · · · · ·				
EpsPar	false		Vertical mixing distribution according to van Rijn	
MorFac	1		Morphological scale factor	
MorStt	720	min	Spin-up interval from TStart to the start of morphological changes	
Thresh	0.05	m	Threshold sediment thickness for transport and erosion reduction	
MorUpd	true		Update bathymetry during FLOW simulation	
EqmBc	true		Equilibrium sand concentration profile at inflow boundaries	
DensIn	false		Include effect of sediment concentration on fluid density	

Parameter	Value	Units	Description	
AksFac	1		van Rijn's reference height	
Rwave	2		Wave related roughness. Van Rijn recommends range 1-3	
AlfaBs	1		Streamwise bed gradient factor for bed load transport	
AlfaBn	1.5		Transverse bed gradient factor for bed load transport	
Sus	1		Multiplication factor for suspended sediment ref. concentration	
Bed	1		Multiplication factor for bed-load transport vector magnitude	
SusW	0.15		Wave-related suspended sed. transport factor	
BedW	0.15		Wave-related bed-load sed. transport factor	
SedThr	0.1	m	Minimum water depth for sediment computations	
ThetSD	1		Factor for erosion of adjacent dry cells	
HMaxTH	1.5	m	Max depth for variable THETSD.	
FWFac	1		Tuning parameter for wave streaming	

Sediment

Cref	1600	kgm ⁻³	CSoil Reference density for hindered settling calculations	
RhoSol	2650	kg/m ³	Specific density	
SedDia	0.001	m	Median sediment diameter (D50)	
CdryB	1600	kg/m ³	Dry bed density	
IniSedThick	10	m	Initial sediment sand layer thickness at bed, updrift sediments	
FacDSS	1		FacDss * SedDia = Initial suspended sediment diameter.	
IopSus	false		Suspended particle diameter determination	
Pangle	51	deg	Phase lead for bed shear stress	
Fpco	1		Phase lag effect in wave-induced suspended transport	
Subiw	51		Wave period subdivision	
EpsPar	false		Van Rijn's parabolic mixing coefficient	
GamTcr	1.5		Power of the grain size ratio in the critical shear stress expression	
SalMax	0		Salinity for saline settling velocity	
BetaM	0		Exponent used for effect of mud fraction on critical shear stress	
Wform	true		Wave form used	

POT combinations.

Table S3. POT combinations for the morphological and climatic events

Combination number	Percentile	Independence criterion (days)	Minimum event duration (hours)
1	95	2	6
2	95	2	12
3	95	2	18
4	95	2	24
5	95	2	48
6	95	3	6
7 (T-POT)	95	3	12
8	95	3	18
9	95	3	24
10	95	3	48
11	95	4	6
12	95	4	12
13	95	4	18
14	95	4	24
15	95	4	48
16	96	2	6
17	96	2	12
18	96	2	18
19	96	2	24
20	96	2	48
21	96	3	6
22	96	3	12
23	96	3	18
24	96	3	24
25	96	3	48

Combination number	Percentile	Independence criterion (days)	Minimum event duration (hours)
26	96	4	6
27	96	4	12
28	96	4	18
29	96	4	24
30	96	4	48
31	98	2	6
32	98	2	12
33	98	2	18
34	98	2	24
35	98	2	48
36	98	3	6
37	98	3	12
38	98	3	18
39	98	3	24
40	98	3	48
41	98	4	6
42	98	4	12
43	98	4	18
44	98	4	24
45	98	4	48

Figure S1. Comparison between volume changes, in north (a) and south CV (b), LWP (c) and wave height (d) during the 1990-91 climate for ME90 (90th percentile for volume variation). In (c,d) the CE related to T-POT are marked in red dots.

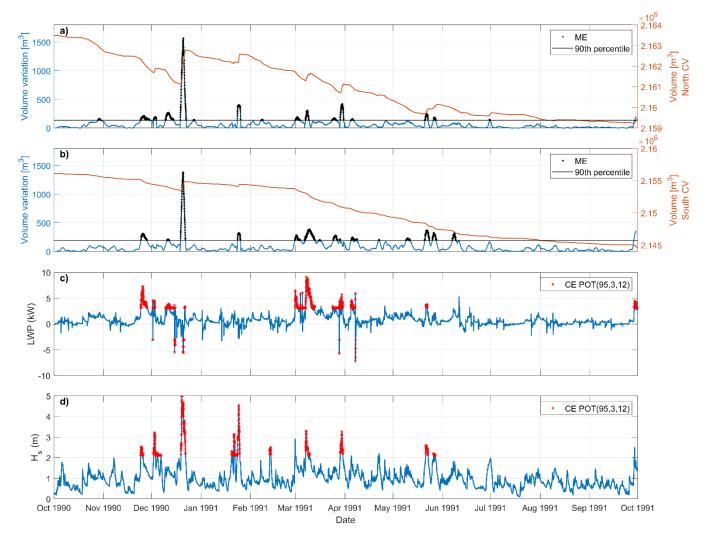


Figure S2. Comparison between volume changes, in north (a) and south CV (b), LWP (c) and wave height (d) during the 1990-91 climate for ME95 (95th percentile for volume variation). In (c,d) the CE related to T-POT are marked in red dots.

