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Abstract. Reliable estimation of evapotranspiration (ET) over irrigated croplands is crucial for agricultural water management, 

hydrological modeling, and monitoring of land–atmosphere exchanges. Yet the reliability of global ET datasets in these en-

vironments remains insufficiently assessed. Here, we evaluate six widely used global ET products (FLUXCOM RS, GLEAM 

v4.2a, PMLv2, ERA5-Land, MOD16A2, and SSEBop v6.1), covering a wide range of modeling approaches, to assess their

5 ability to capture irrigation-related ET signals. The assessment combines spatial and seasonal evaluations across diverse agro-

climatic regions, using three complementary references: a map of area equipped for irrigation, the OpenET ensemble, and 

eddy covariance measurements from irrigated croplands. Results reveal strong contrasts in how well the products reproduce 

reference patterns. PMLv2, SSEBop v6.1, and FLUXCOM RS show the highest agreement, effectively capturing irrigation-

related spatial and seasonal ET variations. MOD16A2 shows moderate agreement, with consistently lower ET values than the

10 reference datasets. ERA5-Land and GLEAM v4.2a exhibit the weakest correspondence, reflecting limitations linked to their 

precipitation-driven water-balance soil moisture and stress formulations. Differences among products mainly reflect how wa-

ter stress is represented and whether irrigation-sensitive variables such as land surface temperature and vegetation properties 

are incorporated. This multi-scale evaluation provides guidance for selecting ET products in irrigated regions and highlights 

priorities for improving the representation of irrigation in global ET models.
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1 Introduction

Evapotranspiration (ET), defined here as the sum of transpiration, soil evaporation, and interception loss, is the largest flux

of water returning from land to the atmosphere, accounting for more than 60 % of global terrestrial precipitation on average

(Oki and Kanae, 2006; Dorigo et al., 2021). Beyond its hydrological role, ET also regulates key energy and carbon exchanges

between the land surface and the atmosphere, linking the water, energy, and carbon cycles (Seneviratne et al., 2010; Fisher et al.,20

2017). In irrigated regions, accurately quantifying ET is particularly important. Although they cover only about 2.5 % of the

global land surface, irrigation hotspots are key regional drivers of environmental change (McDermid et al., 2023). Irrigation

enhances latent heat fluxes, reduces sensible heat fluxes, and contributes to mitigating extreme heat events (Thiery et al.,

2017, 2020; Asmus et al., 2023). It also modifies soil moisture, land surface temperature (LST), albedo, and local atmospheric

dynamics, with broader effects on precipitation and climate feedbacks (McDermid et al., 2019; Lunel et al., 2024).25

A wide range of global ET products has been developed in recent decades and is now publicly available. They differ sub-

stantially in methodology and input data. Some rely on machine learning, such as FLUXCOM (Jung et al., 2019) and X-BASE

(Nelson* and Walther* et al., 2024). Others are semi-mechanistic, remote sensing–driven models combining physical formula-

tions to estimate the main fluxes with empirical or machine learning approaches to parameterize more complex processes, for

example, MOD16A2 (Mu et al., 2011), PMLv2 (Zhang et al., 2019), GLEAM4 (Miralles et al., 2025), or ETMonitor (Zheng30

et al., 2022). Other approaches are based on simplified energy balance formulations, such as SSEBop (Senay, 2018). In addi-

tion, several products are derived from land surface models and reanalyses, such as ERA5-Land (Muñoz-Sabater et al., 2021),

GLDAS (Rodell et al., 2004), or MERRA-2 (Gelaro et al., 2017). Across these products, the type of input data varies widely,

ranging from meteorological reanalyses, to Earth Observation (EO) variables such as vegetation indices, LST, and albedo, to

in situ measurements used for training or calibration.35

Global ET products are used for a wide range of scientific applications. At the global scale, they support climate studies

and model evaluations. For instance, Wang et al. (2021) assessed the realism of ET simulations in CMIP6 climate models by

benchmarking them against GLEAM v3.3. ET products are also used to study land–atmosphere interactions; for example, Chen

and Dirmeyer (2019) analyzed the impacts of irrigation on LST using ET data from MOD16A2, GLEAM v3, and DOLCE

(Hobeichi et al., 2018). In hydrological applications, Alfieri et al. (2022) used GLEAM v3.5a to calibrate a hydrological40

model in the Po Valley, while Liu et al. (2022) combined PMLv2, GLEAM v3.2, and MOD16A2 with GRACE-derived water

storage changes to calibrate a global water balance model across large catchments. ET products have also been used in drought

research; for example, Hong et al. (2023) used GLEAM v3.6a to investigate the relationships between ET and drought dynamics

in southeastern China. Another important application of global ET products is the quantification of irrigation water use. Kragh

et al. (2023) estimated irrigation water use in the Indo-Gangetic Plain by comparing ET from FLUXCOM (Remote Sensing45

version; RS), MOD16A2, PMLv2, and ERA5-Land with ET simulations from a hydrological model run without irrigation.

Similarly, Zhang and Long (2021) used SSEBop and other EO-based ET datasets to estimate irrigation water use across the

contiguous United States (CONUS), while Zipper et al. (2024) estimated net irrigation in the U.S. Great Plains as the difference

between effective precipitation and the OpenET ensemble (Volk et al., 2024)
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Assessing the quality of global ET datasets is critical to ensure their reliable use in agricultural, climate, hydrological,50

and land–atmosphere studies. However, most existing evaluations have focused on large-scale or global assessments. These

typically rely on in situ flux tower measurements—as in the LandFlux-EVAL project (Mueller et al., 2013) or the GEWEX

LandFlux initiative (McCabe et al., 2016)—or on ET inferred as the residual term of the water balance (e.g. Liu et al., 2016;

Lehmann et al., 2022). Many intercomparison efforts have also been conducted as part of the development and evaluation of

new ET datasets, typically benchmarking them against existing ET products globally, such as in GLEAM4 (Miralles et al.,55

2025), FLUXCOM (Jung et al., 2019), ETMonitor (Zheng et al., 2022), or PMLv2 (Zhang et al., 2019). Beyond global evalu-

ations, several studies have assessed the performance of ET products at regional scales. For instance, Etchanchu et al. (2025)

evaluated 20 ET products using flux tower observations in a semi-arid region of West Africa, whereas Pascolini-Campbell et al.

