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Abstract. WaterSip is a diagnostic software tool that identifies the evaporation sources and transport pathways of precipitation

or water vapour over a target area based on Lagrangian model output. In addition to the geographic location, WaterSip identifies

select thermodynamic properties of the moisture sources, during atmospheric transport, and arrival over the target area based

on Lagrangian particle dispersion or trajectory model output. WaterSip software thereby employs the Lagrangian diagnostic

algorithm for quantitative moisture source accounting of Sodemann et al. (2008b). Moisture sources are identified from changes5

in specific humidity along trajectories at each output time step. The ratio between changes in specific humidity and the specific

humidity of the air parcel allow to estimate the quantitative contribution of a moisture source to an air parcel at a specific

time and location. This contribution and its temporal sequence provides the basis for identifying moisture source contributions

to the final precipitation. WaterSip is designed to operate on large datasets of trajectories filling regional to global domains.

The results are provided as gridded information in a variety of output files in netCDF format. This paper revisits the relevant10

methodological foundations, describes the configuration and technical set-up, and provides a consistent example case study to

illustrate the use and interpretation of the software tool and its results. A short sensitivity study supports the choice of the main

parameters of the diagnostic. Key uncertainties and caveats are described and discussed throughout the text. Users of WaterSip

should be aware of these uncertainties to obtain a valid and reliable interpretation of the diagnostic results.

1 Introduction15

Atmospheric dynamics transports water vapour from an evaporation source to a precipitation sink, as manifested in the global

spectrum of weather systems. Knowledge about how weather systems shape the atmospheric water cycle from source to sink is

key for understanding the causes of hydro-meteorological extremes (e.g., Brubaker et al., 2001; Winschall et al., 2014b; Holgate

et al., 2020), precipitation seasonality (e.g., Sodemann and Zubler, 2010; Singh et al., 2017), and climatological averages (e.g.,

Brubaker et al., 1993). Process studies have for example investigated how oceans contribute to precipitation on land (Stohl20

and James, 2004), and how land areas recycle precipitation (Eltahir and Bras, 1996; Dominguez et al., 2016). On paleoclimate

time scales, knowledge of the variation of sources and transport pathways of water vapour are central to the interpretation of

archives of the past hydroclimate, including ice cores (e.g., Johnsen et al., 1989; Sodemann et al., 2008a) and cave deposits at

lower latitudes (e.g., Breitenbach et al., 2010; Moerman et al., 2013; Baker et al., 2015).
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Measurements of precipitation and atmospheric water vapour do not directly reveal information about their evaporation25

sources. In specific situations, the stable water isotope composition of atmospheric waters may allow to separate the contri-

bution of different source regions from the effect of phase changes during transport (Sodemann et al., 2008a; Aemisegger

et al., 2014; Weng et al., 2021). In general, however, due to the multitude of influences, the problem is underdetermined. Fur-

thermore, the interpretation of water isotope measurements themselves can require additional diagnostic numerical tools to

disentangle the contribution of different processes and evaporation sources. As a consequence, results from moisture source30

studies generally suffer from a lack of definitive, observable constraints.

Different approaches from atmospheric models and model data have been used over time to access information on water

vapour’s sources and transport conditions (Dominguez et al., 2020). Conceptual studies evaluated the water balance in domains

over a given region, for example to determine precipitation recycling over the Continental U.S. (Eltahir and Bras, 1994) and

the Amazon region (Salati et al., 1979). Much more complex approaches release water vapour tracers within a numerical at-35

mospheric model’s water cycle (Numaguti, 1999; Sodemann and Stohl, 2009). Hereby, water vapour is transported forward

within a secondary water cycle of the numerical model for selected ’tagged’ subsets of total evaporation. Such tagging ap-

proaches require a very substantial computational effort to obtain detailed representation of the sources, and over seasonal

to inter-annual time scales. To reduce the computational efforts, Eulerian offline methods with reduced complexity have been

developped
::::::::
developed (Yoshimura et al., 2004; van der Ent et al., 2014). As an intermediate in terms of complexity and compu-40

tational demand, Lagrangian methods have been employed to diagnose the water budget along air parcel trajectories (Dirmeyer

and Brubaker, 1999; Stohl and James, 2004; Gustafsson et al., 2010). Since trajectories can be calculated off-line from stored

atmospheric fields, for example reanalysis data, such an approach is computationally more efficient than tagging studies. In

addition, Lagrangian methods can more easily provide the spatial extent of moisture sources, and thus provide an intuitive

connection between source and receptor areas.45

This paper describes the concepts and use of the WaterSip1 software. WaterSip consists of an implementation of the widely

used Lagrangian moisture source and transport diagnostic of Sodemann et al. (2008b). WaterSip provides a means to identify

and characterise the source regions and transport conditions of water vapour and precipitation from Lagrangian air parcel tra-

jectories. The algorithm of the WaterSip software includes an accounting procedure. This processing step provides quantitative

estimates of the moisture source contributions to precipitation (or water vapour) in a target area. This quantitative information50

can then be used to provide, for example, the average sea surface temperature at the moisture source ((Sodemann et al., 2008b)

)
::::::::::::::::::::
(Sodemann et al., 2008b), the fraction of land versus ocean surface contribution (Sodemann and Zubler, 2010), the duration

and transport distance from evaporation to precipitation (Laederach and Sodemann, 2016), as well as the extent of mixing

and rainout during transport (Dütsch et al., 2018). For comparison, the algorithms of Stohl and James (2004), Dirmeyer and

Brubaker (1999), and Gustafsson et al. (2010) are also available in the WaterSip tool.55

1The name WaterSip originates from the name of an internal research project at NILU, where the author developed large parts of the present code. The

name can be understood as a metaphor, where increases of the water vapour mixing ratio between time steps could be imagined as sips of water taken by an

air parcel.
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A bibliographic overview of studies that have used the (Sodemann et al., 2008b)
::::::::::::::::::::
Sodemann et al. (2008b) algorithm with the

WaterSip software shows the global to regional coverage of previous work, and the variety of study objectives, from event-

scale to climatological studies, process studies, sensitivity studies, and the interpretation of measurements and paleoclimate

records (Table 1). Since the original publication of this diagnostic method, numerous technical and conceptual developments

have taken place, which are either fragmented across several publications, or not coherently described in the current literature.60

The main objective of this work is therefore to provide a consistent reference point for the use and interpretation of the method

and software, including its wide array of additional diagnostic output of moisture transport characteristics. Users will therefore

no longer need to re-implement the diagnostic algorithm behind WaterSip themselves, and can focus on the application of the

tool to different subject areas.

The WaterSip software in current version 3.2 described here gives users flexibility in its configuration with regard to different65

threshold parameters, and gives access to a multitude of additional moisture source and moisture transport characteristics ob-

tained from the algorithm. WaterSip currently works with two common models providing air parcel trajectories (LAGRANTO,

Sprenger and Wernli (2015)and
:
)
:::
and

:::::::
particle

:::::::::
dispersion

:::::::::
trajectories

::
(FLEXPART, Stohl et al. (2005)), and can be extended

to read in trajectory files produced from other trajectory calculation tools. Implemented as a C++ code with parallelisation in

openMP, and writing output files in netCDF format, the WaterSip code can be easily integrated in common scientific computing70

environments and workflows.

The paper starts with a overview of the working principle of the algorithm and introduces key quantities (Sec. 2). This is

followed by a description of the configuration of a run (Sec. 3), followed by practicalities such as input data, running the

software, and an output file description (Sec. 4). A case study is used as a consistent example throughout the manuscript to

get users started with the diagnostic output capabilities and the interpretation, providing guidance in applying WaterSip to new75

research topics. Readers who are new to the method may choose to first look at the description of the results from the example

case (Sec. 4.4 and Sec. 5) before reading through the method description. Being an off-line diagnostic based on air parcel

trajectories, WaterSip makes several simplifying assumptions that introduce uncertainty to the results. Causes of uncertainty

are mentioned throughout the text and discussed in Sec. 6. Users are advised to think carefully about the inherent limitation of

the method to obtain valid and reliable conclusions from applying WaterSip during their research efforts.80

2 Method

The original publication of the diagnostic algorithm of (Sodemann et al., 2008b) was implemented as a set of FORTRAN

routines and shell scripts for use with trajectories from LAGRANTO (Sprenger and Wernli, 2015). Since then, there has

been a considerable growth in studies with this algorithm (Table 1. Alongside, there have been new conceptual and technical

developments that require an updated reference publication. These developments include the use of WaterSip with FLEXPART85

model output (Sodemann and Stohl, 2009), assessing the role of convection and assimilation increments Sodemann (2020);

Fremme et al. (2023), the distinction of mixing and rainout events during transport Dütsch et al. (2018), the analysis of lifetime

distribution of water vapour (Winschall et al., 2014b; Laederach and Sodemann, 2016; Sodemann, 2020), interpretation of
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Table 1. Previous studies using the Sodemann et al. (2008b) method with the WaterSip software. Studies have been classified by their study

region, time scale, and study topic.

Region Time scale Study topic References

Central Europe Climatological Precipitation seasonality Sodemann and Zubler (2010)

Inter-annual Interpretation of measurements Aemisegger et al. (2014)

North Atlantic Inter-annual Interpretation of measurements Steen-Larsen et al. (2015)

Event-based Precipitation extreme Weng et al. (2021)

Inter-annual Interpretation of measurements Zannoni et al. (2022)

Mediterranean Event-based Method comparison Winschall et al. (2014a)

Event composite Precipitation extremes Winschall et al. (2014b)

Greenland Climatological Method description Sodemann et al. (2008b)

Climatological Ice core interpretation Sodemann et al. (2008a)

Inter-annual Interpretation of measurements Bonne et al. (2014)

Event-based Atmospheric river precipitation Bonne et al. (2015)

Climatological Ice core interpretation Osman et al. (2021)

Antarctica Climatological Precipitation seasonality Sodemann and Stohl (2009)

Climatological Ice core interpretation Masson-Delmotte et al. (2011)

Climatological Ice core interpretation Winkler et al. (2012)

Climatological Ice core interpretation Wang et al. (2013)

Climatological Ice core interpretation Buizert et al. (2018)

Event-based Atmospheric river precipitation Terpstra et al. (2021)

Climatological Glacier mass balance Hofsteenge et al. (2025)

East Asia Climatological Cave deposit interpretation Baker et al. (2015)

Climatological Process study Fremme and Sodemann (2019)

Climatological Model sensitivity Fremme et al. (2023)

India and Pakistan Event Precipitation extreme Martius et al. (2012)

Event composite Precipitation extremes Bohlinger et al. (2017)

Event-based Precipitation extreme Bohlinger et al. (2018)

Global Climatological Precipitation life time Laederach and Sodemann (2016)

Climatological Precipitation life time Sodemann (2020)

Climatological Precipitation life time Gimeno et al. (2021)

stable isotope characteristics (Weng et al., 2021), the identification of water vapour in addition to precipitation, as well as

technical developments regarding input and output files, configuration and output quantities. This section provides a coherent90

description of the working principle of the algorithm, including the mathematical formalism that will be used in the remainder

of the manuscript.
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2.1 Description of the diagnostic accounting algorithm

Generally, the Sodemann et al. (2008b) algorithm used in WaterSip works based on trajectories of atmospheric air parcels,

described by a time-dependent coordinate vector −→x (t) of positions given by longitude λ, latitude ϕ, and height z:95

−→x (t) = [λ(t),ϕ(t),z(t)]. (1)

Air parcel trajectories on the way to a target area A (Fig. 1a, black box) may pass over the underlying surface of either ocean

(blue area) or land regions (green area), thereby acquiring moisture at the moisture sources (hatched area). Acquisition of

moisture by an air parcel is termed a moisture uptake, and the ensemble of all moisture uptakes to an air parcel then comprises

the moisture source. Identifying the relevant set of air parcels arriving over a target domain and their corresponding trajectories100

is the first step of the Sodemann et al. (2008b) algorithm (Fig. 1c, step 1).

Next, in order to determine the moisture sources of an air parcel, specific humidity q and air temperature T , or relative

humidity RH and T , must be available along the same trajectory. These are commonly obtained by interpolation from four-

dimensional NWP model output fields. For example, the 4-D specific humidity field Q is used to obtain q(t) along the transport

pathway of air parcels towards a target area at every time interval i with time step ∆t:105

qi =Q[−→x (t= i ·∆t)]. (2)

The conceptual starting point of the algorithm is then the Lagrangian water budget, describing the change in specific humidity

along an air parcel trajectory resulting from evaporation (e) and condensation (c) (Stohl and James, 2004):

Dq

Dt
= e− p (3)

The discretized Lagrangian water budget, giving the change in q along a trajectory with time step ∆t of ∼ 1− 6 h at time110

step i is then

∆qi
∆t

= ei − pi. (4)

The arrival time at target area A is given by t= 0 at step 0, and i increases backward in time along the trajectory (Fig. 1d,

horizontal axis). The change in specific humidity from the previous interval, i+1, to interval i is then obtained from

∆qi = qi − qi+1. (5)115

Importantly, ∆qi can either be positive, zero, or negative (Fig. 1d). A positive ∆q (i.e., ∆q > 0) is interpreted as a so-called

moisture uptake, while a negative ∆q (i.e., ∆q < 0) is interpreted as a moisture loss along the trajectory. Thereby, ∆qi is
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always a net effect of both ei and pi that may have affected the water budget of the air parcel during time step i. The algorithm

necessarily assumes that either evaporation or precipitation exclusively act on an air parcel during discretisation time ∆t, which

introduces uncertainties depending on the discretisation time ∆ t (see Sec. 6). In practice, a critical specific humidity threshold120

∆qc is used to filter out smaller variations in ∆q that are due to numerical noise (see Sec. 3.1, Fig. 1d).

Each
:::::::::::
Conceptually,

::::
each

:
moisture uptake ∆qn contributes a share fn to the moisture qn at a given time interval. Due to

subsequent uptakes or rainout and mixing events along the trajectory , typically only a fraction fn of the local moisture uptake

will arrive over the target domain and contribute to the total water vapour at arrival
::::
path

:::::::::
contributes

:
a
:::::
share

::::
∆qn::

to
:::
the

:::::::
arriving

:::::::
moisture q0:125

q0 =

U∑
n=1

fn·∆qn + qr. (6)

Thereby, qr is a residual amount of moisture that already was present in the air parcel at the earliest available time step of

the trajectory with unidentified sources (see Sec. 3.3.3).
:::
Due

::
to

::::::
rainout

::::
and

::::::
mixing

::::::
effects

:::::
along

:::
the

::::::
further

::::::::
transport,

:
a
::::
part

::
of

::
the

::::::
uptake

::::::::
moisture

:::
can

::
be

::::
lost,

::::
and

:::
∆q

:::
will

::::
only

:::::::::
contribute

::::
with

::
a

::::::
fraction

:::
fn ::

to
:::
the

:::::::
moisture

::
at

:::
the

::::::
arrival

:::::::
location:

:

q0 =

U∑
n=1

fn ·∆qn + qr.