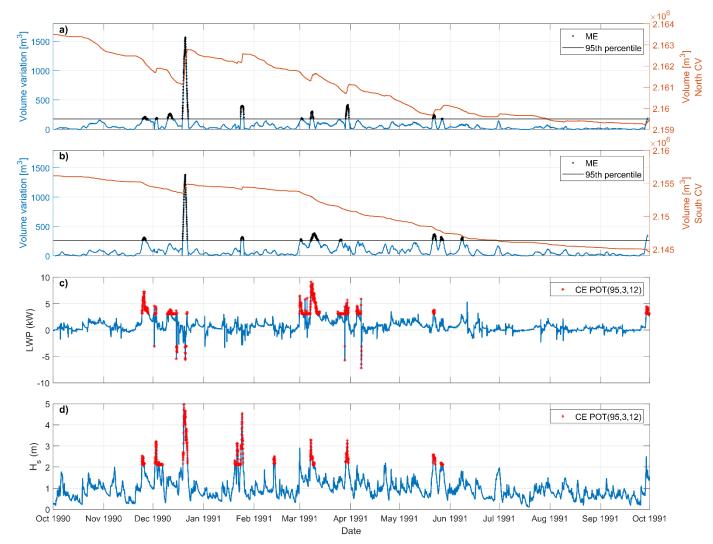


Figure S3. Comparison between volume changes, in north (a) and south CV (b), LWP (c) and wave height (d) during the 1999-2000 climate for ME90 (90th percentile for volume variation). In (c,d) the CE related to T-POT are marked in red dots.

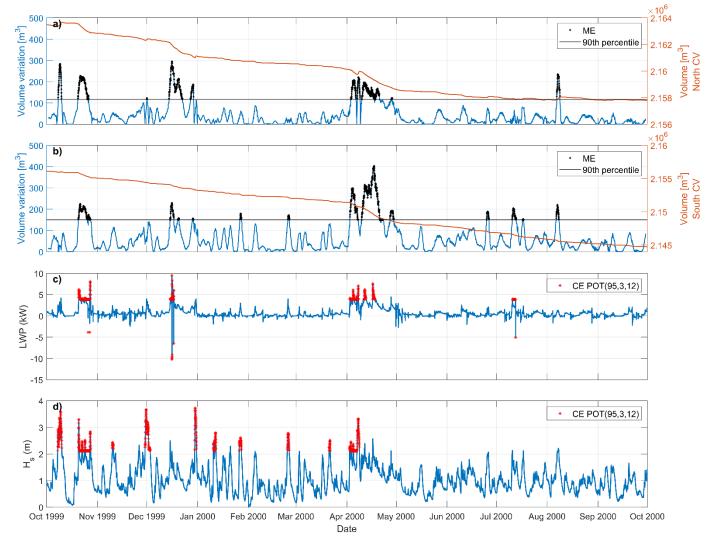


Figure S4. Comparison between volume changes, in north (a) and south CV (b), LWP (c) and wave height (d) during the 1999-2000 climate for ME95 (95th percentile for volume variation). In (c,d) the CE related to T-POT are marked in red dots.

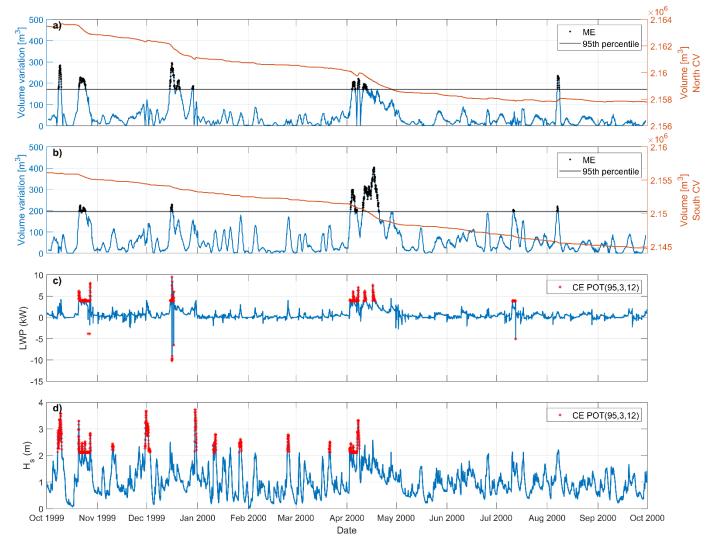


Figure S5. Comparison between volume changes, in north (a) and south CV (b), LWP (c) and wave height (d) during the 2000-2001 climate for ME90 (90th percentile for volume variation). In (c,d) the CE related to T-POT are marked in red dots.