(2020) and Weerasinghe et al. (2020) used GRACE-based estimates to benchmark ET datasets over large watersheds in the

CONUS and over Africa, respectively.60

Yet, irrigated croplands remain largely underrepresented in these evaluation efforts. Only a handful of studies have explic-

itly targeted intensively irrigated regions. For example, McNamara et al. (2021) evaluated multiple ET products in the Nile

Basin using GRACE-derived ET estimates and identified PMLv2 and WaPOR (FAO, 2018) as the best-performing datasets.

In northern Thailand, Sriwongsitanon et al. (2020) intercompared several products over an irrigated catchment and found that

MOD16A2 best reproduced the spatial distribution of irrigation. More recently, Crow et al. (2025) evaluated the sensitivity of65

a thermal infrared (TIR)-based ET product (ALEXI; Anderson et al. 1997) and microwave soil moisture observations (SMAP;

Entekhabi et al. 2010) to irrigation signals across the CONUS. Using the MIrAD-US irrigation map and flux tower measure-

ments as references, they found that ALEXI-based ET captured irrigation-related spatial and seasonal patterns more clearly

than SMAP soil moisture.

These studies demonstrate that some global ET datasets capture irrigation signals more effectively than others, yet existing70

evaluations remain limited in both spatial coverage and methodological scope. Consequently, our understanding of product

reliability over irrigated areas remains very limited, and no comprehensive assessment has yet been conducted across diverse

geographic and climatic settings while systematically analyzing multiple global ET datasets.

To address this gap, we present a multi-scale, multi-source assessment of six widely used global ET products: FLUXCOM

RS, ERA5-Land, SSEBop v6.1, GLEAM v4.2a, PMLv2, and MOD16A2. Our evaluation integrates three complementary75

assessments conducted at different spatial scales and based on distinct reference datasets. First, we assess the spatial coherence

between ET products and irrigation infrastructure maps across seven major irrigated regions in the CONUS, Europe, and South

Asia. Second, we evaluate the seasonal dynamics of ET by comparing the products with ensemble estimates from OpenET,

which provides an independent multi-model benchmark, over four irrigated areas in the CONUS. Finally, we conduct a local-

scale assessment using eddy covariance tower data from two irrigated sites in the Po Valley, Italy.80
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2 Material and methods

2.1 Global ET products

The six selected ET products represent diverse modeling strategies and input data sources, spanning machine learning ap-

proaches, energy balance formulations, and reanalysis-driven land surface models. None of these products explicitly simulates

irrigation; rather, irrigation effects may be implicitly captured depending on the nature of the input data and, in particular, on85

how water stress is represented within each model.

FLUXCOM RS (Jung et al., 2019) is based on a machine learning algorithm trained on data from 224 flux towers from the

FLUXNET La Thuile synthesis dataset and the CarboAfrica network (Valentini et al., 2014). Among these, 27 sites are crop-

lands, including seven irrigated ones. The model uses MODIS-based predictors—LST, land cover type, fraction of absorbed

photosynthetically active radiation (fAPAR), enhanced vegetation index (EVI)—as well as net radiation (Rn) from CERES.90

GLEAM v4.2a (Miralles et al., 2025) is a hybrid ET model that combines physically-based processes with machine learning.

Rainfall interception is estimated using the global van Dijk–Bruijnzeel model (van Dijk and Bruijnzeel, 2001), constrained by

satellite-derived vegetation data and a meta-analyses of field experiments (Zhong et al., 2022). Potential evapotranspiration

(PET) is calculated using Penman’s equation, explicitly accounting for wind speed, vegetation height, and vapour pressure

deficit (VPD). GLEAM v4.2a solves a multi-layer soil water balance that includes plant access to groundwater (Hulsman et al.,95

2023) and assimilates surface soil moisture from ESA CCI (Dorigo et al., 2017). ET is obtained by constraining PET with an

evaporative stress factor estimated via a deep neural network that captures complex environmental interactions using modeled

root-zone soil moisture, VOD, VPD, incoming solar radiation, air temperature, CO2, wind speed, and leaf area index (LAI)

data as predictors (Koppa et al., 2022).

MOD16A2 (Mu et al., 2011) is based on a modified version of the Penman–Monteith equation that integrates MODIS-100

derived surface and vegetation properties (LAI, fAPAR, albedo) with meteorological inputs from the NASA GMAO (GEOS-5)

reanalysis, including air temperature and VPD. Water stress is represented through the surface resistance term (rs), which

combines stomatal regulation based on VPD and minimum air temperature (Tmin) with canopy scaling driven by MODIS LAI

and fAPAR.

ERA5-Land (Muñoz-Sabater et al., 2021) is a reanalysis product built on the H-TESSEL land surface model. ET is physi-105

cally modeled using the Penman–Monteith equation, based on net radiation (Rn), soil heat flux, aerodynamic resistance (ra),

surface resistance (rs), and vapor pressure deficit (VPD). Rn is computed from ERA5 radiative fluxes, while the remaining

terms are derived from ERA5 atmospheric fields and pre-defined land-surface properties. Although ERA5-Land does not di-

rectly assimilate satellite observations, satellite information can still influence the product indirectly through the atmospheric

forcing inherited from ERA5. Vegetation water stress is represented through the formulation of rs, which depends on root-zone110

soil moisture simulated by the model’s soil water balance and on VPD.

SSEBop v6.1 (Senay et al., 2023) is based on a simplified surface energy balance approach. In version 6.1 used here,

ET is calculated as the product of a reference evapotranspiration (ET0)—taken from climatological Penman–Monteith fields

provided by TerraClimate (Abatzoglou et al., 2018)—and an evaporative fraction (ETf) derived from VIIRS-based LST (Hulley
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et al., 2018). ETf is determined by comparing each pixel’s LST to a dynamically estimated “cold/wet” reference temperature115

representing maximum ET conditions. This reference temperature is computed locally within a 5 × 5 km moving window

using NDVI–LST relationships to identify well-watered vegetation, following the FANO algorithm of Senay et al. (2023).

PMLv2 (Zhang et al., 2019) uses a semi-mechanistic model based on a modified Penman–Monteith equation. Vegetation

water stress is accounted for via VPD derived from GLDAS-2.1 simulations and regulates both stomatal conductance and

surface resistance. The model’s VPD response is calibrated separately for each biome using observations from 95 flux towers,120

including 11 in the cropland biome—four of which are irrigated. Model inputs include MODIS-derived variables (LAI, albedo,

and emissivity) as well as daily meteorological forcings from GLDAS-2.1, such as precipitation, air temperature, humidity,

radiation, and wind speed.

