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Short Summary

We analyzed long-term groundwater, precipitation, and storm-surge records across coastal New York and Connecticut to
estimate how often these hazards occur together. Overlap is highest along southwestern Long Island and western coastal
Connecticut during the colder months, when groundwater is higher and mid-latitude cyclones are more common. Results from
this study can support better preparation for coastal storms by taking into consideration the compounding effects of different

flood drivers.

Abstract

Compound flood events, defined here as the co-occurrence of more than one flood type, can result in
flood hazard potential that is higher than if the events occurred independently. To evaluate compound
flooding in a semi-urbanized coastal area, historical records dating back to 1970 are used to study the
co-occurrences of high precipitation, storm surge, and shallow groundwater conditions for Long Island
and the Long Island Sound vicinity across coastal New York and Connecticut. Joint return periods for
coincident precipitation-surge events were computed using fitted copulas and compared to the
assumption of independence as a ratio of return periods, referred to here as a return period adjustment.
Results indicate distinct seasonality where compound events in the area disproportionately occur in the
cold season between October and April. Return period shifts range from 1 to almost 9, demonstrating
the range in precipitation-storm surge dependence across the study area. Across all 24 station triad
locations, groundwater levels were elevated during times of precipitation-storm surge co-occurrence, in
areas where the average depth to water is shallow (less than 20 feet or 6 m below land surface). The

result is a pseudo-trivariate compound flood potential map that integrates dependence between daily
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precipitation-surge events and overall monthly groundwater levels into a relative compound hazard
score. The location with the highest compound flood hazard score is in the south shore of Long Island,
as well as locations across coastal Connecticut where groundwater levels are already near-surface

during events where both heavy rainfall and high coastal storm surge occur at the same time.

1 Introduction

Coastal compound flooding, defined herein, is the concurrent or close succession of high
precipitation and storm surge, and such flooding poses substantial challenges to communities along the
East Coast of the United States (Nederhoff et al., 2024; Wahl et al., 2015). Coastal compound events
have led to devastating impacts, resulting in loss of life (Hanchey et al., 2021), damage to property and
infrastructure, and long-term economic effects (Green et al, 2024). Ghanbari et al. (2021) concluded
that in recent years, the frequency and intensity of compound flooding have become more pronounced,
exacerbated by climate change and sea level rise, highlighting the urgent need for refined risk
assessments and mitigation strategies. Compound events, such as Tropical Storm Irene in 2011 and a
historically important Nor’easter (colloquial regional meteorologic term for extra-tropical cyclones) in
March 2010, caused wide-spread damage across the metropolitan area of the City of New York
(hereafter “New York City”), with elevated storm tides and heavy precipitation occurring on top of soils
that were already saturated or covered with antecedent snow (Orton et al., 2012).

This study focuses on compound coastal flood events and their geographic distribution around
New York City, Long Island, and Long Island Sound, leveraging multiple historical records from
precipitation stations, tidal gauges, and groundwater records spanning the past half-century. Previous
studies have examined the occurrence of concurrent precipitation and surge events in this region
utilizing tidal gauge data centred on a few stations near New York City, Montauk, N.Y., New London,
Conn., and Bridgeport, Conn., for various data lengths and periods of record (e.g., Chen et al., 2024;
Ghanbari et al., 2021; Nasr et al., 2023; Wabhl et al., 2015). These studies indicate weak, positive
dependences between storm surge levels and either precipitation or river discharge. The dependence of
coastal storm surge between either precipitation depth or river discharge may be increasing in

magnitude for hydrometeorological stations along the U.S. East Coast with teleconnections to climate



60

65

70

75

80

https://doi.org/10.5194/egusphere-2025-5683 d
Preprint. Discussion started: 25 November 2025 G
Public domain. CCO 1.0. E U Sp here

PUBLIC
DOMAIN

indices such as the Arctic Oscillation (Nasr et al., 2023). These previous studies have laid the
groundwork for understanding the impacts of compound coastal events, and this study aims to enhance
the existing body of knowledge by providing a higher spatial resolution analysis reviewing the
geographic effects of proximity to the U.S. mainland and Long Island Sound on compound flood
occurrence and groundwater conditions during these events.

Using copula models, the dependence between precipitation and storm surge for 24
precipitation-tidal station pairs are assessed across the study area. Copulas have been shown to be
suitable statistical tools for understanding the relations between multi-dimensional random variables,
particularly in the context of hydrological events (Salvadori and De Michele, 2007; 2010). Using a
copula approach, the dependence between two or more continuous variables can be uniquely modelled
independent of the marginal distributions, and multivariate nonexceedance probabilities can be
computed for event pairs in more than one dimension (Favre et al., 2004). These nonexceedance
probabilities can be expressed as bivariate return periods, most commonly for the OR case, where at
least one variable exceeds a desired threshold, or for the AND case, where both variables are considered
extreme (Brunner et al., 2016; Salvadori, 2004; Shiau, 2003). In this study, we consider the AND
scenario when both precipitation and storm surge are simultaneously at their high concurrent levels.

Sea level rise, precipitation increases, and aging drainage infrastructure put shorelines at risk for
more pronounced groundwater emergence, especially in coastal urban areas (Bosserelle et al., 2022).
The coastlines of New York and Connecticut are discharge areas for the unconfined groundwater flow
system characterized by shallow depths to groundwater and a high proportion of urban development
(Rosenzweig et al., 2024). Groundwater flooding across heavily urbanized coastal areas will likely be
exacerbated by sea level rise, in particular where the water table is no longer depressed because
groundwater pumping has since ceased and where land filling practices have placed modern buildings
and infrastructure over what used to be wetlands and drainage channels (Su et al., 2022; Bosserelle et
al., 2022. Unconfined depth to water can be relatively shallow across coastal New York City, Long

Island, and southern Connecticut (Bjerklie et al., 2012) (refer also to https://ny.water.usgs.gov/maps/li-

dtw/ [accessed March 17, 2025]). We examine the occurrence of precipitation-storm surge compound

events with shallow depths to water using historical groundwater data across the study area. The



85

90

95

100

105

110

https://doi.org/10.5194/egusphere-2025-5683 d
Preprint. Discussion started: 25 November 2025 G
Public domain. CCO 1.0. E U Sp here

PUBLIC
DOMAIN

interaction between these three factors can better inform the risk landscape for coastal communities
during extreme weather events.

To illustrate the relative frequency of compound flood hazard across the New York City-Long
Island-Long Island Sound region, comprehensive maps are presented that depict the spatial variations in
the strength of dependence between precipitation and storm surge, along with the occurrence of shallow
groundwater during these compound events. By describing the geographic distribution and interplay of
flood drivers, this research furthers understanding of coastal compound flooding across coastal New

York and Connecticut, to help inform stakeholders and decision makers about hydrologic hazards.

