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Short Summary 

We analyzed long-term groundwater, precipitation, and storm-surge records across coastal New York and Connecticut to 

estimate how often these hazards occur together. Overlap is highest along southwestern Long Island and western coastal 10 

Connecticut during the colder months, when groundwater is higher and mid-latitude cyclones are more common. Results from 

this study can support better preparation for coastal storms by taking into consideration the compounding effects of different 

flood drivers. 

 

Abstract  15 

Compound flood events, defined here as the co-occurrence of more than one flood type, can result in 

flood hazard potential that is higher than if the events occurred independently. To evaluate compound 

flooding in a semi-urbanized coastal area, historical records dating back to 1970 are used to study the 

co-occurrences of high precipitation, storm surge, and shallow groundwater conditions for Long Island 

and the Long Island Sound vicinity across coastal New York and Connecticut. Joint return periods for 20 

coincident precipitation-surge events were computed using fitted copulas and compared to the 

assumption of independence as a ratio of return periods, referred to here as a return period adjustment. 

Results indicate distinct seasonality where compound events in the area disproportionately occur in the 

cold season between October and April. Return period shifts range from 1 to almost 9, demonstrating 

the range in precipitation-storm surge dependence across the study area. Across all 24 station triad 25 

locations, groundwater levels were elevated during times of precipitation-storm surge co-occurrence, in 

areas where the average depth to water is shallow (less than 20 feet or 6 m below land surface). The 

result is a pseudo-trivariate compound flood potential map that integrates dependence between daily 
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precipitation-surge events and overall monthly groundwater levels into a relative compound hazard 

score. The location with the highest compound flood hazard score is in the south shore of Long Island, 30 

as well as locations across coastal Connecticut where groundwater levels are already near-surface 

during events where both heavy rainfall and high coastal storm surge occur at the same time. 

1 Introduction  

Coastal compound flooding, defined herein, is the concurrent or close succession of high 

precipitation and storm surge, and such flooding poses substantial challenges to communities along the 35 

East Coast of the United States (Nederhoff et al., 2024; Wahl et al., 2015). Coastal compound events 

have led to devastating impacts, resulting in loss of life (Hanchey et al., 2021), damage to property and 

infrastructure, and long-term economic effects (Green et al, 2024). Ghanbari et al. (2021) concluded 

that in recent years, the frequency and intensity of compound flooding have become more pronounced, 

exacerbated by climate change and sea level rise, highlighting the urgent need for refined risk 40 

assessments and mitigation strategies. Compound events, such as Tropical Storm Irene in 2011 and a 

historically important Nor’easter (colloquial regional meteorologic term for extra-tropical cyclones) in 

March 2010, caused wide-spread damage across the metropolitan area of the City of New York 

(hereafter “New York City”), with elevated storm tides and heavy precipitation occurring on top of soils 

that were already saturated or covered with antecedent snow (Orton et al., 2012). 45 

This study focuses on compound coastal flood events and their geographic distribution around 

New York City, Long Island, and Long Island Sound, leveraging multiple historical records from 

precipitation stations, tidal gauges, and groundwater records spanning the past half-century. Previous 

studies have examined the occurrence of concurrent precipitation and surge events in this region 

utilizing tidal gauge data centred on a few stations near New York City, Montauk, N.Y., New London, 50 

Conn., and Bridgeport, Conn., for various data lengths and periods of record (e.g., Chen et al., 2024; 

Ghanbari et al., 2021; Nasr et al., 2023; Wahl et al., 2015). These studies indicate weak, positive 

dependences between storm surge levels and either precipitation or river discharge. The dependence of 

coastal storm surge between either precipitation depth or river discharge may be increasing in 

magnitude for hydrometeorological stations along the U.S. East Coast with teleconnections to climate 55 
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indices such as the Arctic Oscillation (Nasr et al., 2023). These previous studies have laid the 

groundwork for understanding the impacts of compound coastal events, and this study aims to enhance 

the existing body of knowledge by providing a higher spatial resolution analysis reviewing the 