For intercomparison purposes, all ET datasets were resampled to a common 0.1° grid (that of GLEAM v4.2a) to ensure

spatial consistency. Products with native resolution finer then 0.1° were aggregated using area-weighted averaging, while125

ERA5-Land (native 0.1°) was bilinearly interpolated to ensure grid alignment. Monthly means were then computed for all

datasets.

Figure 1 illustrates the average ET during the peak irrigation season (July-August) across the CONUS for the period 2012-

2020, for each product. Table 1 summarizes the datasets’ spatial and temporal resolutions, available periods, and data sources.

Note that SSEBop v6.1 covers a shorter period (2012–2025), while the others extend back to 2001 or 2000.130

Figure 1. Mean ET (2012-2020) during the peak irrigation season (July–August) over the CONUS for the six ET products, after resampling

all datasets onto the common 0.1° GLEAM4 grid.
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Table 1. Main characteristics and download sources of the six assessed ET products.

Dataset Version Original Original temporal Available period Download source
resolution resolution

FLUXCOM RS 0.0833° 8-day 2001–2020 FLUXCOM portal
GLEAM4 v4.2a 0.1° Daily 2000–2025 GLEAM website
MOD16A2 v6 500 m 8-day 2001–2023 Google Earth Engine
ERA5-Land 2025 CDS release 0.1° Hourly 2000–2025 Copernicus CDS
SSEBop v6.1 1 km Dekadal 2012–2025 USGS FEWS NET
PMLv2 v0.1.8 500 m 8-day 2000–2023 Google Earth Engine

2.2 Datasets used for evaluation

2.2.1 Map of area equipped for irrigation

The Global Map of Irrigated Areas version 5 (GMIAv5; Siebert et al. 2013), provided at a spatial resolution of 0.0833°, com-

piles subnational statistical information from administrative units, national census data, and international reports on irrigated

areas for the period 2000–2008. In addition, GMIAv5 includes a country-level quality-control flag ranging from “very poor” to135

“excellent”, which reflects the availability, detail, and internal consistency of the underlying national statistics. For instance, the

data quality is rated as “very good” for Italy and Spain, and “good” for the United States, India, and Pakistan. We used this map

to evaluate whether the ET products can capture the spatial extent of irrigated areas. The underlying assumption is that, within

a given grid cell, a higher degree of area equipped for irrigation should correspond to higher ET during the irrigation season.

To test this hypothesis, we rescaled the GMIAv5 dataset to match the spatial resolution and grid geometry of the ET products,140

and computed Pearson’s correlation coefficient between the percentage of land equipped for irrigation and the corresponding

monthly ET estimates for each product.

2.2.2 OpenET

The OpenET platform (Melton et al., 2022) represents a consensus effort to operationalize multiple well-established ET mod-

els under a common framework, combining six models to estimate ET. Four of these are based on surface energy balance145

approaches: METRIC (Allen et al., 2007), DisALEXI (Anderson et al., 2007), geeSEBAL (Bastiaanssen et al., 1998), and

SSEBop (Senay et al., 2013). In addition, the platform includes PT-JPL (Fisher et al., 2008), a simplified formulation of the

Penman–Monteith equation, and SIMS (Melton et al., 2012), an agro-hydrological model that incorporates crop-specific phe-

nology and irrigation schedules. All six models rely on Landsat 30 m imagery, using LST and vegetation parameters derived

from optical and thermal bands.150

Among the OpenET models, SSEBop is also included in the set of global ET products evaluated in this study. However,

the version assessed here (v6.1) differs from the one used in OpenET in two key aspects: (1) v6.1 derives LST from VIIRS

rather than Landsat, and (2) v6.1 computes reference evapotranspiration (ET0) using meteorological inputs from TerraClimate,

whereas OpenET uses gridMET.
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OpenET was selected as a benchmark for the CONUS because it provides a unique ensemble of independently developed155

models, widely used in operational water management and irrigation monitoring (Allen et al., 2007; Senay et al., 2016; Knipper

et al., 2019; Volk et al., 2024). While not a direct ground truth, OpenET offers a spatially explicit reference constrained by

satellite data for assessing the relative consistency of global ET products in irrigated regions. Accordingly, it is used here not as

an absolute validation dataset, but as an additional benchmark to evaluate the agreement in spatial and seasonal ET dynamics

across independent modeling approaches. In this study, we use the OpenET ensemble product, defined as the median of the six160

model estimates.

2.2.3 Eddy covariance measurements

To evaluate the performance of the selected datasets against in situ measurements, we used data from two eddy-covariance

towers located in irrigated croplands of the Po Valley, northern Italy: Landriano (45.31°N, 9.27°E) and Livraga (45.18°N,

9.57°E) as observed in Figure 2.165

Both towers are installed in irrigated maize fields. The Landriano site provides data for 2008–2011 (Masseroni et al.,

2013), and Livraga for 2011–2014 (Nana et al., 2014). Data processing followed standard community protocols, including

Webb–Pearman–Leuning (WPL) corrections, filtering of non-stationary periods, and coordinate rotation. Missing values were

linearly interpolated, and the resulting time series were aggregated to monthly means to match the temporal resolution of the

global ET products.170

A key challenge when using eddy covariance tower data for product evaluation lies in the spatial scale mismatch: tower

footprints typically range from 100 to 300 m, whereas the ET products analyzed here have a resolution of approximately

10 km. To mitigate this discrepancy, we ensured that both towers are located within homogeneous agricultural landscapes

dominated by irrigated maize. Figure 2 shows the 0.1° grid cells (in red) from the analyzed ET datasets, overlaid with irrigated

maize plots (in green) as identified by the 2021 WorldCereal database (Van Tricht et al., 2023). The grid cell containing the175

Livraga site includes 46% irrigated maize, while the one containing the Landriano site includes 34%. The remaining areas are

mostly classified as temporary crops (e.g., soybean, rice, or other annuals), which are not labeled as irrigated in the WorldCereal

dataset, although both soybean and rice are in practice often irrigated in the Po Valley. These two sites were not involved in the

training or calibration of any of the evaluated ET products.
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Figure 2. Left: location of the two irrigated maize flux sites (Landriano and Livraga) in the Po Valley, northern Italy. Right: Contour of the

0.1° pixels from the ET datasets (in red), including the tower locations; green areas show irrigated maize plots from the 2021 WorldCereal

database.

