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Abstract. High-resolution gridded precipitation products are widely used in hydroclimatic analyses, although their long-term 6 

stability has not been thoroughly evaluated. This study investigates temporal inhomogeneities in five widely used 7 

precipitation datasets—Daymet, gridMET, nClimGrid, PRISM, and TerraClimate—across the southeastern United States 8 

during 1980–2024. Annual precipitation totals were derived from both monthly and daily data and compared with a 9 

reference time series constructed from 120 U.S. Cooperative Observer Program (COOP) gauges. Residual-mass curves and 10 

Mann–Whitney U tests were applied to identify temporal inhomogeneities, and trend magnitudes were estimated using the 11 

Kendall–Theil robust line. Significant inhomogeneities were detected in most datasets, with nearly 80% of discontinuities 12 

concentrated between 2002 and 2018. These shifts corresponded closely to changes in gauge-network composition and data-13 

processing procedures. Daymet and PRISM exhibited wetting biases linked to the expansion of the Community 14 

Collaborative Rain, Hail, and Snow (CoCoRaHS) network and the concurrent decline of COOP gauges, whereas nClimGrid 15 

showed a drying bias resulting from increased reliance on Automated Surface Observing System tipping-bucket gauges, 16 

which underestimate rainfall. Step increases in TerraClimate and gridMET totals reflected transitions in input data and 17 

reprocessing of precipitation forcing fields. These inhomogeneities produced disparate multi-decadal trends ranging from 19 18 

to 48 mm dec⁻¹ compared with a non-significant reference trend of 30 mm dec⁻¹. Among all datasets and combinations 19 

tested, the Daymet–nClimGrid pair was the only one without detectable discontinuities and reproduced the reference trend 20 

most accurately. This combination provides a homogeneous, temporally consistent dataset for multi-decadal precipitation 21 

analyses across the Southeast. Overall, the results demonstrate that unrecognized inhomogeneities in gridded precipitation 22 

products can substantially bias regional trend assessments and underscore the need to evaluate and, when necessary, combine 23 

datasets to ensure temporal stability in long-term hydroclimatic studies. 24 

1 Introduction 25 

High-quality, multi-decadal precipitation data are essential for research and decision-making. Such records enable rigorous 26 

assessment of variability and long-term trends (New et al., 2001) and provide a robust foundation for model calibration and 27 

evaluation (Döll et al., 2016; Tango et al., 2025). Reliable long-term observations also underpin integrated and adaptive 28 
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management of water resources, supporting sustainable planning for agriculture, ecosystems, and regional development 29 

(Yang et al., 2021; Ferencz et al., 2024;). 30 

Spatial limitations remain a persistent challenge in precipitation measurement. Although gauge networks provide the 31 

foundation for precipitation observation, gauge distribution is often sparse and uneven (Kidd et al., 2017). These deficiencies 32 

are most pronounced in complex terrain and other data-sparse regions (Michelon et al., 2021). 33 

To extend coverage beyond existing gauges, gridded precipitation products were developed. These datasets integrate gauge, 34 

satellite, and reanalysis information through interpolation or merging algorithms to generate spatially continuous 35 

precipitation estimates (Mankin et al., 2025). Gauge-informed products generally provide higher spatial accuracy than those 36 

derived solely from remote sensing or reanalysis (Zandler et al., 2019; Muche et al., 2020; de la Fraga et al., 2024; Mankin et 37 

al., 2025). However, the limited availability of gauges in complex terrain still constrains accuracy, and many products 38 

perform poorly in mountainous regions (Zandler et al., 2019; de la Fraga et al., 2024; Wang and Tian, 2025). 39 

High-resolution gridded precipitation products are particularly well-suited to the needs of the hydrology community, 40 

which relies on them more than any other discipline. Gridded precipitation datasets provide the spatially distributed input 41 

data required to drive hydrologic models (Livneh et al., 2015; Newman et al., 2015; Shuai et al., 2022). Among many other 42 

applications, gridded precipitation products are also employed to quantify basin-scale water balances (Laiti et al., 2018) and 43 

to support hydrologic forecasting and management (Mankin et al., 2025). 44 

Despite the widespread use of gridded precipitation products, especially within the hydrology community, the temporal 45 

stability of these datasets remains insufficiently evaluated. Apparent long-term trends can be distorted by inhomogeneities—46 

systematic, non-climatic shifts in the statistical properties of a time series (Peterson et al., 1998). Only a handful of studies 47 

(e.g., Guentchev et al., 2010; Mizukami and Smith, 2012; McAfee et al., 2014; Ferguson and Mocko, 2017; Henn et al., 48 

