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Abstract. Coral reef ecosystems are remarkable for their biodiversity and ecological significance, exhibiting the capacity to
exist in different stable configurations with possible abrupt shifts between these alternative stable states. This study applies
landscape-flux theory to analyze how these complex systems behave when subjected to random environmental disturbances.
We use this theory to formulate and investigate several early warning indicators of ecosystem transitions in a well-known
coral-reef model. We studied a number of specific indicators, including the average flux (the driving force when the system
is out of equilibrium), the entropy production rate, the nonequilibrium free energy and the time irreversibility of the cross-
correlation functions. These indicators demonstrate a distinctive advantage when compared to classical indicators based on the
phenomenon of critical slowing down; they exhibit turning points midway between two bifurcations, enabling them to forecast
transitions in both directions substantially earlier than conventional methods. In contrast, early warning indicators based on
the critical slowing down phenomenon typically only become apparent when the system approaches the actual bifurcation or
tipping point(s). Our findings offer improved tools for anticipating critical transitions in coral reef and other at-risk ecosystems,

with the potential to enhance conservation and management strategies.

1 Introduction

These complex systems provide critical ecological functions and substantial economic value through coastal protection and
support of fish and marine biodiversity(Mcmanus and Polsenberg, 2004; Hughes et al., 2007; Mccook et al., 2001; Dudgeon
et al., 2010). However, coral reefs globally are confronting multiple challenges and experiencing serious threats to their abun-
dance, diversity, structural integrity, and ecological functioning(Mumby et al., 2007; Li et al., 2014; Mcmanus et al., 2018; Nes
et al., 2016). The degradation of coral reef ecosystems results from a synergistic combination of anthropogenic pressures (in-

cluding overfishing and pollution) and natural disturbances (such as disease outbreaks, hurricanes, and coral bleaching events).
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The magnitude of this decline is striking-average hard coral cover in the Caribbean Basin has plummeted from approximately
50% to merely 10% over just three decades since 1977(Diko, 2010; Pandolfi et al., 2003). While algal proliferation rarely
causes direct coral mortality, these organisms compete with corals for essential resources such as space and light, contributing
to the death of established coral colonies. Furthermore, algae impede coral recruitment and regeneration, thereby undermining
the capacity of coral populations to recover from environmental stressors(Mumby et al., 2007; Li et al., 2014; Mcmanus et al.,
2018; Nes et al., 2016). The most dramatic illustration of such transformation is observed in Caribbean reefs, which have un-
dergone a profound shift to an alternative stable state dominated by algal cover(Mumby et al., 2007; Li et al., 2014; Mcmanus
et al., 2018; Nes et al., 2016). This striking ecological transition represents one of the most well-documented examples of
regime shifts in marine ecosystems, fundamentally altering both reef structure and function.

Human land use activities have increased oceanic nutrient loading, promoting excessive algal growth in marine ecosystems.
Historically, herbivorous fish have played a crucial role in regulating algal biomass(Mumby et al., 2007; Li et al., 2014). How-
ever, widespread overfishing has significantly reduced populations of important herbivores such as parrotfish. These herbivores
primarily consume algae and indirectly benefit coral communities by reducing algal competition. Consequently, conserva-
tion strategies aimed at restoring parrotfish populations are considered essential for maintaining resilient coral-dominated reef
systems(Mumby et al., 2007; Li et al., 2014). The ecological importance of protecting parrotfish for endangered corals is sub-
stantial. Under normal conditions, parrotfish communities can maintain approximately 40% of coral reefs under consistent
grazing pressure, whereas overfishing diminishes this capacity to merely 5%(Mumby et al., 2007; Li et al., 2014; Mcmanus
et al., 2018; Nes et al., 2016). Sea urchins, when present in moderate numbers, function as even more effective herbivores
than parrotfish. This was dramatically demonstrated in 1983 when mass sea urchin mortality led to a shift from coral domi-
nance to algal dominance, leaving only the less efficient parrotfish as grazers. The critical transition dynamics between coral
and algal states have been extensively investigated by numerous researchers(Mumby et al., 2007; Li et al., 2014; Nes et al.,
2016; Mcmanus and Polsenberg, 2004; Hughes et al., 2007; Mccook et al., 2001; Dudgeon et al., 2010; Andersen et al., 2009).
Research has established that coral-algae systems typically exhibit two distinct stable states: a coral-dominated condition and
an algal-dominated condition(Mumby et al., 2007; Li et al., 2014; Mcmanus et al., 2018; Nes et al., 2016). This ecological
bistability forms the conceptual foundation for our study. While recent work has explored more complex models incorporating
recruitment seasonality and grazing effects(Mcmanus et al., 2018), our analysis focuses specifically on a simplified coral-algae
interaction model(Mumby et al., 2007; Li et al., 2014) to investigate the critical factors determining reef ecosystem.

At low grazing intensities, where parrotfish consume macroalgae without distinguishing from algal turfs, coastal seabeds
become covered by macroalgae, resulting in a macroalgal-dominant state. Conversely, high grazing intensities promote coral
coverage, creating a coral-dominant state. When grazing pressure decreases below a critical threshold, coral populations decline
while macroalgae proliferate, causing a shift from coral dominance to macroalgal dominance(Mumby et al., 2007; Li et al.,
2014; Mcmanus et al., 2018). Within a specific range of grazing intensities, both macroalgal-dominant and coral-dominant
states represent alternative stable state of the ecosystem(Mcmanus and Polsenberg, 2004; Hughes et al., 2007; Mccook et al.,
2001; Dudgeon et al., 2010; Mumby et al., 2007; Li et al., 2014; Mcmanus et al., 2018).
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State changes in complex ecological systems can be described through the mathematical frameworks of phase transitions or
bifurcations. Nonlinear dynamical systems can exhibit various behaviors including steady states, periodic orbits, and chaotic
dynamics. Much researches have predominantly focused on ecological stability at equilibrium points(Mumby et al., 2007; Li
et al., 2014; Mcmanus et al., 2018). This approach typically examines the basins of attraction of these equilibria across different
parameter values, thereby emphasizing local stability properties near equilibrium points (Scheffer et al., 2009). However,
conducting global stability analysis of coral-algal systems presents significant challenges, and the relationship between system-
wide dynamics and the behavior of individual components remains incompletely understood. In this study, we demonstrate
how landscape-flux theory, derived from non-equilibrium statistical mechanics, provides an effective framework for analyzing
the global stability properties of coral-algae ecosystems. We utilize a well-established coral-algal model as our primary case
study (Mumby et al., 2007; Li et al., 2014).

Understanding how natural systems respond to human disturbances and identifying critical thresholds is essential for devel-
oping effective early warning systems for ecological transitions(Andersen et al., 2009; Bestelmeyer et al., 2013; Biggs et al.,
2009). As ecosystems face increasing pressure from climate change, the ability to detect tipping points and anticipate critical
transitions has become increasingly important(Lenton, 2011; Scheffer et al., 2015; Thompson and Sieber, 2011). Early warning
signals play a crucial role in this process, helping us to understand when abrupt and significant changes might occur in com-
plex ecological systems(Clements and Ozgul, 2018a; Contamin and Ellison, 2009; Drake and Griffen, 2010). Before reaching
a critical point, ecosystems typically maintain a sustainable balance; however, once this threshold is crossed, the current stable
state loses stability, triggering catastrophic shifts to alternative stable states(Dai et al., 2012, 2013; Scheffer et al., 2015).

Recent theoretical and empirical investigations have substantially advanced our understanding of ecological system instabil-
ities(Carstensen et al., 2013; Dakos et al., 2012; Guttal and Jayaprakash, 2009; Kéfi et al., 2014). Critical slowing down (CSD)
theory has emerged as a framework in this field and has been widely applied to predict warning signals from univariate time
series data(Dakos et al., 2015; Lindegren et al., 2012; Veraart et al., 2012; Scheffer et al., 2001). This behavior occurs as a
control parameter approaches a critical threshold value, causing system dynamics to decelerate while the current steady state
becomes increasingly unstable(Berglund and Gentz, 2006; Hastings et al., 2018; Scheffer et al., 2012). Common indicators
include increased variance, stronger autocorrelation, and longer return times following perturbations(Boettiger and Hastings,
2012; Dakos et al., 2012; Gsell et al., 2016).

Despite its theoretical promise, research has revealed significant limitations to CSD’s practical application. Time delays in
ecological systems fundamentally alter the dynamical properties near critical transitions, potentially rendering CSD indica-
tors unreliable or misleading(Guttal et al., 2013). This theoretical concern is substantiated by empirical evidence from natural
systems, where comprehensive analyses of long-term data from aquatic ecosystems demonstrate that CSD indicators’ effi-
cacy is considerably constrained by real-world complexity, with environmental stochasticity and multiple interacting stressors
frequently obscuring warning signals(Gsell et al., 2016).