2.3 Study areas180

We selected seven intensively irrigated regions distributed across the CONUS, Europe, and South Asia as showcased in Fig-

ure 3. The figure also shows the percentage of land area equipped for irrigation, as reported by GMIAv5 (Siebert et al., 2013).

Figure 3. Locations of the seven irrigated regions analyzed in this study, with percentage of area equipped for irrigation from GMIAv5

(Siebert et al., 2013).
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Table 2 summarizes the main characteristics of the selected regions, including total area, timing of the peak irrigation season,

and average monthly precipitation (from MSWE v2.8; Beck et al. 2019), potential evapotranspiration (PET) from GLEAM

v4.2a, and aridity index (P/PET), all computed over the peak irrigation season. The table also reports the average percentage of185

land equipped for irrigation and specifies the type of evaluation conducted in each region: spatial correspondence with irrigated

area (irrig. area), comparison with the OpenET ensemble (OpenET), or performance evaluation against in situ eddy covariance

data (flux towers).

Table 2. Main characteristics of the seven irrigated regions, including climate indicators and specific assessment conducted in each region.

Region Area Peak PET peak P peak Aridity index Mean area Analysis
(km2) season season season peak season equipped for

(mm/month) (mm/month) (-) irrig. (%)
Ebro Basin 19,414 Jun–Aug 160.0 29.0 0.18 30.4 irrig. area
California Valley 48,636 Jul–Aug 188.2 0.9 0.00 60.2 irrig. area, OpenET
Great Plains 139,028 Jul–Aug 190.7 64.6 0.34 34.9 irrig. area, OpenET
Mississippi Flood. 59,117 Jul–Aug 166.0 87.0 0.52 48.6 irrig. area, OpenET
Snake River Plain 21,396 Jul–Aug 158.1 11.8 0.07 50.2 irrig. area, OpenET
Indus Basin 215,491 Jan–Dec 113.0 29.5 0.26 74.0 irrig. area
Po Valley 39,468 Jun–Aug 130.7 65.3 0.50 50.8 irrig. area, flux towers

2.4 Evaluation metrics

We quantified the agreement between ET products and the reference datasets using three standard metrics: Pearson’s correlation190

coefficient (R), root mean square deviation (RMSD), and mean bias (defined as ETproduct – ETreference). For the comparison

against eddy-covariance measurements and OpenET, all metrics were computed over the growing-season months only. For

the evaluation against the map of areas equipped for irrigation, we assessed spatial consistency by computing pixel-wise

correlations between ET and the corresponding fractions of irrigated areas.

3 Results195

3.1 Comparison with area equipped for irrigation: spatial evaluation

Figure 4 and Table 3 summarize the relationship between mean ET during the peak irrigation season (as defined in Table 2)

and the percentage of area equipped for irrigation. Figure 4 presents pixel-wise scatterplots for each product and study region,

showing how mean monthly ET varies with the proportion of irrigated area within each grid cell. Table 3 reports the corre-

sponding Pearson correlation coefficients, with an additional row summarizing the average performance of each dataset across200

all regions.
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Figure 4. Scatterplots showing the pixel-wise relationship between mean ET during the peak irrigation season (as defined in Table 2) and the

fraction of area equipped for irrigation, for each ET product and irrigated region. N denotes the number of valid grid cells included in each

correlation analysis.
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Table 3. Pearson correlation coefficients between mean ET during the peak irrigation season and the percentage of land equipped for irrigation

for each ET product and irrigated region. Values ≥ 0.30 are highlighted in bold.

Region ERA5-Land FLUXCOM RS GLEAMv4.2a MOD16A2 SSEBop v6.1 PMLv2

California Valley -0.45 0.65 -0.19 0.33 0.58 0.44
Great Plains 0.13 0.43 -0.08 0.33 0.37 0.47
Mississippi Floodplain 0.24 0.58 -0.36 0.29 0.14 0.13

Snake River Plain -0.18 0.83 -0.18 0.32 0.60 0.51
Ebro Basin -0.14 0.72 0.06 0.42 0.63 0.48
Po Valley 0.02 0.27 0.12 0.27 0.41 0.31
Indus Basin 0.02 0.38 0.01 0.14 0.32 0.19

Mean across datasets -0.05 0.55 -0.09 0.30 0.44 0.36

The results highlight substantial differences in the ability of the six ET products to reproduce irrigation-related spatial

patterns. FLUXCOM RS shows the strongest overall correspondence with the fraction of land equipped for irrigation (mean

R = 0.55), followed by SSEBop v6.1 (R = 0.44), PMLv2 (R = 0.36), and MOD16A2 (R = 0.30). In contrast, ERA5-Land

(R =−0.05) and GLEAMv4.2a (R =−0.09) exhibit no clear spatial correlation with the area equipped for irrigation. This205

relative ranking is consistent across four of the seven study regions: the California Central Valley, Snake River Plain, Ebro

Basin, and Indus Basin.

Strong regional contrasts are also evident. Excluding ERA5-Land and GLEAM v4.2a, correlations averaged across the

remaining products are highest in the Snake River Plain (R = 0.57), Ebro Basin (R = 0.56), and California Valley (R = 0.50),

while lower R values are found in the Mississippi Floodplain (R = 0.29) and Indus Basin (R = 0.26). FLUXCOM RS, SSEBop210

v6.1, PMLv2, and MOD16A2 better capture irrigation-related ET patterns in arid to semi-arid regions such as the Ebro Basin,

California Central Valley, and Snake River Plain (aridity index < 0.3), where irrigation produces sharper ET contrasts with

non-irrigated areas. A notable exception is the Indus Basin, which, despite its arid climate and extensive irrigation, exhibits

relatively weak correlations for both PMLv2 and MOD16A2.