2 Study Area

The study area encompasses the densely populated coastal region along the northeastern United
States, specifically focusing on Long Island (including the majority of New York City), and the
northern shoreline of Long Island Sound, comprising the southern coast of Connecticut. People and
property in this region have faced challenges from aging flood protection and drainage infrastructure
(Forman, 2014), exposure to severe coastal flooding and erosion (Fallon and Kuonen, 2023),
pronounced increasing trends in both extreme and annual precipitation (Kunkel et al., 2020), and sea
level rise of approximately 10 cm over the past century that can be directly attributed to anthropogenic
climate change and associated flood damages from tropical cyclones (Herreros-Cantis et al., 2020;
Strauss et al., 2021).

Densely populated Long Island, New York extends approximately 120 miles (193 km) eastward
from New York City to Montauk Point and comprises four counties: Kings (Brooklyn), Queens,
Nassau, and Suffolk. With a population exceeding 7.8 million (U.S. Census Bureau, 2023), Long Island
has development along much of the coastline. Groundwater dynamics of Long Island are influenced by
its stratified aquifer system, primarily composed of sand and gravel that allows for efficient drainage
and groundwater recharge (Walter and others, 2024). Areas where the depth to groundwater is shallow
are vulnerable to flooding during heavy precipitation (Glas et al., 2023; Suffolk County, 2020).

Long Island has been impacted by devastating storms, with named storms including Tropical

Storm Irene (2011) and Post-Tropical Cyclones Sandy (2012), and Ida (2021) having inflicted wide-
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spread damage across the region from heavy rainfall (localized flooding for areas lacking sufficient
drainage), record breaking storm surges, and basement flooding (a basement being a floor or level of a
structure that is below the ground level). Whereas these tropical storms have garnered substantial
attention because their intensity, areal-wide presence, and impacts, it is the more moderate extratropical
cyclones that have been both more frequent and widespread, resulting in recurring flooding and storm
surge events that affect a larger area (Booth et al., 2016; Liu et al., 2020). The combination of Long
Island’s exposure to cyclonic storm tracks and topography, low-lying coastal areas and marshes, along
with intensive urban development make the region vulnerable to compound flooding, thereby drawing
attention to water-management practices and coastal resilience planning (Rosenzweig et al., 2024. In
particular, the southern shore is susceptible to flooding because of its shallow depth to groundwater, and
exposure to storm tracks originating both from the U.S. mainland and the open Atlantic Ocean (Glas et
al., 2023; Shepard et al., 2012).

Long Island Sound is a semi-enclosed tidal estuary located between Long Island, New York, and
the southern coast of Connecticut, characterized by complex bathymetry and geography that
substantially influence its susceptibility to coastal flooding (Liu et al., 2020). The relatively shallow
depths of Long Island Sound (averaging about 60 feet, 18 m) allow for the amplification of storm surges
(Kouhi et al., 2022; Wong, 1990), particularly during intense weather events, as observed during both
tropical and extratropical storms (Booth et al., 2016; DeGaetano, 2008). Across the west-to-east
gradient of Long Island Sound, storm generating mechanisms contribute to the severity of storm surge
impacts, with extratropical cyclones causing the highest and most frequent surges in the western end of
the sound, while tropical storms and hurricanes create the largest surges in the eastern part near the open

ocean (O’Donnell and O’Donnell, 2012).

3 Data and Methods

3.1 Station selection and missing-record imputation

A total of 275 observing stations were considered for this study, located across the study area
that includes the coasts or coastal regions of New York City, Long Island, and Long Island Sound (Fig.
1). Three data types were used in this analysis: (1) daily precipitation totals, (2) daily coastal non-tidal

5
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residuals representing storm surge, and (3) observed monthly groundwater levels measured in the
uppermost unconfined hydrogeologic unit near the coast. First, total calendar day (24 hour)
precipitation values were retrieved from 21 National Oceanic and Atmospheric Administration (NOAA)
precipitation observing stations (NOAA NCEI, 2023) for a 52-year period spanning calendar years 1970

through 2021. On days when precipitation fell as snow, the liquid water equivalent was used as the
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Figure 1. (a) Locations of precipitation, coastal water level, and groundwater observation stations used in the analysis;
additional site information is provided in table 1. (b) Station triad locations, plotted at the nearest land point to the centroid
of each triad composed of a precipitation gage, a coastal water level station, and a cluster of groundwater observation wells.
Precipitation/surge midpoints are shown as the geographic midpoint between each precipitation and coastal station pair,
with circular search radii indicating the area within which groundwater wells were selected for inclusion in each triad.

Projection World Geodetic System of 1984, Base modified from U.S. Geological Survey digital data, 1:1,200,000.

precipitation value for that day as provided in the associated daily NOAA data report. Second, coastal
water levels were retrieved from 12 NOAA water-level stations (NOAA CO-OPS, 2023) with recorded
145 hourly water levels (meters) and 22 U.S. Geological Survey (USGS) water-level stations (U.S.

Geological Survey, 2023) with recorded 15-minute water levels that have record lengths longer than 9.9
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years between 1970 and 2021. A 33-hour low pass filter was applied to the observed hourly water level
time series to compute the non-tidal residual (NTR), which is conceptually akin to “storm surge”. The
computed NTRs were subsampled to daily maximum values. Third, monthly groundwater levels were
retrieved using the USGS National Water Information System (NWIS; U.S. Geological Survey, 2023)
for 220 unconfined observation wells throughout Long Island, New York City, and southern
Connecticut for the calendar years 1975 through 2021. A starting year of 1975 for groundwater
optimized the imputation quality based on data availability. Table 1 contains all station identification
numbers, locations, and map 1.D.s linking station locations to the maps in Fig. 1.

Some real-time groundwater monitoring networks are available on Long Island at daily temporal
resolution (U.S. Geological Survey, 2023) and can be used to analyse the response of groundwater to
compound coastal flooding. However, the monitoring frequency is monthly for many wells with longer
periods of record in Long Island, New York City, and Southern Connecticut.

Missing values for each of the three data types were filled using neighbouring, correlated
stations at a daily timestep for precipitation and NTR, and at a monthly timestep for groundwater. The
imputations were carried out using the ARCHI R package (Levy et al., 2024, R Core Team, 2024,
version 4.4.1), which iteratively searches the available input data for multiple correlated reference
stations and uses regression to predict missing values at the target station. Each of the three data types
were imputed using the ridge regression option within ARCHI, except for the case where only one
reference station was available, and in that case simple linear regression was used. A Pearson
correlation coefficient of 0.6 and a Nash—Sutcliffe Efficiency (NSE) of 0.4 were used as the minimum
threshold for accepted regression models in the ARCHI algorithm. Special consideration was given to
the precipitation dataset because predictions from the ARCHI algorithm sometimes included near-zero
negative values; predictions that were less than 1 mm were censored to zero. Full imputation statistics
are shown in supplemental tables S1, S2, and S3. To further evaluate imputation quality, five percent of
the observed values for each of the three data types were withheld (daily precipitation in millimeters,
daily storm surge as NTR in meters, and monthly groundwater in feet below land surface), including

separate consideration of wet day (observed prcp> 1 mm) and dry day (observed prcp < 1 mm)
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precipitation. The ARCHI algorithm then imputed those values and were compared to the observed
values by root mean squared error (RMSE) and bias (percent).