::::::::::::::::::

(7)130

The objective of the accounting step of the Sodemann et al. (2008b) algorithm is now to obtain an estimate of the fractional

contributions
::::::::::
contributing

::::::
fraction

:
fn for of each of the U identified moisture uptakes (Fig. 1c, step 2). The so-called moisture

accounting provides all fn, which then allow to diagnose where, when, and under what conditions the air parcel water budget

changed, and to what extent this is reflected in the precipitation falling from the air parcel (Fig. 1c, step 3).

At the time of a moisture uptake, the fractional contribution fn for each uptake n is directly obtained from135

fn =
∆qn
qn

. (8)

However, if
:
If
:

at a later time another moisture uptake contributes to the specific humidity in the same air parcel,
::
qn::::

will

::::::
change,

::::
and fn needs to be recalculated to reflect its decreases

::::::::
decreased share. This sequential updating of the fractional

contributions is referred to as the accounting of specific humidity along the trajectory. In Fig. 1d, a moisture increase between

time intervals 4 and 5, for example, that is larger than the threshold value ∆qc, gains a smaller relative share of the arriving140

moisture q0 after a large uptake occurs between time steps 1 and 2. A more detailed, quantitative example is given in Sodemann

et al. (2008b).

In the case of another moisture uptake at a later time step i, the fractions fm of all previous uptakes m> i simply need to

be recalculated using Eq. 8 as
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f ′
m =

∆qm
qi

for m< i. (9)145

In the case of a moisture loss (due to precipitation) at a later time i, some of the moisture contributed from previous uptakes

m< i will be lost. Since the Sodemann et al. (2008b) algorithm assumes that the water vapour is well mixed within a given

air parcel, precipitation events do not change the fractional contributions at that time. However, a later moisture loss ∆qi does

remove moisture from previous uptakes ∆qm according to their fractional contribution fm at time m:

∆q′m =∆qm − fm ·∆qi. (10)150

The accounting is complete when the above steps in Eq. (7–9) have been applied from the earliest time of the trajectory up

to the arrival time t= 0. Dütsch et al. (2018) compactly expressed the final result of this accounting method in two update

equations. While the algorithm is presented here in a detailed representation of each of the computational steps, the equations

in Dütsch et al. (2018) are almost entirely equivalent, and may facilitate a numerical implementation of the algorithm (for one

exception see below). WaterSip currently implements only this stepwise accounting procedure.155

The vertical location of the air parcel as moisture uptakes take place can be used to infer the reliability of the assumption that

water vapour stems from evaporation at the current location. If air parcels are within or close the the height of the (well-mixed)

boundary layer, this assumption is considered more likely to be valid than if the uptake is detected well into the free troposphere

(Fig. 1b, dashed line). The boundary-layer height scale factor sz ::
sh:is used to separate between uptakes considered to be within

the boundary layer or within the free troposphere (see Sec. 3.1.4).160

2.2 Precipitation estimate

Up to this point, the algorithm has provided quantitative information about the contributions of uptakes to the moisture within

an air parcel at −→x (t= 0) at some height z. While it is possible to directly use the information about the sources of the water

vapour, more commonly one would be interested in the moisture sources of surface precipitation. In order to transfer the water

vapour information to surface precipitation at the arrival point of trajectories, moisture loss from a precipitating air parcel at the165

last time step before arrival (∆q0 < 0) is assumed to directly contribute to surface precipitation. To obtain a reliable estimate of

the total precipitation in an area, a sufficiently large set of
::::::
particle trajectories is required to faithfully represent the atmospheric

column above a target area (Fig. 1b, crosses). Then, the Lagrangian precipitation estimate P̃ (in units of kg m−2(∆t)−1) can

be computed as the column integral of all ∆qk0 for all K trajectories
:::
air

::::::
parcels

::::
with

::::
mass

::::
mk residing over the target area A

at time t= 0:170

P̃ =
1

A

K∑
k=1

(
|∆qk0 | ·mk

)
, (11)
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Here, mk is the mass of air parcel k residing over the target area. In case that trajectory model output is used rather than

particle dispersion model output, and that trajectories are started from a region that is discretised vertically in pressure intervals,

Eq. 11 becomes

P̃ =
1

g ·A

K∑
k=1

(
|∆qk0 | ·∆pk

)
.175

To obtain a spatially coherent view, the contribution of each individual particle or trajectory
::
air

::::::
parcel is gridded onto the

arrival grid using a gridding kernel (see Sec. 5.3). Thereby only air parcels fulfilling certain requirements are considered in

the analysis of precipitation moisture sources. For example, to further support the presence of clouds leading to precipitation,

a critical relative humidity threshold RHc is applied, where clouds are assumed when the grid-scale relative humidity exceeds

80% (see Sec. 3.1.3).180

2.3 Accounted fraction

The sum of all fractional contributions fk
i from identified moisture uptakes U along trajectory k, the total accounted fraction

fk
tot, provides information about the known sources of qk0 and thus ∆qk0 :

fk
tot =

U∑
i=1

fk
i . (12)

Hereby, M
::
U is the number of all moisture uptake events identified along trajectory k. Based on the vertical position (particle185

elevation) z where the uptake is identified, the fractional contributions are subdivided into the two categories: the accounted

fraction in the boundary layer, fk
bl, and the accounted fraction in the free troposphere, fk

ft . The sum of both fractions is the total

explained fraction fk
tot, which should obey the relation

fk
tot = (fk

bl + fk
ft )< 1. (13)

Then, fk
tot provides information about the consistency of the algorithm. In general, and on average, this relation is found to190

be indeed fulfilled. However, if the ∆qc threshold is set to values outside a meaningful range, the total explained fraction can

exceed 1.0. Typically, this will happen for large values of the precipThreshold parameter
:
,
:::::
which

::::
can

:::
lead

::
to
::::::::::
undetected

::::::
rainout

:::::
events

:
(see Sec. 3.1.2). Users are thus advised to inspect fk

tot in their results and to make adjustments if needed.
:::::::
Notably,

:::
this

::
is

:
a
::::::::
difference

::
to
:::

the
:::::::::
algorithm

::
of

:::::::::::::::::
Dütsch et al. (2018)

:::::
where

::::::
ftot ≤ 1

:::
by

::::::::
definition.

:

The explained fractions fk
bl, f

k
ft can be used further to subdivide the Lagrangian precipitation estimate P̃ into its respective195

explained fractions. The total explained precipitation P̃tot is obtained from

P̃tot =

K∑
k=1

(
ftot · P̃ k

)
=

1

A

K∑
k=1

(
fk

tot · |∆qk0 | ·mk

)
. (14)

8



(a) (b)

(d)

(c)
1. Particle selection

2. Moisture source accounting

3. Moisture properties quantification

4. Gridding and output
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Figure 1. Schematic illustration of the moisture source diagnostic. (a) Horizontal view of a bundle of trajectories (T1,T2,T3, dark blue lines)

arriving in a target region A (black box). The trajectories pass over ocean (light blue) and land regions (green). An area of moisture uptake

(dashed, orange) is detected where the specific humidity increases along trajectories (broadening blue lines). (b) 3-dimensional view of an

air mass represented by air parcels that are traced backward using trajectories. Crosses denote arrival points in the air mass over the arrival

domain A (black box). Locations of moisture increase from evaporation above the boundary layer (dashed red arrow), within the boundary

layer (solid red arrows), and decrease from precipitation (black arrow) are detected from changes in the specific humidity along trajectories

(width of blue line). Moisture uptakes (∆q > 0) can be within the boundary layer (bl uptake) or in the free troposphere (ft uptake). Note that

many trajectories at different vertical levels contribute to the Lagrangian precipitation estimate in the arrival region. Dashed black line denotes

boundary-layer height (BLH). (c)
::::
Flow

::::::
diagram

::
of

::::::::
processing

::::
steps

::
in

:::
the

:::::::
WaterSip

::::::::
diagnostic.

:::
(d) Schematic of moisture uptakes and losses

along 6 time steps of an air parcel with mass mk arriving at grid-scale saturation, identified by with RH aboveathresholdvalue
::::
above

::
a

:::::::
threshold

::::
value RHc (shading). Note that some of the specific humidity changes are smaller than a set threshold value for significant specific

humidity changes ∆qc. See text for details.

Corresponding quantities P̃bl and P̃ft can be computed for fbl and fft. A choice to consider in this respect is which precip-

itation should be used for the weighted average of diagnosed quantities, P̃ or only the explained fractions of (P̃tot, P̃bl, P̃ft).

Given that the Lagrangian precipitation estimate P̃ is typically in error by about 20–30% or more (Stohl and James, 2004), this200
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choice might be secondary for the interpretation of the final results. In the Sodemann et al. (2008b) algorithm as implemented

in WaterSip, P̃ is used, rather than P̃tot.

3 Configuration of WaterSip

WaterSip is has a long list of configuration parameters that control the workings of the algorithm. The configuration is supplied

as a text-based input file, that consists of sets of parameters, which are organised into thematic sections. This section describes205

how to control core algorithm parameters (Sec. 3.1), how to handle the discretisation of the arrival air mass (Sec. 3.2), and

how to configure the output grids (Sec. 3.4). While the detailed format of the text-based input file is described in Appendix B,

the following sections mentions the name of the relevant parameters and input file sections, exemplifies typical values, and

describes relevant findings from the literature along the way. A brief sensitivity study of several key parameters is provided in

Sec. 6.1.210

3.1 Core algorithm parameters

The core parameters of the Sodemann et al. (2008b) algorithm are a set of threshold parameters that determine the identification

of moisture uptakes and precipitation events from the Lagrangian moisture budget along trajectories.

3.1.1 Uptake threshold ∆qc

Specific humidity changes along air parcel trajectories are not only reflecting e− p, but also contain spurious noise due to215

interpolation from gridded NWP output and inaccuracies in trajectory calculations (Stohl, 1998). There may also be an impact

from parameterised atmospheric processes, such as convection and turbulence, that act at a time scale shorter than the trajectory

time interval, and that are only detected by their residual effects (see Sec. 3.3.2 and Sec. 6).

In order to suppress or dampen such noise, the uptake threshold ∆qc is introduced in the distinction of evaporation and

precipitation events. Specifically, a moisture uptake is identified if ∆q >∆qc, while a moisture loss is correspondingly identi-220

fied if ∆q <∆qc (Fig. 1c). The uptake threshold is set as parameter uptakeThreshold in the settings group Diagnostics of the

configuration file (Table B3). Thereby, the value must be given per trajectory time step (in g kg−1 h−1).

At a default value of ∆qc = 0.2 g kg−1 6 h−1 that is typically used in a broad range of mid-latitude conditions, only relatively

substantial uptake events are detected by the diagnostic. In Tropical and sub-tropical regions, a larger threshold value may

be suitable, whereas in colder and drier conditions, such as in polar or high-altitude regions, a lower threshold of ∆qc =225

0.1 g kg−1 6 h−1 has been recommended (Sodemann and Stohl, 2009). A lower value for ∆qc will lead to the inclusion of a

larger part of the noise spectrum as moisture uptakes. A larger number of uptakes in turn leads to a higher chance of discounting

previous moisture uptakes, and thus may induce a bias towards more local moisture sources.

As an alternative, WaterSip can be instructed to use a relative threshold value ∆qcr. In this case, noise is considered as a

relative error, and thus the threshold value is computed at every time step as ∆qc = qi ·∆qcr. The relative threshold value is230

activated by setting the parameter relativeThreshold= 1 in the settings group Diagnostics (Table B3). The value of the uptake
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threshold is then interpreted as ∆qcr (as fraction with unit 1). The impact of this relative threshold option has not yet been

tested extensively for different climate zones and events.

In the context of the uptake threshold, it is interesting to consider the impact of data assimilation on the specific humidity

of gridded NWP data, such as reanalysis data. Data assimilation methods can introduce non-physical perturbations to the235

moisture field, the so-called assimilation increment. Assimilation increments are another reason to apply ∆qc in the diagnostic.

If trajectories are calculated using a model forecast without data assimilation, such as for climate model data, no assimilation

increments are present in the gridded fields, and thus less noise would be expected in ∆q. Fremme et al. (2023) investigated

the impact of different ∆qc in CESM and NorESM climate model data compared to reanalysis data, and found quantitative

but no clear qualitative differences in the result of the diagnostic that could be related to assimilation increments. Users should240

thus consider testing lower ∆qc when using trajectories based on free-running model forecast data rather than reanalyses.

3.1.2 Precipitation threshold ∆qp

Similar to the uptake threshold, a corresponding threshold value exists for the identification of moisture losses due to pre-

cipitation along trajectories, the precipitation threshold ∆qp. As the same amount of numerical noise can lead to spurious

identification of moisture losses as for moisture uptakes, the value of ∆qp =−0.2 g kg−1 6 h−1 is commonly used in mid-245

latitudes (Sodemann et al., 2008b), while a lower value such as ∆qp =−0.1 g kg−1 6 h−1 appears more suitable for polar

regions (Sodemann and Stohl, 2009). In general, it is recommended for reasons of consistency to use symmetric settings for

the uptake and precipitation thresholds
:::::::
threshold. The precipitation threshold is set as parameter precipThreshold in the settings

group Diagnostics of the configuration file (Table B3). As the detection of moisture losses along trajectories leads to a discount

of the remaining contribution from earlier uptake events, a lower precipitation thresholds can lead to relatively less remote250

moisture sources. The parameter relativeThreshold also affects the interpretation of the value in precipThreshold as absolute

or relative parameter value.

3.1.3 Critical relative humidity threshold RHc

The Lagrangian precipitation estimate P̃ is based on moisture losses during the last time step of arriving trajectories. In order

to further support that a detected moisture loss is likely due to cloud processes, the critical relative humidity threshold RHc is255

introduced. If RH0 > RHc or RH1 > RHc, the air parcel is associated with clouds during arrival, and thus any negative ∆q is

assumed to be due to precipitation. RHc is set as parameter arrivalRHMin in the settings group Diagnostics of the configuration

file (Table B3). The default value for RHc is 80 (in units of %), corresponding to a common threshold value in parameterisations

of sub-grid cloud cover. Several studies indicate that depending on latitude and predominant weather regime, the Lagrangian

precipitation estimate P̃ increases with lowering of RHc. Such lower threshold values may be argued for in particular in cold,260

mixed-phase and ice cloud regimes (Terpstra et al., 2021), and in the case of predominantly convective precipitation, that are

not necessarily associated with grid-scale cloud cover (Fremme and Sodemann, 2019). An additional parameter arrivalRHMax

in the settings group Diagnostics allows to focus the analysis on a a specified range of RH during air parcel arrival, for example

if one would be interested in the source properties of water vapour during cloud-free arrival conditions only (Table B3).
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Note that a decrease in specific humidity, detected as a moisture loss, can also be a consequence of mixing with drier air, for265

example due to dry convection. Moisture loss events that take place in an unsaturated environment, i.e., when RH < RHc at

both time steps used to calculate any ∆qi are therefore counted and processed as dry mixing events, rather than precipitation

events (see Sec. 3.1.2). While these mixing events are written to a different output variable (see Sec. 5.1), the consequences for

the accounting of moisture losses is the same for saturated and unsaturated conditions.