3.2 Comparison with OpenET: seasonal dynamics and magnitude assessment215

Figure 5 shows the time series of the six ET products (colored lines) compared with the OpenET ensemble (black line) from

2016 to 2023 across four major irrigated regions in the CONUS: the California Valley, Snake River Plain, Mississippi Flood-

plain, and Great Plains. The corresponding seasonal cycles are also displayed. Table 4 reports statistical metrics describing the

agreement between the ET products and OpenET during the main irrigation season (April–September). Metrics include the

Pearson correlation coefficient (R), RMSD, mean bias, and average ET, all computed over April–September.220
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Figure 5. Left: monthly time series of mean ET from the six global products (colored) and OpenET (black) from 2016 to 2023 over four

major irrigated regions in the CONUS. Right: the corresponding seasonal cycles.
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Table 4. Statistical comparison between ET products and OpenET across four irrigated regions in the CONUS during the main irrigation

season (April–September). Metrics include the Pearson correlation coefficient (R), RMSD, mean bias, and mean ET. For OpenET, the mean

seasonal ET is reported.

Region Product R RMSD Mean bias Mean
[-] [mm/month] [mm/month] [mm/month]

California Valley

FLUXCOM RS 0.68 34.8 −32.9 59.6
SSEBop v6.1 0.94 20.7 18.9 109.9
PMLv2 0.58 34.0 −31.4 59.7
MOD16A2 0.13 60.4 −57.8 33.3
GLEAMv4.2a −0.15 71.5 −64.5 26.6
ERA5-Land 0.02 63.2 −54.8 36.2
OpenET – – – 91.0

Snake River Plain

FLUXCOM RS 0.92 17.7 −14.8 70.7
SSEBop v6.1 0.95 23.7 18.3 103.3
PMLv2 0.95 14.1 −11.7 73.3
MOD16A2 0.91 46.3 −44.5 40.5
GLEAMv4.2a 0.08 53.4 −43.8 41.2
ERA5-Land 0.04 51.9 −40.6 44.4
OpenET – – – 85.0

Mississippi Floodplain

FLUXCOM RS 0.97 18.6 −17.2 98.4
SSEBop v6.1 0.91 17.0 −4.1 111.7
PMLv2 0.97 15.6 −13.1 102.7
MOD16A2 0.92 33.1 −31.3 84.4
GLEAMv4.2a 0.92 36.8 −32.4 83.3
ERA5-Land 0.66 21.8 −5.1 110.6
OpenET – – – 115.7

Great Plains

FLUXCOM RS 0.93 23.6 −21.4 70.5
SSEBop v6.1 0.96 16.9 10.5 101.5
PMLv2 0.97 7.2 −2.4 88.6
MOD16A2 0.92 40.0 −38.5 52.5
GLEAMv4.2a 0.64 40.5 −35.2 55.9
ERA5-Land 0.52 30.6 −18.8 72.2
OpenET – – – 91.0

Clear differences emerge in the magnitude and seasonal variability of ET across products. SSEBop v6.1 stands out with the

highest average ET during the irrigation season (106.6 mm/month), closely aligning with the magnitude and temporal dynamics

of OpenET, with a mean bias of +10.9 mm/month and a very high correlation (R = 0.94). In contrast, MOD16A2 yields the

lowest mean ET (52.7 mm/month), showing substantially lower values than OpenET during the irrigation season (mean bias of

−43.0 mm/month) and a weaker correspondence in temporal variability (R = 0.72). Overall, most products estimate lower ET225

than OpenET, with the largest negative mean bias observed for MOD16A2, ERA5-Land, and GLEAM v4.2a.

Across regions, FLUXCOM RS, PMLv2, SSEBop v6.1, and MOD16A2 show the strongest correspondence with the bench-

mark, with a global mean correlation of R = 0.89 when averaged across datasets and regions. However, this agreement is

not spatially uniform: in the California Valley, for instance, only SSEBop v6.1 exceeds R = 0.7, whereas FLUXCOM RS

and PMLv2 show higher correlations in the Snake River Plain and Great Plains. FLUXCOM RS and PMLv2 also display230

a close mutual consistency in both magnitude and seasonality, yielding the lowest mean RMSDs across regions (23.6 and

7.2 mm/month, respectively).
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ERA5-Land and GLEAM v4.2a exhibit weaker agreement with the ensemble benchmark, particularly in drier regions such as

the California Valley, Snake River Plain, and Great Plains, while their correspondence improves in the more humid Mississippi

Floodplain. Their mean RMSDs across regions remain relatively high (41.9 mm/month for ERA5-Land and 50.6 mm/month235

for GLEAM v4.2a).

Beyond these statistical metrics, differences also emerge in the timing of seasonal peaks. OpenET and SSEBop v6.1 show

a consistent maximum in July, reflecting irrigation demand, and this seasonal pattern is generally reproduced by MOD16A2,

FLUXCOM RS, and PMLv2. In the California Valley, however, the July peak is weaker in FLUXCOM RS and PMLv2, and

largely absent in MOD16A2. In contrast, GLEAM v4.2a and ERA5-Land tend to peak earlier, typically in spring, although240

both show a modest secondary maximum in July over the more humid Mississippi Floodplain.

3.3 Comparison with eddy-covariance data: seasonal dynamics and magnitude assessment

Figure 6 shows the time series of the six ET products (colored lines) compared with flux tower measurements (black line)

at two irrigated maize sites in the Po Valley: Livraga (top) and Landriano (bottom). The corresponding seasonal cycles are

also shown. Table 5 summarizes the agreement of each dataset with the tower measurements during the April–September245

irrigation season. Metrics include the Pearson correlation coefficient (R), RMSD, mean bias, and mean ET, all calculated over

the irrigated season (April–September). The table also reports the number of months included in the metrics computation.

Reported R values are accompanied by two-tailed significance levels (p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), ns = not

significant).

FLUXCOM RS, PMLv2, and MOD16A2 show strong temporal agreement with the flux tower data at both sites, with mean250

correlation coefficients of 0.88, 0.90, and 0.91, respectively. SSEBop v6.1 also shows a high correlation (R = 0.93) during the

nine-month period when data overlap at Livraga. Notably, FLUXCOM RS and PMLv2 exhibit very similar seasonal dynamics

and mean ET magnitudes. In contrast, GLEAM v4.2a and ERA5-Land show weaker correspondence, with average correlations

of 0.77 and 0.71, respectively.