Using the complete imputed data records, 24 precipitation-coastal station pairs were selected
based on proximity and unique paired combinations. Groundwater observation wells were selected
using a cluster-based approach centered on the midpoint between each precipitation/coastal station pair.
Beginning with a 5-km search radius around each midpoint, wells were selected based on the following
criteria: (1) at least 90% data availability from 1975 to 2021 in the imputed monthly time series, (2)
100% data availability from 2010 to 2021 to capture recent extremes, and (3) a minimum observed
depth to water less than 50 feet or 15 m below land surface (bls), to exclude deeper aquifer zones or
wells not representative of near-surface conditions. If fewer than two qualifying wells were found
within the 5-km radius, the radius was incrementally expanded until the criteria were met. A maximum
of 10 wells per triad were retained. Final selections were manually reviewed to confirm hydrogeologic
consistency within each cluster. Final station triad groups are listed in Table 1 and respective group
centroids shown in Fig. 1b. A list of all the selected wells and their associated triads are listed in

Supplemental table S4.

3.2 Precipitation-surge event sampling

To evaluate the relations between daily precipitation and storm surge, event pairs were selected
and modeled using copulas with a “two-sided sampling approach” (Jane et al., 2022). Data were
prepared for bivariate modeling by detrending coastal NTR (storm surge) values over a three-month
moving window. No trends were detected in the daily precipitation time series. High or extreme events
were identified in each dataset using a peaks-over-threshold (POT) approach, applying thresholds from
the 90th to the 99th empirical quantile at each station. To ensure the selection of independent events, a
separation window of 10 days for precipitation and 6 days for NTR was established, which aligns with
the lag times for considering concurrent events: £5 days for precipitation and +3 days for surge (Agel et
al., 2015; Barbot et al., 2024). Final POT thresholds were chosen to limit the number of independent
events per year to between 3 and 6 while maximizing the Kendall tau correlation coefficient between

the two variables.
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To create two distinct biconditional datasets, the R package Multihazard (Jane et al., 2020) was

used with the Multihazard::Con_Sampling 2D Lag function. This process began with selecting 24-
hour precipitation totals that exceeded the selected threshold, followed by identifying the maximum
NTR occurring within three days of each precipitation event. We repeated this for all independent

205 precipitation events and their corresponding surge events, considering a time window of +5 days. The
resulting datasets include one conditioning on precipitation (CoP) and another on surge (CoS). Time
lags of 3 days for CoS and 5 days for CoP were used to associate each variable with the other. These
time lags were based on findings that average coastal storm surge events around New York have
durations that range from 1.6 to 3.3 days (Barbot et al., 2024), and that the most common duration for

210 extreme rain events in coastal areas of the Northeast is between 2 and 5 days (Agel et al., 2015). This
approach accommodates potential mismatches between peak rainfall and storm surge that still have

overlapping events, as well as delays in water reaching the coast via overland flow.

Proportion of annual data

Figure 2. Proportion of observed (dark shading) and imputed (light shading) time steps for each calendar year.
(a) Precipitation data (red; daily), (b) coastal non-tidal residual (NTR) data (green; daily), and (c) groundwater
data (purple; monthly).

10
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3.3 Precipitation-surge dependence

Biconditional precipitation-surge event sets were assessed for correlation using Kendall tau for
each triad. To identify temporal changes in this correlation structure, 20-year moving windows were
used to re-compute the Kendall tau for selected events inside that time window, then shifted by one year
across the time range of the dataset. To evaluate temporal changes in dependence structure, the
empirical upper tail dependence coefficient (A, hereafter referred to as uTDC) was computed separately
for the first and second halves of the study period. The uTDC was estimated using the following

formula:
7\;=$Z?=1I(Ui >w,V; > u) 1

where U;and V; are pseudo-observations on the unit interval, / is the indicator function, and ny is
the number of observations exceeding the threshold u. Estimates were computed for u=0.6, representing
the upper half of the distribution, and ©=0.9, representing the upper tail. Calculations were performed
for the periods 1975-1995 and 19962021 to assess changes in upper tail dependence over time and
evaluate the need for a nonstationary framework.

To model the dependence structure in the data, each feature in the biconditional datasets was
transformed into a uniform distribution by computing their rank-based pseudo-observations. The
pseudo-observations are “plotting positions” using common nomenclature in hydrologic hazards
(Asquith and others, 2017, app. 2), lie on [0,1], and correspond to the data mapped to rank-based
cumulative probability space. An independence test of the pseudo-observation pairs was completed
before selecting a copula model, where the null hypothesis is bivariate independence using the R
function VineCopula::BiCopIndTest (Nagler et al., 2023, Genest and Favre, 2007). In the cases where
the pseudo-observations are quantitively independent (p-value > 0.05), then the independence copula
was selected for those station pairs. For bivariate data pairs exhibiting statistically significant
dependence, parametric copula models were fitted using maximum likelihood estimation. The candidate
set included two elliptical copulas: Gaussian and t, and three Archimedean copulas: survival Clayton,
Gumbel, and Frank. These six copulas were selected to capture a range of tail dependence structures

relevant to the variables of interest (rainfall and NTR). Specifically, survival Clayton and Gumbel
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exhibit upper tail dependence, the t copula exhibits symmetric tail dependence (both upper and lower),
and the Gaussian and Frank copulas are tail-independent. These copulas are relatively common tools
for practitioners and are all permutation symmetric, which means for the copula C(u,v) that C(v,u) =
C(u,v). Such symmetry is therefore an implicit assumption for this study.

The best fitting copula was selected using the minimum Akaike information criterion (AIC,
Akaike, 1973; Asquith and others, 2017, app. 4). The AIC offers a comparative measure of fit for
candidate copulas, identifying the model with the lowest AIC as the optimal choice. In instances where
the difference in AIC between the top candidate and the next best model was less than 2 (AAIC<2),
indicating a statistical tie in support, an additional screening was performed. Specifically, the empirical
upper tail dependence coefficient (uTDC) of the observed data was compared against the distribution of
uTDC values derived from 500 bootstrap simulations of each candidate model. If the absolute
difference between the empirical uTDC and the median of the simulated uTDCs exceeded 0.1, the
model was considered to provide a poor approximation of tail behavior and was excluded from
consideration. The remaining model with the better agreement in uTDC was selected.

Graphical diagnostics and a goodness-of-fit hypothesis test were used to assess absolute fit and
ensure that the selected model adequately represents the raw data. The quality of fit was graphically
inspected by comparing the fitted parametric copula to the empirical copula by contour lines along
cumulative probability values (the “level curves” in copula nomenclature, not shown). Additionally, a
rank-based goodness-of-fit test was applied to further assess the fit of the selected copulas (Huang and
Prokhorov, 2014). This test is semi-parametric, using a parametric copula and nonparametric, empirical
marginals where the null hypothesis pertains to the assumption of the data following the specified
copula model using the VineCopula::BiCopGofTest function in the VineCopula R package (Nagler et
al., 2023).