3.1.4 Boundary-layer height scale factor sh270

Another important parameter is the distinction between uptake events that are detected when an air parcel is within the bound-

ary layer, and when it is in the free troposphere. Since air parcel trajectories are 3-dimensional, the uptakes are identified when

the parcels are at a given height above ground. Evaporation from the surface is assumed to be most plausibly contributing to

the moisture increase in an air parcel location if it is within or close to the turbulently mixed atmospheric boundary layer. This

resembles the "footprint analysis" of the lowermost 100–300 m above ground, which is commonly used in atmospheric chem-275

istry applications (e.g., Hirdman et al., 2010). Detrainment and venting of boundary-layer air to the nearby free troposphere

is another likely pathway for producing moisture uptakes close to the boundary-layer top. Therefore, and to take into account

diurnal boundary-layer height variability and the general uncertainty of boundary-layer height calculations, a boundary-layer

height scale factor sh with a default value of sh = 1.5 is introduced in the diagnostic. All moisture uptakes that are identified

when height z ≤ sh ·zh (with zh the current boundary layer height) are assigned to the output field category of boundary-layer280

moisture uptake, while all other uptakes are in the free-tropospheric moisture uptake category (see Sec. 5.1). The distinction

between these two categories is also carried over to the accounted fractions (Sec. 5.3), and the forward projection of dif-

ferent quantities (Sec. 5.4). The relative threshold value is set as parameter blhScale= 1.5 in the settings group Diagnostics

(Table B3).

Studies with the WaterSip methodology have used sh in different ways. While Sodemann et al. (2008b) introduced this285

parameter to obtain more reliable results, free-troposphere and boundary-layer uptakes have since been observed to commonly

overlap spatially (e.g., Sodemann and Zubler, 2010). In a detailed investigation of atmospheric conditions associated with

free-troposphere uptakes in the Mediterranean, Winschall et al. (2014a) found that these were connected to deep venting of

boundary-layer air to the free troposphere due to moist convection. Furthermore, free-troposphere uptakes are generally the

lesser fraction of total uptakes, typically on the order of 20–40% (Sodemann and Zubler, 2010; Laederach and Sodemann,290

2016). Several studies have therefore in the past considered both uptake categories jointly, in particular in warmer climates

(e.g., Martius et al., 2012; Fremme and Sodemann, 2019; Fremme et al., 2023). Users will have to ultimately decide according

to their scientific objectives on how to apply sh, and how to make use of the boundary-layer and free-troposphere uptake

categories.

3.1.5 Water vapour diagnostics295

In addition to tracing back water vapour that leads to precipitation, WaterSip also allows to identify the source and transport

properties of water vapour that resides in the atmosphere within a target area at a given time. If WaterSip is used as a water
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vapour source and transport diagnostic, rather than a precipitation diagnostic, the gridding weight of each traced air parcel is

obtained from the total water mass mw of an air parcel of trajectory k at arrival time t= 0, computed as

mk
w = qk0 ·mk. (15)300

This water mass mk
w is then used to weight different quantities during gridding, instead of the loss of water mass during

the last time step (∆qk0 ·mk, Eq. 17). Apart from this change, the moisture source diagnostic works in the same way when

tracing the sources and properties of precipitation water. The water vapour diagnostic option allows for instance to identify

the transport properties of water vapour in regions where no precipitation occurs. The water vapour diagnostic is activated by

setting parameter analyzeVapour as 1 in the setting group Diagnostic (Table B3).305

3.1.6 Other available moisture source diagnostics

To enable comparison of the Sodemann et al. (2008b) algorithm to other approaches, three additional moisture source diagnos-

tics have been implemented into the software tool. These include the e− p diagnostic by Stohl and James (2004), in which all

particles arriving in a region and precipitating are gridded without further distinction according to vertical location, and without

accounting. Second, the method of Gustafsson et al. (2010), where the moisture source region is identified as the trajectory310

segment between the first maximum and the trajectory location where the specific humidity becomes lower than the arrival

specific humidity for the first time. Third, the method of Dirmeyer and Brubaker (1999) is available, where the evaporation

flux below the trajectory location is continuously accumulated until reaching the value of the arrival specific humidity. In order

for this method to work, surface evaporation needs to be available on the trajectory input data. The method of Stohl and James

(2004) is included by default in the output files. To select one of the two other diagnostic methods, rather than the Sodemann315

et al. (2008b) algorithm, the parameter processingAlgorithm in settings group Diagnostics needs to be changed from its default

value 0 to a value of 1 for the Dirmeyer and Brubaker (1999) method, and to 2 for the Gustafsson et al. (2010) (Table B3).

3.2 Air mass discretisation

When used to diagnose precipitation origin, air parcels are retained for analysis if (i) they reside within the target region, (ii)

during the preceding time step had a specific humidity decrease larger than the precipitation threshold value (see Sec. 3.1.2),320

and (iii) had a relative humidity within chosen bounds (see Sec. 3.1.3). The geographic location of the target region and the

considered time period are therefore fundamental choices for an analysis with WaterSip. Other important elements regarding

how the air mass is discretised are the format and length of trajectories, and the time interval between particle locations.

3.2.1 Target region and time period specification

In the WaterSip configuration file, the target region is specified by a set of latitude and longitude bounds, namely the parameters325

arrivalGridMinLon, arrivalGridMinLat, arrivalGridMaxLon, arrivalGridMaxLat in the settings group Grid (Table B2). The
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grid spacing of the arrival grid in latitude, longitude increments, is defined by parameters arrivalGridDx and arrivalGridDy in

the same settings group.

Moisture transport can be strongly modulated by topography, such as for example over Greenland and Antarctica. In order

to focus the analysis on different altitude ranges within the target area, but also on selected elevation, several parameters are330

available in the settings group Diagnostics. The parameters arrivalOroMin and arrivalOroMax allow to only retain air parcels

for analysis if they arrive over ground elevation within the two parameters. Similarly, air parcels can be filtered according to

their altitude above sea level using parameters arrivalAltMin and arrivalAltMax. In order to include all parcels arriving within

a domain, the parameters should be set to a height below zero (e.g., -100m) for the lower, and a large height (e.g., 50000 m)

for the upper threshold value. The used topography is ingested from the netCDF file specified at parameter orographyFile in335

settings group Case.

3.3 Time period specification

Another fundamental setting is the start- and end-time of the analysis, regulated by parameters startDate and endDate in section

Case. Since the analysis proceeds backward from the time of arrival, the start date is larger than the end date. Importantly, in

order to obtain results for, e.g., 20 day accounting along a trajectory, the time difference between start date and end date must340

be at least 20 days plus one time step (to enable calculating the required number of specific humidity changes). The length of

the analysis period is defined by parameter trajPoints in settings group Case, and the duration of the entire accounting period

for each trajectory is then given by the parameter timeStep times trajPoints (see Sec. 3.3.3).

3.3.1 Trajectory input data

Trajectory input data consist of the vectors −→x k with position and other necessary variables for the K air parcels representing345

the air mass over the target region (Fig. 1b, box). Such trajectory data can be obtained from different modelling tools. Currently,

WaterSip is able to handle input from the Lagrangian trajectory model LAGRANTO (Sprenger and Wernli, 2015), and from the

Lagrangian particle dispersion model FLEXPART (Stohl et al., 2005; Pisso et al., 2019). Minimum requirements with regards

to the variables that are included on the trajectories are position, T , and q or RH. The input data parameters are set in either

settings group Lagranto (Table B7) or Flexpart (Table B6), depending on the used trajectory model.350

An important user choice for the WaterSip diagnostic is the discretisation of the atmosphere above the target region into

individual particles. In general, the more particles represent a particular air mass, the smaller the mass of air associated with

one air parcel (mk), and the more detailed and statistically reliable the results will become. For example, Sodemann and Stohl

(2009) used the global FLEXPART dataset of Stohl (2006) from a global domain-filling run with 2.4 million air parcels. With

a total global atmospheric mass of 5.14× 1018 kg, each air parcel represents 2.14× 1012 kg of air. Laederach and Sodemann355

(2016) used 5 million air parcels, resulting in a particle mass of mk = 1.03× 1012 kg. For FLEXPART input data, the particle

mass is set by parameter partMass (in kg) in the settings group Flexpart (Table B6).

When using LAGRANTO for the trajectory calculation, the atmospheric mass of one air parcel results from the calculation

start grid. For LAGRANTO input data, the particle mass is first computed from the chosen discretisation as
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mk

g
=∆x∆y∆p, (16)360

with ∆p in units of hPa and ∆x, ∆y in units of km. Then, mk

g is set as parameter partMass (in hPa km2) in the settings

group Lagranto (Table B7), which is then internally in WaterSip converted to units of kg. For example, Sodemann et al. (2008b)

computed backward trajectories from a 50× 50 km horizontal grid over Greenland, with a vertical spacing of 25 hPa for every

6 h time step over a given time period. Accordingly, each trajectory on this grid represents 680× 109 kg of air arriving at a

specific time interval.365

3.3.2 Trajectory time interval ∆t

Another important property of the input trajectory data for the Sodemann et al. (2008b) algorithm is temporal discretisation,

i.e., the time interval ∆t at which meteorological and position information from air parcel locations is available. Typically, ∆t

corresponds to the time interval of NWP boundary data used during the trajectory calculation. For global reanalyses a common

interval is 6 h, but also 1 to 3 h time intervals have been used (Fremme et al., 2023). While trajectory location accuracy370

increases with a higher input data frequency, there are also potential complications from higher time-resolution input data. As

∆qc is well-tested for ∆t= 6 h with regard to separating signal from noise, smaller threshold values need to be used at shorter

time intervals, which do not necessarily have the same filtering effect (see Sec. 3.1). The trajectory time interval ∆t is set as

parameter timeStep (unit h) in the settings group Case (Table B1).

In a sensitivity study with WaterSip and FLEXPART using climate model data at 1.8×1.8 degree resolution as input, Fremme375

et al. (2023) found that the time interval influenced the moisture source distance, with substantially smaller moisture source

distances for time intervals of less than 6 h. In that study, the authors then chose to compute trajectories at a time resolution of

1 h to obtain smaller position errors, while the WaterSip diagnostic was run at 6 h time interval to obtain the desired filtering of

interpolation noise. With such a combination of time intervals, a compromise can be obtained between trajectory accuracy and

sufficient separation between signal and noise in the WaterSip diagnostic.380

3.3.3 Trajectory length L

One important consideration for computing trajectories is the trajectory length L, the number of time intervals over which

the air parcel movement is traced. Typical trajectory lengths in atmospheric analyses are 5–20 days. Since trajectories become

increasingly uncertain for longer calculation time (Stohl, 1998), the trajectory length is an important consideration for WaterSip

applications. In the approach of Stohl and James (2004), the results were strongly dependent on the chosen integration time385

intervals. This choice introduces a subjective element in the analysis, since results may not only vary with climate region, but

also with seasons and weather systems. The accounting algorithm implemented in WaterSip does not require a pre-defined

trajectory length for its analysis. The trajectory length is set as the number of time steps along a trajectory as parameter

trajPoints in the settings group Case (Table B1). One obtains the value of trajPoints from dividing L by ∆t. For example,

20-day trajectories with a 6 h time interval results in trajPoints set to 81.390
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The often-cited global mean residence time of water vapour of 8–10 days (e.g. Trenberth et al., 2007), as obtained from a

global budget of atmospheric water vapour and precipitation fluxes, can provide some guidance on how long trajectories need

to be. Recent studies (based on Lagrangian moisture source diagnostics with WaterSip) provide arguments that the residence

time, or life time of water vapour, may be better described by a heavily skewed life time distribution with a median value of

about 4–5 days and a very long, thin tail at 20 days and beyond (Sodemann, 2020; Gimeno et al., 2021). According to these395

findings, many relevant moisture uptakes can therefore take place within a time scale of 10 days before precipitation. Except

at high latitudes, where life times are particularly long, source contributions from the Sodemann et al. (2008b) algorithm are

generally not sensitive to a trajectory length beyond 15 days. Using the WaterSip diagnostic with trajectories of 10, 15, or 20

days length will therefore lead to relatively less differing results that
::::
than with the Stohl and James (2004) method. A generally

recommended choice of trajectory length that also allows for the detection of long-range transport of water vapour is 20 days.400

3.4 Output grid and output configuration

WaterSip uses the mass represented by each air parcel to transfer the results of the diagnostic onto a grid which will then be

written to an output file for further use. There are two output grids in WaterSip. The coarser source and transport grid covers

the entire potential source regions of the traced moisture, and is typically of hemispheric or global dimensions. The typically

smaller arrival grid covers the target region of the analysis, and has typically a finer grid spacing to reveal spatial details within405

the arrival domain.

Both grids are specified by a respective set of parameters in the setting group Grids (Table B2). The source grid is de-

fined by the parameters sourceGridMinLon, sourceGridMaxLon, sourceGridMinLat, sourceGridMaxLat, which provides the

boundaries in latitude-longitude coordinates. The parameters sourceGridDx, sourceGridDy set the grid spacing in longitude

and latitude direction, respectively. A corresponding set of grid parameters exists for the arrival grid (arrivalGridMinLon,410

arrivalGridMaxLon, arrivalGridMinLat, arrivalGridMaxLat, arrivalGridDx, arrivalGridDy).

Quantities are gridded onto both grids using weighting factors. The weight mk
w for gridding a quantity ξ (for example the

air temperature at the time of arrival) is obtained from the water mass lost ∆qk0 from an arriving air parcel k as

mk
w =mk ·∆qk0 . (17)

With K trajectories arriving as a vertical stack (Fig. 1b), the weighted average of all ξk at a location λ,ϕ is thus obtained as415

ξ̃(λ,ϕ) =

∑K
k=1 ξ

k ·mk
w∑

mk
w

. (18)

This arrival point information needs to be transferred onto the arrival grid. Instead of simply gridding the information to the

grid cell closest to the air parcel location, WaterSip allows to specify a spatial representativeness of this information, which

is then used to distribute it to surrounding grid cells. Representativeness is provided by a gridding radius rg , specifying a cir-

cular distance from the arrival point. The areal overlap between the circular weight and neighbouring grid cells are then used420
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as weights to distribute air parcel quantities ξ onto the arrival grid. For example, with trajectories computed at a horizontal

distance of 50× 50 km, quantities can be assumed to be representative for a circular area with radius 30 km. If the arrival grid

for this setup is then chosen to be arrivalGridDx=arrivalGridDy= 0.25◦, and the gridding radius is set to rg = 30 km, one can

expect to reveal finer interpolated structures within the arrival domain. The gridding radius is set as parameters arrivalGridRa-

dius in settings group Grids. Corresponding reasoning applies to the source grid radius sourceGridRadius. Here, a common425

combination for a hemispheric output grid is sourceGridDx=sourceGridDy= 1.0◦, and sourceGridRadius= 110 km.