Regarding magnitude differences, PMLv2 and SSEBop v6.1 display the lowest mean RMSD values (24.3 and 23.3 mm month−1255

on average, respectively), followed by ERA5-Land (28.4), FLUXCOM RS (29.1), GLEAM v4.2a (30.1), and MOD16A2

(40.4 mm month−1). All products tend to underestimate ET relative to tower measurements, with MOD16A2 showing the

strongest negative bias (−34.2 mm month−1 on average).
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Figure 6. Left: monthly ET time series from the six global products (colored) and eddy-covariance measurements (black) at the Livraga (top)

and Landriano (bottom) sites. Right: the corresponding seasonal cycles.

Table 5. Comparison of the six ET products with eddy-covariance measurements at the Livraga and Landriano sites during the main irrigation

season (April–September). Metrics include the Pearson correlation coefficient (R), RMSD, mean bias, and mean ET, along with the number

of months (N ) and correlation significance levels (*p < 0.05, **p < 0.01, ***p < 0.001; ns = not significant).

Site Product R RMSD Bias Mean ET Mean ET N p-value Signif.
[-] [mm/month] [mm/month] (in situ) (product) [months]

Livraga

ERA5-Land 0.51 35.2 −12.4 105.0 92.6 18 0.0316 *
FLUXCOM RS 0.78 32.2 −20.6 105.0 84.4 18 0.0001 ***
GLEAMv4.2a 0.71 31.2 −14.0 105.0 91.0 18 0.0011 **
MOD16A2 0.86 42.1 −35.4 105.0 69.6 18 < 0.0001 ***
PMLv2 0.83 25.4 −13.1 105.0 91.9 18 < 0.0001 ***
SSEBop v6.1 0.81 23.3 −6.8 101.9 95.0 9 0.0083 **

Landriano

ERA5-Land 0.86 25.2 0.7 103.5 104.2 10 0.0013 **
FLUXCOM RS 0.97 31.4 −23.8 103.5 79.6 10 < 0.0001 ***
GLEAMv4.2a 0.61 35.0 −6.4 103.5 97.1 10 0.0609 ns
MOD16A2 0.91 38.7 −33.0 103.5 70.5 10 0.0002 ***
PMLv2 0.96 25.4 −17.6 103.5 85.9 10 < 0.0001 ***
SSEBop v6.1 – – – – – – – –
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3.4 Interannual variability of ET products and sensitivity to drought

Figure 7 shows time series of monthly ET anomalies during the irrigation season (April–September) in the California Valley for260

the six ET datasets (first six rows), along with NDVI anomalies from MODIS (last row). Anomalies were computed over the

common period 2001–2020, except for SSEBop v6.1, for which they were calculated over the period 2012–2020. The 5th (P5)

and 95th (P95) percentiles were computed over the 2012–2020 period. The yellow-shaded area highlights the 2014 irrigation

season, during which severe water restrictions were implemented across the California Valley (California Department of Water

Resources, 2021). Table 6 summarizes the P5 and P95 values, along with the corresponding z-scores for June and July 2014,265

indicating the number of standard deviations from the 2012–2020 mean.

The amplitude of interannual ET anomalies varies substantially across datasets. GLEAM v4.2a and ERA5-Land exhibit the

largest variability, with P5 values of –14.8 and –25.4 mm month−1 and P95 values of 16.9 and 17.9 mm month−1, respectively.

In contrast, FLUXCOM RS displays much lower variability (P5 = –5.3, P95 = 2.3 mm month−1), while SSEBop v6.1, PMLv2,

and MOD16A2 fall within an intermediate range. Notably, in 2017, PMLv2 and MOD16A2 indicate pronounced negative ET270

anomalies despite NDVI anomalies being positive in spring and only slightly negative in summer, whereas FLUXCOM RS and

the other datasets mainly capture positive ET anomalies during this period.

During the 2014 irrigation season, when water use was heavily restricted, all datasets captured marked negative ET anoma-

lies. Relative to their own historical variability, FLUXCOM RS shows the strongest response, with z-scores of –2.29 (June)

and –1.96 (July), indicating anomalies near or below the 2.5th percentile of their historical distribution. PMLv2 (–1.24, –1.78),275

ERA5-Land (–1.34, –1.45), and SSEBop v6.1 (–1.49, –1.63) also reflect substantial negative anomalies. MOD16A2 and

GLEAM v4.2a exhibit lower z-scores (around –1), suggesting that 2014 appears less exceptional in the context of their own

anomaly distributions.
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Figure 7. Monthly anomalies during the irrigation season (April–September) in the California Valley for the six ET datasets (first six rows)

and MODIS NDVI (last row). The shaded area indicates the 2014 irrigation restrictions.
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Table 6. ET anomalies and corresponding z-scores (computed over 2012–2020) for June and July 2014 in the California Valley during the

irrigation restrictions.

Dataset June 2014 Anomaly June 2014 Z-score July 2014 Anomaly July 2014 Z-score
(mm/month) (–) (mm/month) (–)

FLUXCOM RS −5.6 −2.29 −5.4 −1.96
SSEBop v6.1 −7.0 −1.49 −6.4 −1.63
PMLv2 −12.1 −1.24 −7.5 −1.78
MOD16A2 −6.6 −1.06 −6.6 −0.96
GLEAM v4.2a −19.2 −1.06 −4.3 −0.84
ERA5-Land −23.7 −1.34 −13.7 −1.45

4 Discussion

Based on the assessment results, FLUXCOM RS, PMLv2, and SSEBop v6.1 show the highest overall consistency with ref-280

erence datasets over irrigated areas. Although a strict ranking is difficult to establish, FLUXCOM RS exhibits the strongest

spatial correspondence with irrigated areas, whereas PMLv2 shows better agreement than the other datasets with both OpenET

and flux tower data in terms of seasonal dynamics and magnitude. Notably, FLUXCOM RS and PMLv2 display very similar

ET patterns, and both tend to produce slightly lower ET values, while SSEBop v6.1 generally yields higher estimates.

MOD16A2 exhibits intermediate consistency, capturing some spatial and temporal irrigation signals, but generally yields285

lower ET values than the reference datasets and other products.

ERA5-Land and GLEAM v4.2a exhibit the weakest consistency with the reference datasets, showing low spatial agreement

with irrigated areas as well as weaker correspondence in seasonal dynamics compared to the other products. Interestingly, these

two datasets also display similar ET patterns across regions.