When computing return periods for bivariate data using copulas, there are an infinite number of
data pairs (precipitation-surge) associated with a single joint return period that can be graphically
represented by contour lines instead of univariate singular estimates. Return period contour lines

associated with each biconditional dataset were computed using the fitted copula through Eq. 2 for the
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AND joint return period, examining the probability of a specific magnitude of precipitation and

coincident surge:

RPAND: + 2

1-u—-v+C(u,v)

where  is the average interarrival time of events in years, and u and v are the marginal cumulative
distribution functions (CDFs) associated with each variable, and C(u,v) is the joint CDF of the selected
copula function. Under the assumption of independence, the joint AND return period is the product of
the two marginal return periods, incorporating their respective exceedance probabilities. In contrast,
under dependence, this relation is altered, and for positively correlated variables, the joint AND return
period is shorter than under the independence assumption.

For each triad, and for the subset of univariate marginal return periods of 2, 10, 25, 50, and 100
years for both precipitation and surge, the ratio of the bivariate AND return period under independence
to the dependence case was calculated for each combination of univariate return periods using the
selected copula model. This ratio of return periods, or return period adjustment, represents the degree
of dependence between the variables across each unique combination of univariate return periods (Fx
and Fy), allowing the measure of dependence between the variables to be assessed in units of return

period (Zscheischler and Seneviratne, 2017).

3.4 Precipitation-surge compounding and uncertainty

To simplify the suite of return period adjustments across the unique Fx and Fy combinations, the
array of return period adjustments was collapsed to a single value by weighted averaging. For each
triad location, the paired events were randomly sampled 500 times with replacement, preserving pair
structures and number of bivariate events. Copula parameters were re-estimated while maintaining the
copula family type of the full dataset, and bivariate return periods and their corresponding adjustments
from the independence case were re-computed. From the resulting distribution of return period

adjustments corresponding to each unique pair of univariate marginal return periods, the 0.025 and
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0.975 quantiles were extracted and used as 95% confidence intervals around each return period
adjustment. The width of the 95% confidence interval is representative of bivariate sampling
uncertainty around the return period adjustment calculations, and the inverses of these widths were used
as weights in the final weighted averages of return period adjustments for the CoP and CoS paired
values for each station triad. This results in two weighted average return period adjustments per station

triad.

3.5 Groundwater and composite score

For each triad, median monthly groundwater levels were computed from the selected wells within
each associated cluster. These monthly time series were linearly interpolated to daily resolution.
Groundwater levels (in feet bls) were then extracted for the date of each event type: rainfall above
threshold, surge above threshold, and concurrent rainfall/surge events. This extraction enabled assessment
of groundwater conditions during different types of compound events. Because the groundwater levels
may not have been measured during the actual storm event, the values used in this analysis may not
represent the actual groundwater response to coastal and precipitation events.

To characterize groundwater-related hazard, the shallowest groundwater levels (minimum depth
to water bls) were identified across the associated wells in each cluster, and their median was used to
assign a groundwater hazard score. Median shallow depths < 6 ft were assigned a score of 2 (high hazard),
depths between 6 ft and 15 ft were scored as 1 (moderate hazard), and depths > 15 ft were scored as 0
(low hazard).

The groundwater hazard score was combined with two scores based on the dependence structure
between precipitation and surge. First, a triad received 1 point if either CoP or CoS event datasets
exhibited upper tail dependence, as determined by fitting a copula with upper tail dependence. Second, a
triad received 1 point if symmetrical dependence was observed, meaning a non-independent copula was
selected for both CoP and CoS event types.

The three component scores (groundwater depth, upper tail dependence, and dependence
symmetry) were summed and rescaled to yield a final compound hazard score ranging from 1 (lowest) to

5 (highest) for each triad.
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To interpolate these results across the entire study area (the coasts of Long Island Sound and the
south shore of Long Island), each groundwater centroid location was initially assigned to one of eight
clusters using k-means clustering (MacQueen, 1967), implemented with the scikit-learn Python library
(Pedregosa et al., 2011). Clustering was based on the following six features: (1) average return period
shift conditioned on precipitation (CoP), (2) average return period shift conditioned on surge (CoS), (3)
median minimum groundwater depth (in feet), (4) groundwater hazard score, (5) biconditional
dependence score, and (6) upper tail dependence score. To ensure spatial contiguity, stations that were
grouped into non-contiguous clusters were reassigned to new, spatially coherent clusters. This post-
processing resulted in a total of 11 final clusters, each containing between one and four stations.

For each cluster, a centroid was calculated and used to generate Voronoi polygons (Aurenhammer,
1991) that partitioned the entire study area. Separate Voronoi tessellations were created for Connecticut
(CT), and for the north and south shores of Long Island. Within each Voronoi polygon, 900-meter grid
cells were assigned the average compound hazard score of the stations in the corresponding cluster.
Averaging was then masked and restricted to 900-meter grid cells located within the coastal 100-year
flood (0.01 annual exceedance probability) hazard extent for the study area, as defined by Welk et al.
(2025b). This grid is the same grid used for rainfall hazard (Welk et al., 2025b), coastal flood hazard
(Cook and Herdman, 2025), and groundwater hazard (Welk et al., 2025a) across the same study area,
allowing for direct spatial comparison of hazard scores across variables. The spatially continuous hazard
map is based on interpolation of results from discrete monitoring stations. These stations are assumed to
be representative of broader conditions, but the map does not account for local variability in precipitation,

coastal water levels, or groundwater depth at locations where no measurements were available.

4 Results

4.1 Imputation quality

A total of 21, 34, and 207 observing stations were used to fill in missing records for
precipitation, coastal NTR, and groundwater, respectively. Then, a subset of these stations, 13
precipitation, 15 coastal, and 58 groundwater observing stations, were used after imputation for input to

the copula models and the final combined compound flood hazard score. The proportions of observed
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and imputed values are presented in Fig. 2 for these stations, separated by each year of record from
1970 through 2021. Precipitation data had more than 80% observed values throughout the study period,
whereas observed values for coastal NTR averaged about 15% until 2008 and 80% through 2021.
Observed data comprised about 20% of groundwater records for 1975-1990, after which the proportion
of observed records increased to between 40% to 60%. Despite the high proportion of imputed values in
the NTR and groundwater datasets, their strong intrinsic correlation and sufficient duration of overlap
justified their inclusion. Precipitation data exhibited lower cross-correlation; however, at least 80% of
precipitation values were observed in any given year of the study period, exceeding the proportion of
observed values in the NTR and groundwater datasets. Errors (RMSE and bias) were higher than for
coastal water levels or groundwater, reflecting the greater spatial and temporal variability of
precipitation. However, because the precipitation record contained a high proportion of observed values,
only a small fraction of the series was imputed, limiting the influence of these higher errors.