geographic effects of proximity to the U.S. mainland and Long Island Sound on compound flood 

occurrence and groundwater conditions during these events. 60 

Using copula models, the dependence between precipitation and storm surge for 24 

precipitation-tidal station pairs are assessed across the study area. Copulas have been shown to be 

suitable statistical tools for understanding the relations between multi-dimensional random variables, 

particularly in the context of hydrological events (Salvadori and De Michele, 2007; 2010). Using a 

copula approach, the dependence between two or more continuous variables can be uniquely modelled 65 

independent of the marginal distributions, and multivariate nonexceedance probabilities can be 

computed for event pairs in more than one dimension (Favre et al., 2004). These nonexceedance 

probabilities can be expressed as bivariate return periods, most commonly for the OR case, where at 

least one variable exceeds a desired threshold, or for the AND case, where both variables are considered 

extreme (Brunner et al., 2016; Salvadori, 2004; Shiau, 2003). In this study, we consider the AND 70 

scenario when both precipitation and storm surge are simultaneously at their high concurrent levels. 

 Sea level rise, precipitation increases, and aging drainage infrastructure put shorelines at risk for 

more pronounced groundwater emergence, especially in coastal urban areas (Bosserelle et al., 2022).  

The coastlines of New York and Connecticut are discharge areas for the unconfined groundwater flow 

system characterized by shallow depths to groundwater and a high proportion of urban development 75 

(Rosenzweig et al., 2024).  Groundwater flooding across heavily urbanized coastal areas will likely be 

exacerbated by sea level rise, in particular where the water table is no longer depressed because 

groundwater pumping has since ceased and where land filling practices have placed modern buildings 

and infrastructure over what used to be wetlands and drainage channels (Su et al., 2022; Bosserelle et 

al., 2022.  Unconfined depth to water can be relatively shallow across coastal New York City, Long 80 

Island, and southern Connecticut (Bjerklie et al., 2012) (refer also to https://ny.water.usgs.gov/maps/li-

dtw/ [accessed March 17, 2025]).  We examine the occurrence of precipitation-storm surge compound 

events with shallow depths to water using historical groundwater data across the study area. The 
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interaction between these three factors can better inform the risk landscape for coastal communities 

during extreme weather events. 85 

To illustrate the relative frequency of compound flood hazard across the New York City-Long 

Island-Long Island Sound region, comprehensive maps are presented that depict the spatial variations in 

the strength of dependence between precipitation and storm surge, along with the occurrence of shallow 

groundwater during these compound events. By describing the geographic distribution and interplay of 

flood drivers, this research furthers understanding of coastal compound flooding across coastal New 90 

York and Connecticut, to help inform stakeholders and decision makers about hydrologic hazards. 

2 Study Area 

The study area encompasses the densely populated coastal region along the northeastern United 

States, specifically focusing on Long Island (including the majority of New York City), and the 

northern shoreline of Long Island Sound, comprising the southern coast of Connecticut. People and 95 

property in this region have faced challenges from aging flood protection and drainage infrastructure 

(Forman, 2014), exposure to severe coastal flooding and erosion (Fallon and Kuonen, 2023), 

pronounced increasing trends in both extreme and annual precipitation (Kunkel et al., 2020), and sea 

level rise of approximately 10 cm over the past century that can be directly attributed to anthropogenic 

climate change and associated flood damages from tropical cyclones (Herreros-Cantis et al., 2020; 100 

Strauss et al., 2021). 

Densely populated Long Island, New York extends approximately 120 miles (193 km) eastward 

from New York City to Montauk Point and comprises four counties: Kings (Brooklyn), Queens, 

Nassau, and Suffolk. With a population exceeding 7.8 million (U.S. Census Bureau, 2023), Long Island 

has development along much of the coastline. Groundwater dynamics of Long Island are influenced by 105 

its stratified aquifer system, primarily composed of sand and gravel that allows for efficient drainage 

and groundwater recharge (Walter and others, 2024). Areas where the depth to groundwater is shallow 

are vulnerable to flooding during heavy precipitation (Glas et al., 2023; Suffolk County, 2020).  