These findings are consistent with previous studies that have compared global ET datasets across irrigated and agricultural290

regions. Zhang et al. (2019) reported lower MOD16A2 values compared to PMLv2 over croplands, while Kragh et al. (2023)

similarly reported that FLUXCOM RS and PMLv2 show comparable behavior in the Indo-Gangetic Plain. Likewise, Zheng

et al. (2022) showed that FLUXCOM, PMLv2, and MOD16 captured irrigation signals in several major irrigated basins (Nile

Delta, central Indus Basin, and Heihe River Basin), with FLUXCOM generally producing higher ET values in irrigated zones

than PMLv2 and MOD16.295

4.1 Factors shaping ET products’ performance over irrigated areas

FLUXCOM RS

The FLUXCOM RS machine learning model is trained on data from 224 flux towers, including 27 cropland sites, seven of

which are irrigated. Among the nine input features used for ET prediction, six are potentially sensitive to irrigation. One of

them is the plant functional type (PFT), which assigns pixels to vegetation classes, such as cropland. Because this class was300

trained on flux tower data from cropland sites—about 25% of which are irrigated (7 out of 27)—irrigation effects may be
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implicitly represented in cropland areas. Other key predictors include LST, a variable highly responsive to irrigation and used

in four of the input features, as well as vegetation parameters such as EVI and fAPAR, which are included in three.

PMLv2

In PMLv2, the stomatal response to VPD is parameterized separately for each biome, including croplands, using flux tower305

observations from 95 sites. For the cropland biome, the calibration relies on 11 towers, 4 of which are irrigated, meaning that

irrigation effects are partially incorporated into the cropland-specific stomatal parameters. These parameters are then applied

to all pixels classified as cropland, which may improve the representation of surface resistance, and consequently canopy

transpiration, in irrigated areas. PMLv2 also incorporates several MODIS-derived variables that are sensitive to irrigation

signals, such as LAI and surface albedo.310

SSEBop v6.1

In SSEBop v6.1, ET is computed as the product of a reference evapotranspiration (ET0) and an evaporative fraction (ETf)

derived from LST relative to a dynamically estimated cold/wet reference temperature (Tc). In version 6.1, the Tc benchmark is

defined using the FANO algorithm, which identifies cold/wet reference pixels from the local NDVI–LST relationship within

a 5 × 5 km moving window. Because both LST and NDVI respond strongly to irrigation, SSEBop v6.1 can capture irrigation315

signals in spatial patterns and seasonal dynamics. However, SSEBop v6.1 generally produces higher ET values than the other

products, which may reflect a positive bias in the Penman–Monteith ET0 from TerraClimate or a limited reduction of ETf under

water-stressed conditions.

MOD16A2

In MOD16A2, ET is estimated using a modified Penman–Monteith equation, where stomatal stress is represented through a320

surface resistance term (rs) driven by MODIS-derived vegetation properties (LAI and fAPAR) and meteorological variables,

including VPD and air temperature. Unlike FLUXCOM and SSEBop, MOD16A2 does not use LST, and its surface resistance

parameters are prescribed for each land-cover class rather than calibrated. The absence of LST information, combined with the

static rs formulation, likely limits the model’s sensitivity to irrigation.

ERA5-Land325

In ERA5-Land, ET is computed using the H-TESSEL land surface model, where soil moisture and VPD are determined by

precipitation and atmospheric fields from ERA5. While ERA5 assimilates a wide range of atmospheric observations, neither

ERA5 nor ERA5-Land assimilate land-surface observations directly, such as soil moisture or vegetation properties. In our

analysis, we do not detect a significant irrigation-related signal being transferred through the atmospheric forcing into ERA5-

Land. Because irrigation is not represented, the model typically maintains low soil moisture and high surface resistance (rs)330

over irrigated croplands—especially in semi-arid regions—thereby suppressing transpiration. In addition, ERA5-Land uses

prescribed, climatological LAI rather than satellite-derived values, which further limits its ability to reflect irrigation-induced

vegetation changes.

GLEAM v4.2a
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GLEAM v4.2a estimates soil moisture using a multi-layer water-balance scheme driven by precipitation from MSWEP v2.8,335

without including any representation of irrigation. Because root-zone soil moisture feeds directly into the evaporative stress

factor (Miralles et al., 2025), irrigated croplands are treated as rainfed, leading to excessive vegetation stress during dry periods.

GLEAM v4.2a does assimilate surface soil moisture from ESA CCI (Dorigo et al., 2017), but only in the form of anomalies. As

these anomalies are computed relative to the satellite product’s own climatology, they cannot capture the sustained soil moisture

increases induced by irrigation and, therefore, cannot correct the underlying precipitation-driven soil moisture baseline.340

Summary of factors explaining ET products’ performances over irrigated areas

A key factor influencing how ET products behave over irrigated areas is how they represent vegetation water stress, and

particularly which variables drive the formulation of that stress. Products in which surface resistance or stress factors re-

spond to irrigation-sensitive variables—such as LST or vegetation indices—tend to capture irrigation signals more effectively

and, therefore, produce higher ET in irrigated regions. In contrast, models in which water stress is strongly influenced by a345

precipitation-driven soil water balance—such as ERA5-Land and GLEAM v4.2a—tend to underestimate soil moisture in ir-

rigated croplands, leading to excessive modeled stress and consequently lower ET estimates. Another important factor is the

inclusion of in situ flux tower data from irrigated croplands during model training or calibration. Products such as FLUXCOM

RS and PMLv2, which incorporate such sites, tend to show stronger consistency with irrigation-related signals compared to

products that do not use such data.350

4.2 Considerations on the reference data used for evaluating the ET products

4.2.1 Map of area equipped for irrigation

When assessing the spatial consistency of the ET products using GMIAv5, it is important to recognize that this dataset rep-

resents irrigation infrastructure rather than the areas that are actually irrigated at a given time. In reality, the extent of active

irrigation varies within and between years depending on water availability, management practices, and policy constraints. This355

temporal variability is not captured in the dataset and may therefore influence, to some extent, the spatial correlations with

ET. The GMIAv5 dataset is also subject to uncertainties in the underlying national statistics, which differ in quality, age, and

spatial resolution across countries.