2018) have explicitly identified or investigated such inhomogeneities in gridded precipitation products. Accordingly, this 49 

study evaluates the temporal stability of multiple high-resolution precipitation datasets across a large, climatically uniform 50 

region during 1980–2024. The objectives are to (1) detect and characterize temporal inhomogeneities and the factors 51 

contributing to them, (2) quantify biases that influence multi-decadal trends, and (3) determine which individual products or 52 

product combinations exhibit the greatest temporal stability for regional trend analyses. 53 

This study focuses on the southeastern United States (Fig. 1), encompassing Alabama, Florida, Georgia, Mississippi, 54 

North Carolina, South Carolina, and Tennessee, with a total area of approximately 882,000 km². The Southeast was selected 55 

because much of it has a humid subtropical climate—hot summers, mild winters, and high annual precipitation (Kunkel et 56 

al., 2013; Labosier and Quiring, 2013)—and includes numerous long-term reference gauges from the U.S. Cooperative 57 

Observer Program (COOP), the nation’s most consistent climate network (National Research Council, 1998). 58 
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 59 
Figure 1. Locations of the 120 reference gauges in the southeastern United States. All gauges are part of the U.S. Cooperative (USC) 60 
network. The seven states that comprise the southeastern United States are Alabama (AL), Florida (FL), Georgia (GA), Mississippi (MS), 61 
North Carolina (NC), South Carolina (SC), and Tennessee (TN). 62 

2 Data 63 

Monthly precipitation totals from a dispersed network of 120 COOP gauges across the Southeast during 1980-2024 were 64 

used to produce a reference time series (Fig. 1). All gauges had at least 90% of months with precipitation totals. Only 1.6% 65 

of gauge-months were missing. The missing monthly totals were replaced with the mean total from the three closest gauges. 66 

The gauges ranged in elevation from 1 m a.sl. to 668 m a.sl.; therefore, none of the gauges were located in high-elevation 67 

areas. Monthly totals for each gauge were summed to produce annual precipitation values, which were then averaged across 68 

all gauges to form the regional reference time series. 69 

Precipitation estimates were obtained for five high-resolution gridded products (Daymet, gridMET, nClimGrid, PRISM, 70 

and TerraClimate) for 1980–2024. For each product, annual precipitation totals were derived from the available daily and 71 

monthly data. Daymet provides daily precipitation estimates for North America at 1-km resolution, with monthly values 72 
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derived by aggregating daily fields (Thornton et al., 2021). Daymet data were not yet released for 2024 at the time of 73 

analysis; therefore, the Daymet series extends through 2023. nClimGrid provides daily and monthly precipitation estimates 74 

for the conterminous United States at ~4-km resolution, generated independently using climatologically aided interpolation 75 

of station data (Vose et al., 2014). PRISM provides daily and monthly precipitation estimates for the United States at ~4-km 76 

resolution, generated using station observations integrated with topographic and other spatial predictors (Daly et al., 2008). 77 

Because daily PRISM data were not available for 1980, annual totals for that year in the series were derived from monthly 78 

PRISM precipitation estimates to maintain a complete 1980–2024 record. gridMET provides daily precipitation estimates for 79 

the conterminous United States at ~4-km resolution, generated by combining high-resolution PRISM climatologies with 80 

temporally varying fields from the North American Land Data Assimilation System (NLDAS-2) using the METDATA 81 

downscaling method (Abatzoglou, 2013). TerraClimate provides monthly precipitation estimates for the global land surface 82 

at ~4-km resolution, generated by combining WorldClim climatologies with time-varying anomalies derived primarily from 83 

the Climatic Research Unit Time Series (CRU TS) and Japanese 55-year Reanalysis (JRA-55) datasets (Abatzoglou et al., 84 

2018). When calculating regional means, approximately 2.5 % of grid cells (those exceeding 668 m a.s.l.) were excluded to 85 

restrict the analysis to the low- and mid-elevation portions of the Southeast and to minimize the aforementioned precipitation 86 

inaccuracies associated with mountainous areas. 87 

Information on precipitation gauges underlying each gridded product was compiled for 1980–2024. Gauges were 88 

classified by network, and spatial coverage was assessed by identifying the 40-km grid cell containing each gauge across the 89 

Southeast. For each network, the number of grid cells containing at least one gauge was tallied and divided by the total 90 

number of grid cells in the region to calculate percent coverage. 91 

In addition to analyzing each gridded product individually, time series were generated for all possible pairwise and 92 

multi-product combinations. Combinations were produced separately for the daily and monthly datasets, with each series 93 

calculated as the mean of the contributing products (e.g., Daymet and nClimGrid). For the four products available at both 94 

temporal scales, this yielded six two-product combinations, four three-product combinations, and one four-product 95 

combination, for a total of 11 unique combinations. 96 

3 Methods 97 

3.1 Residual-Mass Curves 98 

Residual-mass curves were constructed as a diagnostic of the homogeneity of precipitation time series and combinations of 99 

those series. This approach originates from hydrological consistency testing, in which cumulative residuals are plotted over 100 

time to reveal systematic deviations (Searcy and Hardison, 1960). In this study, residuals were obtained from linear 101 

regressions in which the reference time series served as the predictor and the product time series as the predictand. For a 102 

homogeneous record, the cumulative residuals are expected to remain near zero, fluctuating randomly without systematic 103 
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drift, whereas sustained deviations or changes in slope indicate shifts, biases, or other inconsistencies (Buishand, 1984; 104 