Long Island has been impacted by devastating storms, with named storms including Tropical 

Storm Irene (2011) and Post-Tropical Cyclones Sandy (2012), and Ida (2021) having inflicted wide-110 
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spread damage across the region from heavy rainfall (localized flooding for areas lacking sufficient 

drainage), record breaking storm surges, and basement flooding (a basement being a floor or level of a 

structure that is below the ground level). Whereas these tropical storms have garnered substantial 

attention because their intensity, areal-wide presence, and impacts, it is the more moderate extratropical 

cyclones that have been both more frequent and widespread, resulting in recurring flooding and storm 115 

surge events that affect a larger area (Booth et al., 2016; Liu et al., 2020). The combination of Long 

Island’s exposure to cyclonic storm tracks and topography, low-lying coastal areas and marshes, along 

with intensive urban development make the region vulnerable to compound flooding, thereby drawing 

attention to water-management practices and coastal resilience planning (Rosenzweig et al., 2024. In 

particular, the southern shore is susceptible to flooding because of its shallow depth to groundwater, and 120 

exposure to storm tracks originating both from the U.S. mainland and the open Atlantic Ocean (Glas et 

al., 2023; Shepard et al., 2012). 

Long Island Sound is a semi-enclosed tidal estuary located between Long Island, New York, and 

the southern coast of Connecticut, characterized by complex bathymetry and geography that 

substantially influence its susceptibility to coastal flooding (Liu et al., 2020). The relatively shallow 125 

depths of Long Island Sound (averaging about 60 feet, 18 m) allow for the amplification of storm surges 

(Kouhi et al., 2022; Wong, 1990), particularly during intense weather events, as observed during both 

tropical and extratropical storms (Booth et al., 2016; DeGaetano, 2008). Across the west-to-east 

gradient of Long Island Sound, storm generating mechanisms contribute to the severity of storm surge 

impacts, with extratropical cyclones causing the highest and most frequent surges in the western end of 130 

the sound, while tropical storms and hurricanes create the largest surges in the eastern part near the open 

ocean (O’Donnell and O’Donnell, 2012).  

3 Data and Methods 

3.1 Station selection and missing-record imputation 

A total of 275 observing stations were considered for this study, located across the study area 135 

that includes the coasts or coastal regions of New York City, Long Island, and Long Island Sound (Fig. 

1). Three data types were used in this analysis: (1) daily precipitation totals, (2) daily coastal non-tidal 
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residuals representing storm surge, and (3) observed monthly groundwater levels measured in the 

uppermost unconfined hydrogeologic unit near the coast.  First, total calendar day (24 hour) 

precipitation values were retrieved from 21 National Oceanic and Atmospheric Administration (NOAA) 140 

precipitation observing stations (NOAA NCEI, 2023) for a 52-year period spanning calendar years 1970 

through 2021. On days when precipitation fell as snow, the liquid water equivalent was used as the 
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precipitation value for that day as provided in the associated daily NOAA data report. Second, coastal 

water levels were retrieved from 12 NOAA water-level stations (NOAA CO-OPS, 2023) with recorded 

hourly water levels (meters) and 22 U.S. Geological Survey (USGS) water-level stations (U.S. 145 

Geological Survey, 2023) with recorded 15-minute water levels that have record lengths longer than 9.9 

 
Figure 1. (a) Locations of precipitation, coastal water level, and groundwater observation stations used in the analysis; 

additional site information is provided in table 1. (b) Station triad locations, plotted at the nearest land point to the centroid 

of each triad composed of a precipitation gage, a coastal water level station, and a cluster of groundwater observation wells. 

Precipitation/surge midpoints are shown as the geographic midpoint between each precipitation and coastal station pair, 

with circular search radii indicating the area within which groundwater wells were selected for inclusion in each triad. 