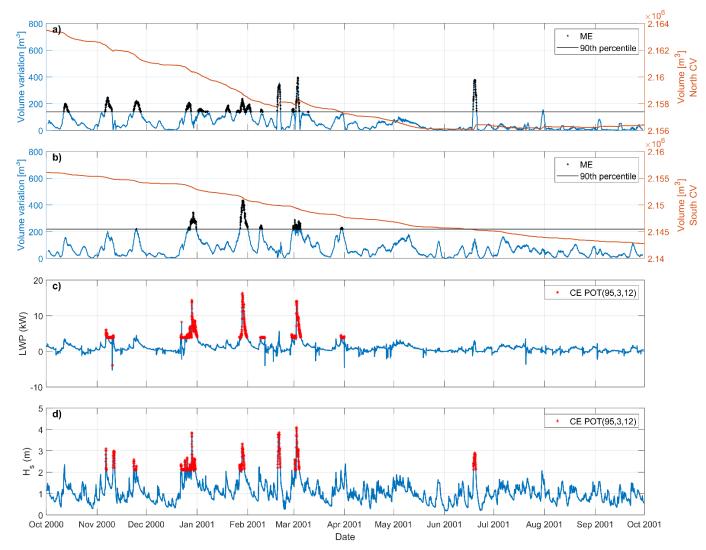


Figure S6. Comparison between volume changes, in north (a) and south CV (b), LWP (c) and wave height (d) during the 2000-2001 climate for ME95 (95th percentile for volume variation). In (c,d) the CE related to T-POT are marked in red dots.

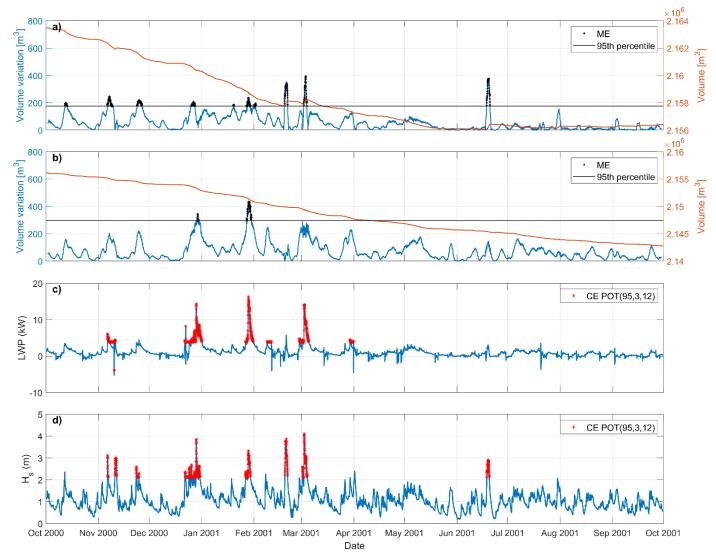


Figure S7. Comparison between volume changes, in north (a) and south CV (b), LWP (c) and wave height (d) during the 2010-11 climate for ME90 (90th percentile for volume variation). In (c,d) the CE related to T-POT are marked in red dots.

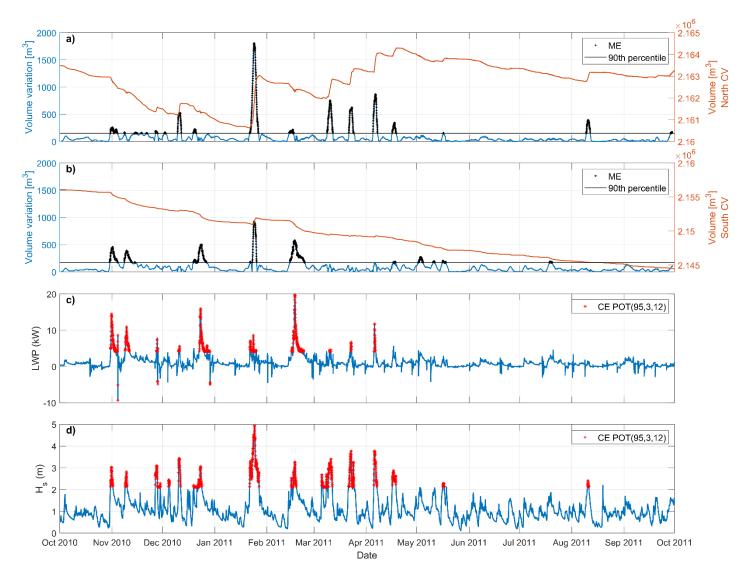


Figure S8. Comparison between volume changes, in north (a) and south CV (b), LWP (c) and wave height (d) during the 2010-11 climate for ME95 (95th percentile for volume variation). In (c,d) the CE related to T-POT are marked in red dots.