While recent advances have expanded CSD applications through refined statistical indicators(Boulton and Lenton, 2019;
Bury et al., 2021a) and multivariate extensions(Weinans et al., 2019), significant limitations remain. Most notably, CSD often

provides warnings only when systems are already near critical thresholds-frequently too late for effective intervention(Biggs
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et al., 2009; Boettiger and Hastings, 2013b; Ditlevsen and Johnsen, 2010). Additionally, while CSD performs reliably in
one-dimensional systems, it struggles with complex multidimensional ecological dynamics involving feedback loops(Boerlijst
etal., 2013; Hastings and Wysham, 2010; Weinans et al., 2019). These shortcomings, along with challenges such as false signal
susceptibility(Boettiger et al., 2013b; Perretti and Munch, 2012) and extensive data requirements(Burthe et al., 2016), highlight
the need for complementary approaches that can provide earlier warnings for complex ecological systems and overcome the
limitations inherent in current methodologies(Boettiger and Hastings, 2013b; Clements and Ozgul, 2018a; Dakos et al., 2015).

There has also been considerable recent interest in early warning signals based on Al and machine learning methods(Grassia
et al., 2021; Bury et al., 2021b). While these methods often show impressive results on simulated and training data, it remains
to be seen how well they generalize to different physical systems and unseen datasets. Moreover, these methods have an
inherent disadvantage in that the generated EWSs do not have a rigorous mathematical underpinning and are typically not
as interpretable to practitioners working in the application area(George et al., 2023). Machine learning methods have also
recently been used to predict critical transitions by using existing EWSs (including those based on CSD) as features in the
models to leverage subject matter expertise and insights(Ma et al., 2018; Lassetter et al., 2021). This hybrid approach could be
a promising direction for practical testing of EWSs, including our landscape-flux based indicators.

Early warning signals of critical transitions help us to anticipate and understand the likelihood of abrupt and significant
changes in complex systems. Ecosystems can usually maintain a sustainable balance before reaching a critical point, but upon
crossing the critical point, the current stable state can lose stability, triggering a catastrophic transition to a new stable state. Near
the critical point, the mechanisms sustaining the functioning of the ecosystem can break down, resulting in a sudden loss of
resilience and preventing recovery. It is crucial to detect signals of critical transition as early as possible to give enough time to
avert a potential ecological crisis, and the search for early predictions of imminent structural changes has thus become the focus
of intense research. Critical slowing down theory is among the most popular and well-known approaches, but its predictions
are only valid near the bifurcation point. In coastal ecosystems specifically, the goal is to detect warning signals for transitions
from valued states (such as coral-dominated reefs) to degraded states (like macroalgal-dominated reefs), as well as assess the
likelihood of recovery transitions. Developing indicators that can predict both the impending degradation and potential recovery
before critical transitions occur would have substantial practical significance for ecosystem management(Mumby et al., 2007;
Liet al., 2014; Veraart et al., 2012; Scheffer et al., 2001).

Ecological systems are increasingly recognized as inherently multivariate complex systems, and the understanding of their
high-dimensional dynamic behavior requires further development (Boettiger and Hastings, 2013a; Boettiger et al., 2013a;
Nolting and Abbott, 2016; Lamothe et al., 2019; Abbott and Dakos, 2021). Conventional one-dimensional stochastic models
may be missing crucial elements needed to describe behaviors generated by rotational curl forces among variables originated
from high-dimensional system. Rather than using traditional ecological theories based on general equilibrium assumptions,
we need to characterize ecological systems through non-equilibrium processes. Recent advances in nonequilibrium statistical
mechanics offer valuable insights into understanding attractor state formation, stability, bifurcations, and phase transitions in
both physical and biological systems(Xu et al., 2014b; Wang, 2015; Wang et al., 2008; Xu et al., 2012; Wang et al., 2011, 2010;
Qian, 2006; Ge and Qian, 2010; Qian, 2009; Xu et al., 2021, 2023).
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In this study, we propose early warning signals for detecting approaching phase transitions in complex ecological systems.
First, we measure the entropy production rate, which quantifies the energy dissipation or "thermodynamic cost" required to
maintain ecosystem states far from equilibrium. Second, we analyze the average flux, which represents the net directional
movement or flow of the system through its state space, indicating the strength of forces driving ecological dynamics. Third,
we calculate the difference between forward-time and backward-time cross-correlations between system variables, which mea-
sures time irreversibility-the statistical difference between observing the system’s behavior in normal versus reversed time
sequences. Together, these metrics can detect changes in system dynamics before traditional indicators reveal impending criti-
cal transitions, potentially providing warning signals.

Our findings demonstrate that these nonequilibrium warning indicators exhibit turning points between bifurcations, enabling
predictions for both upcoming transitions significantly earlier than traditional critical slowing down indicators, which only
become apparent near bifurcation points. The potential-flux landscape theory presents a effective approaches for exploring the

underlying mechanisms of ecological catastrophes and improving the ability to predict critical transitions.

2  Methods
2.1 Coral-Algal Model

We explore the dynamics of a typical coral-algae ecosystem model(Mumby et al., 2007; Li et al., 2014), whose schematic
diagram is shown in Figure 1A. The ecosystem model contains three functional types: macroalgae (X), coral (Y), and algal
turfs (7'), entities that can be colonised by macroalgae, algal turfs or coral. Algal turf consists of communities of short, densely
growing filamentous algae that form a "turf-like" covering layer on hard substrates in coral reefs, typically reaching only a few
millimeters in height. Unlike macroalgae, these turfs develop a low, compact structure that creates distinctive microhabitats
while serving as a entity in reef ecosystem dynamics(Mumby et al., 2007; Li et al., 2014; Mcmanus et al., 2018).

We track the evolution of the proportions of space occupied by each functional type, effectively assuming that the system is
spatially well-mixed, leading to a spatially implicit modelling framework(Mumby et al., 2007; Li et al., 2014; Mcmanus et al.,
2018). This approach is appropriate for intermediate spatial scales where mixing processes (such as larval dispersal, water
circulation, and mobile herbivore grazing) tend to homogenize local variations. The spatially implicit framework allows us
to focus on ecosystem-level dynamics without the computational complexity of spatially resolved models. Corals recruit and
overgrow algal turfs at rate r, while coral can be overgrown by macroalgae at rate a. Natural coral mortality occurs at rate i and
we assume that space released by the death of the coral will be rapidly recolonized by algal turfs. Macroalgae colonizes algal
turfs by covering them vegetatively at rate . Reef grazers, such as parrotfish, are assumed to consume macroalgae and algal
turfs equally at rate g, and algal turfs arise when macroalgae are grazed. Thus the rate of algal turf production as a function of
macroalgae is given by the proportion of grazing that affects macroalgae, i.e. ¢ X /(X +7T)(Mumby et al., 2007; Li et al., 2014;
Mcmanus et al., 2018).
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Figure 1. A: The schematic diagram for coral-algae model. B: The phase diagram versus grazing rate g.

Symbol Ecological interpretation Default value
a the rate that corals are overgrown by macroalgae [year ™ 1] 0.1

v the rate that macroalgae spread vegetatively over algal turfs [year ™ 1] 0.8

r the rate that corals recruit to and overgrow algal turfs [year ™~ 1] 1.0

h the natural mortality rate of corals [year ~!] 0.44

g the rate at which herbivores consume macroalgae in the coral-algal model [year ™ 1]

Table 1. Parameters interpretation and default values(Mumby et al., 2007; Li et al., 2014)

The coral-algae system can thus be described by the following set of nonlinear ordinary differential equations (ODEs):

dX gX

- = aXY - XT
at A exTr
dYy

where X represents the proportion of space covered by macroalgae and Y represents the proportion of space covered by
coral. T represents the proportion of algal turf cover and since we assume that all space (seabed) is completely covered by
either macroalgae, coral or algal turfs, we have X +Y +T =1,or T'=1— X — Y. g is the grazing rate that parrotfish graze
macroalgae without distinction from algal turfs range from 0 to 0.8. The parameter interpretations and their default values are
given in Table L.

Coral reef ecosystems can exhibit up to six distinct stable states: hard corals, turf algae, macroalgae, soft corals, coral-
imorpharians, and urchin barrens(Jouffray et al., 2015; Norstrom et al., 2009). While a more complex model incorporating all
six states would better reflect ecological reality, we adopted a simplified two-state approach to facilitate analytical tractabil-
ity while still capturing the fundamental bistable dynamics characteristic of critical transitions. This simplification enables us
to clearly demonstrate the utility of our landscape-flux framework while maintaining mathematical accessibility. Addition-
ally, our approach could potentially be extended to higher-dimensional systems with multiple stable states in future research,

acknowledging both the limitations of our current model and opportunities for further development.
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2.2 Landscape and flux theory for the coral-algae model
2.2.1 The concept of landscape-flux theory

Landscape-flux theory provides a promising alternative framework for analyzing complex ecological systems and predict-
ing critical transitions. This non-equilibrium statistical mechanics approach offers several distinct advantages over traditional
methods. Foremost among these is its capacity to characterize global system stability through the construction of potential land-
scapes that quantify the relative stability of different states(Wang et al., 2008; Xu et al., 2014b, 2021). Unlike critical slowing
down theory, landscape-flux theory effectively captures multidimensional system dynamics, including rotational forces (curl
flux) as an additional driving force besides landscape gradient for the dynamics that are often overlooked in equilibrium-based
analyses(Wang, 2015; Ge and Qian, 2010; Qian, 2006). This enables more comprehensive characterization of system behavior,
particularly in complex ecological networks with multiple feedback mechanisms(Xu et al., 2023).