The accuracy of the regression imputation process was assessed using the results from the
holdout analysis, comparing observed to imputed across precipitation, coastal NTR, and groundwater
datasets (Table 2). Higher error and bias resulted from wet-day imputations from dry, where imputation
on wet days were on average 1.5 mm lower than observed values, and dry-day imputations were on
average 0.34 mm higher than observed (zero) values (Table 2). Taken as a whole, holdouts from the
entire precipitation dataset were on average 0.08 mm lower than observed values. Corresponding
RMSEs for each precipitation holdout dataset were highest for wet days, lowest for dry days, and
approximately 4.5 mm for all precipitation days as a whole. The NTR and groundwater datasets were
slightly under-predicted by the imputations; however, these errors were relatively small (less than 1/100
of a meter and foot, respectively). Full imputation statistics for the entire dataset (not withheld values)

are provided in Tables S1-S3.
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Figure 3. Monthly seasonality of unique concurrent events exceeding defined threshold quantiles, pooled across Triads
1 through 24. Events include rainfall/surge pairs selected from either (a) precipitation-conditioned (CoP) or (b) surge-

conditioned (CoS) samples. Months are labeled on the x-axis by their first letter.

4.2 Biconditional sampling

Selected precipitation and surge threshold probabilities ranged from 0.97 to 0.99 across
precipitation and surge datasets for all 24 triads (Table 3) and resulted in the average number events
ranging from 3.1 to 5.8 events per year. Selected events conditioned on precipitation (CoP) showed a
slightly seasonal pattern during the warmer months of the year, whereas events conditioned on surge
(CoS) occurred distinctly between the months of October to April (Fig. 3). Sample size also varied
across triads and sampling conditions, ranging from 162 (Triad 23, CoP) to 308 precipitation-surge
events (Triad 22, CoP). Correlations across both datasets were weak, with higher and more substantial
correlations when data were conditioned on surge. Mean Kendall tau of conditional datasets were 0.06
for CoP samples, and 0.13 for CoS samples. An example of data for Triad 15 (The Battery, NY) with
selected precipitation and NTR thresholds is shown in Fig. 4.
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Figure 4. Daily precipitation and non-tidal residual (NTR) data for Triad 15 (Battery, NY), including selected
fractional percentile thresholds for each variable. (a) Data shown in real space; (b) data shown on log-

transformed axes with zero values excluded.
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4.3 Dependence

Sampled events that were conditioned on surge showed more dependence than those conditioned
on precipitation based on selected copula models. Independence was evident in 14 of the 24 triads
where event selection was conditioned on precipitation, whereas only one of the triads (triad 10) was
found to have independent data when events were conditioned on surge. For events conditioned on
surge, 12 of 24 triads exhibited upper tail dependence (Table 4). Changes in Kendall tau for the period
of study (1970-2021) were either slightly positive or slightly negative across all 24 triads but increased

on average less than 0.1 over the study period (e.g., Triad 15, Fig. 5). Changes in the nonparametric
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Figure 5. Time-varying Kendall correlations for Triad 15 (refer to Figure 1 for location), computed using a 20-
year moving window shifted by one year. Correlations are based on selected precipitation/surge events under both
sampling conditions: conditioned on precipitation (CoP) and conditioned on surge (CoS). Statistically significant

correlations (p < 0.05) are shown in red.

upper tail dependence coefficient during the first half (1970-1995) to the second half (1996-2021) of
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the period evaluated in this study showed no persistently increasing or decreasing patterns across the 24
triads (Fig. 6). Based on these results, stationarity was assumed for this analysis.

For samples for which independence could not be ruled out, the independence copula was
assigned; this explicit “snap” to independence means that reliance on a given nonindependent copula
model with its empirical parameter was not made for this study (Table 4). Graphical comparison to the
empirical copula (not shown), and p-values from the semi-parametric goodness-of-fit (GOF) test
indicate the copula chosen by the AIC and uTDC criteria acceptably fit with the empirical data (p-
values for GOF test shown in Table 4). Model fit diagnostics for all candidate models are shown in

Tables S5 and S6.

4.4 Precipitation- surge return period shifts

Figure 7 and Table 5 show and list, respectively, the results from the copula analysis as return

period adjustments between the assumption of independence to dependence for concurrent
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Figure 6. Empirical upper tail dependence coefficients (uTDC) computed at (a) = 0.6 and (b) u=0.9, corresponding to

moderate and extreme upper-tail co-occurrence, respectively. Values are shown for the first (1970—1995) and second

(1996—2021) halves of the record to assess potential nonstationarity in joint extremes. The diagonal line indicates the 1:1

(equal value) line. Points are jittered slightly to reduce overplotting.
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precipitation-surge events. The weighted average return period adjustment encompasses all values
across the selected univariate return period pairs, inversely weighted by the variability from the
bootstrap resampling (Fig. 7). Because higher return period adjustments generally indicate more
variability between the bootstrapped samples, the weights put more emphasis on shorter univariate
return period events. Weighted average adjustments to return period due to the assumption of
independence and dependence ranged from 1 (independent data) to 8.51 (triad 4, conditioned on surge,
Table 5), meaning that coincident rain-surge events are more than eight times likely to occur when
taking their dependence structure into account. The average return period adjustment conditioned on
precipitation was 2.99, whereas the average adjustment conditioned on surge was 4.32 across all station
triads. These return period adjustments correspond to copula models that exhibit upper tail dependence
as well as statistically significant correlations represented in the Kendall’s tau correlation coefficient

(Tables 3 and 4).
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dashed line.
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4.5 Groundwater and Multivariate rating score

Over the 1975-2021 period of data, the median shallowest (minimum) depth to groundwater
was extracted for each station triad’s cluster of groundwater wells (Table 5). Groundwater shallower
than 6 feet or 1.8 m was associated with triads 16, 17, and 23 along the southern shore of Long Island
and Connecticut, respectively. Depths to water between 6 and 10 feet (1.8 to 3 m) were found around
the coastline of Long Island Sound at triads 11, 13, 14, and 24. Minimum groundwater depths less than
6 feet (1.8 meters) have the potential to interfere with drainage infrastructure, natural infiltration of
soils, and may contribute to more overland runoff during precipitation events (Bosserelle et al., 2022).
The spatial distribution of the median shallowest groundwater levels are shown in panel C of Fig. 9.
Groundwater levels between 6 and 15 feet (1.8 to 4.5 m) will likely intersect with basements and other
subsurface infrastructure (Conestoga-Rovers and Associates, 2007; New Jersey Department of
Environmental Protection, 2021). During most precipitation-surge events, groundwater across the study
area was elevated (more shallow) above median levels (Fig. 8). Because of the seasonal pattern of high
storm surge, events that were sampled conditioned on surge occurred during the winter when regional
groundwater storage and levels are highest (Bjerklie et al., 2012; Li et al., 2015).