Helsel and Hirsch, 2002). 105 

3.2 Testing for Differences 106 

To identify the most significant discontinuity—defined here as an abrupt, non-climatic shift in a time series representing a 107 

temporal inhomogeneity—in each product time series, a nonparametric split-sample approach was applied. For each 108 

potential breakpoint year, residuals (i.e., observations minus product estimates) before and after that year were compared 109 

using the Mann–Whitney U test (α = 0.01, two-tailed), with a minimum of eight years required in each group, yielding 110 

candidate breakpoints between 1988 and 2017. The Mann–Whitney U test has been shown to be effective for identifying 111 

shifts in hydroclimatic time series (Yue and Wang, 2002), and similar split-sample approaches have been applied in climate 112 

homogenization studies to test for differences before and after potential discontinuities (Easterling and Peterson, 1995). 113 

3.3 Trend Analyses 114 

Trends in annual precipitation for 1980–2024 were computed for each gridded product and the reference time series. The 115 

Kendall–Theil robust line, calculated as the median of the slopes between all pairs of observations (Helsel and Hirsch, 2002), 116 

provided a nonparametric estimate of the trend magnitude. The statistical significance of each trend was assessed with 117 

Kendall’s tau correlation test (α = 0.01, one-tailed). 118 

4 Results 119 

4.1 Spatial Variations in Precipitation 120 

Mean annual precipitation patterns and totals are broadly consistent among the five precipitation products, with Daymet 121 

producing slightly higher values than the others (Fig. 2). This comparison provides spatial context for the subsequent 122 

temporal analyses by illustrating that the datasets yield similar climatological means across the Southeast. Mean annual 123 

totals for 1980–2023 range from 1,347 mm for nClimGrid to 1,431 mm for Daymet. Precipitation totals are smallest (~1,100 124 

mm) across central Georgia, South Carolina, and North Carolina and largest (~2,000 mm) in the Blue Ridge and Cumberland 125 

Mountains. 126 

4.2 Changes in Gauges 127 

All products showed substantial temporal changes in gauge numbers across 1980–2024, most notably increasing coverage by 128 

CoCoRaHS (Community Collaborative Rain, Hail, and Snow Network) gauges and decreasing coverage by COOP gauges 129 

(Fig. 3). Daymet was initially dominated by COOP gauges but by the end of the period CoCoRaHS gauges were most 130 

prevalent. Both CoCoRaHS and weather-bureau gauges increased in coverage, with CoCoRaHS rising from <1% in 2006 to 131 
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Figure 2. Mean annual precipitation totals (in mm) during 1980-2023 for the five precipitation products. gridMET, nClimGrid, PRISM,
and TerraClimate have been resampled to 1-km resolution to match the resolution of Daymet. 

78% in 2021, while COOP gauges began decreasing around 2011. nClimGrid consistently relied more on COOP than 132 

weather-bureau gauges, but the difference in 2024 (67% vs. 24%) was much smaller than in 1980 (81% vs. 14%). Coverage 133 

by weather-bureau gauges began increasing in 1998, while COOP coverage declined after 2012. PRISM, which used gauges 134 

from 15 networks, showed a similar pattern, with increasing CoCoRaHS and decreasing COOP coverage. CoCoRaHS 135 

coverage rose from <1% in 2006 to ~75% in 2021. There was also an increase in gauges from other networks and a steady 136 

decline in COOP coverage. TerraClimate had much less gauge coverage overall, with a maximum of 25% from cooperative 137 

gauges and an abrupt decline from 22% to <1% between 2010 and 2011. Information on gauge coverage for gridMET was 138 

unavailable. 139 

4.3 Comparison of Monthly and Daily Versions of Products 140 

Monthly and daily versions of Daymet, nClimGrid, and PRISM had either identical or nearly identical results (Fig. 4). 141 

Consequently, monthly results—which include TerraClimate—are shown in the paper, while the daily results—which 142 

include gridMET—are presented in the supporting information. 143 

Figure 3. Differences in annual precipitation between monthly products and daily products. 
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 144 

Figure 4. Percent coverage of the southeastern United States over time by gauge networks used in the five precipitation products. 145 

4.4 Residual-Mass Curves 146 

Among the initial products, Daymet had the most optimal residual-mass curve, and combining products resulted in the best 147 

residual-mass curves (Fig. 5 and S1). The best residual-mass curves are those with relatively small cumulative sums of the 148 

absolute values of residuals. Daymet had much lower cumulative sums than the other four initial products. The overall best 149 

products were combinations of products, and those products were nClimGrid-PRISM, Daymet-nClimGrid-TerraClimate, 150 