The gridding proceeds by finding the area overlaps between the circular gridding area and each grid box. A corresponding

fraction of the total quantity to be gridded is then added to each grid box (Škerlak et al., 2014). It is important to be aware of

the impact user choices have on the results. A too small gridding radius for a given grid will lead to gaps between grid points,

while a too large gridding radius will cause smoothing and potentially loss of detail in the gridded fields.430

A final choice regarding the gridding is whether uptake events are gridded with the time stamp of the arrival in the target

region, or to the time when uptakes take place. The choice of the assigned time is important for later analysis of the results.

In the first case, moisture sources are valid for all precipitation arriving within a chosen time period in the target area, and

can be compared to other quantities regarding the arrival time. In the second case, the moisture sources can be compared to

properties at the source regions during valid time, for example total evaporation fields. The assignment time is set as parameter435

assignToUptake in settings group Grids, where 0 denotes that the uptakes are assigned to arrival time, and 1 denotes assignment

to uptake time (see Sec. 5.1 for an example).

4 Setup and execution of WaterSip

In order to run the WaterSip diagnostic, a set of suitable input data needs to be available. In this preparatory step of the moisture

source analysis, users need to make a number of necessary and optional choices as detailed below. Running the WaterSip tool440

then produces a set of output files in netCDF format, which are also described in this section.

4.1 Creating and reading trajectory input data

There are some general considerations for the input data to be made such that the WaterSip diagnostic output becomes rep-

resentative for the chosen target area. The setup for creating trajectory input data to WaterSip varies depending on whether a

particle dispersion model (FLEXPART) or an air mass trajectory model (LAGRANTO) is used.445

When using the particle dispersion model FLEXPART, commonly, hemispheric or global domain-filling forward simulation

are set up. In domain-filling mode, FLEXPART automatically discretises the air mass over the chosen target area into a specified

number of particles of equal mass, and distributed according to pressure. With a larger number of particles, WaterSip will

provide statistically more robust results, in particular for more long-range and long-duration water vapour transport. Within

FLEXPART, particles are advected forward continuously for the simulation time. WaterSip then extracts a sub-set of these450

trajectories according to the run parameters. A global domain-filling setup has also been applied in the example case presented

here (Sec. 4.4). So-called particle dump needs to be activated in FLEXPART to obtain the input data needed by WaterSip.
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Writing out additional variables with each particle position requires modification of the routine partoutput_pos.f90

or partoutput_short.f90 of the FLEXPART code. Example code for this modification for FLEXPART versions 8.2

through 10.4 is available in the online supplement (Sodemann, 2025a).The most recent version 11 of FLEXPART (Bakels455

et al., 2024) writes particles in netCDF output, and until .
:::::
Until

:
WaterSip has been enabled to ingest this input directly, users

may
:::
will

:
have to convert the FLEXPART version 11 particle dump from netCDF to a

::
the

:
binary format.

::
A

::::::::::::
corresponding

:::::
helper

::::
tool

:
is
:::::::
planned

::
to

::
be

:::::
made

::::::::
available

::
on

:::
the

::::::::
WaterSip

::::::::::
respository. Running FLEXPART in backward mode can be a more

efficient alternative to a global domain-filling run, but requires a new release interval to be defined for every time step. General

instructions for setting up and running FLEXPART are available in the respective literature (Stohl et al., 2005; Pisso et al.,460

2019; Bakels et al., 2024).

When used together with FLEXPART input, the WaterSip configuration file needs to contain a section Flexpart, where

several parameters need to be specified (Table B6). The parameter particleMass contains the mass per particle as either specified

in the FLEXPART releases file, or as is written out by FLEXPART in domain filling mode in the output file part_mass. The

input files need to be contained in a folder specified by parameter inputDir in section Case in the configuration file. As465

individual particle dump files are read in from FLEXPART output for each time step, the pathname is specified with a wild

card pattern (%s) representing the date string, e.g. inputDir = /path/to/directory/partoutput_pos_%s.

When using output from a trajectory model, such as LAGRANTO (Sprenger and Wernli, 2015), the air mass over the

target area needs to be discretised manually. This is achieved by defining the start locations of the trajectory calculations in

LAGRANTO’s startf file. One common way to discretise a target region is to define a regular distance spacing in projected470

coordinates (e.g., one starting point every 25 or 50 km in both directions). In the vertical, it is recommended to space the

starting points at equal pressure intervals. This way, each air parcel trajectory represents an equal amount of mass, which can

be entered in the configuration file for a LAGRANTO setup as described earlier (Eq. 16 and Sec. 3.3.1).

It is recommended to run the LAGRANTO program caltra with the flag ’-j’ to prevent trajectories from intersecting with

topography. WaterSip currently only works with the text-based output format of LAGRANTO. Since trajectory variables such475

as air temperature and specific humidity can be at any column in these files, the column number for each variable needs to

be specified explicitly in the configuration file as parameters (Table B7). The input path for LAGRANTO trajectory files is

again specified using parameter inputDir in section Case of the configuration file, using a file name pattern with wildcard %s

to match trajectory files to the desired date range.

4.2 Running the WaterSip diagnostic480

The WaterSip code is written in the programming language C++. A sample makefile is included with the code repository

https://git.app.uib.no/GFI-public/watersip (Sodemann, 2025b) to compile the program code, and that users may adapt to their

computational environment. An installed netCDF, netCDF-C++, and netCDF-C++4 libraries are in addition required to compile

the program code. Lightweight parallelisation has been included by means of OpenMP directives in the code, but compiling

with OpenMP is optional. Results of some performance tests are described in Sec. 6.4.485
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After compiling WaterSip, the input files need to be made available from an external source, such as running FLEXPART

or LAGRANTO. The input data and configuration file for the test case in Scandinavia presented throughout this manuscript

is available as a supplement to this manuscript (Sodemann, 2025a). A script is included with the test dataset that sets up a

recommended directory structure to run WaterSip. Users are invited to experiment with the test case before creating their own

setup to get familiar with the usage and output from WaterSip. When running an own case, the directory names for input and490

output data need to be specified in the configuration file. Then, all other configuration file settings, such as the time period, the

target region, diagnostic parameters, need to be set by the user. Importantly, the sections in the configuration file specific for

the used input data need to be included and edited to match the input data (Table B6 and B7).

To start a diagnostic run, the compiled WaterSip program is then executed from the command line. The name of the config-

uration file needs is the only argument that needs to be provided when WaterSip is started. WaterSip then starts executing, and495

provides either output to the terminal about the progress of the analysis, including a time estimate until completion, or an error

message that will give an indication how the setup and configuration file need to be adjusted.

4.3 Output files

When a diagnostic run completes, a set of output files is written to the file location specified as parameter outputDir in the

configuration file section Case. The main output files, containing gridded fields and time series for different averaging times500

(time step, daily, monthly, annually, all), are created in netCDF format (Table 2). In particular the grid files for days and time

steps can become rather large for longer runs. The creation of gridded output files for selected averaging times can therefore be

deactivated by setting the respective parameters in parameter set Output from 1 (true) to 0 (false, see Table B5). The series files

for different intervals contain time averages of the gridded fields, characterised by the precipitation-weighted mean of each

quantity, the unweighted standard deviation, and the minimum and maximum values in the grid grid area. A sectorisation of505

the results into user-specified latitude/longitude regions is are also contained in the series files (Sec. 5.7). Further output files

comprise histogram files (Sec. 5.8) and trajectory files (Sec. 5.9).

Which variables are contained in the output files can be controlled by the parameters in section Variables in the configuration

file (Table B5). Output variables are included in the output by setting the corresponding parameter values from 0 to 1. Users

can also choose to include static fields, such as topography or the land-sea mask using parameter staticFields. The choice in510

the section Variables affects both grid and series files. If output is activated for variables that are not contained in the input

file, WaterSip calculates these from the available information if possible, and otherwise fills in missing values during output.

Finally, WaterSip can optionally write out air parcel trajectories in a compact binary format to inspect the result of the moisture

diagnostics in detail for individual air parcels (Sec. 5.9).

4.4 Example run configuration515

To exemplify the use of the WaterSip diagnostic, a case study for a 10-day Northern Hemisphere summer period (5 to 15

August 2022) over Scandinavia is now presented. The weather situation during the period was characterised by westerly flow,

which was steered to higher latitudes by a high pressure
:::::
system

:
over Eastern Europe. This flow configuration brought several
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Table 2. Description of the available output files in WaterSip, including file format, and file name semantics.

Name Content Format Filename

Grid files Spatial properties of moisture sources and arrival regions netCDF <CASE>_grd
:::
grid_(all|year|month|day|step).nc

Series
::

and
:::::
sectors files Mean

:::
Time

::::
series

::
of

::
the

::::
mean/min/max/std of regionally and globally netCDF <CASE>_ser

::
secs_(all|year|month|day|step).nc

averaged moisture source and arrival region properties

:::
and

:::
their

:::::::
separation

:::::::
according

:
to
:::::
source

:::::
sectors

Histogram files Histograms of select quantities identified for each time step text <CASE>_hst_steps

along each trajectory

Trajectory files Air parcel trajectories for identified precipitation events binary (.traj) <CASE>_<DATE>(.traj)

low-pressure systems from the North Atlantic from southwesterly directions towards the Norwegian coast and land areas

downstream, which then shed precipitation over Scandinavia.520

In order to obtain the required input data for the WaterSip diagnostic, the FLEXPART particle dispersion model in Version

10.4 had been
:::
was

:
run with input fields from the ERA5 reanalysis for a Northern Hemisphere domain with 10’000’000 particles

in domain filling mode. The simulation was initialised on 00 UTC on 15 July 2022 and run forward for 31 days until 00 UTC on

15 August 2022. FLEXPART particle output files contained
:::
(see

::::
Data

::::::::::
availability

:::::::
section)

::::::
contain

:
latitude, longitude, height,

air temperature, specific humidity, boundary-layer height, and air density at each particle’s location, as well as skin temperature,525

2 m specific humidity and topography height below the particle. WaterSip was then configured to identify the moisture source

and transport properties for a time period of 10 days (5 to 15 August 2022) in the region 54–71◦N and 4–32◦E. A 6h
:::
6 h

time step, 20-day backward tracing, and threshold parameter values RHc = 80 and ∆qc = 0.2 g kg−1 6 h−1 were used for

identifying moisture uptakes and losses along the trajectories. Output was activated for all available variables and time steps.

The WaterSip setup and output files for this example run are available with the sample data (Sodemann, 2025a).530

5 Diagnosed moisture source, transport and arrival properties

The following sections describe the different output fields that characterise and quantify conditions at the moisture source,

during moisture transport, and during the arrival of the moisture as part of the output. The results and interpretation are thereby

exemplified using the case study setup over Scandinavia as described above.

5.1 Moisture source quantities535

The most fundamental result of the moisture source diagnostic are the moisture sources, that is the spatial distribution of

the moisture uptakes that contribute to precipitation in the target region. Figure 2 shows an example for the total moisture

sources of precipitation in a arrival domain over Scandinavia (yellow frame). This moisture source area (shading) may be

interpreted as the subset of all evaporation at the moisture sources that ends up as precipitation in the target region. The units of
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kgm−2 d−1, also corresponding to mmd−1, are obtained from gridding the contribution of moisture uptakes to precipitation540

in the target region (fi ·∆q0). When integrated spatially, taking the area of each source grid box into account, one obtains the

total precipitation mass in the target area during this time interval. If divided by the target area, the precipitation rate for the

analysis period then corresponds exactly to the value of the Lagrangian precipitation estimate (see Sec. 5.3).

In the example case, the largest contributions to precipitating water come from southern Scandinavia and the western North

Atlantic, but the moisture sources also stretch into Central and Eastern Europe (Fig. 2a, grey to red areas). In addition, a large545

area is covered by moisture uptakes with 0.25 mm d−1 or less (blue shading), reaching deep into continental North America. In

the example here, the gridding radius on the global maps with a 1.0×1.0◦ spacing was set to 120 km (see Sec. 3.4). A coarser

grid spacing and a larger gridding radius would give more smoothed output fields. It is important to consider that a large are

:::
area

:
with relatively small contributions can still be an overall important moisture source. To quantify the overall contributions

for different areas, the source contributions can be averaged within predefined geographic sectors (Sec. 5.7).550

The interpretation of moisture source maps can be greatly facilitated in a percentile representation (Fremme and Sodemann,

2019; Fremme et al., 2023). This can be obtained by determining, for example, the 50th and 80th percentiles of the accumulated

moisture source contributions, sorted from largest to smallest grid point values. Such a percentile representation is particularly

helpful to compare the shape of a moisture source footprint across different events or seasons. In this example case, the 50th

and 80th percentile contours for the total moisture source footprint (Fig. 2a, dashed and dotted red lines) highlight that almost555

half of the precipitation is contributed by areas bounded by the orange shading (contour value 0.06 mm d−1), and the large

majority is bound by the light blue area (contour value 0.24 mm d−1).

The moisture source detection algorithm distinguishes between uptakes that take place within or close to the boundary layer

top, and those that are in the free troposphere, above the boundary layer. For the example case, the moisture sources in the

boundary layer dominate (Fig. 2b), while the free-troposphere moisture sources supplement the boundary-layer uptakes over560

the North Atlantic and Central Europe (Fig. 2c). The colocation of free-troposphere and boundary-layer sources for this event

suggests that boundary-layer air may have been vented, moistening the free troposphere. The interpretation could therefore for

this case focus on the total moisture uptakes (Fremme et al., 2023).

The moisture source footprint is here compared to the result of the Stohl and James (2004) method for the same case

(Fig. 2d). The vertical integral of e− p of all the particle trajectories over 10 days (the quantity (e− p)20d introduced by565

Stohl and James (2005) shows patches where evaporation dominates (red shading) and where precipitation dominates (blue

shading). While evaporation regions dominate in further away, precipitation overcompensates north of Iceland and over the

arrival domain, masking potential evaporation from these regions. The presence of such compensating effects, as well as the

strong dependency on a selected time scale (not illustrated here), are two of the most important differences compared to the

results from the Sodemann et al. (2008b) algorithm. The red contours, indicating the 50th and 80th percentile of total moisture570

sources from WaterSip, further underline the differences between the results from the two methods.