A temporal mismatch also exists between the reference period of GMIAv5 (around 2005) and the time span of the ET

products analyzed here. While the map remains broadly representative of irrigation patterns during the 2000–2010 decade,360

irrigated areas have expanded in several regions since then. Mehta et al. (2024) documented pronounced increases in the area

equipped for irrigation in the southern Indus Basin, as well as more moderate growth in the Great Plains, the Mississippi

Floodplain, and the Po Valley. Such temporal changes should be considered when interpreting relationships between mean

peak-season ET and the mapped irrigation extent. Nevertheless, despite the expansion of irrigated land in some regions since

2005, GMIAv5 still captures the dominant irrigation patterns relevant for the study period.365

The relationship between mean peak-season ET and the area equipped for irrigation also depends on how clearly irrigation

alters surface variables such as LST and vegetation properties. These signals tend to be more pronounced in semi-arid regions
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(e.g., California Valley, Snake River Plain, Ebro Basin), leading to higher correlations, whereas in more humid areas (e.g., Po

Valley, Mississippi Floodplain) they are partly masked by rainfall-driven variability. In addition, in the Indus Basin, the limited

spatial variability of the GMIAv5 map—with most pixels showing uniformly high irrigation fractions—further constrains370

correlation-based analyses.

4.2.2 OpenET

OpenET provides an independent, high-resolution benchmark for evaluating global ET products, combining six modeling

approaches that differ substantially in their algorithms and input datasets. However, it remains an ensemble of model simu-

lations rather than direct observations, and therefore inherits the assumptions and limitations of its component models. Volk375

et al. (2024) found that OpenET tends to underestimate ET over croplands, including irrigated sites, with a mean bias of

–5.3 mm month−1 and an average RMSD of about 20 mm month−1 relative to in situ flux tower data (metrics computed over

the full year, including non-irrigated periods).

Across several regions, Volk et al. (2024) also reported that OpenET often overestimates ET in vineyards and that RMSD

values for orchards can reach up to 28 mm month−1. This is particularly relevant for the California Valley, where irrigated380

agriculture is dominated by perennial crops such as orchards and vineyards. Such crop-specific biases likely contribute to the

larger discrepancies observed between OpenET and some global products in this region.

4.2.3 Eddy covariance measurements

Comparisons with eddy covariance data rely on the assumption that irrigation at the instrumented field is broadly representative

of conditions within the corresponding 0.1° pixel. This assumption is reasonable in the present study, as both the Livraga and385

Landriano towers are located in irrigated maize fields surrounded predominantly (though not entirely) by similar irrigated

crops. However, variations in irrigation schedules, crop management, or water availability across neighboring fields may still

lead to discrepancies between tower-based observations and pixel-averaged ET estimates. In addition, subpixel heterogeneity

in land cover, particularly the presence of non-irrigated fields, can further contribute to such differences. While beyond the

scope of the present study, future analyses could further explore these site–pixel discrepancies by evaluating ET products at390

their native spatial resolutions.

5 Conclusions

This study presents the first evaluation of six global ET products over irrigated croplands using three independent reference

sources: irrigation infrastructure maps, the OpenET ensemble, and eddy-covariance measurements. By assessing spatial pat-

terns, seasonal dynamics, and ET magnitude across diverse agro-climatic regions, we provide a comprehensive comparison of395

how these products represent irrigation-related ET variability.

The results reveal clear differences among the six datasets. Table 7 summarizes their agreement with the reference datasets,

key observations, and factors likely contributing to the observed patterns. FLUXCOM RS, PMLv2, and SSEBop v6.1 show
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the strongest overall consistency, capturing irrigation-related spatial patterns, seasonal dynamics, and ET levels across most

regions. FLUXCOM RS and PMLv2 exhibit notably similar behavior, whereas SSEBop v6.1 tends to produce higher ET values.400

MOD16A2 shows intermediate consistency and generally lower ET estimates. ERA5-Land and GLEAM v4.2a display weaker

agreement with the reference datasets. Overall, differences among products primarily reflect (i) how vegetation water stress is

represented—whether it responds to irrigation-sensitive variables such as LST and vegetation indices or relies more strongly on

precipitation-driven soil-water-balance formulations—and (ii) whether flux tower observations from irrigated croplands were

included during model training or calibration.405

Table 7. Summary of ET product characteristics over irrigated areas: key observations and factors shaping model responses.

ET product Agreement with

reference data

Key observations Key factors shaping behavior in irrigated areas

FLUXCOM RS High Strong spatial and seasonal consistency; con-

sistent magnitude; similar behavior to PMLv2.

Trained on flux towers including irrigated sites; 6/9 predic-

tors sensitive to irrigation (LST, EVI, fAPAR).

PMLv2 High Strong spatial and seasonal consistency; con-

sistent magnitude.

Surface resistance calibrated per biome, using flux tower data

with irrigated sites; uses MODIS LAI.

SSEBop v6.1 High Strong spatial consistency; consistent dynam-

ics; high ET values.

Driven mainly by LST and NDVI; uses cold/wet reference

pixels to derive the ET fraction.

MOD16A2 Moderate Captures some spatial and seasonal irrigation

signal; low ET values.

Uses MODIS LAI, fAPAR; no biome-specific calibration.

ERA5-Land Low Weak spatial and seasonal agreement. Water stress driven by model soil moisture without explicit

irrigation; static LAI; no direct satellite assimilation.

GLEAM v4.2a Low Weak spatial and seasonal agreement. Water stress influenced by precipitation-driven soil moisture

and anomaly assimilation; neural-network-based stress mod-

ule.

These findings point product developers toward clear opportunities for improvement. Strengthening the physical represen-

tation of vegetation water stress—particularly by integrating observations that respond directly to irrigation and by calibrating

or training models with flux tower data from irrigated croplands—would likely enhance model performance in these environ-

ments. For models in which vegetation stress is inferred mainly from precipitation-driven soil-water-balance schemes, incor-

porating artificial irrigation inputs could improve the reproduction of irrigation-driven ET dynamics, though doing so would410

require assumptions about the timing and magnitude of water applications. Beyond model development, improved validation

efforts are also important. Expanding flux tower networks to better represent the diversity of irrigated systems and climatic

conditions would help reduce regional uncertainties and provide stronger constraints for future ET model refinement.

Together, these advances will contribute to more reliable global ET estimates. Such improvements are essential for agri-

cultural water management, drought monitoring, and climate impact assessments, as well as for broader applications such as415

hydrological modeling, ecosystem monitoring, and water policy design. By identifying the strengths and weaknesses of current

global ET products in irrigated landscapes, this study helps users and developers make more informed choices and supports

the development of more accurate and resilient tools for global water monitoring and management.
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