Daymet-nClimGrid-PRISM, Daymet-gridMET-nClimgrid, and Daymet-nClimGrid. 151 

The residual-mass curves also revealed potential discontinuities, most of which occurred during the third and fourth 152 

decades of the 45-year record (Fig. 3 and S2). In each panel of the figures, the year associated with the largest absolute 153 

residual corresponded to the year preceding the potential discontinuity. For Daymet, gridMET, nClimGrid, PRISM, and 154 

TerraClimate, the potential discontinuities were centered on 2008, 2016, 2005, 2002, and 2011, respectively. For all products 155 

and combinations of products, over 80% of the potential discontinuities occurred during 2002-2016. 156 

4.5 Discontinuities 157 

Most products exhibited significant discontinuities, and the timing of these shifts generally aligned with the potential 158 

discontinuities identified from the residual-mass curves (Fig. 6 and S2). Approximately 80 % of products showed at least one 159 

significant discontinuity. The initial products—Daymet, gridMET, nClimGrid, PRISM, and TerraClimate—had 160 

discontinuities centered on 2012, 2016, 2005, 2002, and 2011, respectively. Nearly 90 % of all discontinuities, including 161 

those from product combinations, occurred between 2002 and 2018. A few products showed discontinuities in the early 162 

1990s, all of which included nClimGrid as a component. Ideally, no discontinuities should be present in homogeneous time 163 

series, and the only products without detectable discontinuities were TerraClimate, Daymet–nClimGrid, nClimGrid–PRISM, 164 

and nClimGrid–PRISM–TerraClimate. 165 
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 166 

Figure 5. Residual-mass curves for products and combination of products. Abbreviations for Daymet, nClimGrid, PRISM, and 167 
TerraClimate, are D, n, P, and T, respectively. 168 

4.6 Time Series of Differences 169 

With respect to differences from the reference time series before and after a discontinuity, most products shifted from either 170 

underestimates to overestimates or from overestimates to larger overestimates (Fig. 7 and S3). Both gridMET and PRISM 171 

shifted from underestimates to overestimates. Daymet shifted from overestimates to larger overestimates. nClimGrid shifted 172 

from underestimates to larger underestimates. TerraClimate did not exhibit a significant discontinuity and therefore showed 173 

no shift. Considering all products collectively, about half shifted from underestimates to overestimates, one-third from 174 
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overestimates to larger overestimates, and roughly 17 % from underestimates to larger underestimates; none shifted from 175 

overestimates to underestimates. 176 

 177 
Figure 6. Inverse p-values for (a) Daymet, (b) nClimGrid, (c) PRISM, (d) TerraClimate, (e) Dn, (f) DP, (g) DT, (h) nP, (i) nT, (j) PT, (k) 178 
DnP, (l) DnT, (m) DPT, (n) nPT, and (o) DnPT. Abbreviations for Daymet, nClimGrid, PRISM, and TerraClimate, are D, n, P, and T, 179 
respectively. The two-tailed p-values are from Mann-Whitney U tests that compared differences from the reference time series before and 180 
after each of the years shown (i.e., 1988-2018). 181 

4.7 Trends 182 

The products exhibited a wide range of precipitation trends, with only a few approximating the reference trend of 30 mm 183 

dec⁻¹, which was not significant (Fig. 8 and S4). Daymet, gridMET, nClimGrid, PRISM, and TerraClimate had trends of 38, 184 

38, 19, 48, and 36 mm dec⁻¹, respectively. Among the individual products, nClimGrid produced the smallest trend and 185 

PRISM the largest trend. The trend for PRISM, as well as those for the combinations Daymet–PRISM, Daymet–gridMET–186 

PRISM, Daymet–PRISM–TerraClimate, gridMET–PRISM, and PRISM–TerraClimate, were statistically significant. The 187 
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products within 10 % of the reference trend were Daymet–gridMET–nClimGrid, Daymet–nClimGrid, gridMET–nClimGrid–188 

PRISM, and nClimGrid–TerraClimate. 189 

 190 
Figure 7. Time series of differences between the mean of the 120 references gauges and the means for the southeastern United States that 191 
area specific to products and combination of products. Abbreviations for Daymet, nClimGrid, PRISM, and TerraClimate, are D, n, P, and 192 
T, respectively. 193 
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 194 
Figure 8. Precipitation increases per decade (in mm) for the reference and 15 other time series. Abbreviations for Daymet, nClimGrid, 195 
PRISM, and TerraClimate, are D, n, P, and T, respectively. Asterisks denote significant (α = 0.01, one-tailed) trends. 196 