Another significant advantage is the theory’s ability to detect warning signals substantially earlier than bifurcation-proximity
indicators(Wang et al., 2011, 2010). By quantifying both the potential landscape topography and the non-equilibrium flux,
the approach provides mechanistic insights into transition drivers rather than merely phenomenological descriptions(Qian,
2009; Xu et al., 2012). The theory has been successfully applied to various complex systems(Wang, 2015; Fang et al., 2019),
including gene regulatory networks(Wang et al., 2008), cell fate decisions(Wang et al., 2010; Xu et al., 2014b), and more
recently, ecological regime shifts(Xu et al., 2021, 2023).

Despite its significant promise and advantages, landscape-flux theory presents certain challenges, particularly in its prac-
tical implementation. Its implementation requires sophisticated mathematical techniques and substantial computational re-
sources(Wang, 2015; Fang et al., 2019). The approach demands comprehensive system knowledge for accurate model formu-
lation and parameter estimation, which can be difficult to obtain for many ecological systems(Ge and Qian, 2010). Quantifying
flux components in empirical systems poses challenges, often requiring high-resolution temporal data(Wang et al., 2011; Qian,
2009). There have not yet been any empirical studies combining the landscape flux theory and associated EWSs with data and
it remains to be seen how successful the theory will be in practice. Nevertheless, the theory’s capacity to provide earlier warn-
ings and deeper mechanistic understanding of ecological transitions makes it a valuable complement to existing approaches
for analyzing complex ecosystems facing anthropogenic pressures and we hope that it can be empirically tested in the near
future(Xu et al., 2021, 2023).

By adapting the potential landscape-flux framework to ecological dynamics, we bridge a critical gap between physical sys-
tems, where these methods originated, and complex biological systems characterized by nonlinear feedback and multiple stable
states. Coral reef ecosystems represent an ideal test case for this theoretical extension due to documented evidence of alternative
stable states, their sensitivity to environmental perturbations, and their growing vulnerability to climate change impacts. Our
implementation demonstrates how landscape-flux theory can quantify stability of ecological systems under stochastic forcing,
providing a mathematically rigorous foundation for early warning signals that complement existing early warning indicators
for ecological systems(Clements and Ozgul, 2018b). This contrasts with some recent methods relying on Al and machine

learning to produce indicators for transitions based on training on empirical data, but without a mathematical underpinning
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or basis through which to interpret the resulting indicators(George et al., 2023). Our work thus creates new opportunities
for anticipating critical transitions in reef ecosystems, where traditional monitoring approaches often detect degradation only
after substantial ecological changes have occurred. The framework’s ability to characterize global stability while accommodat-
ing environmental stochasticity makes it particularly suited to reef conservation, where identifying resilience thresholds and

intervention windows is increasingly urgent for management and preservation efforts.
2.2.2 Mathematics of Landscape and flux theory

The dynamics of the coral-algae model without noise or external fluctuations are characterized by a set of ordinary differ-
ential equations. In natural environments, however, coral-algae ecosystems are subject to diverse stochastic influences; inter-
nal stochasticity may emerge from variations in individual growth rates or grazing patterns, while external fluctuations may
arise from processes such as ocean acidification, sedimentation, or other climate change-driven stressors(Scheffer et al., 2015;
Carstensen et al., 2013). The deterministic model can be expressed in differential notation as dx = F(x)dt, where vector x
represents the ecosystem state and the driving force F encapsulates the interactions and transitions between coral, macroalgae,

and algal turfs described in Figure 1A. To incorporate these various noise sources, we extend the model to:
dx =F(x)dt+m-dW, 2

where W, coupled with matrix m, represents an independent Gaussian noise process(Gillespie, 1977; Wang, 2015; Swain
et al., 2002). For analytical convenience, we define DG = (1/2)(m-mT), where D is a constant representing the fluctuation
scale and G is the diffusion matrix. Environmental disturbances such as temperature fluctuations, storm events, and nutrient
pulses simultaneously affect coral, algae, and algal turfs, introducing correlations in the noise structure of natural reef systems.
While our potential landscape-flux framework remains theoretically valid for systems with correlated noise, we have chosen
to use a diagonal identity matrix for G to maintain analytical tractability. This simplification allows us to focus on the core
dynamics while avoiding the substantial increase in mathematical complexity that would result from incorporating non-zero
off-diagonal elements to represent correlated noise effects (Wang, 2015). Future extensions of this model could incorporate
these more realistic noise structures to further refine predictions of reef dynamics under stochastic environmental forcing.

The probability of finding the coral-algae system in state x at time ¢ is given by probability density function P(x,t), which
evolves according to the Fokker-Planck equation(Van Kampen, 2007; Wang, 2015; Nicolis and Prigogine, 1977):

HP=-V-J=-V.[FP—(1/2)V-((m-m™)P)], 3)

where J represents the probability flux through the system.
The steady-state probability distribution Ps;(x) can be obtained by solving:

0=—V-3(x) = —V-[F(x)Pes(x) — (1/2)V - (m-m™) Py (x))], )

For equilibrium systems, we identify a "detailed balance solution" in which the flux J vanishes completely, signifying the ab-

sence of net energy transfer into or out of the system (Detailed discussion in Appendix A). In this case, Pss ~ exp[—U](Gillespie,
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1977; Van Kampen, 2007; Wang, 2015; Nicolis and Prigogine, 1977), where U represents the population-potential landscape.

The driving force F can then be decomposed as:
F=-DG-VU+DV-G 4)

Thus, in equilibrium systems, F' is determined entirely by the gradient of the potential landscape. We can calculate P, by solv-
ing equation or through experimental data collection, and subsequently derive the potential landscape using U = — In P,;(Wang
et al., 2008; Wang, 2015; Van Kampen, 2007).

For nonequilibrium systems, which better represent ecological reality(Hastings and Wysham, 2010; Weinans et al., 2019),

the force decomposition becomes:
F:—DGVU+DVG+J55/P55a (6)

where Js denotes the non-zero steady-state probability flux, calculated as Jgs = FPy;s — DV - (G Psg). This flux satisfies
V - Jss =0, indicating that J s/ Ps, represents a purely rotational force component. The potential gradient — DG - VU drives
the system toward stable states, while the divergence-free flux component generates rotational flow that facilitates transitions
between alternative stable states(Wang et al., 2011; Xu et al., 2012). In nonequilibrium systems like coral reefs, both the
potential landscape U and flux J,, contribute to the system dynamics. Despite being conceptually derived from equilibrium
theory, the potential landscape provides valuable insights into the global stability properties of nonequilibrium ecological

systems(Xu et al., 2021, 2023), as we will demonstrate for the coral-algae model.
2.2.3 Entropy production rate (EPR) and the average Flux (Fluxg.,)

In nonequilibrium systems, the non-zero curl flux J,, breaks detailed balance and provides a quantitative measurement of
the system’s deviation from equilibrium(Xu et al., 2014b; Wang et al., 2008; Wang, 2015; Wang et al., 2011, 2010; Qian,
2006). This deviation metric is particularly valuable for investigating instabilities in the current state and detecting transitions
to new stable states, making flux a critical component in developing early warning indicators for nonequilibrium ecological
systems(Xu et al., 2021; Dakos et al., 2015). Fundamentally, flux provides a framework for analyzing nonequilibrium thermo-
dynamics through entropy production. For the stochastic coral-algae model, the system entropy can be defined as Sentropy =
— f Pln Pdx. The temporal evolution of this entropy can be decomposed into two components: S’emmpy =9 EPR— Se, where
Sepr represents the entropy production rate (EPR) and S, denotes the heat dissipation rate or environmental entropy change.
The entropy production rate is mathematically expressed as EPR = Sppr = [dx(J-(DG)~t-J)/P(Qian, 2006; Wang et al.,
2008; Zhang et al., 2012; Ge and Qian, 2010), while the heat dissipation rate is given by S, = Jdx(F—DV-G)-J.