Overall compound flood hazard rating was scored according to the criteria described in section
3.4, stratifying the scoring by magnitude of precipitation-surge return period adjustments and shallow (0
to 6 feet or 0 to 1.8 m) versus deeper (6 to 15 feet or 1.8 to 4.6 m) monthly average groundwater levels.
Final scores ranged from 1 to 5 and are generally higher (indicating higher compound flood risk) on the
western south shore of Long Island, as well as along the Connecticut coast. Final compound hazard
scores along with their scoring components are shown spatially in Fig. 10, plotted at the centroid of
groundwater wells associated with each precipitation—coastal station pair. Interpolated results across the
study area are shown in Fig. 10a and as a shapefile in Glas et al. (2025). Compound flood hazard scores

were lowest across central and eastern Long Island, both south and north shores.
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5 Discussion

EGUsphere\

The findings from this study demonstrate that there is quantifiable seasonality of compound

coastal flood events across the study area (Fig. 3). For example, storm surges occur more frequently

during the winter months when extratropical cyclones are at their strongest (Frame et al., 2017), which

is a conclusion consistent with previous studies (e.g., Chen et al., 2024; Liu et al., 2020; Maduwantha et

al., 2024) that characterized the temporal variability of coastal storm impacts in this area. For example,

Chen et al. (2024) found that for stations surrounding New York City, tropical storms are associated

with compound events with joint return periods of 50 years and higher, whereas extratropical cyclones

tend to generate compound events with return periods of less than about 10 years. Booth et al. (2016)

found that although hurricanes have historically created the conditions for the highest storm surge over
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Figure 8. Median groundwater percentiles (based on the full monthly period of record during 1975-2021)

during selected events: conditioned on precipitation (CoP), conditioned on surge (CoS), and during events

where both variables exceeded their respective thresholds.
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the past century along the mid-Atlantic and Northeastern U.S. coastline, moderate storms generated by
extratropical cyclones have occurred more frequently, affect larger areas of coastline, and should not be
ignored as important drivers of coastal flooding. In addition, the longer durations of extratropical
cyclones than relatively short duration of tropical storms enhances the relative probability that
extratropical cyclones will occur sometime during a high tide, whereas compound events generated by
shorter duration, albeit more intense tropical systems, may miss the high tides entirely. For example,
Marsooli and Wang (2020) found that if Post-Tropical Cyclone Sandy had arrived just 6 to 12 hours
earlier, New York City would have experienced more severe flood impacts than those that occurred
because it would have coincided with higher tides, along with variable effects from local bathymetry,
coastal geometry, and floodwater speed.

The results of this study demonstrate relatively high dependence between daily precipitation and
storm surge for both the south shore of Long Island and interior coastal Connecticut (Fig. 9a and 9b),
which are areas exposed to storm tracks originating both on land and sea (Colle et al., 2010; Liu et al.,
2021). Shallow depths to groundwater and substantial proportions of impervious area attributable to
population density make coastal Connecticut and Long Island’s south shore vulnerable to damages
associated with all three drivers of compound flooding (Bjerklie et al., 2012; Walter et al., 2024). The
regionally complex coastal geometry and bathymetry tends to enhance storm surge, mainly because of
the relatively shallow continental shelf and low-level easterly winds (Bowman et al., 2013).
Additionally, Long Island’s vulnerability to damages incurred by compound flooding is potentially
exacerbated by factors such as the lack of protective dunes and expansive construction of coastal
engineering infrastructure that inhibit the natural movement of beach sediment and increase the severity
of beach erosion along the southwestern coast (Coch, 2015). Results from this study show that eastern
Long Island, by contrast, showed both the lowest occurrence of compound events and also comprises
more natural and agricultural land cover that potentially mitigate flood impacts compared to the more
urbanized western part of the island (Glas et al., 2023). The potential for groundwater flooding was
considered in this study, though data limitations restricted their direct integration into return period
computations. However, the minimum monthly depth to groundwater serves as a valuable precondition

for understanding the potential for groundwater flooding during precipitation-surge compound events.
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485 Groundwater levels in the uppermost hydrogeologic units throughout the study area are highest (depth
to water shallowest) in the winter (Barclay et al., 2024; Walter et al., 2024), when the likelihood of
compound events is also highest. The connection between sea level rise forecasts (Shepard et al., 2012)
and groundwater levels for coastal New York and Connecticut is not yet fully understood but will likely
give rise to more dewatering demands for subsurface infrastructure and will likely interfere with natural

490 drainage, exacerbating pluvial flooding (Masterson and Garabedian, 2007; Rosenzweig et al., 2024).
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Figure 9. Maps of resulting compound flood hazard. (a) Return period shift for events exceeding threshold values in
precipitation-conditioned (CoP) samples. The shift represents the factor difference between assumptions of dependence and
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Survey digital data, 1:2,000,000.
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5.1 Study Limitations

An important aspect of our results is their sensitivity to data quality, particularly in imputation
techniques. Extreme values that have been estimated by imputation may be under-represented because
of the tendency for regression to underpredict the variance of time series (Newman, 2014), potentially
underestimating the true variability and risk of compound flooding. Imputation techniques that include a
maintenance of variance (Vogel and Stedinger, 1985) may yield results that more accurately represent
the variance of the system; however, these methods generally have lower predictive power than
ordinary least squares or ridge regression (Levy et al., 2025) and should be used with caution if records
show autocorrelation patterns typical of coastal water levels and groundwater (Matalas and Jacobs,
1964). Data imputation for this study is deemed prudent because imputation gains access to multiple
stations throughout the study area that do not have complete data and have been traditionally left out of
previous studies of compound flooding in the region (Ghanbari et al., 2021; Lai et al, 2021; Nasr et al.,
2023; Wahl et al., 2015). Threshold selection approaches widely vary across the literature and can
introduce variability in the results by influencing sample sizes and consequently the robustness of
derived conclusions. Uncertainty associated with different threshold detection and declustering methods
can be further increased under potentially nonstationary conditions (Agilan et al., 2021). Employing a
variety of threshold selection techniques and investigating the sensitivity of results may be necessary to
fully understand the spatial distribution of extreme events.

Multiple copula models were studied to understand precipitation-surge dependence better,
limiting those models to two choices of elliptical copulas and four Archimedean types that may display
tail dependence and such tail dependence in the appropriate tail (for this study the upper tail). These
choices were based on previous studies (e.g., Phillips et al., 2022) and associated fit metrics for each
copula choice. However, some studies have used a single copula model to describe a region so that the
differences in dependence arise from the variability of parameter estimates instead of the practitioner’s
choice of copula model (e.g., Chen et al., 2024). This study incorporates elements of sampling and
parameter uncertainty in the bootstrap procedure but does not address imputation uncertainty or model

selection uncertainty. Ultimately, we chose not to implement a nonstationary copula model because
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changes in tail dependence and overall correlation were judged as not substantial enough over the

period of study to merit the introduction of additional uncertainty (Serinaldi and Kilsby, 2015).