5 Discussion 197 

5.1 Inhomogeneities and Biased Trends of Products 198 

The introduction and proliferation of CoCoRaHS gauges—and to a lesser degree the decline of COOP gauges—caused a 199 

wetting bias in the Daymet and PRISM time series. Decadal precipitation increases were 28% and 62% larger, respectively, 200 

than those from the reference gauges (Fig. 6). CoCoRaHS gauges generally record slightly higher precipitation totals than 201 

COOP gauges, with increases of about 1–5% (CoCoRaHS, 2019; Goble et al., 2019). CoCoRaHS coverage in the Southeast 202 

was negligible in 2006 but reached about 75% by 2021, surpassing all other networks by 2012 and 2014 for Daymet and 203 

PRISM, respectively (Fig. 2). The largest inhomogeneity in the Daymet series occurred in 2012, coinciding with this 204 

expansion. Although PRISM experienced similar network shifts, its main inhomogeneity appeared in 2002 due to 205 

anomalously high precipitation; correcting those values shifts the discontinuity to 2007, aligning with the network transition. 206 

Expansion of ASOS (Automated Surface Observing Systems) gauges, along with the decline of COOP gauges, 207 

produced a drying bias in nClimGrid. The decadal precipitation increase for nClimGrid was 34% smaller than that of the 208 

reference series (Fig. 6). ASOS instruments use heated tipping-bucket gauges in which each tip represents 0.01 inch of 209 

liquid-equivalent precipitation (Wade, 2003). These gauges underestimate rainfall (Dunn et al., 2025), with undercatch of 2–210 

10% relative to COOP observations (National Research Council, 2012). ASOS coverage rose from <1% in 1993 to 19% in 211 

2021 (Fig. 9), while COOP coverage declined from 80% to 70% (Fig. 2). The largest inhomogeneity in nClimGrid occurred 212 

in 2005, coinciding with growing ASOS influence. 213 

Abrupt increases in TerraClimate precipitation totals in 2011 and gridMET totals in 2016 were attributable to changes in 214 

input data. Increases in decadal precipitation for TerraClimate and gridMET were 23% and 28% larger than those of the 215 

reference gauges (Fig. 6 and S5). The 2011 TerraClimate shift reflected the substitution of JRA-55 anomalies following a 216 

sharp gauge decline (Abatzoglou et al., 2018), while the 2016 gridMET inhomogeneity coincided with a reprocessed 217 

precipitation forcing that incorporated late-reporting gauges (Xia et al., 2016). 218 

https://doi.org/10.5194/egusphere-2025-5719
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



12 
 

 219 
Figure 9. Percent coverage of the southeastern United States over time by Automated Surface Observing Systems (ASOS) gauges. 220 

5.2 Optimal Dataset for Multi-Decadal Precipitation Analyses 221 

Combining Daymet and nClimGrid results in a more homogeneous and reliable dataset for multi-decadal precipitation 222 

analyses in the Southeast. Among the 15 monthly and 15 daily datasets evaluated using annual precipitation totals, this 223 

combination yields the fourth-smallest cumulative sum of absolute residuals (Fig. 5) and has no significant inhomogeneities 224 

(Fig. 6). The precipitation trend (29 mm dec⁻¹) of Daymet–nClimGrid closely matched the reference trend (30 mm dec⁻¹), 225 

and no other product reproduced the reference trend as accurately (Fig. 8). Season-specific analyses also revealed no 226 

evidence of inhomogeneities and exhibited trends nearly identical to those of the reference series (Fig. 10), further 227 

supporting the reliability of the dataset for multi-decadal assessment. Although using this dataset reduces the spatial 228 

resolution inherent to Daymet, the resulting gain in temporal homogeneity makes the Daymet–nClimGrid product the most 229 

robust dataset for regional, multi-decadal precipitation assessments. 230 

6 Conclusion 231 

Gridded precipitation datasets commonly used for hydroclimatic analyses exhibit widespread temporal inhomogeneities that 232 

can distort long-term trend assessments. Evaluation of five high-resolution products and their combinations for the 233 

southeastern United States during 1980–2024 revealed significant inhomogeneities in about 80% of the series, primarily 234 

between 2002 and 2018, linked to changes in gauge networks and data processing. Wetting biases in Daymet and PRISM 235 

reflected the expansion of CoCoRaHS and decline of COOP gauges, whereas a drying bias in nClimGrid arose from 236 

increased reliance on ASOS tipping-bucket gauges. Step changes in TerraClimate and gridMET corresponded to shifts in 237 

input data and processing. These inhomogeneities produced precipitation trends ranging from 19 to 48 mm dec⁻¹, compared 238 

with a non-significant reference trend of 30 mm dec⁻¹. Combining Daymet and nClimGrid removed detectable 239 

inhomogeneities and reproduced the reference trend, providing the most temporally stable dataset for multi-decadal analyses. 240 

Overall, the results underscore the need to assess and, where possible, improve the temporal stability of gridded precipitation 241 

datasets used in long-term hydroclimatic analyses. 242 
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 243 