Projection World Geodetic System of 1984, Base modified from U.S. Geological Survey digital data, 1:1,200,000. 
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years between 1970 and 2021. A 33-hour low pass filter was applied to the observed hourly water level 

time series to compute the non-tidal residual (NTR), which is conceptually akin to “storm surge”. The 

computed NTRs were subsampled to daily maximum values. Third, monthly groundwater levels were 

retrieved using the USGS National Water Information System (NWIS; U.S. Geological Survey, 2023) 150 

for 220 unconfined observation wells throughout Long Island, New York City, and southern 

Connecticut for the calendar years 1975 through 2021. A starting year of 1975 for groundwater 

optimized the imputation quality based on data availability. Table 1 contains all station identification 

numbers, locations, and map I.D.s linking station locations to the maps in Fig. 1.   

Some real-time groundwater monitoring networks are available on Long Island at daily temporal 155 

resolution (U.S. Geological Survey, 2023) and can be used to analyse the response of groundwater to 

compound coastal flooding. However, the monitoring frequency is monthly for many wells with longer 

periods of record in Long Island, New York City, and Southern Connecticut. 

Missing values for each of the three data types were filled using neighbouring, correlated 

stations at a daily timestep for precipitation and NTR, and at a monthly timestep for groundwater. The 160 

imputations were carried out using the ARCHI R package (Levy et al., 2024, R Core Team, 2024, 

version 4.4.1), which iteratively searches the available input data for multiple correlated reference 

stations and uses regression to predict missing values at the target station. Each of the three data types 

were imputed using the ridge regression option within ARCHI, except for the case where only one 

reference station was available, and in that case simple linear regression was used. A Pearson 165 

correlation coefficient of 0.6 and a Nash–Sutcliffe Efficiency (NSE) of 0.4 were used as the minimum 

threshold for accepted regression models in the ARCHI algorithm. Special consideration was given to 

the precipitation dataset because predictions from the ARCHI algorithm sometimes included near-zero 

negative values; predictions that were less than 1 mm were censored to zero. Full imputation statistics 

are shown in supplemental tables S1, S2, and S3. To further evaluate imputation quality, five percent of 170 

the observed values for each of the three data types were withheld (daily precipitation in millimeters, 

daily storm surge as NTR in meters, and monthly groundwater in feet below land surface), including 

separate consideration of wet day (observed prcp> 1 mm) and dry day (observed prcp < 1 mm) 
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precipitation.  The ARCHI algorithm then imputed those values and were compared to the observed 

values by root mean squared error (RMSE) and bias (percent). 175 

Using the complete imputed data records, 24 precipitation-coastal station pairs were selected 

based on proximity and unique paired combinations. Groundwater observation wells were selected 

using a cluster-based approach centered on the midpoint between each precipitation/coastal station pair. 

Beginning with a 5-km search radius around each midpoint, wells were selected based on the following 

criteria: (1) at least 90% data availability from 1975 to 2021 in the imputed monthly time series, (2) 180 

100% data availability from 2010 to 2021 to capture recent extremes, and (3) a minimum observed 

depth to water less than 50 feet or 15 m below land surface (bls), to exclude deeper aquifer zones or 

wells not representative of near-surface conditions. If fewer than two qualifying wells were found 

within the 5-km radius, the radius was incrementally expanded until the criteria were met. A maximum 

of 10 wells per triad were retained. Final selections were manually reviewed to confirm hydrogeologic 185 

consistency within each cluster. Final station triad groups are listed in Table 1 and respective group 

centroids shown in Fig. 1b.  A list of all the selected wells and their associated triads are listed in 

Supplemental table S4. 