In addition to providing the moisture source footprint for an entire analysis period, the WaterSip diagnostic provides gridded

moisture sources for each time step in the steps grid file (Sec. 4.3 and Table 2). At 06 UTC on 10 Aug 2022, the precipitation

in the target area was sourced from a rather large banded region stretching across the North Atlantic, and reaching into Eastern
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Figure 2. Source grid quantities identified for the case study period in 2022. (a) Total moisture uptakes (shading, mm d−1), (b) Boundary-

layer moisture uptakes (shading, mm d−1), (c) Free-troposphere moisture uptakes (shading, mm d−1), (d) Lagrangian evaporation minus

precipitation budget over 20 days ((e− p)20d in mm d−1, shading), following Stohl et al. (2005). Red contours indicate the 50th (solid) and

80th (dotted) percentile of the total moisture uptakes from WaterSip. Yellow box denotes the target region over Scandinavia. Regions with

moisture uptakes of less than 3× 10−2 are masked out.

North America (Fig. 3a). This map shows the moisture uptakes corresponding to precipitation on that day in the arrival region.575

If one wants to compare the moisture uptakes directly with, for example, gridded evaporation fields, one can use the parameter

assignToUptake (Sec. 3.4). The corresponding plot for uptakes on 06 UTC at 10 Aug 2022 shows all evaporating moisture at

the synoptically valid time, irrespective of when it will precipitate over the target area. In the given example, relevant uptakes

at that time are detected south of Iceland, over Scandinavia, and over western Eurasia (Fig. 3b). The moisture from uptakes at

that time will end up as precipitation over the target area at a later time.580

5.2 Transport quantities

A number of additional quantities that are indicative of the moisture transport conditions can be obtained on the same grid as

the moisture source information. These so-called transport quantities can support the interpretation of the obtained moisture

sources in various ways.

The transport pathways of air parcels towards the target region are visible from the particle mass density (Fig. 4a). The585

particle mass density is an integral of the pathways of all particles’s mass bound to the target region in a given time interval. It

is obtained by gridding mk/L for all time steps of a trajectory. The example case shows the relatively large overall area from

where air parcels originate in a 20-day time frame, and the important role of Greenland’s topography for guiding the air parcel
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Figure 3. Instantaneous snapshot of source grid quantities identified during the case study period with different assignment times. (a) Total

moisture uptakes arriving in the target area on 06 UTC at 10 Aug 2022 (shading, mm d−1), (b) Total moisture uptakes taking place on 06

UTC at 10 Aug 2022 (shading, mm d−1). Yellow box denotes the target region over Scandinavia.

transport. The quantity "moisture transport" shows the water vapour movement in these air parcels towards the target area.

The moisture transport field is obtained by gridding the water mass in tracked air parcels on the way to the target area using590

qi ·mk/L for each time step. For the example case, the moisture transport map highlights a dense area of moist air west and

south of the target area, and where the moist air crosses the North Atlantic and advances towards the target area (Fig. 4b). This

map can be interpreted a share of total column water bound to the Scandinavia domain. In combination, these two transport

quantities allow one to assess the main pathways of air mass transport and the differences to moist air advection to the target

region.595

Decreases of specific humidity in air parcels during transport can be due to either precipitation events or mixing with

drier air (Sec. 2). The moisture rainout field contains the amount of humidity lost from trajectories that are identified when

RHi ≥ RHc from the diagnostic, gridded using ∆qi ·mk along each trajectory. In the example case, moisture rainout events are

concentrated over the arrival domain, and narrow transport pathways over the North Atlantic and east of Greenland (Fig. 4d),

probably related to precipitation formation in air masses that ascend as they approach the target area. In contrast, mixing events600

are identified as moisture decreases if RHi < RHc, and also gridded using ∆qi ·mk. Both quantities are therefore easy to relate

to the (e− p)20 days field (Fig. 2d). For the present example case, air mass mixing is mostly identified over continental North

America and over Central Europe (Fig. 2c). It is interesting to note that for this case only a small part of the events are classified

as mixing, while the large majority are rainout events. Note that it does not make a difference to the source identification and

accounting whether a specific humidity decrease is classified as a mixing or as a rainout event.605

5.3 Moisture arrival quantities

For larger target areas, there can be spatial differences in the atmospheric conditions during air parcel arrival within the domain.

It can be interesting to investigate different quantities that are connected to the arrival of air parcel trajectories. These quantities

are termed here arrival quantities.
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Figure 4. Transport quantities identified within air masses bound to the target region for the entire case study period. (a) Particle mass density

(shading, kg m−2), (b) moisture transport (shading, mm), (c) air mass mixing (shading, mm d−1), (d) moisture rainout (shading, mm d−1).

Yellow box denotes the target region over Scandinavia.

One of the most important arrival quantities is the Lagrangian precipitation estimate P̃ (Sec. 2.2). In the example case, there610

are clear distinctions between the coastal regions of western Scandinavia with an estimated precipitation of above 6 mm d−1,

and large parts of the Baltic Sea, southern Sweden and Finland with below 2 mm d−1 during the case study period of 5-15

Aug 2022 (Fig. 5a, shading). The diagnosed precipitation pattern corresponds qualitatively to ERA5 simulated precipitation

during the period (white contours), even though the domain average during the period is about 25 % larger in ERA5 (2.43

mm d−1 compared to 2.07 mm d−1). A direct comparison of the two fields shows that P̃ is more smoothed out compared to the615

sharper pattern in ERA5 (Fig. A1). Regions with high P̃ approximately correspond to locations where more air parcels arrive

that precipitate according to selection criteria, as reflected by the arrival count (Fig. 5d). In regions where only few air parcels

contribute to arrival quantities, gridded results may show large spatial variations that are not statistically robust. The arrival

count can be used for masking such grid points.

Another set of important arrival quantities are the accounted fractions (Sec. 2.3). The total accounted fraction in the example620

case is uniformly above 95% (Fig. 5f). Subdividing this quantity into the fractions accounted for by boundary layer uptakes

(Fig. 5d) and free troposphere uptakes (Fig. 5e) shows a uniform split into approximately 60–70% boundary layer and 30–40%

free troposphere contributions. These shares appear consistent with the corresponding moisture source maps (Fig. 2b, c).

In addition, some thermodynamic conditions of the air parcels at the time of arrival over the target domain are be gridded

onto the arrival grid. For example, the arrival temperature is the temperature of each air parcel at arrival, gridded using weights625

corresponding to P̃tot at arrival grid location (λ,ϕ) for the total accounted fraction:
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Tarr(λ,ϕ) =

∑K
k=1T

k
0 · P̃ k

tot

P̃tot
(19)

In the
::::
case

::
of

:::::
water

:::::::
vapour

::::::::::
diagnostics,

:::::::::
weighting

::
is

::::::
instead

::::
done

::::::
using

:::
the

::
air

::::::
parcel

:::::::
specific

::::::::
humidity

:::::
(Sec.

:::::
3.1.5).

:::
In

::
the

:
present example, arrival temperatures vary between about 0 and 8 ◦C (Fig. 5c). Thereby, regions where most precipitation

fell have arrival temperatures that are lowest, with 0–2◦C. The air pressure at arrival is also available as gridded quantity (not630

shown, Table D2).

Figure 5. Arrival quantities identified for the example case in 2022. (a) Lagrangian precipitation estimate P̃ (mm d−1), (b) arrival count

(shading, 1), (c) arrival temperature (shading, ◦C), (d) accounted fraction of P̃ from boundary-layer uptakes (shading, %), (e) accounted

fraction of P̃ from free-troposphere uptakes (shading, %), (f) total accounted fraction of P̃ (shading, %). Quantities in (c)-(f) are weighted

averages, using the specific humidity decrease during the last time step before arrival as a weight.

5.4 Lagrangian forward projection of moisture source quantities

As WaterSip identifies the location of a moisture source, different properties of the source region can be computed, such as

the average sea surface temperature, or its latitude and longitude. In particular for larger arrival regions, and for those that

contain geographic or climatic gradients, the source region location and its properties may vary substantially within the arrival635
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domain. In order to make such spatial differences in the source region properties visible, WaterSip provides Lagrangian forward

projections (LFPs) of the source region properties on a spatial grid covering the arrival domain.

LFPs are obtained as the weighted average of a given moisture source property for each trajectory. The weighted average is

then gridded on the arrival grid, weighted by P̃ (or by the air parcel specific humidity in the case of water vapour diagnostics).

Thus, for each trajectory k, a moisture source or transport quantity ζ is transferred from the geographic uptake location (λu,ϕu)640

to the geographic location at the arrival region (λa,ϕa) using the fractional contributions fk
i obtained from the accounting step

as a weight, and resulting in LFP quantity ζ̃ for air parcel k:

ζ̃k(λa,ϕa) =

∑U
i=1 ζ

k(λu,ϕu) · fk
i∑U

i=1 f
k
i

(20)

Hereby, U is again the number of all moisture uptake events identified along trajectory k. The different ζ̃k are then again

gridded using Eq. 19. In creating LFPs, an important choice is whether the total accounted fraction of the precipitation estimate645

is used in the gridding, or only the boundary layer or free troposphere fraction. Parameter forwardProjectionMode in parameter

section Diagnostics determines this choice (1: boundary layer, 2: free troposphere, 3: total fraction).

For the case study over Scandinavia, the mass-weighted moisture source latitude (centroid latitude) ranges from 50–60 ◦N,

with a clear latitudinal gradient (Fig. 6a). Corresponding moisture source longitudes range from -60 to 40◦E (Fig. 6b). The

source distance map for the example case shows a similar pattern as the source longitude, with more nearby sources (<1500650

km) over Denmark and southern Sweden in the southwest, and patches of more long-distant transport (>3500 km) in the north

of the domain (Fig. 6c). The distance of the moisture sources is computed as a spherical distance for each uptake location

and then gridded according to Eq. 20. These examples already illustrate how forward projections of source region properties

provide insight into the spatial variability within the arrival domain. When used on large (global) domains, Lagrangian forward

projections can provide interesting hydro-climatic insights (Laederach and Sodemann, 2016; Sodemann, 2020).655

The source land fraction (Fig. 6d) reveals a northwest-southeast oriented gradient in land uptakes. While land sources in

the northwest of the domain are <30%, their share reaches above 80% over the Baltic states. The fraction of land sources is

obtained from evaluating a land-sea mask at the locations below the moisture uptakes. In case the mask files contains fractional

land cover information, values above a threshold of > 0.5 will classify the source location as land.

The moisture source temperature is obtained here from the skin temperature (SST over ocean regions, SKT over land) using660

Eq. 20 (Fig. 6e). For the present case, moisture source temperatures are warmest in regions where land sources dominate with

up to 22 ◦C. Additionally, the LFP of moisture source relative humidity, air pressure at the sources, and specific humidity at

2m (q2m) at the sources may be available, depending on what has been written out to the FLEXPART and LAGRANTO input

files (Table D1).

Stable water isotopes are an important diagnostic in moisture source analyses (e.g., Aemisegger et al., 2014). Measurements665

of the secondary water isotope parameter d-excess can reflect the relative humidity environment during evaporation. In the

case that SKT and q2m or RH and T2m are available on the input files, an approximation for the stable water isotope parameter

d-excess at the moisture sources dsrc can be computed from the relation of Pfahl and Sodemann (2014):
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dsrc =−0.54‰%−1 ·RHSST +48.2‰ (21)

Thereby, the relative humidity with respect to SST (RHSST) is obtained using saturation vapour pressure according to Flatau670

et al. (1992). For the example case, the computed dsrc shows a gradient that mirrors land properties, with higher values (8–10

‰) where land sources dominate, while ocean source dominated regions show with ∼4 ‰ values below the global average in

precipitation of 10 ‰ (Araguás-Araguás et al., 2000). The d-excess parameter is both an interesting diagnostic for paleoclimatic

studies, and can be used to relate moisture transport to water isotope measurements on meteorological time scales (e.g., Weng

et al., 2021).675

Figure 6. Lagrangian forward projection of source quantities for the example case in 2022. (a) Moisture source latitude (shading, ◦E), (b)

moisture source longitude (shading, ◦N), (c) moisture source distance (shading, km), (d) moisture source land fraction (shading, %), (e)

moisture source skin temperature (shading, ◦C), (f) d-excess of water vapour at the moisture source following Pfahl and Sodemann (2014)

(shading, ‰). All quantities are weighted averages, using the Lagrangian precipitation estimate P̃ as a weight.

5.5 Lagrangian forward projection of moisture transport quantities

In a similar way as moisture source quantities (Eq. 20), it is possible to project transport quantities onto the arrival region. The

only difference is that all trajectory points, and not just the uptake points are included, using the current accounted fraction. For
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example, ξ̃k, the forward projected moisture transport temperature valid during arrival of air parcel k is obtained by averaging

the air parcel quantity ξk along the entire transport path of N time steps, using the explained fraction at step fk
i as a weight:680

ξ̃k(λa,ϕa) =

∑N
i=1 ξ

k
i · fk

i∑N
i=1 f

k
i

(22)

The LFP of the moisture transport temperature obtained this way shows relatively warm transport for the majority of air

masses between 6–12 ◦C (Fig. 7a). In comparison, the condensation temperature, computed as transport temperature condi-

tioned on RH> 80◦C, shows that saturation is reached at colder and more variable temperatures of between 2–8 ◦C throughout

the domain (Fig. 7b). Comparison to the transport pressure shows transport at higher pressures in the regions of warmer con-685

densation temperatures, with air pressure of above 990 hPa over the Norwegian Sea, compared to ∼950 hPa over the Baltic

Sea (Fig. 7c).

A quantity that allows to inspect the time scale of moisture transport is the transport time, obtained as the difference between

the time of each uptake event and the corresponding arrival time. For the example case, the transport time shows the largest

values with 5–7 days in northern Scandinavia, whereas Denmark and southern Sweden have transport times of 3 days and690

below (Fig. 7d). The transport time in this case thus bears similarities with the transport distance (Fig. 7e) and the direct source

distance map (Fig. 6c). In contrast to the moisture source distance, the transport distance is obtained as the total distance along

an air parcel trajectory. The difference plot between both distance quantities underlines that the transport distance is always

larger than the source distance, and more so for regions where transport takes more time, with a differences of up to 2000 km

in Northern Scandinavia (Fig. 7f). In combination, these transport quantities enable one to interpret the transported moisture in695

terms of processes that occurred underway from source to sink. Such information can for example be relevant for understanding

changes of isotope composition and the mixing with other air masses. For more detailed discussion of the transport time from

WaterSip, see Sodemann (2020) and Gimeno et al. (2021).