The EPR is directly proportional to flux J, with larger flux values generating higher EPR values and consequently greater
deviations from equilibrium(Ge and Qian, 2010; Qian, 2006). At steady state, a fundamental relationship emerges: the entropy
production rate equals the heat dissipation rate(Ge and Qian, 2010; Qian, 2006; Wang et al., 2008; Zhang et al., 2012). In our
analysis of the stochastic coral-algae model, we will utilize both the EPR and the average flux magnitude, defined as Flux,, =
[13]dx, to quantify the degree of nonequilibrium behavior and generate early warning signals for critical transitions(Wang

et al., 2011; Xu et al., 2023).
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2.2.4 Time irreversibility: The average difference between forward and backward of cross-correlation

Time irreversibility in dynamical trajectories provides an effective method for quantifying nonequilibrium behavior in complex
systems. We analyzed long-time trajectories of coral (X) and macroalgal (Y) cover simulated from the Langevin equation,
focusing on noise-induced transitions between the M acroalgae and C'oral attractors. The cross-correlation function forward
in time is defined as Cxy (7) = (X (0)Y (7)), where X and Y represent time trajectories with interval 7(Qian and Elson,

2004; Zhang and Wang, 2018). Correspondingly, C 'xy (7) represents the cross-correlation function backward in time. The

average difference between forward and backward cross-correlation, defined as ACC = \/ % f(f "(Cxy (1) — Cxy(7))%dr,
effectively quantifies time irreversibility. This measure captures the degree of nonequilibrium and flux strength through the
system’s deviation from detailed balance(Qian and Elson, 2004; Zhang and Wang, 2018; Xu and Wang, 2020), offering a

practical indicator of phase transitions directly observable from temporal trajectories.
2.2.5 Escape time (The mean first passage time)

Ecological systems may transition from their current stable state to an alternative stable state due to stochastic fluctuations
or external forces, effectively escaping their basin of attraction. The escape time between stable states provides a valuable
quantitative measure for assessing global stability in coral reef ecosystems. By estimating the mean exit time from a basin of
attraction (Arani et al., 2021; Wang et al., 2008; Xu et al., 2021, 2014a), we can better understand the likelihood of transi-
tions between coral-dominated and algae-dominated states. Mean first passage time (MFPT)-the average time required for a
stochastic process to first reach a specified threshold value-provides a robust metric for quantifying this phenomenon. MFPT
effectively measures the kinetic speed or temporal characteristics of transitioning between states, offering natural indicators of
a system’s propensity to depart from its current basin of attraction.

To investigate this behavior, we employ Langevin dynamics to simulate the stochastic coral-algae model and analyze the
MFPT distribution between stable states. Our methodology begins by selecting one stable state as the initial condition, while
designating a disc with radius 79 = 0.01 surrounding the alternative stable state as the target "state.” We then compile first
passage time statistics from the initial to the final state, subsequently averaging across all simulations to determine the mean
first passage time. We define 7¢ s as the M FPT from the coral-dominated state to the macroalgae-dominated state, and

conversely, Tps¢ as the M F'PT from the macroalgae-dominated state to the coral-dominated state.
2.2.6 Lyapunov function for the coral-algae model under zero fluctuations

In dynamical systems theory, Lyapunov functions serve as powerful tools for stability analysis, enabling characterization of
an attractor’s global stability beyond the limitations of local stability analysis(Wang, 2015; Fang et al., 2019). We discussed
the differences between global stability and local stability detailed in SI. While no general method exists for constructing Lya-
punov functions for complex nonlinear systems, we can utilize the steady-state probability distribution P;4 and the population
potential U to investigate the global stability properties of the stochastic coral-algae model under finite fluctuations. Unfortu-

nately, the population potential landscape U does not generally function as a Lyapunov function(Xu et al., 2014a; Zhang et al.,

10
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2012), in the small noise limit (D — 07), the intrinsic potential landscape ¢ emerges as a viable Lyapunov function. We can

compute ¢g by solving the Hamilton-Jacobi equation:
H=F -Voy+Voy-G-Vpg=0. @)

This equation results from expanding the population potential U in powers of noise level D, substituting this series into the
Fokker-Planck equation, and truncating at order D! to obtain the equation for ¢q(Wang, 2015; Xu et al., 2014a; Zhang et al.,
2012).

To verify that ¢ functions as a Lyapunov function, we calculate:
4 py(x) =% Voo =F Vog=—Ve¢y G-V <0,

where the inequality holds when G is positive definite. This demonstrates that ¢((x) monotonically decreases along deter-
ministic trajectories as D — 0, confirming its utility for quantifying global stability in the small noise regime. The intrinsic
potential landscape ¢q relates to the steady-state probability and population potential landscape through U = —IinPss ~ ¢o/D
as D — 0.

In the zero fluctuation limit, the driving force F can be decomposed into gradient and curl components:
F=-G- v¢0 + (Jss/Pss)|D~>0 =-G- v¢0 +V.

The first term, —G - V¢, represents the gradient of the non-equilibrium intrinsic potential, while V = (J 55/ Pss) p—o defines
the intrinsic steady-state flux velocity. The steady-state intrinsic flux term Js;|p_o is divergence-free due to V - J = 0. From
the Hamilton-Jacobi equation, we derive (Jss/Pss)|p—o- Voo = V- Vo = 0, establishing that the intrinsic potential gradient
is perpendicular to the intrinsic flux in the zero fluctuation limit(Wang et al., 2011, 2010).

For the coral-algae model, calculating the intrinsic potential ¢ presents substantial difficulties due to the constrained state
space (an isosceles triangle where 0 < XY < 1,0 <1—-X—Y < 1). The intrinsic potential is challenging to compute from the
Hamilton-Jacobi equation in a normalized triangular state space. These geometric constraints complicate the analytical solution
of the Hamilton-Jacobi equation, requiring specialized mathematical approaches to capture the system’s dynamical properties
within this bounded domain. We therefore expand the potential U (x) in the small diffusion limit as U (x) = ¢ (x)/D+¢1(x)+
O(D?) and employ a linear fitting method to approximate ¢o. By plotting diffusion coefficients D versus DU (specifically
D1n P;,) using small D values, we determine ¢ from the slope of the resulting line(Zhang et al., 2012; Xu et al., 2021, 2023).

Additional analyses presented in the Supplementary Information include non-equilibrium thermodynamics, entropy dynam-
ics, energy and free energy characteristics under both zero-fluctuation and finite fluctuation conditions, and kinetic pathways

between alternative stable states (Macroalgae and Coral) in the model system. We add a glossary of terms in Table S1.

3 Results

Applying the landscape-flux framework described above, we now examine the dynamics and stability properties of the coral-

algal ecosystem model under both finite and zero fluctuation conditions. Throughout our analysis, we distinguish between
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two alternative stable states: the "Macroalgae" state, characterized by macroalgal dominance and low coral density or by
macroalgal only, and the "Coral" state, defined by coral dominance and minimal macroalgal presence or by Coral only(Mumby
etal., 2007; Scheffer et al., 2015). This bimodal pattern of community structure represents a classic example of alternative stable
states in marine ecosystems, with critical implications for reef resilience and conservation(Hastings et al., 2018; Scheffer et al.,
2001). By quantifying the potential landscape and probability flux patterns associated with these states, we aim to characterize
global stability properties and develop early warning indicators for critical transitions between these alternative ecosystem.

In the model, parameter g represents the grazing rate of macroalgae by herbivorous fish and invertebrates, a crucial eco-
logical process with well-documented real-world counterparts. This parameter directly connects mathematical modeling to
measurable ecological dynamics that reef managers can monitor and potentially influence. Real-world factors affecting the
grazing rate g, including overfishing of herbivores (decreasing g), establishment of marine protected areas (increasing g), dis-
ease outbreaks among key grazers like the 1983 Caribbean sea urchin die-off (reducing g), and predator-prey dynamics through
trophic cascades. As g gradually decreases in natural systems, algae gain competitive advantage over corals, system resilience
weakens, recovery becomes increasingly difficult after disturbances, and eventually, at the critical threshold, even minor her-
bivore loss can trigger a shift to algal dominance. This mechanism explains ecological transitions observed on reefs, where
reduced herbivory caused coral-to-algae phase shifts matching our bifurcation analysis predictions.

Figure 1B illustrates the deterministic phase diagram of the coral-algae system as a function of the parrotfish grazing rate
g (which acts on macroalgae without distinguishing from algal turfs). When 0 < g < 0.1796, the system exhibits one unstable
fixed point (the dashed Coral state) and one stable fixed point (the solid Macroalgae state), indicating macroalgal dominance.
As grazing intensity increases to 0.1796 < g < 0.3927, the system transitions to bistability, characterized by two stable fixed
points-the solid Macroalgae state and the solid Coral state-separated by an unstable green saddle fixed point that serves as a
threshold between the two stable regimes. This bistable configuration persists until g = 0.3927, beyond which (g > 0.39) only
the coral-dominated fixed point remains stable, indicating a complete shift to coral dominance at higher grazing intensities. The
diagram which denotes the noise induced transitions with parameter driven reveals a bistable region wherein two alternative
stable states-M acroalgae and Coral-coexist across a specific range of grazing values. This bistable region is bounded by
transcritical bifurcations, which occur precisely when one equilibrium solution enters or exits the ecologically feasible region
of phase space (definedby 0 < X +Y + 7T <1,0< XY, T <1).