6 Conclusion

An analysis of the co-occurrence of high precipitation, storm surge, and shallow groundwater
depths was conducted across New York City, Long Island, and southern Connecticut to characterize the
spatial distribution of compound flood potential. This study harnessed daily precipitation, storm surge,
and monthly groundwater data from multiple stations, employing data imputation techniques to
construct a more cohesive regional perspective on compound event occurrences than previous research.
We applied bivariate joint probability copula models to estimate the frequency of potentially extreme
precipitation-surge events, utilizing a biconditional sampling method that analyzes the extremes of each
variable alongside the corresponding maximum precipitation or surge values over defined time lags.

We quantified the risk of compound event occurrences through a return period adjustment,
representing the ratio of bivariate 'AND' return periods under independence versus dependence
assumptions between precipitation and storm surge. A return period adjustment close to one indicates a
minimal likelihood of compound events, while larger adjustments signify a substantially increased
frequency when dependencies are considered. These adjustments are influenced by the univariate
frequencies of interest. For instance, when assessing the co-occurrence probability of a 10-year
precipitation event alongside a 10-year coastal event, the return period adjustment may reach a factor of
4. In contrast, for two 100-year events, this shift could soar to as high as 50. Notably, the univariate
return periods are differentially adjusted, which in turn creates the curvature in the dependent return

periods. To streamline these variations into a single representative value, we calculated a weighted
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Figure 10. Breakdown of scoring assignments used to compute the compound flood hazard score. (a) Final hazard scores
by triad. (b) One point assigned for biconditional dependence, defined as dependence in both rainfall-conditioned (CoP)
and surge-conditioned (CoS) samples. (c) One point assigned if either CoP or CoS samples were best fit by a copula model
exhibiting upper tail dependence. (d) Groundwater scores based on the median shallowest depth among selected wells per

triad: 2 points for less than 6 ft below land surface (bls), 1 point for 6 tol5 ft bls, and 0 points for greater than 15 ft bls.
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average of shifts, where the weights corresponded to the inverse of model variability derived from
bootstrap-style resampling.

Results of this study show a regional gradient of compound event occurrence between
precipitation and storm surge. Stronger dependence between flood drivers tends to occur in the southern
part of Long Island, NNY and across interior coastal Connecticut. Smaller shift values were found for
eastern Long Island and New York City. These differences are likely the result of interactions between
storm tracks, coastal geometry, and local bathymetry that can enhance or amplify storm surges.

Although unconfined groundwater levels are shallow throughout the study area, they are most
shallow in southern Nassau County, Long Island, which encompasses some of the higher return period
adjustments and contribute to overall higher compound flood hazard scores (5 out of 5) than other
station triads across the study area. Extremely shallow levels are also found in southwestern
Connecticut. More study is required to evaluate the short-term response of groundwater to coastal and
atmospheric extreme events in this region. Informed risk management is critical for effective coastal
compound flood protection, particularly in regions like Long Island and Long Island Sound, where the
interplay among groundwater, precipitation, and storm surge amplifies flood risk. Considering a
combined framework that integrates these flood drivers together rather than in isolation could help
increase understanding of hydrologic hazards in the study area. This approach is particularly important
given the region's exposure to strong coastal storms and the presence of a dynamic shallow depth to
groundwater, which can exacerbate flooding in urbanized and developing coastal zones. More work is
needed across the region to examine process-based interactions of flood waters during compound
events, extending the results of this study into site-specific interactions of subsurface infrastructure,
groundwater dynamics and coastal processes in a coupled modelling framework for both present and

future conditions.
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Code and Data Availability

All data and R scripts supporting this study are archived in a U.S. Geological Survey data release (Glas et al., 2025). The
release contains input files, both raw and imputed, scripts to replicate the analyses, and associated outputs to ensure full

reproducibility.
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15 USW00094789  -73.7639  40.6392 8518750 NOAA -74.0150011  40.70000404 5 8 40.67155779  -73.90988824  R1-C10
16 USW00054787  -73.4164  40.7344 01309225 USGS -73.3556765  40.66926687 5 4 40.717625 -73.37287499  R3-Cl1
17 USW00004781  -73.1019  40.7939 01309225 USGS -73.3556765  40.66926687 5 2 40.74805554  -73.1894861 R6-C11
18 USW00054790  -72.8675  40.8211 01309225 USGS -73.3556765 40.66926687 5 2 40.76749999 -73.1363472 R7-Cl11
19 USINYSF0123  -72.7981  40.8068 01309225 USGS -73.3556765  40.66926687 8 3 40.76776851  -73.08955553  R8-Cl1
20 USC00300889 -72.2978  40.9519 8510560 NOAA -71.95930163  41.04812618 5 3 40.98185951  -72.17026343 R9-C12
21 USC00301309 -73.3731  40.8833 8514560 NOAA -73.07666422  40.95000233 8 2 40.86670833  -73.21156945  R10-C13
22 USC00307134 -72.7161  40.9625 8514560 NOAA -73.07666422  40.95000233 12 2 40.879 -72.87479165 R11-CI13
23 USW00094702  -73.1267  41.1642 8467150 NOAA -73.18166364 41.1733364 13 4 41.18623542 -73.2990625 R12-C14
24 USW00014758  -72.8892  41.2589 8465705 NOAA -72.9083334  41.28333752 15 3 4139843517 -72.89087036 _ R13-C15

Table 1. Station triad locations and associated precipitation (pcpt) and coastal station identification numbers (Station ID), including Map
IDs referenced in Fig. 1. Agency operating each coastal station indicated as either U.S. Geological Survey (USGS) or National Oceanic
and Atmospheric Administration (NOAA) indicated as Agencycoasw. Each triad consists of a National Oceanic and Atmospheric
Administration (NOAA) precipitation gage (NOAA NCEI, 2023), a U.S. Geological Survey (2023) or NOAA tidal station (NOAA CO-
OPS, 2023), and the centroid of a number of clustered groundwater observation wells (GWnwells, U.S. Geological Survey, 2023) selected

within the search radius in kilometers (GWrad,km) centered on the precipitation—tidal station midpoint.
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RMSE Average Bias
PPTywe 8.96 mm -1.49 mm
PPT*4y 1.66 mm 0.34 mm
PPT*u 4.59 mm -0.08 mm
NTR 0.09 m -0.0011 m
GW 1.1 ft -0.0012 ft

*ARCHI imputed values have been censored such that values less
than 1mm are forced to zero.