5.6 Time series of diagnostic quantities

The temporal evolution of different diagnostic quantities in the arrival domain can provide further insight into moisture trans-700

port dynamics. WaterSip provides time series output of all arrival and forward-projected source (ζ) and transport quantities (ξ)

described above (Sec. 5.3–5.5). Thereby, the mean, median, and the maximum and minimum value are reported for different

integration times, from the trajectory time step to daily, monthly, yearly, and the entire analysis time period (Table 2). Longi-

tude is thereby converted to a Cartesian grid for the averaging operation. Averaging over time steps is done by weighting the

contribution at each time step i of the analysis period with the corresponding precipitation estimate P̃ at grid location (λa,ϕa),705

and dividing by the total of the precipitation estimate for a given averaging period T :

ζ(λa,ϕa) =

∑T
i=0 ζi(λa,ϕa) · P̃i(λa,ϕa)∑T

i=0 P̃i(λa,ϕa)
(23)
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Figure 7. Lagrangian forward projection of transport quantities for the example case in 2022. (a) transport temperature (shading, ◦C), (b)

condensation temperature (shading, ◦C), (c) transport pressure (shading, hPa), (d) transport time (shading, days), (e) transport distance (km),

and (f) difference between transport and source distance (km). All quantities are weighted averages, using the Lagrangian precipitation

estimate P̃ as a weight.

Time series of P̃ of the case study obtained this way show a pronounced precipitation maximum in the first half of the study

period on 5 to 7 Aug 2022 with 1.0 mm (6 h)−1 (Fig. 8a, black solid line). A second maximum occurred with about 0.8 mm (6

h)−1 on 10 Aug 2022. The ERA5 precipitation shows that WaterSip underestimates domain average precipitation during these710

periods, but not during weaker rainfall events (Fig. 8a, blue line). The standard deviation of the precipitation estimate in the

arrival domain reflects some of the peak values present in ERA5 (dashed line).

The period with most intense precipitation was associated with gradually shorter transport distances of less than 3000 km

(Fig. 8b). Land sources were dominating in the first period, with a fraction up to 60% on 6 Aug 2022, compared to below 30%

on 12 Aug 2022 (Fig. 8c). Source latitudes were more northerly during the first half of the case study, and dropped to below715

50◦N on 10 Aug 2022 (Fig. 8d). Both characteristics match well with the moisture source snapshot for that day (Fig. 3a).

During the forward projection, some grid points have only a very small number of trajectories arriving, which can then lead

to relatively large grid maximum and minimum values compared to the overall spread. For some applications, a more refined

statistical quantification of the gridded fields may be required, for example such as excluding grid locations below a minimal
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precipitation estimate. In such a case, users may choose to output the gridded fields for every time step, and then follow up720

with their own post-processing steps.

Figure 8. Time series output from WaterSip for the Scandinavian precipitation from 5-15 August 2022 for the variables (a) precipitation

estimate P̃ (mm (6 h)−1, black line), ERA5 simulated precipitation (thick blue line), (b) transport distance (103 km), (c) source land fraction

(%), (d) source latitude (◦N). Each panel shows the weighted mean (solid line), unweighted one-σ standard deviation (dashed lines) over the

arrival grid.

5.7 Sectorisation of source region maps

Another post-processing available within WaterSip is the option to categorise the moisture source maps by geographic do-

mains, the so-called sectorisation (Sodemann and Zubler, 2010). During sectorisation, the coordinates of each uptake in the

boundary layer and free troposphere are checked to be within a set of J latitude and longitude bounds [λj ,ϕj ], which define725

the source sectors Sj . The geographic bounds of each sector are implemented in the program code as a function that returns

the sector number corresponding to a given geographic coordinate. Currently, 11 different sectorisations are available in Wa-

terSip (Table C1). Implementing additional sectors requires users to modify the WaterSip code. Further details are given in the

Appendix C.

The output from the sectorisation is included in the time series files (Table D3). All quantities available on the source and730

transport grids contain an additional dimension for the sector number. Furthermore, quantities are given for land regions only,

sea only, and for the total. This allows to define relatively simple geographic sector shapes, that still make the important
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distinction between land and ocean regions, based on the land-surface information provided to WaterSip. The sector areas are

also available to convert the fractional output to mass units.

For the case study over Scandinavia, the sectorisation "Norway" has been chosen, which includes 8 latitude sectors (Fig. 9c).735

The total arriving precipitation is dominated by sources at 50–60 ◦N (Fig. 9a, light green) in the first half of the study period,

before being dominated by more southerly sources in the second half (40–50 ◦N, dark green). Splitting up the moisture orig-

inating from land areas only further emphasises that the shift to more northerly sources is driven by land contributions from

30–40 ◦N (Fig. 9c). In a tabular summary, it becomes evident that ocean sources still dominate for the entire event period, and

that less than 10% of the precipitation originate from south of 40 ◦N (Table 3).740

Figure 9. Sectorisation example for the Scandinavian case study for August 2022. (a) Classification of the total (land and ocean) moisture

sources into latitude bands between 20–80◦N during the study period. (b) Classification of the land sources only. Solid black line indicates

the total fraction of all land sources. (c) Sector map of sectorisation ’Norway’ (#3) used in the case study.

5.8 Histograms of moisture source and transport properties

For some applications, it may be valuable to have the source and transport information from WaterSip available from every sin-

gle uptake event. During the gridding to source or arrival grids, this detail of information is lost. Since the number of individual

uptakes can be very large, histograms are a convenient way to aggregate such data. For example, Winschall et al. (2014b) used

histograms of transport time to identify the age spectrum of precipitation. Other examples for the use of such output are the745

distribution of SSTs at the moisture sources (Weng et al., 2021). WaterSip creates an output file in comma separated value

(csv) format containing histograms of a fixed set of variables as output if the parameter saveHistogram in section Output is set

to 1 (true). These variables include convection count and depth, uptakes, rainout, air mass mixing, source SST or T2m, source
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Table 3. Sectorisation results in percent separated into boundary layer and free-troposphere moisture sources for the total, and over land and

sea regions only, for the Scandinavian case study for August 2022.

Sector BLtotal BLland BLsea FTtotal FTland FTsea

<20◦N 0.2 0.1 0.2 0.4 0.0 0.3

20–30◦N 1.2 0.3 0.9 2.0 0.1 1.9

30–40◦N 5.3 2.5 2.8 5.3 1.6 3.7

40–50◦N 19.9 8.5 11.4 24.4 7.4 17.0

50–60◦N 42.4 21.4 21.0 40.5 12.7 27.9

60–70◦N 27.4 12.4 14.9 18.8 4.8 14.1

70–80◦N 3.5 0.6 2.9 7.6 0.8 6.8

80–90◦N 0.1 0.0 0.1 0.9 0.1 0.8

All 100.0 45.7 54.3 100.0 27.4 72.6

distance, source d-excess, and RHSST at the sources (Table 4). As the histogram classification is implemented directly within

WaterSip, changes to the classification parameters, or adding more variables requires changes to the WaterSip program code in750

file Water.cpp.

For the example case of Scandinavia during August 2022, the probability density function of the uptake contributions shows

a maximum at 2 days before arrival, and a rapidly decreasing tail thereafter to 10 days before arrival (Fig. 10a). The distribution

of rainout events (not weighted by f ) also peaks at 2 days before arrival time, but has otherwise an even distribution throughout

the 20 day analysis period (Fig. 10b). The PDF of mixing events (also not weighted by f ) peaks at 4 and 8 days before755

arrival (Fig. 10c). Finally, the PDF of source distances shows a rapidly flattening tail with the majority of sources within about

5000 km (Fig. 10d). These examples illustrate the additional insight that one can gain from the histogram data, beyond the

mass-weighted averages provided by the gridded and time series output.

Table 4. Histogram variables currently built into WaterSip, with corresponding lower and upper bounds, and number of categories for the

classification.

Parameter Convection Convection Uptake Uptake contribution Rainout Air mass Source SST d-excess RHSST

height (m) count (1) time (h) time (h) time (h) mixing time (h) distance (km) (K) (permil) (%)

min 0 0 -480 -480 -480 -480 0 270 -10 0

step 10 10 20 20 20 20 20 20 20 20

max 2000 10 0 0 0 0 20000 310 30 100

weight 1 1 ∆qi fi ·∆q0 −∆qi −∆qi fi ·∆q0 fi ·∆q0 fi ·∆q0 fi ·∆q0
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Figure 10. Histograms of moisture source and transport quantities for the example case. (a) frequency of uptake events by time before arrival,

(b) frequency of rainout events by time before arrival, (c) frequency of mixing events by time before arrival, and (d) frequency of uptakes

by source distance. All histograms are valid for the entire analysis period and have been converted to probability density functions. The

weighting for each quantity is listed in Table 4.

5.9 Air parcel trajectory output

WaterSip processes air parcel trajectory data obtained from the Lagrangian models LAGRANTO and FLEXPART. During the760

processing of these data, trajectories are filtered based on criteria such as being located within the arrival domain, precipitating

during arrival, and so on. Essentially, thus, the WaterSip tool creates a subset of the original trajectory data, enhanced by

additional information, such as the identified uptakes, and the accounted fraction. Setting parameter saveTraj of settings group

Output to either 1 (output every time step) or 2 (output in monthly files) instructs WaterSip to write out these trajectory data in a

compact binary format (*.traj). Since the total output size can become rather large, it is possible to use parameter skipTraj with765

a value n > 1 to only write out trajectories for every n-th particle. A python script for reading the binary format is provided in

the WaterSip code repository.

The potential value of the trajectory output is illustrated here for a subset of the air masses arriving over the target area

in Scandinavia at 06 UTC on 10 Aug 2022. During this time, 20-day backward trajectories tap into moist air masses in the
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Gulf of Mexico and the subtropical North Atlantic, and to a lesser extent into the Pacific basin (Fig. 11a). The colour shading770

by moisture uptakes and losses emphasises regions of moisture moisture gain over the eastern and western North Pacific

(blue), over North America, and the North Atlantic, as well as moisture loss as air parcels approach Scandinavia (red). The

time vs. height diagram illustrates that in this case much of the moisture gained more than 10 days before arrival has been

lost due to the vertical lifting and drying of air masses at about -10 days (Fig. 11b). Another branch of air descended from

the upper troposphere between 6–10 km (dark brown colours) before taking up moisture in the lower troposphere. In some775

cases, the remaining moisture may also have been been overwritten by uptake events during the last 10 days before arrival, as

exemplified by the trajectory highlighted in red that raises
:::
rises

:
and then sinks again towards the surface multiple times.

Figure 11. Trajectory output from WaterSip for 06 UTC on 10 Aug 2022. (a) Map of the moisture transport pathway of 20-day trajectories

shaded by specific humidity changes per time step (∆q in g kg−1 6h−1). (b) Time vs. height diagram shaded by specific humidity (g kg−1)

for water vapour arriving in the Scandinavia domain. For illustrative purposes, a random selection of 70 out of 8000 air parcel trajectories is

displayed. The trajectory highlighted in red illustrates the repeated vertical movement of some particles on the way to the target region.
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6 Discussion

As mentioned throughout the description of the method, there are a number of uncertainties connected to the use of the WaterSip

diagnostic. A sensitivity study for the Scandinavia case illustrates how WaterSip responds to variations in key parameters780

(Sec. 6.1). Users need to carefully consider the impact such uncertainties may have on the interpretation and validity of their

results (Sec. 6.2). Underlying this uncertainty is the lack of a direct observable quantity that would serve as a reference for

finding out moisture source information. In that context, method inter-comparisons and sensitivity studies can be a pathway to

quantify and potentially bound uncertainty (Sec. 6.3). Lastly, some computational performance characteristics of the software

are presented (Sec. 6.4).785

6.1 Sensitivity analysis of key parameters

Using the Scandinavia case study discussed above, a range of sensitivity experiments was conducted to illustrate the sensitivity

of the diagnostic to several core parameters. The domain averages of the precipitation estimate P̃ , total accounted fraction ftot,

and the source distance have been chosen as bulk properties of the moisture sources during the event. When the critical relative

humidity RHc was varied from the reference value 80% to 70% and 90%, P̃ increased or decreased about 25% compared to the790

reference value of 2.074±1.162 kg m−2 (Table 5). This can be expected due to more (less) precipitation events being detected

at arrival for a lower (higher) RHc. In comparison to the domain-average ERA5-simulated precipitation of 2.43 kg m−2 d−1,

the underestimation amounts to 17% for the reference case. The moisture source distance increases slightly with a higher RHc,

while ftot remains nearly unchanged.

Sensitivity with regard to the value of ∆qc was tested with 0.1 and 0.4 g kg−1 6h−1. The precipitation estimate remained795

unaffected by this change, since the humidity change during the last time step is set by the separate parameter arrivalPre-

cipThreshold. The total accounted fraction decreases with increasing ∆qc, since less events are identified as moisture uptakes.

A higher ∆qc also favours slightly more distant moisture sources, as less discounting of remote moisture takes place for the

case study.

The trajectory length has a clear imprint on ftot, with 13.4% less accounted sources for 10-day (L= 41) compared to 20-day800

(L= 81) trajectories. In comparison, the difference between 15-day and 20-day trajectories is only 4.3%. The moisture source

distance is also sensitive to the trajectory length, with on average 327 km closer moisture sources for the 10-day trajectories.

Still, the average value is less than the 1-σ standard deviation within the domain of 527 km, and remains within 15% of the

reference value for all of the above parameter variations.

Finally, the sensitivity to the time step ∆t has been tested using a 3-h time interval. To enable a fair comparison to the805

reference, this run also required adjustment of ∆qc to 0.1 g kg−1 3h−1, and increase of the trajectory length to 161 time steps

to maintain 20-day trajectories. The results for this sensitivity test deviate more markedly from the reference than the previous

sensitivity experiments, with a 50% higher precipitation estimate, a 3.1% higher ftot, and a 431 km closer source distance

than the reference. This kind of response in the results of the diagnostic can be explained by the increasingly ambiguous

distinction between variations in specific humidity from moisture uptakes that the diagnostic aims to identify, and variations810
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from interpolation errors and other random factors. Users should carefully evaluate which time step and specific humidity

thresholds are suitable for their study.

Table 5. Sensitivity experiments with key parameters using the Scandinavia case study from August 2022 as a reference. Source charac-

teristics are given in terms of domain averages of precipitation estimate P̃ , total accounted fraction ftot, and source distance. The reference

experiment uses RHc =80 %, ∆qc = 0.2
:::::

g kg−1, Len=81, and Tstep=6.
::
6 h.

:
Differences are computed as Experiment - Reference. For details

see text.

Experiment Precipitation estimate Total accounted fraction Source distance

kg m−2 d−1 Diff. % Diff. km Diff.