3.2 Precipitation-surge event sampling 

To evaluate the relations between daily precipitation and storm surge, event pairs were selected 190 

and modeled using copulas with a “two-sided sampling approach” (Jane et al., 2022). Data were 

prepared for bivariate modeling by detrending coastal NTR (storm surge) values over a three-month 

moving window. No trends were detected in the daily precipitation time series. High or extreme events 

were identified in each dataset using a peaks-over-threshold (POT) approach, applying thresholds from 

the 90th to the 99th empirical quantile at each station. To ensure the selection of independent events, a 195 

separation window of 10 days for precipitation and 6 days for NTR was established, which aligns with 

the lag times for considering concurrent events: ±5 days for precipitation and ±3 days for surge (Agel et 

al., 2015; Barbot et al., 2024). Final POT thresholds were chosen to limit the number of independent 

events per year to between 3 and 6 while maximizing the Kendall tau correlation coefficient between 

the two variables. 200 
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To create two distinct biconditional datasets, the R package Multihazard (Jane et al., 2020) was 

used with the Multihazard::Con_Sampling_2D_Lag function.  This process began with selecting 24-

hour precipitation totals that exceeded the selected threshold, followed by identifying the maximum 

NTR occurring within three days of each precipitation event. We repeated this for all independent 

precipitation events and their corresponding surge events, considering a time window of ±5 days. The 205 

resulting datasets include one conditioning on precipitation (CoP) and another on surge (CoS). Time 

lags of 3 days for CoS and 5 days for CoP were used to associate each variable with the other. These 

time lags were based on findings that average coastal storm surge events around New York have 

durations that range from 1.6 to 3.3 days (Barbot et al., 2024), and that the most common duration for 

extreme rain events in coastal areas of the Northeast is between 2 and 5 days (Agel et al., 2015). This 210 

approach accommodates potential mismatches between peak rainfall and storm surge that still have 

overlapping events, as well as delays in water reaching the coast via overland flow. 

 

Figure 2. Proportion of observed (dark shading) and imputed (light shading) time steps for each calendar year.  

(a) Precipitation data (red; daily), (b) coastal non-tidal residual (NTR) data (green; daily), and (c) groundwater 

data (purple; monthly). 
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3.3 Precipitation-surge dependence 

Biconditional precipitation-surge event sets were assessed for correlation using Kendall tau for 215 

each triad.  To identify temporal changes in this correlation structure, 20-year moving windows were 

used to re-compute the Kendall tau for selected events inside that time window, then shifted by one year 

across the time range of the dataset. To evaluate temporal changes in dependence structure, the 

empirical upper tail dependence coefficient (λ𝑈𝑈� hereafter referred to as uTDC) was computed separately 

for the first and second halves of the study period. The uTDC was estimated using the following 220 

formula: 

λ𝑈𝑈� = 1
𝑛𝑛𝑢𝑢
∑ 𝐼𝐼(𝑈𝑈𝑖𝑖 > 𝑢𝑢,𝑉𝑉𝑖𝑖 > 𝑢𝑢)𝑛𝑛
𝑖𝑖=1     1 

where Ui and Vi are pseudo-observations on the unit interval, I is the indicator function, and nu is 

the number of observations exceeding the threshold u. Estimates were computed for u=0.6, representing 

the upper half of the distribution, and u=0.9, representing the upper tail. Calculations were performed 225 

for the periods 1975–1995 and 1996–2021 to assess changes in upper tail dependence over time and 

evaluate the need for a nonstationary framework. 

To model the dependence structure in the data, each feature in the biconditional datasets was 

transformed into a uniform distribution by computing their rank-based pseudo-observations. The 

pseudo-observations are “plotting positions” using common nomenclature in hydrologic hazards 230 

(Asquith and others, 2017, app. 2), lie on [0,1], and correspond to the data mapped to rank-based 

cumulative probability space.  An independence test of the pseudo-observation pairs was completed 

before selecting a copula model, where the null hypothesis is bivariate independence using the R 

function VineCopula::BiCopIndTest (Nagler et al., 2023, Genest and Favre, 2007).  In the cases where 

the pseudo-observations are quantitively independent (p-value > 0.05), then the independence copula 235 

was selected for those station pairs.  For bivariate data pairs exhibiting statistically significant 

dependence, parametric copula models were fitted using maximum likelihood estimation. The candidate 

set included two elliptical copulas: Gaussian and t, and three Archimedean copulas: survival Clayton, 

Gumbel, and Frank. These six copulas were selected to capture a range of tail dependence structures 

relevant to the variables of interest (rainfall and NTR). Specifically, survival Clayton and Gumbel 240 
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exhibit upper tail dependence, the t copula exhibits symmetric tail dependence (both upper and lower), 

and the Gaussian and Frank copulas are tail-independent.  These copulas are relatively common tools 

for practitioners and are all permutation symmetric, which means for the copula C(u,v) that C(v,u) = 

C(u,v). Such symmetry is therefore an implicit assumption for this study. 