To characterize the global stability properties of this system, we solved the Fokker-Planck equation for the coral-algae model,
yielding the steady-state probability distribution Pss and consequently the population landscape via U = —InPss. Figure
2A presents three-dimensional visualizations of these population-potential landscapes under finite fluctuations (D = 0.0005).
These landscapes reveal how system stability evolves with changing grazing pressure. At low grazing rates (0 < g < 0.1796),
the landscape exhibits a single stable state dominated by macroalgae (the Macroalgae state). As grazing intensity increases
0.1796 < g < 0.3927, a bistable landscape emerges with local minima corresponding to both macroalgal and coral dominance.
With further increases in grazing rate, the Coral state deepens while the Macroalgae state becomes increasingly shallow
and eventually disappears (g > 0.39), as also conceptualized in Figure 1B. At sufficiently high grazing rates, macroalgae are

effectively eliminated from the system, and the landscape exhibits a single deep basin corresponding to coral dominance.
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This progression of landscape topographies provides a comprehensive visualization of how grazing pressure drives transitions

between alternative community states in coral-algae ecosystems(Scheffer et al., 2012; Hastings et al., 2018).
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Figure 2. A: The population potential landscape U for the coral-algae model with finite fluctuation D = 5 x 10*. B: The population potential

landscape U projected on X.

Natural ecosystems invariably experience disturbances and stochastic fluctuations. In systems characterized by alternative

stable states, sufficiently intense fluctuations can propel the system from one stability basin through an unstable threshold,

370 resulting in transition to an alternative stable configuration. Figure 2B illustrates this dynamic process through the classical

"ball-in-the-valley" conceptual model(Scheffer et al., 1993; Scheffer, 2009), which visually represents the population potential

landscape U projected onto coral cover (X) under different grazing intensity (g). This potential landscape is quantitatively
derived from the steady-state probability distribution of the stochastic coral-algal model.

In this visualization, the ecosystem state is represented by a ball that naturally moves downhill and stabilizes in potential

basins (valleys) that vary with grazing intensity. Each valley corresponds to an attraction basin in dynamical systems the-

ory(Nolting and Abbott, 2016; Lamothe et al., 2019; Abbott and Dakos, 2021). Under small fluctuations, the system may

375

temporarily deviate from equilibrium (the ball climbs partway up the slope) before returning to its steady state at the basin

minimum. However, sufficiently large fluctuations can drive the system across the ridge (passing an unstable saddle point) into

an alternative stability basin.
The landscape topography undergoes systematic transformations as grazing intensity increases: at g = 0.125, only the

380
macroalgal valley (M) exists; at g = 0.275, both valleys exist but the coral valley (C') remains shallower than the macroal-

gal valley; at g = 0.3, both valleys attain similar depths, indicating comparable stability; at g = 0.325, the coral valley becomes
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Figure 3. A-C: The intrinsic potential landscape with different g for the coral-algae model. D-F: The dominant intrinsic paths and fluxes on
the intrinsic-potential landscape ¢o with zero fluctuation limit and grazing rate g = 0.29 (D). The dominant population paths and fluxes on
the population-potential landscape U with the diffusion coefficient D = 0.0005 (E), D = 0.005 (F). The red lines represent the dominant
paths from the M acroaglae state to Coral state. The black lines represent the dominant paths from the Coral state to M acroaglae state.
The white arrows represent the steady-state probability fluxes. G: The population barrier heights versus parameter g. H: The intrinsic barrier
heights versus parameter g. I:The population barrier heights versus the mean first passage time. Population barrier height AUsc = Us —Uc
and intrinsic barrier height A¢osc = pos — doc, AUsym = Us —Unr and Adosmr = pos — donr and T¢ ar represents the mean first passage
time from state C'oral to state M acroalgae and Tysc represents the mean first passage time from state M acroalgae to state Coral. J: The

logarithm of MFPT versus g. K: The frequency of the flickering fw versus grazing rate g.

deeper than the macroalgal valley; and finally, at g = 0.75, only the coral valley remains. This progression captures the grazing-
mediated shift from macroalgal to coral dominance in reef ecosystems.

Figure 3A-C demonstrates that the intrinsic potential landscapes calculated for the coral-algae model exhibit qualitatively
similar patterns to the corresponding population potential landscapes across the grazing gradient, further validating the stability
analysis approach. Figure 3D illustrates the intrinsic flux (purple arrows) and the negative gradient of the intrinsic potential
landscape (white arrows) at grazing rate g = 0.29, clearly depicting their directional relationships in the vicinity of steady states.
A striking feature of these vector fields is their orthogonality-the intrinsic fluxes are perpendicular to the negative gradients of
the intrinsic potential landscape —V ¢q. This perpendicularity emerges from the mathematical relationship (Jss/Pss)|p—o -

Voo =V -V =0, which is derived from the Hamilton-Jacobi equation under the zero fluctuation limit.
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Figure 4. The population entropy production rate (A-E) and the population average flux (F-J) versus grazing rate g with increasing D. K: The
intrinsic entropy production rate, the population average flux and the free energy versus grazing rate g for the coral-algae model (parameters
are set in Table I). L-M: The EPR and Fluz, versus grazing rate g with different natural mortality rate of corals h for the coral-algal

model. The dashed lines represent the locations of the transcritical points for each value of h with the same color for the £ PR lines.

Figures 3E and F display the flux (purple arrows) and negative gradient of the population potential landscape (white arrows)
superimposed on the landscape for different fluctuation intensities: D = 0.0005 (E) and D = 0.005 (F). The circulating fluxes
around the stable states enhance communication between the M acroalgae and C'oral states. These visualizations effectively
demonstrate how the driving forces of the coral-algal system can be decomposed into complementary components: ¥ = —D -
VU +Jss/Pss+ DV - G for finite fluctuations and F = —G - V¢ + (Jss/ Pss )| p—o = —G - Vg + V for the zero fluctuation
limit. The substantial difference in magnitude of color bar units reflects the fundamentally different metrics being visualized:
Figures 3D represents the intrinsic potential landscape derived from the Hamilton-Jacobi equation with zero limit fluctuations,
whereas Figures 3E and Figures 3F show the population potential landscape from the Fokker-Planck equation with finite
fluctuations. These inherent mathematical differences naturally produce different numerical ranges.

Figure 3D,E,F further reveals the dominant transition pathways between alternative stable states. Red lines represent the
dominant paths from the Macroalgae state to the Coral state, while black lines indicate dominant paths in the reverse
direction-shown on both the intrinsic potential landscape ¢y under zero fluctuations (D) and the population-potential land-
scape U under finite fluctuations (E and F). The purple arrow fluxes in Figure 3D guide these dominant paths under zero
fluctuations, causing them to deviate from the steepest descent paths and diverge from each other as they pass through the

saddle point-a deviation from equilibrium systems where zero flux would result in convergent paths. Similarly, under finite
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fluctuations (Figure 3EF), the dominant population paths guided by the purple arrow fluxes also deviate from steepest de-
scent trajectories. This analysis reveals a fundamental feature of nonequilibrium systems: path irreversibility. The dominant
paths from M acroalgae to Coral differ significantly from those in the reverse direction. This irreversibility stems from the
nonequilibrium rotational flux, which creates spiral-shaped currents around stability basins. Interestingly, the dominant paths
under zero fluctuation limit appear closer to each other compared to those under finite fluctuations, though they remain distinct
due to the non-zero intrinsic flux. These spiral flux patterns represent the dynamical signature of nonequilibrium behavior in
the coral-algal ecosystem(Wang et al., 2011; Xu et al., 2012; Zhang et al., 2012).

Figure 3G and H illustrate how barrier heights in both population-potential and intrinsic potential landscapes vary with
grazing rate g. As g increases, the coral-algal system transitions from M acroalgae state dominance to C'oral state dominance.
This transition is reflected in the changing barrier heights: population barrier height AUgc = Ug — Ue and intrinsic barrier
height Agosc = ¢os — Poc increase with higher grazing rates, while AUgys = Ug — Uy and Agosasr = Pos — Ponr decrease.
Here, Ugs and ¢gg represent the potential values at the saddle point between alternative states, while Uy, ¢oar, Uc, and
¢oc denote the minimum potential values in the Macroalgae and Coral states, respectively. These patterns demonstrate that
elevated parrotfish grazing progressively destabilizes the Macroalgae state while enhancing the stability of the C'oral state.
The deeper attraction basin with higher barrier heights creates greater resistance to state transitions. Notably, both population
and intrinsic barrier heights display nearly identical trends as g increases.