Figure 10. Residual-mass curves (a-d), inverse p-values (e-h), times series of differences (i-l), and trends (m-p) for the Daymet-nClimGrid 244 
combination for December-February, March-May, June-August, and September-November. For the inverse-p panels (e-h), the two-tailed 245 
p-values are from Mann-Whitney U tests that compared differences from the reference time series before and after each of the years shown 246 
(i.e., 1988-2018). The values in the difference panels (i-l) are precipitation totals from the products minus totals from the reference gauges. 247 
For the trends panels (m-p), the reference trend pertains to the reference time series and asterisks denote significant (α = 0.01, one-tailed) 248 
trends over 1980-2023.  249 

https://doi.org/10.5194/egusphere-2025-5719
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



14 
 

Data availability. Data used in this paper are available at https://data.mendeley.com/datasets/37bm8hvpmk/1. 250 

Competing interests. The author does not have any competing interests. 251 

References 252 

Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, Int. J. 253 
Climatol., 33, 121–131, https://doi.org/10.1002/joc.3413, 2013. 254 

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-resolution global dataset of 255 
monthly climate and climatic water balance from 1958–2015, Sci. Data, 5, 170191, 256 
https://doi.org/10.1038/sdata.2017.191, 2018. 257 

Buishand, T. A.: Tests for detecting a shift in the mean of hydrological time series, J. Hydrol., 73, 51–69, 258 
https://doi.org/10.1016/0022-1694(84)90032-5, 1984. 259 

CoCoRaHS (Community Collaborative Rain, Hail & Snow Network): Why CoCoRaHS requires manual measurements, 260 
CoCoRaHS Headquarters, Fort Collins, CO, available at: 261 
https://media.cocorahs.org/docs/Why%20CoCoRaHS%20requires%20manual%20measurements.pdf, 2019. 262 

Daly, C., Doggett, M. K., Smith, J. I., Olson, K. V., Halbleib, M. D., Dimcovic, Z., Keon, D., Loiselle, R. A., Steinberg, B., 263 
Ryan, A. D., Pancake, C. M., and Kaspar, E. M.: Challenges in observation-based mapping of daily precipitation across 264 
the conterminous United States, J. Atmos. Ocean. Technol., 38, 1979–1992, https://doi.org/10.1175/JTECH-D-21-265 
0054.1, 2021. 266 

De La Fraga, P., Del-Toro-Guerrero, F. J., Vivoni, E. R., Cavazos, T., and Kretzschmar, T.: Evaluation of gridded 267 
precipitation datasets in mountainous terrains of Northwestern Mexico, J. Hydrol.: Reg. Stud., 56, 102019, 268 
https://doi.org/10.1016/j.ejrh.2024.102019, 2024. 269 

Döll, P., Douville, H., Güntner, A., Müller Schmied, H., and Wada, Y.: Modelling freshwater resources at the global scale: 270 
challenges and prospects, Surv. Geophys., 37, 195–221, https://doi.org/10.1007/s10712-015-9343-1, 2016. 271 

Durre, I., Arguez, A., Schreck, C. J., Squires, M. F., and Vose, R. S.: Daily high-resolution temperature and precipitation 272 
fields for the contiguous United States from 1951 to present, J. Atmos. Ocean. Technol., 39, 1837–1855, 273 
https://doi.org/10.1175/JTECH-D-22-0024.1, 2022. 274 

Easterling, D. R. and Peterson, T. C.: A new method for detecting undocumented discontinuities in climatological time 275 
series, Int. J. Climatol., 15, 369–377, https://doi.org/10.1002/joc.3370150403, 1995. 276 

Ferencz, S. B., Sun, N., Turner, S. W. D., Smith, B. A., and Rice, J. S.: Multisectoral analysis of drought impacts and 277 
management responses to the 2008–2015 record drought in the Colorado Basin, Texas, Nat. Hazards Earth Syst. Sci., 24, 278 
1871–1896, https://doi.org/10.5194/nhess-24-1871-2024, 2024. 279 

Ferguson, C. R. and Mocko, D. M.: Diagnosing an artificial trend in NLDAS-2 afternoon precipitation, J. Hydrometeorol., 280 
18, 1051–1070, https://doi.org/10.1175/JHM-D-16-0251.1, 2017. 281 

Goble, P. E., Doesken, N. J., Durre, I., Schumacher, R. S., Stewart, A., and Turner, J.: Who received the most rain today?: 282 
An analysis of daily precipitation extremes in the contiguous United States using CoCoRaHS and COOP reports, Bull. 283 
Am. Meteorol. Soc., 101, E710–E719, https://doi.org/10.1175/BAMS-D-18-0310.1, 2019. 284 