Reference 2.074±1.162 95.3±1.5 2314±527

RHc = 70 2.576 0.502 95.4 0.1 2232 -82

RHc = 90 1.476 -0.598 95.2 -0.1 2458 144

∆qc=0.1 2.074 0.000 96.5 1.3 2271 -43

∆qc=0.4 2.074 0.000 92.0 -3.3 2429 115

L= 61 2.074 0.000 91.0 -4.3 2208 -106

L= 41 2.074 0.000 81.9 -13.4 1987 -327

∆t= 3 3.086 1.012 98.4 3.1 1883 -431

6.2 Error sources and uncertainties

As other Lagrangian moisture source diagnostics, WaterSip calculates the Lagrangian water budget of air parcels that are

moving with the atmospheric flow. At initial time t0, these air parcels are defined by their location, an assumed spatial extent,815

and represent an atmospheric mass mk. As air parcels move horizontally and vertically, their shape is assumed to be maintained,

as well as the total mass. However, exchange processes across the air parcel’s imaginary walls can modify the amount of water

vapour within the air parcel, as quantified by the specific humidity q (g kg−1). Interpolation errors can then, among others,

cause spurious variations in the specific humidity. Another assumption that is made in the Sodemann et al. (2008b) algorithm

is that during one time step, all specific humidity changes are assumed to either be due to uptakes or losses, while in fact it is820

a net change that may include both uptakes and losses in the time interval. While this assumption is more valid the shorter the

time interval between trajectory points, shorter time intervals also lead to using smaller ∆qc between time steps, which then

becomes more difficult to separate from interpolation noise. Another assumption in WaterSip is that diagnosed evaporation

took place at the geographic location where the moisture uptake has been detected. However, this does not necessarily need to

be the case, for example when water vapour that had evaporated earlier is at a later time mixed into an air parcel as a result of825

mixing from turbulence or convection.

While threshold parameters, such as ∆qc are used to suppress some of the numerical noise introduced during the trajectory

calculation and interpolation, there may either be too many uptakes diagnosed, or some uptake events may be missed. The total
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explained fraction ftot can then provide important guidance whether the accounting works consistently (i.e., ftot ≤ 1) with the

chosen threshold parameters. Spurious variations that are larger than the threshold value will lead to more remote moisture830

being discounted in the favour of later uptakes, while the assumption that either evaporation or precipitation take place during

one time step acts to overestimate remote sources. Such potential biases are important to keep in mind during interpretation.

Other important sources of uncertainty are the number of particles chosen to represent the investigated air mass, as well as

the time step of the trajectory output. In general, a larger number of trajectories will provide better statistical representation

of the diagnosed quantities, in particular when used with a particle dispersion model such as FLEXPART that parameterises835

turbulent and convective motions. The number of particles should also be chosen in line with the resolution of the source and

arrival grids, providing reasonably smooth and continuous gridded output. Other considerations of offline trajectory diagnostics

are the effects of data assimilation, which provides humidity increments during the process (Fremme et al., 2023), and from

parameterisation schemes in the parent numerical model. Here in particular the role of convection schemes is important to

consider, providing both a pathway for rapid specific humidity changes and vertical particle motion that are hard to capture840

in offline calculations, even when using parameterisation schemes for convection in the trajectory model (Sodemann, 2020).

Here, the use of online trajectory calculation methods (Miltenberger et al., 2013) could provide a pathway towards quantifying

such uncertainty.

6.3 Quantifying and reducing uncertainty

Future development of the WaterSip software and similar approaches will benefit from quantifying uncertainty, and from iden-845

tifying the contribution of different factors to uncertainty. In the absence of a direct observable quantity for the water vapour

origin, model inter-comparison efforts are important. First steps in this direction have been made by van der Ent et al. (2013)

who employed a regional tagged water tracer simulation as the reference standard for a Eulerian moisture source identification

algorithm. Similarly, Winschall et al. (2014a) and Laederach (2016) compared the WaterSip diagnostic to tagged tracer simu-

lations from a regional model. While tagged tracers do have limitations with regard to the representation of different processes850

in the atmospheric water cycle at small scales, it can be expected that using such online simulations as input data for offline

diagnostics can help to quantify uncertainty, essentially serving as an internal "gold standard" for such inter-comparison efforts

(Sodemann, 2020). Thanks to the availability of an increasing number of approaches to provide (Lagrangian and Eulerian)

offline moisture source diagnostics as open access software (van der Ent et al., 2014; Keune et al., 2022; Fernández-Alvarez

et al., 2022), the feasibility of such an inter-comparison effort has greatly increased in recent years. The present description855

of the WaterSip diagnostic is another piece in the puzzle that may help to advance ongoing debates. On the longer run, the

availability of suitable water vapour isotope measurement data sets, in particular such that connect moisture source signals with

measurements along the transport pathway and the arrival region, have the potential to indeed constrain diagnostic methods by

measurements (Gimeno et al., 2021).
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6.4 Computational performance characteristics860

The test case here is run only for a short time period and over a spatially limited domain. Running on a single core on a 36-core

Intel(R) Xeon(R) Gold 6140 CPU at 2.30 GHz, the diagnostic completes after about 21 min, with a peak memory use of 4.6

GB (Table 6). Important aspects of the duration of the computational time are the amount of input/output (I/O) operations, and

the number of particle trajectories to be processed. The test case has at most about new 3000
:::
new

:
particles that are qualified

for tracking within each time step of the test case period. This means that here I/O dominates over the amount of time spent865

for evaluating the moisture source changes and gridding the results. When the amount of particles considered for analysis is

reduced by a factor of 10 (Test "Stride A") or 100 (Test "Stride B"), the computation time only decreases by a factor of 0.6 or

0.4
::
or

:::
0.6, respectively. Nonetheless, a stride larger than one provides results substantially faster, which is useful for example

when testing an analysis setup. Note that results will however contain more gaps with fewer particles due to the stride setting.

The memory footprint scales less than the computational time, since this demand is dominated by the output grids and thus870

the length of the analysis period. Finally, the parallelisation performance is illustrated with a run over the same time period,

but with a larger domain covering half the Northern Hemisphere. The use of 4 cores (Test "Large B") shows a 2.75× speedup

compared to the single-core run (Test "Large A"). However, performance gains quickly become lower with additional cores

due to the need for processes to wait for one another (not shown). It may be possible to gain faster computation times and better

scaling if the code were further optimised for parallelisation.875

Table 6. Overview over computational time and memory demand when running the WaterSip diagnostic for the Scandinavia test case and a

test case covering a larger domain (0–90◦N and 90◦W–90◦E). Sensitivity experiments with different number of particles and different cores

illustrate performance characteristics. All runs were performed on a Linux machine running on a 36-core Intel(R) Xeon(R) Gold 6140 CPU

at 2.30 GHz.

Test Particles Max. qualified Parallel threads Wall time Memory footprint

Default setup 10’000’000 3068 1 21:09 4.59 GB

Stride A 1’000’000 297 1 13:09 3.56 GB

Stride B 100’000 32 1 8:40 3.45 GB

Large A 10’000’000 103127 1 4:08:54 31.93 GB

Large B 10’000’000 103127 4 1:29:15 30.57 GB

7 Summary and Final Remarks

The WaterSip software is a versatile implementation of the Lagrangian moisture source and transport diagnostic of Sode-

mann et al. (2008b). Besides providing a detailed, formal description of the diagnostic algorithm and its key parameters, this

manuscript provides practical information to set up and run the WaterSip tool, and serve as a reference describing the format
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and contents of the different output files from the diagnostic. Using an exemplary case study for a precipitation period over880

Scandinavia in August 2022, guidance on the use and interpretation of different maps and output products from the software

is provided. Using the available setup with the same input data as the case study (Sodemann, 2025a), users can get quickly

accustomed with the wide range of configuration options of the software tool, and the varieties of diagnostic output, before

setting up their own cases.

As other off-line diagnostics, WaterSip and its accounting algorithm have several underlying assumptions,
:
.
:::::
When interpret-885

ing results from WaterSipnecessitates the careful consideration ,
:::::
users

:::
are

:::::::
therefore

:::::::
advised

::
to

:::::::
carefully

::::::::
consider

::
all

:::::::
sources of

uncertainty. Uncertainty arises from the choice of different parameters in the set-up of the input data in the form of air parcel

transport trajectories, but also with regard to several parameters that influence the sensitivity and performance of the method. In

order to obtain physically meaningful results, threshold parameters may need to be set to different values depending on the ge-

ographic region, the season, and the height in the atmosphere that is considered during an analysis. Users are therefore advised890

to carefully test their particular set-up in order to determine sensitivity of their results to the chosen parameter configurations.

Availability of the software tool enables a wider use of this diagnostic for studies of the moisture source location and

properties, as well as for identifying the conditions during atmospheric transport, and during arrival at the target region. Making

the software code available in a public repository removes the requirement for other researchers to re-implement the diagnostic

algorithm, and enables future contributions from the community such as reading output from other Lagrangian particle and895

trajectory models.

It is the hope of the author that documenting and making the code of WaterSip available here will lead to the further

application of the tool in a wide range of regions and scientific applications, from understanding the factors of precipitation

extremes, to climatological studies, and paleoclimate studies. Furthermore, WaterSip in its current version 3.2 may be compared

to the results of other available moisture source diagnostics, helping to understand the overall state of the art in this scientific900

branch, thereby contributing to progress in the field and future methods with reduced uncertainty.

Code and data availability. The model code of the WaterSip diagnostic in its current version 3.2.1 is available as archived code at https:

//doi.org/10.5281/zenodo.15068065 (Sodemann, 2025b) and maintained at the git repository https://git.app.uib.no/GFI-public/watersip. Test

data sets with FLEXPART output and corresponding WaterSip results are available at https://doi.org/10.5281/zenodo.14836548 (Sodemann,

2025a).905

Appendix A: Spatial characteristics of Lagrangian precipitation estimate

The Lagrangian precipitation estimate for the period from 06 UTC on 5 July 2022 to 00 UTC on 15 July 2022 over Scandinavia

shows a pattern that roughly follows the topography along the west coast of Norway (Fig. A1a). In contrast, southern Scandi-

navia and the Baltic Sea have lower total precipitation averages of 0–1 mm d−1. The ERA5-simulated precipitation has a much
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stronger contrast between coastal regions and the drier interior of the domain. The period average reaches above 8 mm d−1 in910

Northern Norway, but has also a larger extent of regions where no precipitation was recorded.

Figure A1. Comparison between precipitation during the case study period (06 UTC on 5 July to 00 UTC on 15 July 2022) over Scandinavia

(a) estimated from the WaterSip diagnostic and (b) from ERA5 in mmd−1.

Appendix B: Description of control parameters in the WaterSip configuration file

The WaterSip configuration file contains all control parameters of the WaterSip diagnostic in one text file. The control pa-

rameters are each specified on one line in the format <parameter name> = <parameter value>. Parameters can

be either a string, integer, boolean, or float value. Parameters are grouped into one of 7 settings groups. Corresponding tables915

referred to in the Appendix provide an overview over all parameters in this group, including example values.

1. Case: The settings in this group concern the basic settings of a diagnostic run (Table B1).

2. Grids: The parameters in this category specify the different output grids and the gridding method (Table B2).

3. Diagnostics: The parameters in this category control the way how the diagnostic works, and which trajectories should be

considered in the run (Table B3).920

4. Output: The parameters in this category determine which output files should be created (Table B4).

5. Variables: The parameters in this category allow to include or exclude specific variables from the output files. Setting the

output for unused variables to 0 (disabled) will speed up computation time, reduce the memory footprint, and reduce the

output file size (Table B5).

40



6. FLEXPART: The parameters in this category describe the properties specific to FLEXPART input files (Table B6).925

7. LAGRANTO: The parameters in this category describe the properties specific to LAGRANTO input files (Table B7).

Settings groups are identified in the configuration file by their name included within in square brackets (e.g. [Case]). The

7 settings groups and control parameters within them can appear in random order in the input file. WaterSip will display an

error message if a parameter name is unknown or in the wrong settings group. An error message will also be displayed if the

parameter value is of wrong type. Space characters and empty lines will be ignored in the input file and can be used to format930

the content. In addition, comments can be added after the character ’#’ anywhere in the file to facilitate documentation.

Table B1. Parameters in the settings group Case.

Parameter Type Example Description

caseName s test_global identifier for the run, prepended to all output files

inputDir s ./input/shortposit_%s Search path of the input files. The inputDir string ends with a placeholder for the files to be read

in. For FLEXPART this will be either shortposit_%s or partposit_%s. For LAGRANTO this will

often be lsl_%s. The %s placeholder is filled with the current date at runtime.

outputDir s ./output/test_global/ path where the output files will be created

startDate s 20230811-000000 Inital date of the run, fixed format YYYYMMDD-HHMMSS. Start date is latest date of the run.

endDate s 20230713-030000 Last date of the run, fixed format YYYYMMDD-HHMMSS. End date is earliest date of the run.

timeStep i 3 Time step in hours between particles or trajectory output times.

sectorizeRegion i 6 Region set used to divide moisture sources into different sectors.

filterBoxFile s " " Path to the text file describing geographic boxes used to filter air parcels during transport.

filterIndex i -1 Used line from the filterBoxFile to select/deselect trajectories

orographyFile s ./topo/etopo5.nc Path to the orography file in netCDF format used to select arrival based on the underlying

topography.

lsmFile s ./masks/lsm_mask.nc Path to a netCDF file with global land-sea-mask. Domain must be global.

maskFile s " " Path to a netCDF file with an arrival region mask.

useMask b 0 Use mask file (0=no, 1=yes)

trajPoints i 161 Number of trajectory points to be considered in the analysis of arriving air parcels.

minTrajPoints i 0 Minimum length required for trajectories to be included in analysis (only relevant for runs with

LAGRANTO input).

ompThreads i 4 Number of threads to be used with OpenMP parallelisation if compiled with flag -fopenmp (1=no

parallelisation, >1 use parallelisation.)

showStats b 1 Print statistics about particle processing to the command line (0=off, 1=on)

Appendix C: Sectorisation options

The sectorisation parameters allow to assign quantities on the moisture source and transport grid to pre-specified regions

(Sec. 5.7). In total 14 sectorisations are currently built into the program code of WaterSip, covering different regions of the
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Table B2. Parameters in the settings group Grid.

Parameter Type Example Description

arrivalGridMinLon f 7.5 Minimum longitude of arrival (target region) grid. Air parcel trajectories are traced backward

from the arrival grid. Integrated source, transport and arrival variables are placed on the arrival

grid, weighted by precipitation or water vapour of arriving air parcels.

arrivalGridMaxLon f 11.0 maximum longitude of arrival (target region) box

arrivalGridMinLat f 59.0 minimum latitude of arrival (target region) box

arrivalGridMaxLat f 62.0 minimum latitude of arrival (target region) box

arrivalGridDx f 0.25 Longitude increment of arrival (target region) grid.

arrivalGridDy f 0.25 Latitude increment of arrival (target region) grid.

arrivalGridRadius f 40 Gridding radius for diagnostic values from arriving air parcels.

sourceGridMinLon f -120 Minimum longitude of moisture source grid.

sourceGridMaxLon f 120 Maximum longitude of moisture source grid.

sourceGridMinLat f 0 Minimum latitude of moisture source grid.

sourceGridMaxLat f 90 Maximum latitude of moisture source grid.

sourceGridDx f 0.5 Longitude increment of moisture source grid.

sourceGridDy f 0.5 Latitude increment of moisture source grid.

sourceGridRadius f 60 Longitude increment of moisture source grid.

griddingType i 2 Select gridding algorithm (1: fast and simple gridding, 2: more exact but slower gridding).

globe (Fig. C1, Table C1). The sectorisation is specified in the run setup using parameter sectorizeRegion in settings group935

Case. Each of the sectors distinguishes between the respective land and ocean area. During post-processing, it is common to

combine several sectors together to obtain desired information over a source region with more complex shape than a box. Users

can define new sectorisations by modifying the program code in class Sectors (files Sectors.cpp, Sectors.h).