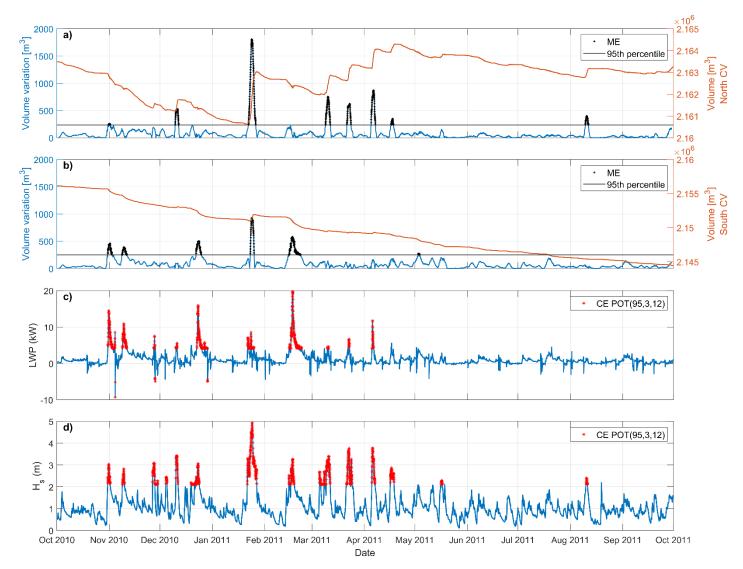


Figure S9. Comparison between volume changes, in north (a) and south CV (b), LWP (c) and wave height (d) during the 2019-20 climate for ME90 (90th percentile for volume variation). In (c,d) the CE related to T-POT are marked in red dots.

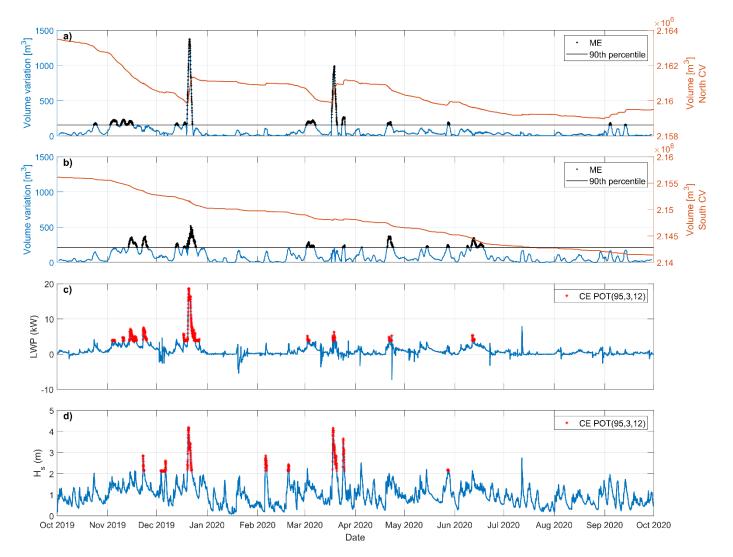
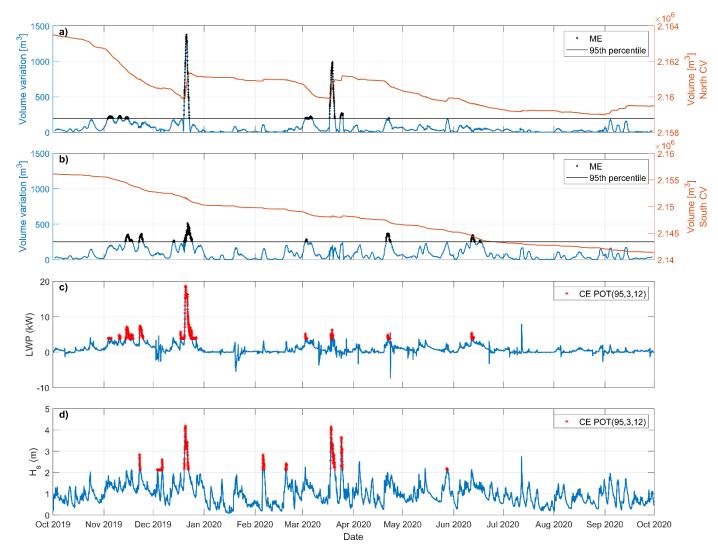



Figure S10. Comparison between volume changes, in north (a) and south CV (b), LWP (c) and wave height (d) during the 2019-20 climate for ME95 (95th percentile for volume variation). In (c,d) the CE related to T-POT are marked in red dots.