Guentchev, G., Barsugli, J. J., and Eischeid, J.: Homogeneity of gridded precipitation datasets for the Colorado River Basin, 285 
J. Appl. Meteorol. Climatol., 49, 2404–2415, https://doi.org/10.1175/2010JAMC2484.1, 2010. 286 

Helsel, D. R., and Hirsch, R. M.: Statistical methods in water resources, Techniques of Water-Resources Investigations, 287 
Book 4, Chapter A3, U.S. Geological Survey, available at: https://pubs.usgs.gov/twri/twri4a3/, 2002. 288 

Henn, B., Newman, A. J., Livneh, B., Daly, C., and Lundquist, J. D.: An assessment of differences in gridded precipitation 289 
datasets in complex terrain, J. Hydrol., 556, 1205–1219, https://doi.org/10.1016/j.jhydrol.2017.03.008, 2018. 290 

Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., and Kirschbaum, D. B.: So, How much 291 
of the Earth’s surface is covered by rain gauges?, Bull. Am. Meteorol. Soc., 98, 69–78, https://doi.org/10.1175/BAMS-D-292 
14-00283.1, 2017. 293 

https://doi.org/10.5194/egusphere-2025-5719
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



15 
 

Kunkel, K. E., Stevens, L. E., Stevens, S. E., Sun, L., Janssen, E., Wuebbles, D., Konrad, C. E. II, Fuhrman, C. M., Keim, B. 294 
D., Kruk, M. C., Billot, A., Needham, H., Shafer, M., and Dobson, J. G.: Regional climate trends and scenarios for the 295 
U.S. National Climate Assessment. Part 2: Climate of the Southeast U.S., NOAA Tech. Rep. NESDIS 142-2, National 296 
Oceanic and Atmospheric Administration, Washington, DC, 2013. 297 

Labosier, C. and Quiring, S.: Hydroclimatology of the Southeastern USA, Clim. Res., 57, 157–171, 298 
https://doi.org/10.3354/cr01166, 2013. 299 

Laiti, L., Mallucci, S., Piccolroaz, S., Bellin, A., Zardi, D., Fiori, A., Nikulin, G., and Majone, B.: Testing the hydrological 300 
coherence of high‐resolution gridded precipitation and temperature data sets, Water Resour. Res., 54, 1999–2016, 301 
https://doi.org/10.1002/2017WR021633, 2018. 302 

Livneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Nijssen, B., Vose, R., Cayan, D. R., and Brekke, L.: A spatially 303 
comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013, Sci. Data, 2, 304 
150042, https://doi.org/10.1038/sdata.2015.42, 2015. 305 

Mankin, K. R., Mehan, S., Green, T. R., and Barnard, D. M.: Review of gridded climate products and their use in 306 
hydrological analyses reveals overlaps, gaps, and the need for a more objective approach to selecting model forcing 307 
datasets, Hydrol. Earth Syst. Sci., 29, 85–108, https://doi.org/10.5194/hess-29-85-2025, 2025. 308 

McAfee, S., Guentchev, G., and Eischeid, J.: Reconciling precipitation trends in Alaska: 2. Gridded data analyses, J. 309 
Geophys. Res.: Atmos., 119, https://doi.org/10.1002/2014JD022461, 2014. 310 

Michelon, A., Benoit, L., Beria, H., Ceperley, N., and Schaefli, B.: Benefits from high-density rain gauge observations for 311 
hydrological response analysis in a small alpine catchment, Hydrol. Earth Syst. Sci., 25, 2301–2325, 312 
https://doi.org/10.5194/hess-25-2301-2021, 2021. 313 

Mizukami, N. and Smith, M. B.: Analysis of inconsistencies in multi-year gridded quantitative precipitation estimate over 314 
complex terrain and its impact on hydrologic modeling, J. Hydrol., 428–429, 129–141, 315 
https://doi.org/10.1016/j.jhydrol.2012.01.030, 2012. 316 

Muche, M. E., Sinnathamby, S., Parmar, R., Knightes, C. D., Johnston, J. M., Wolfe, K., Purucker, S. T., Cyterski, M. J., and 317 
Smith, D.: Comparison and evaluation of gridded precipitation datasets in a Kansas agricultural watershed using SWAT, 318 
J. Am. Water Resour. Assoc., 56, 486–506, https://doi.org/10.1111/1752-1688.12819, 2020. 319 

National Research Council: Future of the National Weather Service Cooperative Observer Network, The National 320 
Academies Press, Washington, DC, 1998. 321 

National Research Council: The National Weather Service modernization and associated restructuring: A retrospective 322 
assessment, The National Academies Press, Washington, DC, 2012. 323 

New, M., Todd, M., Hulme, M., and Jones, P.: Precipitation measurements and trends in the twentieth century, Intl Journal 324 
of Climatology, 21, 1889–1922, https://doi.org/10.1002/joc.680, 2001. 325 