Appendix D: Output files

WaterSip creates a range of output files with different formats (Sec. 4.3 and Table 2). The primary results from the diagnostic940

are contained in the grid and series files. While grid files contain the spatially resolved information for different averaging

intervals (time step, daily, monthly, yearly, and whole analysis period), the series files contain statistical properties (sum or

mean, standard deviation, minimum and maximum) per averaging time. The source and transport properties are contained in

grid and series files (Table D1), together with arrival and forward-projected quantities (Table D2).

The series file furthermore contains the results of the sectorisation (Sec. 5.7). Sectorisation variables comprise the sector945

area, as well as a percent fraction of the source and transport properties available on the global map per sector (Table D3). The

sector information is separated into land and sea fractions, whereby the sector number is can be accessed along the dimension

sector.
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Table B3. Parameters in the settings group Diagnostics.

Parameter Type Example Description

uptakeThreshold f 0.2 Threshold value for specific humidity increase (in g kg−1∆t−1) in air parcels to be considered as due to

evaporation and transpiration. If the parameter reativeThresholds is set to true, the uptakeThreshold

specifies the increase of the specific humidity in units of %.

precipThreshold f -0.2 Threshold value for specific humidity decreases (in g kg−1∆t−1) in air parcels to find precipitation

events. When relativeThresholds is set to true, the precipThreshold specifies the decrease of the specific

humidity in %. For consistency, it is recommended to set the values for precipitationThreshold and

arrivalPrecipMin to the same number.

blhScale f 1.5 Scaling factor for boundary-layer height, decides wether uptakes are due to surface evaporation from

below, or due to free-troposphere processes, such as convection and mixing.

arrivalRHMin f 80 Threshold value for minimum RH (in %) at the arrival location that identifies moisture losses as

precipitation events. High latitude locations may require lower threshold values.

arrivalRHMax f 120 Threshold value for maximum RH (in %) at the arrival location that identifies moisture losses as

precipitation events. In combination with arrivalRHMin, this parameter can be used to focus on

condensation/no condensation cases when the parameter analyzeVapour is set to true.

arrivalPrecipMin f -0.2 Threshold value to find precipitation events from a specific humidity decrease (in g kg−1∆t−1). When

relativeThresholds is set to true, the precipThreshold specifies the decrease of the specific humidity in %.

For consistency, it is recommended to set the values for precipitationThreshold and arrivalPrecipMin to the

same number.

arrivalPrecipMax f -120 Threshold value to consider precipitation events with a specific humidity decrease of up to the value given

by arrivalprecipMax. When relativeThresholds is set to true, the precipThreshold specifies the decrease of

the specific humidity in %. A large negative value includes all potential precipitation events. The

combination of arrivalPrecipMin and arrivalPrecipMax allows to focus on heavy or weak precipitation

events.

arrivalOroMin f -100 Threshold value to consider only arrival locations with a topography larger than the given value (in m).

Use negative value to include all global locations including ocean areas, Bangladesh and Death Valley.

arrivalOroMax f 90000 Threshold value to consider only arrival locations with a topography lower than the given value (in m).

arrivalAltMin f -100 Threshold value to consider only air parcels arriving at altitudes above the given altitude (in m above sea

level).

arrivalAltMax f 90000 Threshold value to consider only air parcels arriving at altitudes below the given altitude (in m above sea

level).

analyzeVapour b 0 Parameter to chose between precipitation origin (0) or vapour origin (1). When analyzing vapour origin,

the parameters precipitationThreshold, arrivalRHMin, and arrivalRHMax may need modification.

assignToUptake b 0 Parameter determining the assignment of moisture uptake events to arrival time (0) or to uptake time step

grid (1). This parameter will mostly affect time step and daily output files.

forwardProjectionModei 3 Parameter determining how the Lagrangian forward projection of moisture source and moisture transport

properties are calculated (1: only consider boundary-layer moisture uptakes, 2: only consider

free-troposphere uptakes, 3: consider both uptakes in combination).

relativeThreshold b 0 Parameter determines whether specified threshold values are interpreted as absolute (0) or relative values

(1).

processingAlgorithm i 0 Parameter allows to chose between the processing algorithm of Sodemann et al. (2008b) (0), Dirmeyer and

Brubaker (1999) (1), and Gustafsson et al. (2010) (2).
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Table B4. Parameters in the settings group Output.

Parameter Type Example Description

stepFile b 0 Write output variables on Grid files for each time step.

dayFile b 1 Write output variables on grid files averaged/accumulated for each day.

monthFile b 1 Write output variables on grid files averaged/accumulated for each month.

yearFile b 1 Write output variables on grid files averaged/accumulated for each year.

allFile b 1 Write output variables on grid files averaged/accumulated for entire analysis period.

staticFields b 1 Write static fields (land-sea mask and topography) to grid files.

saveTraj i 0 Write particle positions to trajectory files in traj format. Option (1) creates one files for each time step,

option (2) one file for each month (2). Option (0) disables trajectory output.

skipTraj i 1 Only write every n-th trajectory to reduce trajectory file size. Option (1) writes all particle trajectories.

saveHistogram b 1 Write a subset of variables to histogram files (0: disabled, 1:enabled).
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Table B5. Parameters in the settings group Variables. Output of variables activated by parameter value (1) and deactivated by (0). Variables

are written to grid and series output files.

Parameter Type Description

sourcesBoundaryLayer b Write accounted moisture uptakes in the boundary layer to output files.

sourcesFreeTroposphere b Write accounted moisture uptakes in the free troposphere to output files.

evaporationMinusPrecipitation b Write unweighted evaporation minus precipitation along entire trajectory length to output files.

moistureTransport b Write weighted moisture transport along trajectories to output files.

trajectoryLocations b Write particle mass density to output files.

precipitationEstimate b Write precipitation estimate at arrival to output files.

sourceLongitude b Write weighted moisture source longitude projected to the arrival region to output files.

sourceLatitude b Write moisture source latitude projected to the arrival region to output files.

arrivalCount b Write number of arriving trajectories on the arrival region to output files.

landFraction b Write fraction of moisture sources over land projected to the arrival region to output files.

boundaryLayerFraction b Write accounted fraction of boundary layer uptakes projected to the arrival region to output files.

freeTroposphereFraction b Write accounted fraction of free troposphere uptakes projected to the arrival region to output files.

combinedFraction b Write accounted fraction of boundary layer and free troposphere uptakes projected to the arrival region to

output files. This is the sum of the two previous variables.

transportTime b Write moisture transport time projected to the arrival region to output files.

sourceSkinTemperature b Write skin temperature at the moisture source projected to the arrival region to output files. Requires that

skin temperature is a variable on the input files.

sourceSpecificHumidity b Write surface specific humidity at the moisture source projected to the arrival region to output files.

Requires that source specific humidity is a variable on the input files.

transportDistance b Write transport distance projected to the arrival region to output files.

sourceDistance b Write source distance projected to the arrival region to output files.

source2mTemperature b Write 2m temperature at the moisture source projected to the arrival region to output files. Requires that

2m temperature is a variable on the input files.

sourceDeuteriumExcess b Write deuterium excess projected to the arrival region to output files. Deuterium excess is calculated from

the relative humidity with respect to SST and the relationship from Pfahl and Sodemann (2014). Requires

that source specific humidity and SST or 2m temperature and humidity are variables on the input files.

transportTemperature b Write moisture-weighted temperature during transport projected to arrival region to output files.

transportPressure b Write moisture-weighted pressure during transport projected to arrival region to output files.

condensationTemperature b Write moisture-weighted temperatures where RH with respect to liquid exceeds 80% to output files.

arrivalTemperature b Write temperature during moisture arrival to output files.

arrivalPressure b Write pressure during moisture arrival to output files.

arrival2mTemperature b Write temperature at 2m during moisture arrival to output files. Requires that 2m temperature is a variable

on the input files.

arrivalSkinTemperature b Write skin temperature during moisture arrival to output files. Requires that skin temperature is a variable

on the input files.
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Table B6. Parameters in the settings groups FLEXPART.

Parameter Type Example Description

inputFormat i 5 File format of FLEXPART particle position output files. 0: regional long output format, 1: global analysis

data output format, 2: regional short format, 3: global reanalysis/NorESM data short format, 4: global

reanalysis data long format, 5 regional reanalysis/NorESM data short format. Formats are implemented in

the WaterSip code in file readparticles.cpp.

maxPart i 4000000 Number of particles contained in a single FLEXPART partposit or shortposit file.

partMass f 2.54E+11 Atmospheric mass represented by each particle (in kg). Parameter value corresponds to value in file

"partmass" created by FLEXPART.

allowReenter b 0 Needs to be enabled (1) for global domain-filling simulations. In regional domain-filling runs this

parameter needs to be deactivated (0) to avoid double accounting of air parcels.

partStride i 1 Particles to skip during processing to speed up calculations for testing (1: use every particle, n>1: use

every n-th particle).

Table B7. Parameters in the settings groups LAGRANTO. Variables are identified by column index, starting from 0. Variables not contained

in trajectory files are specified as value -1.

Parameter Type Example Description

partMass f 4E+06 Particle mass per arriving trajectory, obtained as ∆x ·∆y ·∆p in units of m2 hPa.

inputFormat i 1 Choice between different formats of the LAGRANTO file. Format where the header contains time

in HH (hours) only set by (0), format with header time in HH:MM (hours and minutes set by (1).

indexPressure i 3 Column index of variable air parcel pressure (in hPa).

indexBoundaryLayerHeight i 11 Column index of variable boundary-layer height (in m).

indexSkinTemperature i 12 Column index of variable surface skin temperature (in K).

indexPotentialTemperature i 6 Column index of variable potential temperature (in K).

indexSpecificHumidity i 10 Column index of variable specific humidity (in g kg−1).

indexEvaporation i -1 Column index of variable surface evaporation (in mm).

indexTemperature i 7 Column index of variable air temperature (in K)

indexRelativeHumidity i 8 Column index of variable relative humidity (in %)

indexHeight i -1 Column index of variable height (in m a.g.l.)

indexZonalWind i -1 Column index of variable zonal wind (in m s−1)

indexMeridionalWind i -1 Column index of variable meridional wind (in m s−1)

indexIntegratedWaterVapour i -1 Column index of variable integrated water vapour (in mm)

index2mTemperature i -1 Column index of variable 2m air temperature (in K)

indexOrography i -1 Column index of variable topography height (in m a.s.l.)
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Table C1. Sectorisations that are currently available in WaterSip by setting parameter sectorizeRegion in settings group Case.

sectorizeRegion Name Number of sectors

0 NEEM 11

1 Antarctica 21

2 Borneo 14

3 Norway 8

4 Arctic 21

5 Belize 15

6 Alps 9

7 Pakistan 6

8 Latitude 18

9 Longitude 36

10 China 19

11 Scandinavia 23

12 Arctic Seas 19

13 Pakistan 2022 13

Table D1. Source and transport quantities contained in the grid and series files. Each variable is available as the sum, the standard deviation

over the non-zero grid points, and the minimum and maximum value of the respective averaging interval. For step files, the precipitation rate

is given per time step ∆t, for all other files the rate is per day.

Variable Units

moisture_uptakes_boundary_layer_(sum|std|min|max) mm (∆t or d)−1

moisture_uptakes_free_troposphere_(sum|std|min|max) mm (∆t or d)−1

evaporation_minus_precipitation_(sum|std|min|max) mm (∆t or d)−1

rainout_(sum|std|min|max) mm (∆t or d)−1

air_mass_mixing_(sum|std|min|max) mm (∆t or d)−1

moisture_transport_(sum|std|min|max) mm

trajectory_location_(sum|std|min|max) counts km−2
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Table D2. Arrival and Lagrangian forward projected properties contained in the grid files. ∗ denotes variables weighted in addition by the

Lagrangian precipitation estimate P̃ . + denotes variables weighted by the accounted fraction.

Name Unit Projection Description

precipitation_estimate mm d−1 arrival Lagrangian precipitation estimate at arrival location, derived

or mm ∆t−1 from change in specific humidity during last time step

arrival_temperature∗ K arrival temperature at trajectory location and elevation during arrival

arrival_pressure∗ hPa arrival pressure at trajectory location and elevation during arrival

arrival_skin_temperature∗ K arrival SKT below trajectory location during arrival

accounted_fraction_boundary_layer fraction arrival fractional contribution of BL moisture sources to P̃

accounted_fraction_free_troposphere fraction arrival fractional contribution of FT moisture sources to P̃

precipitation_lifetime∗+ h transport precipitation life time

transport_distance∗+ km transport transport distance along trajectory

moisture_transport_temperature∗+ K transport temperature during moisture transport

moisture_transport_pressure∗+ hPa transport pressure during moisture transport

condensation_temperature∗+ K transport temperature when RH> 80% during transport

source_longitude∗+ degrees_east source latitude of the moisture source

source_latitude∗+ degrees_north source longitude of the moisture source

land_fraction∗+ fraction source fraction of moisture sources over land

source_skin_temperature∗+ K source SKT at the moisture source

source_distance∗+ km source direct distance between moisture source and arrival location

deuterium_excess∗+ ‰ source estimate of deuterium excess at the source from RH and T

using the Pfahl and Sodemann (2014) relation
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Table D3. Sectorisation variables contained in the series files.

Variable Unit

time days since 0001-01-01 00:00:00

sector sector number
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land_fraction_moisture_transport %

sea_fraction_moisture_transport %

land_fraction_airmass_mixing %
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sea_fraction_rainout %
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sea_fraction_evaporation_minus_precipitation %
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Figure C1. Pre-defined sectorisations that are currently available in WaterSip. (a) NEEM sectorisation (11 sectors), (b) Antarctica sectorisa-

tion (21 sectors), (c) Borneo sectorisation (14 sectors), (d) Norway sectorisation (8 sectors), (e) Arctic sectorisation (21 sectors), (f) Belize

sectorisation (15 sectors), (g) Alps sectorisation (9 sectors), (h) Pakistan sectorisation (6 sectors), (i) Latitude sectorisation (18 Sectors), (j)

Longitude sectorisation (36 sectors), (k) China sectorisation (19 sectors), (l) Scandinavia sectorisation (23 sectors), (m) Arctic Seas sectori-

sation (19 sectors), (n) Pakistan 2022 sectorisation (13 sectors). Colour bar symbolic.
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