Figure 3J presents the Mean First Passage Time (MFPT), which quantifies the average time required for a stochastic process
to first reach a specified state. The behavior of the mean first passage time (MFPT) as it is represented in logarithmic form,
specifically shows an increase in In 7, and a decrease in In 7,7 as the parameter g increases. This trend indicates that it takes
more time to exit the Coral state while it requires less time to transition out of the Macroalgae state as g rises. Consequently,
the MFPT can effectively characterize the transition from the Macroalgae state to the Coral state with increasing g, providing
a measurable indicator of this critical transition.

Figure 3I illustrates the logarithmic MFPT plotted against population barrier heights reveals a positive correlation-both
In7ops and In7ys¢ increase with barrier height, approximating a relationship of 7 ~ exp(AU). This exponential relationship
indicates that escape time dramatically lengthens as barrier height increases, directly linking transition kinetics to landscape
topography. Specifically, a higher barrier height or deeper valley results in a longer time required to escape from that valley.
This correlation suggests that the population-potential landscape topography is closely related to the kinetic speed of state
switching, thereby influencing the communication capability for the global stability of the system.

The flickering frequency quantifies the number of state transitions per unit time. Specifically, f,cns represents the fre-
quency of transitions from the C'oral state to the M acroalgae state per unit time. In Figure 3K, we illustrate the frequency of
transitions from M acroalgae to Coral (f,pc) with fluctuation strength D =5 x 10~%. Our results demonstrate that f., /¢
increases dramatically as g increases. This phenomenon can be explained by the decreasing stability of the M acroalgae state’s
basin of attraction, which becomes shallower as g increases. Consequently, the system exhibits a higher probability of transi-
tioning to the C'oral state. Previous research has established flickering frequency as an effective early warning signal for critical

transitions Scheffer et al. (2012, 2009). The tipping points identified through flickering frequency occur near the bifurcation
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point in the coral-algae model, where the M acroalgae state becomes unstable (flat potential) while the C'oral state becomes
dominant. Flickering frequency indicates that the Macroalgae state loses resilience, characterized by a diminishing basin of
attraction in the potential landscape, while the C'oral state gains dominance. It is important to note that actual transitions may
occur considerably earlier than this bifurcation point due to larger environmental fluctuations.

While the effectiveness of critical slowing down as early warning indicators is under low noise conditions, a critical ques-
tion remains regarding their robustness under more realistic, higher noise scenarios. This consideration is particularly impor-
tant given that traditional critical slowing down indicators are known to perform poorly with increased stochastic fluctua-
tions(Hastings and Wysham, 2010). We conducted analyses systematically varying the noise magnitude from D =1 x 107
to D =1 x 102 (Figure 4A-J). Figure 4 demonstrates how population entropy production rate PR (A-E) and average flux
Fluz,, (F-J) vary with grazing rate under increasing finite fluctuations. Our findings reveal that both EPR and average flux
(Fluz,,) maintain relatively robust performance as early warning signals up to D =1 x 10~2, beyond which signal relia-
bility begins to deteriorate significantly. This represents a substantial improvement over conventional critical slowing down
indicators, which typically lose effectiveness at high noise levels. The relative noise robustness of our framework likely stems
from the fact that our indicators directly quantify system-wide properties reflecting global stability, rather than local temporal
patterns that become increasingly masked by higher noise.

Figure 4K displays the intrinsic entropy production rate in PR and intrinsic average flux inFlux,, against g. These two
metrics exhibit a similar pattern-initially increasing and subsequently decreasing with higher grazing rates, with pronounced
peaks occurring between the two transcritical bifurcations shown in Figure 4K. These peaks coincide with the critical transition
region from M acroalgae to C'oral dominance. Additionally, Figure 4K reveals that intrinsic free energy reaches a minimum
near the peaks of inE PR and tnFluz,,. Collectively, these findings suggest that EPR, Fluxg,, tnEPR, inFlux,,, and
intrinsic free energy can serve as effective indicators for detecting phase transitions and bifurcations in coral-algal systems(Xu
et al., 2021, 2023).

To calculate state-specific time irreversibility measures, we employed relatively small diffusion coefficients to prevent spon-
taneous transitions between alternative stable states. This approach allowed us to collect sufficient stochastic simulation data
while the system remained within either the M acroalgae or Coral state. We denote the resulting irreversibility measures as
ACCM (for trajectories within the M acroalgae state) and ACCC (for trajectories within the Coral state). Notably, once a
system transitions to an alternative state, the pre-transition irreversibility measure can no longer predict the transition that has
already occurred.

Figure 5A illustrates how both ACC' M and AC'CC exhibit pronounced peaks between the two transcritical bifurcations un-
der small fluctuations (D = 1 x 10~°) with parameter h = 0.44. Figures 5B display the derivatives of these measures: kacc s
(the slope of ACCM) for the Macroalgae state, alongside kaccoc (the slope of ACCC) for the Coral state. We fitted
an exponential function to the simulation data to calculate these derivatives. The derivative measures exhibit clear inflection
points, indicating significant changes as the system approaches bifurcation points. These characteristic patterns in irreversibil-
ity measures and their derivatives demonstrate their potential as early warning signals for critical transitions in coral-algae

ecosystems.
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Figure 5. A: The average difference of the cross correlations forward and backward in time ACCM and ACCC versus g. B: kacoa (the
slope of ACCM) and kaccc (the slope of ACCC)versus g. C: The variance Vary and Varce versus grazing rate g. D: The relaxation
time Trelaz v and Trejqaxc Versus grazing rate g. E: kospar (the slope of the relaxation time 7,.c1q207) and kcspc (the slope of the relaxation
time Treiqzc) Versus grazing rate g. F: The two-dimensional phase diagram of the natural mortality rate of corals h versus grazing rate g
for the coral-algal model. AC'C M 4, represents the maximum of ACC M, ACCCyqz represents the maximum of ACCC. Treiaz Mmaz
represents the coordinate position of the sharp rise of Treiqznrs TrelazCmaa represents the coordinate position of the sharp rise of Treiqzc-
(D =1.0 x 107°,h=0.44)

Figure 5C illustrates the relationship between variance and grazing rate g. Specifically, as the grazing rate g increases: the
variance of the Macroalgae state (V arpy;) shows a clear increasing pattern, while simultaneously, the variance of the Coral
state (Varc) exhibits a decreasing trend. This divergent behavior in variances provides important insights into the system’s
stability characteristics. The increasing variance in the Macroalgae state (V arjy) indicates growing instability and fluctuations
in this state as grazing pressure intensifies. Conversely, the decreasing variance in the Coral state (Var¢) signifies that this
state becomes more stable and resilient with increasing grazing pressure. These variance patterns serve as quantitative early
warning indicators of the shifting stability landscape in the coral-algae system and help identify the approach toward critical
transition points in this ecological model.

Critical slowing down emerges as ecosystems approach bifurcation points during gradual environmental changes. When a
system within a stable state experiences external disturbance, it eventually returns to its original equilibrium after a characteris-
tic period known as the relaxation time(Scheffer et al., 2009). This relaxation time represents the system’s adaptive response to
environmental perturbations. When varying grazing rate g, bifurcations can be approached from either increasing or decreas-
ing directions. Critical slowing down effectively identifies the left bifurcation (where M acroalgae becomes dominant and the
Coral state flattens) when g decreases, and the right bifurcation (where C'oral becomes dominant and the M acroalgae state

flattens) when g increases. Figure 5D illustrates this phenomenon in the coral-algal model: the relaxation time 7;.¢;q. s for the
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M acroalgae state increases sharply when approaching the right transcritical bifurcation point with increasing g, while the re-
laxation time 7;..;qc for the C'oral state similarly increases when approaching the left transcritical bifurcation with decreasing
g.

495 Figure 5E displays the derivatives of these relaxation times: kcgpas (slope of Tyeraznr), kospe (slope of Treiqrc) plotted
against grazing rate g. These slopes, particularly kaccc and kkaccco, exhibit sharp increases as the system approaches
bifurcation points, confirming that relaxation time lengthens near critical transitions. However, the analysis reveals a crucial
advantage of nonequilibrium warning indicators (flux, entropy production rate, time irreversibility) over traditional critical
slowing down indicators-they provide substantially earlier predictions of impending bifurcations. For instance, Figure SA

500 shows that peaks in time irreversibility measures (ACCC' and ACC M) occur within the bistable zone, whereas peaks in
relaxation times (Figure 5D) appear only at the immediate vicinity of bifurcation points.

The nonequilibrium measures-flux magnitude, entropy production rate, intrinsic free energy, and time irreversibility-collectively
provide early warning signals that precede predictions from conventional methods. In the coral-algae model, these nonequilib-
rium indicators predict the transition from M acroalgae dominance to C'oral dominance midway through the bistable region,

505 rather than near the critical threshold at g = 0.3927 where the C'oral state becomes dominant. This represents a significantly
earlier warning than previously reported approaches(Veraart et al., 2012; Scheffer et al., 2001, 2012).