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. 326 
R., Hopson, T., and Duan, Q.: Development of a large-sample watershed-scale hydrometeorological data set for the 327 
contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance, Hydrol. 328 
Earth Syst. Sci., 19, 209–223, https://doi.org/10.5194/hess-19-209-2015, 2015. 329 

Peterson, T. C., Easterling, D. R., Karl, T. R., Groisman, P., Nicholls, N., Plummer, N., Torok, S., Auer, I., Boehm, R., 330 
Gullett, D., Vincent, L., Heino, R., Tuomenvirta, H., Mestre, O., Szentimrey, T., Salinger, J., Førland, E. J., Hanssen-331 
Bauer, I., Alexandersson, H., Jones, P., and Parker, D.: Homogeneity adjustments of in situ atmospheric climate data: a 332 
review, Int. J. Climatol., 18, 1493–1517, https://doi.org/10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-333 
JOC329>3.0.CO;2-T, 1998. 334 

Searcy, J. K., and Hardison, C. H.: Double-mass curves, in: Manual of Hydrology: Part 1, General Surface-Water 335 
Techniques, U.S. Geological Survey Water-Supply Paper 1541-B, 31–66, 1960. 336 

Shuai, P., Chen, X., Mital, U., Coon, E. T., and Dwivedi, D.: The effects of spatial and temporal resolution of gridded 337 
meteorological forcing on watershed hydrological responses, Hydrol. Earth Syst. Sci., 26, 2245–2276, 338 
https://doi.org/10.5194/hess-26-2245-2022, 2022. 339 

Tang, G., Behrangi, A., Long, D., Li, C., and Hong, Y.: Accounting for spatiotemporal errors of gauges: a critical step to 340 
evaluate gridded precipitation products, J. Hydrol., 559, 294–306, https://doi.org/10.1016/j.jhydrol.2018.02.057, 2018. 341 

https://doi.org/10.5194/egusphere-2025-5719
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.



16 
 

Tang, G., Clark, M. P., Knoben, W. J. M., Liu, H., Gharari, S., Arnal, L., Wood, A. W., Newman, A. J., Freer, J., and 342 
Papalexiou, S. M.: Uncertainty hotspots in global hydrologic modeling: the impact of precipitation and temperature 343 
forcings, Bull. Am. Meteorol. Soc., 106, E146–E166, https://doi.org/10.1175/BAMS-D-24-0007.1, 2025. 344 

Thornton, P. E., Shrestha, R., Thornton, M., Kao, S.-C., Wei, Y., and Wilson, B. E.: Gridded daily weather data for North 345 
America with comprehensive uncertainty quantification, Sci. Data, 8, 190, https://doi.org/10.1038/s41597-021-00973-0, 346 
2021. 347 

Vose, R. S., Applequist, S., Squires, M., Durre, I., Menne, M. J., Williams, C. N., Fenimore, C., Gleason, K., and Arndt, D.: 348 
Improved historical temperature and precipitation time series for U.S. climate divisions, J. Appl. Meteorol. Climatol., 53, 349 
1232–1251, https://doi.org/10.1175/JAMC-D-13-0248.1, 2014. 350 

Wade, C. G.: A multisensor approach to detecting drizzle on ASOS*, J. Atmos. Oceanic Technol., 20, 820–832, 351 
https://doi.org/10.1175/1520-0426(2003)020<0820:AMATDD>2.0.CO;2, 2003. 352 

Wang, F. and Tian, D.: Hourly Evaluation of eight gridded precipitation datasets over the contiguous United States: 353 
intercomparison of satellite, radar, reanalysis, and merged products, J. Hydrometeorol., 26, 1717–1733, 354 
https://doi.org/10.1175/JHM-D-25-0063.1, 2025. 355 

Xia, Y., Mocko, D., and Rodell, M.: An upgrade from current OPS NLDAS-2 system, in: Conference Presentation, NASA 356 
Goddard Space Flight Center, 7 July 2016. 357 

Yang, D., Yang, Y., and Xia, J.: Hydrological cycle and water resources in a changing world: a review, Geogr. Sustain., 2, 358 
115–122, https://doi.org/10.1016/j.geosus.2021.05.003, 2021. 359 

Yue, S. and Wang, C. Y.: Power of the Mann-Whitney test for detecting a shift in median or mean of hydro-meteorological 360 
data, Stoch. Environ. Res. Risk Assess., 16, 307–323, https://doi.org/10.1007/s00477-002-0101-9, 2002. 361 

Zandler, H., Haag, I., and Samimi, C.: Evaluation needs and temporal performance differences of gridded precipitation 362 
products in peripheral mountain regions, Sci. Rep., 9, 15118, https://doi.org/10.1038/s41598-019-51666-z, 2019. 363 

https://doi.org/10.5194/egusphere-2025-5719
Preprint. Discussion started: 21 November 2025
c© Author(s) 2025. CC BY 4.0 License.