The best fitting copula was selected using the minimum Akaike information criterion (AIC, 245 

Akaike, 1973; Asquith and others, 2017, app. 4). The AIC offers a comparative measure of fit for 

candidate copulas, identifying the model with the lowest AIC as the optimal choice. In instances where 

the difference in AIC between the top candidate and the next best model was less than 2 (ΔAIC<2), 

indicating a statistical tie in support, an additional screening was performed. Specifically, the empirical 

upper tail dependence coefficient (uTDC) of the observed data was compared against the distribution of 250 

uTDC values derived from 500 bootstrap simulations of each candidate model. If the absolute 

difference between the empirical uTDC and the median of the simulated uTDCs exceeded 0.1, the 

model was considered to provide a poor approximation of tail behavior and was excluded from 

consideration. The remaining model with the better agreement in uTDC was selected. 

Graphical diagnostics and a goodness-of-fit hypothesis test were used to assess absolute fit and 255 

ensure that the selected model adequately represents the raw data. The quality of fit was graphically 

inspected by comparing the fitted parametric copula to the empirical copula by contour lines along 

cumulative probability values (the “level curves” in copula nomenclature, not shown). Additionally, a 

rank-based goodness-of-fit test was applied to further assess the fit of the selected copulas (Huang and 

Prokhorov, 2014).  This test is semi-parametric, using a parametric copula and nonparametric, empirical 260 

marginals where the null hypothesis pertains to the assumption of the data following the specified 

copula model using the VineCopula::BiCopGofTest function in the VineCopula R package (Nagler et 

al., 2023). 

When computing return periods for bivariate data using copulas, there are an infinite number of 

data pairs (precipitation-surge) associated with a single joint return period that can be graphically 265 

represented by contour lines instead of univariate singular estimates.  Return period contour lines 

associated with each biconditional dataset were computed using the fitted copula through Eq. 2 for the 
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AND joint return period, examining the probability of a specific magnitude of precipitation and 

coincident surge: 

 270 

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴 =  𝜇𝜇
1−𝑢𝑢−𝑣𝑣+𝐶𝐶(𝑢𝑢,𝑣𝑣)

       2 

 

where µ is the average interarrival time of events in years, and u and v are the marginal cumulative 

distribution functions (CDFs) associated with each variable, and C(u,v) is the joint CDF of the selected 

copula function.  Under the assumption of independence, the joint AND return period is the product of 275 

the two marginal return periods, incorporating their respective exceedance probabilities. In contrast, 

under dependence, this relation is altered, and for positively correlated variables, the joint AND return 

period is shorter than under the independence assumption. 

For each triad, and for the subset of univariate marginal return periods of 2, 10, 25, 50, and 100 

years for both precipitation and surge, the ratio of the bivariate AND return period under independence 280 

to the dependence case was calculated for each combination of univariate return periods using the 

selected copula model.  This ratio of return periods, or return period adjustment, represents the degree 

of dependence between the variables across each unique combination of univariate return periods (Fx 

and Fy), allowing the measure of dependence between the variables to be assessed in units of return 

period (Zscheischler and Seneviratne, 2017). 285 

 