Our nonequilibrium warning indicators-flux, entropy generation rate, time irreversibility from cross-correlation analysis, and
non-equilibrium free energy-consistently exhibit critical transitions between the two transcritical bifurcations in the coral-algal
model. These indicators provide substantially earlier warnings compared to traditional critical slowing down signals. From the

510 perspective of a system currently in the Macroalgae state, our nonequilibrium signals anticipate the right bifurcation (where
Macroalgae becomes unstable while C'oral becomes dominant) well before critical slowing down indicators detect this tran-
sition. Similarly, from the perspective of a system in the C'oral state, our indicators predict the left bifurcation (where Coral
becomes unstable while M acroalgae becomes dominant) earlier than critical slowing down. This positioning of nonequilib-
rium indicator turning points in the middle of the bistable region enables prediction of both bifurcations with considerable

515 advance warning.

Critical slowing down indicators suffer from a fundamental limitation-they invariably miss one bifurcation in each parameter
direction. For instance, as grazing rate g increases toward the right bifurcation, critical slowing down fails to detect the left
transcritical bifurcation where the Macroalgae state dominates and the Coral state first appears as a shallow attractor. This
occurs because critical slowing down only manifests when the landscape around the current attractor flattens near a bifurcation

520 point. When approaching the right bifurcation, the system’s current M acroalgae state becomes flat, producing critical slowing
down. However, near the left bifurcation with increasing g, the M acroalgae state remains dominant with a non-flat landscape,
preventing critical slowing down from emerging. Consequently, critical slowing down cannot predict left bifurcations when in
a Macroalgae-dominated state with increasing g, nor right bifurcations when in a C'oral-dominated state with decreasing g.

Figure 4L, M display entropy production rate (£ PR) and average flux (Fluz,,) plotted against grazing rate g across dif-

525 ferent coral natural mortality rates i. Every data curve exhibits a pronounced peak within its corresponding bistable region,

confirming that both EPR and Fluz,, effectively indicate phase transitions in coral-algal systems. Our nonequilibrium early
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warning signals emerge midway between bifurcations, providing much earlier predictions in both parameter directions com-
pared to critical slowing down indicators that appear only near specific bifurcations. This bidirectional predictive capacity
represents a significant advantage of our approach, as illustrated in Figures 4.

Critical slowing down has been widely used in models with saddle-node bifurcations. In our case, because the stable so-
lutions leave the feasible region exactly at the point at which transcritical bifurcations occur, we effectively have the same
qualitative dynamics that occur in models with saddle-node bifurcations. In particular, there is one stable and one unstable
solution approaching the bifurcation and both solutions disappear after the bifurcation occurs. So far, most studies have been
focused on effective one-dimensional methods, the results of which can often be applied to effective equilibrium systems where
global stability can be quantified by landscape alone, without considering the key non-equilibrium ingradient component, i.e.,
flux(Veraart et al., 2012; Scheffer et al., 2001, 2012, 2009). Our fully vectorized high dimensional formulation of the potential-
flux landscape can quantify the non-equilibrium by the non-zero curl flux, which can lead to a much richer complex dynamics
with detailed balance breaking. In contrast, the equilibrium dynamics are determined entirely by the gradient of the potential
landscape. Curl fluxes that break the detailed equilibrium play an important role in driving the dynamics of the non-equilibrium
system.

Figure 5F presents a two-parameter phase diagram illustrating the relationship between coral natural mortality rate ~ and
grazing rate g. Parameter h in our model represents coral mortality rate, encompassing the cumulative effects of diverse environ-
mental stressors affecting reefs globally. These include rising sea temperatures that trigger coral bleaching events (significantly
increasing h during thermal anomalies), ocean acidification that reduces calcification rates and weakens coral skeletons (gradu-
ally elevating h), pollution, sedimentation, and coastal development that impose direct physiological stress, and the increasing
frequency and severity of coral diseases worldwide that directly contribute to higher h values. These real-world stressors oper-
ate across different temporal scales-from acute (bleaching events) to chronic (acidification)-which aligns with our analysis of
how gradual versus rapid parameter shifts influence system dynamics and stability. The diagram features four distinct regions:
a blue region where only the Macroalgae state is stable; a grey bistable region where both Macroalgae and Coral states
are stable; a purple region where only the C'oral state is stable; and a pink region without feasible stable states. These regions
are delineated by bifurcation curves (black for transcritical points, blue for saddle node points). Figure S1 provides additional
phase diagrams for different £ values.

Figure S2 demonstrate how time irreversibility metrics capture approaching bifurcations which is a noise induced transitions
versus parameter grazing rate g driven in the coral-algal model for increasing h. Comparing the positions of maximum values
and sharp rises in these indicators reveals a crucial temporal advantage of time irreversibility measures over critical slowing
down indicators. Within the bistable region shown in Figure S2, ACC M, 4, (position of maximum ACCM) occurs signif-
icantly earlier than 7,c;qz Mmae (POSition where 7,407 sharply rises, defined as where kk > 1 x 10%) as gradual parameter
changes. Similarly, ACCC,, 4, (position of maximum ACCC') appears much earlier than 7,¢;qCmaz (pOSition where 7,.cjq2.0
sharply rises). The 7;.c;qz Mmage line lies considerably closer to the right bifurcation boundary than the ACC M, .. line, while
the TyejqzCmas line lies much nearer to the left bifurcation boundary than the ACCC),, 4, line. These spatial relationships con-

sistently demonstrate that time irreversibility measures (ACC') provide substantially earlier warning signals than relaxation
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time (Tye1q,) indicators from CSD theory as gradual parameter g changes with fluctuations, confirming their efficacy as early

warning signals for critical transitions in coral-algae ecosystems.

0.008 : : B 15 0.003
A D=0.0005 i D=0.0005 C D=0.0005
~[-ACCM i : —&3 Var
} L1 M
i (0]
8 0.006 —®—-ACCC § relaxM 8 0.002 ~O— Var,
< e TrelaxC ©
G 0.001
0.004 4 > f
0.0 02 04 0.6 0.8 0.00075 02
D D=0.001 D=0.001 F D=0.001
0.006 —&-ACCM —a— ., | §00 —@&-Var,
O ~©-acce c —@— Var,
O T .© ¢
< relaxC E
0.002
>
0.004
: 0 3 0.000 ‘
0.0 02 0.4 06 0.8 0.0 02 0.0 02
g

Figure 6. A,D: The average difference of the cross correlations forward and backward in time ACCM and ACCC versus g. B,E: The
relaxation time Trejazas and Treiazc Versus grazing rate g. C,F: The variance Varys and Varc versus grazing rate g. A-C: D = 5.0 x 107%,
D-F: D=1.0x1073. (h =0.44)

Figure 6 A and D illustrate the average differences in cross-correlations over time, represented as ACCM and ACCC,
plotted against the grazing rate g. These values provide insight into the dynamics of the coral-algae system, revealing how the
interaction strength between states varies as grazing pressure changes. Figure 6 B and E display the relaxation times, 7,cjq2 Az
and 7,420, in relation to the grazing rate g. The relaxation time quantifies how quickly the system responds to perturbations,
serving as a crucial indicator of the stability of the Macroalgae and Coral states under varying conditions. Figure 6 C and F
present the variances Vary; and Vare as functions of the grazing rate g. These variances reflect the degree of fluctuations
within each state, highlighting how stability is affected as grazing pressure increases. It is noteworthy that for Figure 6, the
fluctuation strength is set at D = 5.0 x 10~%, while for Figures D-F, the fluctuation strength increases to D = 1.0 X 1073, with
a fixed height parameter of & = 0.44. This variation in D is expected to have a significant impact on the observed relationships,
further illustrating the delicate balance between grazing intensity and the stability of the coral-algae ecosystem. We observe
that while increasing noise can also serve as an indicator for predicting state transitions, its predictive effectiveness diminishes
relative to the performance observed at lower noise levels.

Our landscape-flux framework offers substantial advantages over traditional CSD-based indicators, particularly in its ability
to provide earlier detection of approaching transitions. While CSD focuses primarily on local stability properties near equilib-
rium states, our method captures global stability characteristics and non-equilibrium dynamics across the entire state space.

Our study demonstrates that the landscape-flux approach and its derived early-warning signals (cross-correlation function

ACC multidimensional data) can detect approaching transitions earlier than critical slowing down indicators based on the-
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oretical relaxation time 7,;,, (one-dimensional data, measured through autocorrelation). This earlier detection capability is
crucial for ecological management, as it potentially provides a longer window for intervention before critical transitions occur.
This comparison is particularly meaningful because relaxation time represents the fundamental dynamical property underly-
ing all CSD indicators, rather than just comparing with empirical manifestations of CSD (such as variance or autocorrelation
methods). By demonstrating advantages at this fundamental level, we establish the theoretical superiority of our approach.
Real-time ecological monitoring data from coral reef ecosystems presents an unprecedented opportunity to bridge theoretical
frameworks with empirical validation. By integrating time-series data from reef monitoring stations-capturing coral cover, algal
abundance, and environmental parameters-into our landscape-flux methodology, we can operationalize the theoretical results
outlined above. In particular, the cross-correlation functions of the coral-reef ecosystem can be estimated directly from observed
time series and hence we may calculate the average difference between forward and backward cross-correlation as an empirical
EWS. Our framework thus provides practical early warning tools for policymakers and researchers, bridging the gap between

abstract mathematical models and urgent conservation needs in threatened ecosystems.