EGUsphere\

Table 2. Imputation performance statistics from a 5% holdout analysis conducted separately for wet days (precipitation (PPT) > 1 mm)

and dry days (precipitation = 0 mm). Metrics include root mean square error (RMSE) and percent bias between withheld and imputed

values. Results are shown for daily nontidal residual (NTR, in meters) and monthly depth to groundwater (GW, in feet).
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Triad Thryey Ncop  Taucee  Peorrcop  EPYpqy  Thrsg  Neos  Tauces  Peorres  EPYsg
1 0.99 167  0.069 0.19 3.21 098 201 0.12 0.012 3.87
2 0.99 167 0.08 0.12 3.21 098 201 0.13 0.0062 3.87
3 099 169  0.077 0.14 325 098 202 0.12 0.009 3.88
4 0.99 169  0.069 0.19 325 097 265 0.16  0.00017 5.1
5 0.99 167  0.065 0.21 3.21 098 198 0.12 0.01 3.81
6 0.99 167  0.066 0.21 3.21 097 272 0.12 0.0033 5.23
7 099 167  0.069 0.19 3.21 097 268 0.11 0.01 5.15
8 098 296  0.092 0.018 569 098 198 0.11 0.019 3.81
9 098 296  0.088 0.025 569 098 199 0.11 0.017 3.83
10 098 296  0.083 0.033 569 098 200 0.09 0.058 3.85
11 0.98 298  0.092 0.018 5.73 098 202 0.11 0.023 3.88
12 098 298  0.087 0.025 5.73 097 265 0.18 1.30E-05 5.1
13 098 305  0.081 0.034 587 097 271 0.16  7.60E-05 5.21
14 0.98 305  0.077 0.045 587 097 286 0.14  0.00034 5.5
15 099 167  0.077 0.14 3.21 098 201 0.13 0.0046 3.87
16 098 296  0.094 0.016 569 097 268 0.14  0.00092 5.15
17 0.99 170 -0.019 0.72 327 097 268 0.11 0.0052 5.15
18 098 296  0.092 0.018 569 097 268 0.16  9.90E-05 5.15
19 098 297 -0.041 0.29 5.71 097 268 0.17  4.10E-05 5.15
20 0.98 301 -0.052 0.18 579 097 272 0.098 0.016 5.23
21 098 298  0.019 0.62 5.73 097 271 0.17  2.80E-05 5.21
22 098 308  0.051 0.19 592 097 271 0.19  3.60E-06 5.21
23 0.99 162 0.11 0.04 312 098 202 0.14 0.0043 3.88
24 0.99 164 0.05 0.35 3.15 097 270 0.12 0.0032 5.19

EGUsphere

Table 3. Summary of biconditional samples for rainfall and coastal storm surge. The table includes selected threshold quantiles (Thr),

Kendall’s tau correlation coefficients (Tau) and corresponding p-values (Pcorr), and the average number of events per year (EPY). Values

are shown for precipitation (pcpt), surge (SG), and the number (N) of bivariate events conditioned on precipitation (CoP) and conditioned

on surge (CoS). Bold P values indicate tau is significant.
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Conditioned on Rain Conditioned on Surge
Triad Copula family Parameter estimate Pcor AAIC AuTDC Copula family Parameter estimate Poor AAIC AuTDC

1 Independence - - - - Gumbel 1.1 0.22 0 0.082
2 Independence - - - - Survival Clayton 0.27 0.96 0 0.067
3 Independence - - - - Survival Clayton 0.29 0.52 0 0

Independence - - - - Survival Clayton 0.35 0.5 0.37 0.085
5 Independence - - - - Survival Clayton 0.27 0.8 0 0.056
6 Independence - - - - Gumbel 1.1 0.98 0 0.028
7 Independence - - - - Gumbel 1.1 0.72 0 0.056
8 Gaussian 0.16 0.51 0 0.083 Survival Clayton 0.23 0.39 0 0.049
9 Gaussian 0.16 0.63 0 0.083 Frank 1 0.64 0.27 0
10 Gaussian 0.15 0.65 0 0.083 Independence - - - -
11 Gumbel 1.1 0.55 0 0.056 Gumbel 1.1 0.73 0 0.046
12 Survival Clayton 0.19 0.56 0 0 Gaussian 0.29 0.29 0 0.11
13 Frank 0.72 0.76 0 0.062 Frank 1.5 0.67 13 0.077
14 Frank 0.68 0.4 0 0.062 Frank 1.3 0.18 0 0.071
15 Independence - - - - Gaussian 0.23 0.12 0 0
16 Gaussian 0.17 0.9 0 0.083 Gumbel 1.1 0.32 0 0.082
17 Independence - - - - Frank 1.1 091 0 0.082
18 Frank 0.83 0.33 0 0.067 Frank 1.5 0.41 0 0
19 Independence - - - - Frank 1.6 0.15 0 0
20 Independence - - - - Frank 0.89 0.65 0 0.009
21 Independence - - - - Gaussian 0.26 0.9 0 0.043
22 Independence - - - - Frank 1.7 0.53 0 0.006
23 Survival Clayton 0.21 0.57 0.58 0 Gumbel 1.2 0.15 0 0
24 Independence - - - - Gumbel 1.1 0.23 0 0.09

Table 4. Selected copula models and their corresponding parameter estimates, along with AAIC and AuTDC values used in the model
selection process. AuTDC represents the difference between the empirical upper tail dependence coefficient and the median of the
bootstrapped fitted model estimates. P values are presented for the semi-parametric goodness of fit test (Pgor, Huang and Prokhorov, 2014).

Dashes indicate that independence copula was fit and no parameters are applicable.
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Upper Tail
Biconditional Dependence Component Final Hazard
Triad  RPshiftcor  RPshiftcos ~ Medow GW score Dependence Score Score Score Sum Score
1 5.62 15.76 0 0 1 1 2
2 5.47 15.46 0 0 1 1 2
3 5.84 21 0 0 1 1 2
4 8.51 15.755 0 0 1 1 2
5 5.33 13.955 1 0 1 2 3
6 7.43 13.63 1 0 1 2 3
7 7 11.6 1 0 1 2 3
8 2.45 4.67 13.64 1 1 1 3 4
9 2.38 1.55 11.215 1 1 0 2 3
10 2.33 16.1 0 0 0 0 1
11 6.86 5 8.405 1 1 1 3 4
12 5.48 3.82 18.78 0 1 1 2 3
13 1.37 1.86 7.805 1 1 0 2 3
14 1.37 1.76 7.82 1 1 0 2 3
15 2.76 15.9 0 0 0 0 1
16 248 7.38 4.015 2 1 1 4 5
17 1.57 1.77 2 0 0 2 3
18 1.45 1.85 19.365 0 1 0 1 2
19 1.92 14.73 1 0 0 1 2
20 1.47 18.64 0 0 0 0 1
21 3.56 17.855 0 0 0 0 1
22 2.01 24.735 0 0 0 0 1
23 3.74 5.94 1.835 2 1 1 4 5
24 7.05 9.07 1 0 1 2 3

Table 5. Summary of average return period shifts for rain—surge events conditioned on precipitation (CoP) and on surge (CoS), along with
the median shallowest depth to groundwater (MedGW, in feet) for each well cluster associated with a triad. Component-based scores for
groundwater depth, biconditional dependence, and upper tail dependence were summed and scaled to produce an integrated composite

hazard rating (Final Hazard Score). Data available in Glas et al. (2025).
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