4 Conclusions

We explored the global dynamics of a coral-algal model under stochastic fluctuations using landscape-flux theory from non-
equilibrium statistical physics. In this framework, system dynamics are governed by two fundamental components: potential
landscapes that guide the system toward local minima, and curl fluxes that drive transitions between alternative stable states.
Quantifying global stability in complex ecological systems requires identifying an appropriate Lyapunov function-a challeng-
ing task that our approach addresses through the intrinsic potential landscape ¢, which serves as a Lyapunov function in the
small noise limit and effectively quantifies the global stability of coral-algal dynamics.

The presence of non-zero fluxes creates a notable deviation from classical equilibrium dynamics-dominant transition paths
between alternative stable states do not follow simple steepest descent trajectories on the population-potential landscape. In-
stead, transitions from Macroalgae to Coral states and vice versa follow irreversible paths determined by the interplay
between the underlying population-potential landscape and non-zero curl fluxes. This directional path asymmetry represents a
fundamental characteristic of non-equilibrium systems.

Within the bistable regime, the basin of attraction for the current state remains non-flat until reaching the right bifurcation
point. Under sufficiently small noise conditions, this property enables prediction of impending state transitions before the
system reaches critical points. Small fluctuations remain insufficient to trigger state switching until the right bifurcation point,
where the current state’s basin flattens completely as the alternative basin becomes dominant. Consequently, time irreversibility
measured through cross-correlation differences between forward and backward trajectories provides an effective predictor for
approaching bifurcations, even when the system remains within its current basin without transitioning.

The analysis identifies several quantitative markers for system stability and dynamics: barrier heights between stable states,
kinetic switching times (mean first passage time M F'PT'), thermodynamic cost (entropy production rate /P ), and dynamical

driving force (average flux). We observed consistent trends across multiple metrics: average flux Flux,,, entropy production
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rate PR, intrinsic average flux inF'luz,,, and intrinsic entropy production rate inE P R. The rotational nature of flux tends
to destabilize point attractors, providing a dynamical mechanism underlying phase transitions in coral-algal ecosystems. Main-
taining non-equilibrium flux requires energy dissipation, revealing the thermodynamic origin of bifurcations. Intrinsic free
energy also serves as an effective early warning indicator, with all these metrics exhibiting significant changes and character-
istic peaks between the two transcritical bifurcations-patterns that become even more pronounced in the zero-fluctuation limit
of intrinsic potential landscapes.

The nonequilibrium indicators average flux Fluz,,, entropy production rate £ PR, time irreversibility ACC, and non-
equilibrium free energy-all function as reliable predictors for critical transitions. Their turning points (peaks or troughs) con-
sistently appear between the two transcritical bifurcations, enabling prediction of both bifurcations before the current state’s
landscape flattens. These nonequilibrium warning signals precede the right bifurcation when starting from the Macroalgae
state with increasing grazing rate g, and similarly anticipate the left bifurcation when starting from the Coral state with de-
creasing ¢. This bidirectional predictive capacity provides substantially earlier warnings than conventional critical slowing
down theory for both bifurcation types. While specific tipping point locations may vary across different models(Xu et al.,
2021, 2023), we propose that nonequilibrium indicator turning points occurring between transcritical bifurcations represent a
generic feature of systems with similar qualitative dynamics.

In the current model, we utilize uncorrelated white noise as a mathematical simplification that provides analytical tractability
while still capturing the essential stochastic nature of state transitions. This approach allows us to derive expressions for po-
tential landscapes and flux patterns. We recognize that environmental disturbances like temperature fluctuations, storm events,
or nutrient pulses would indeed affect coral, algae, and algal turfs in coordinated ways, introducing correlations in the noise
structure of natural reef systems(Jouffray et al., 2015; Norstrom et al., 2009; Diko, 2010; Gardner et al., 2003; Mcmanus and
Polsenberg, 2004). It is worth noting that our potential landscape-flux framework remains theoretically appropriate for systems
with correlated noise. The mathematical formalism can accommodate various noise structures, including anisotropic and cor-
related fluctuations. Due to space limitations in the present manuscript and its complexity, we have focused on the uncorrelated
case as a first approximation. The extension to correlated noise models, which would more accurately reflect synchronized
environmental forcing experienced by different reef components, will be addressed in future research.

Without conducting significant further analysis, it is challenging to accurately predict the precise effects of correlated noise
on the overall system dynamics. The specific correlation patterns, time scales, and amplitudes of the noise would significantly
influence the system’s response. The introduction of correlation structures in stochastic perturbations fundamentally alters the
statistical properties of system trajectories, potentially creating emergent behaviors that cannot be intuited through qualitative
reasoning alone. The precise correlation structure to be introduced would need to be motivated by data and may differ by reef
location and climate, making this a nontrivial extension of the current work but undoubtedly a valuable and interesting one.

The model tracks the evolution of proportions of space occupied by each functional type, effectively assuming that the
system is spatially well-mixed, leading to a spatially implicit modeling framework (Mumby et al., 2007). This approach is
appropriate for intermediate spatial scales where mixing processes (such as larval dispersal, water circulation, and mobile

herbivore grazing) tend to homogenize local variations. The spatially implicit framework allows us to focus on ecosystem-
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level dynamics without the computational complexity of spatially resolved models. Our potential and flux field landscape
theoretical framework offers considerable versatility and could be naturally extended to spatially explicit models in future
research. We recognize the importance of spatial heterogeneity in coral reef ecosystems and in subsequent work, we plan to
develop spatially explicit extensions of this framework. In recent work, we have shown that the framework can be extended to
spatially explicit models (of vegetation dynamics) and hence it is a natural next step to leverage this progress to explore how
the present results compare with EWSs in spatial extension of the coral reef model studied here(Siu et al., 2025; Wu and Wang,
2013b, 2014, 2013a; Lepzelter and Wang, 2008).

Despite the simplifying assumptions of the mathematical model, our current framework provides valuable insights into
the global stability of coral reef ecosystems and demonstrates the utility of landscape-flux theory for understanding complex
ecological dynamics. The simplifications employed here serve as a necessary first step toward more comprehensive models
that can incorporate the full complexity of coral reef systems (Mcmanus et al., 2018; Nes et al., 2016).

The ongoing degradation of coral reefs and deterioration of reef ecosystems remain among the most pressing conservation
challenges of our time. By advancing theoretical understanding of coral-algae dynamics through our potential landscape-flux
approach, this study contributes valuable insights that may guide practical conservation strategies for protecting and restoring

these ecologically crucial yet increasingly threatened marine ecosystems.

Data availability. All study data are included in this article and/or the supplemental information. Any additional information required is

available from the corresponding authors contact upon request.

Appendix A: Potential landscape and Local Stability Analysis of Equilibrium Systems

In equilibrium systems, the potential function or landscape is an essential tool for describing the stability of system states.
For such systems, dynamics are completely determined by the potential landscape, with the system always evolving along the
direction of decreasing potential energy until reaching a potential energy minimum. A key characteristic of equilibrium systems
is the absence of non-zero probability flux, meaning the system satisfies detailed balance conditions, with zero net flow along
any closed path being zero (Wang, 2015; Ge and Qian, 2010; Qian, 2006; Nicolis and Prigogine, 1977; Van Kampen, 2007,
M., 1992).

Mathematically, the dynamic equation of an equilibrium system can be represented as a gradient system: dx/dt = —VU (z),
where U(z) is the potential function landscape. The system’s steady states correspond to extremal points of the potential
function, with minima representing stable equilibrium points and maxima representing unstable equilibrium points.

Local stability analysis is a method for studying the behavior of small perturbations near equilibrium points. By lineariz-
ing the dynamic equations around an equilibrium point, one obtains the Jacobian matrix characterizing the fluctuations. For

equilibrium systems, this matrix is symmetric, and its eigenvalues completely determine the stability of the equilibrium point
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(Nicolis and Prigogine, 1977; Van Kampen, 2007; M., 1992): -All negative eigenvalues: stable node -Presence of positive
eigenvalues: unstable equilibrium point -Presence of zero eigenvalues: potential bifurcation

The potential landscape of equilibrium systems visually demonstrates the global stability structure of the system, with low
potential energy regions corresponding to states where the system is more likely to reside, while the height of potential barriers
reflects the difficulty of state transitions. This analytical approach has wide applications in the study of physical, chemical, and

biological systems.
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