3.4 Precipitation-surge compounding and uncertainty 

To simplify the suite of return period adjustments across the unique Fx and Fy combinations, the 

array of return period adjustments was collapsed to a single value by weighted averaging.  For each 

triad location, the paired events were randomly sampled 500 times with replacement, preserving pair 290 

structures and number of bivariate events. Copula parameters were re-estimated while maintaining the 

copula family type of the full dataset, and bivariate return periods and their corresponding adjustments 

from the independence case were re-computed.  From the resulting distribution of return period 

adjustments corresponding to each unique pair of univariate marginal return periods, the 0.025 and 
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0.975 quantiles were extracted and used as 95% confidence intervals around each return period 295 

adjustment.  The width of the 95% confidence interval is representative of bivariate sampling 

uncertainty around the return period adjustment calculations, and the inverses of these widths were used 

as weights in the final weighted averages of return period adjustments for the CoP and CoS paired 

values for each station triad.  This results in two weighted average return period adjustments per station 

triad. 300 

3.5 Groundwater and composite score 

For each triad, median monthly groundwater levels were computed from the selected wells within 

each associated cluster. These monthly time series were linearly interpolated to daily resolution. 

Groundwater levels (in feet bls) were then extracted for the date of each event type: rainfall above 

threshold, surge above threshold, and concurrent rainfall/surge events. This extraction enabled assessment 305 

of groundwater conditions during different types of compound events. Because the groundwater levels 

may not have been measured during the actual storm event, the values used in this analysis may not 

represent the actual groundwater response to coastal and precipitation events. 

To characterize groundwater-related hazard, the shallowest groundwater levels (minimum depth 

to water bls) were identified across the associated wells in each cluster, and their median was used to 310 

assign a groundwater hazard score. Median shallow depths ≤ 6 ft were assigned a score of 2 (high hazard), 

depths between 6 ft and 15 ft were scored as 1 (moderate hazard), and depths > 15 ft were scored as 0 

(low hazard). 

The groundwater hazard score was combined with two scores based on the dependence structure 

between precipitation and surge. First, a triad received 1 point if either CoP or CoS event datasets 315 

exhibited upper tail dependence, as determined by fitting a copula with upper tail dependence. Second, a 

triad received 1 point if symmetrical dependence was observed, meaning a non-independent copula was 

selected for both CoP and CoS event types. 

The three component scores (groundwater depth, upper tail dependence, and dependence 

symmetry) were summed and rescaled to yield a final compound hazard score ranging from 1 (lowest) to 320 

5 (highest) for each triad. 
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To interpolate these results across the entire study area (the coasts of Long Island Sound and the 

south shore of Long Island), each groundwater centroid location was initially assigned to one of eight 

clusters using k-means clustering (MacQueen, 1967), implemented with the scikit-learn Python library 

(Pedregosa et al., 2011). Clustering was based on the following six features: (1) average return period 325 

shift conditioned on precipitation (CoP), (2) average return period shift conditioned on surge (CoS), (3) 

median minimum groundwater depth (in feet), (4) groundwater hazard score, (5) biconditional 

dependence score, and (6) upper tail dependence score. To ensure spatial contiguity, stations that were 

grouped into non-contiguous clusters were reassigned to new, spatially coherent clusters. This post-

processing resulted in a total of 11 final clusters, each containing between one and four stations. 330 

For each cluster, a centroid was calculated and used to generate Voronoi polygons (Aurenhammer, 

1991) that partitioned the entire study area. Separate Voronoi tessellations were created for Connecticut 

(CT), and for the north and south shores of Long Island.  Within each Voronoi polygon, 900-meter grid 

cells were assigned the average compound hazard score of the stations in the corresponding cluster. 

Averaging was then masked and restricted to 900-meter grid cells located within the coastal 100-year 335 

flood (0.01 annual exceedance probability) hazard extent for the study area, as defined by Welk et al. 

(2025b). This grid is the same grid used for rainfall hazard (Welk et al., 2025b), coastal flood hazard 

(Cook and Herdman, 2025), and groundwater hazard (Welk et al., 2025a) across the same study area, 

allowing for direct spatial comparison of hazard scores across variables.  The spatially continuous hazard 

map is based on interpolation of results from discrete monitoring stations. These stations are assumed to 340 

be representative of broader conditions, but the map does not account for local variability in precipitation, 

coastal water levels, or groundwater depth at locations where no measurements were available. 

4 Results 

4.1 Imputation quality 

A total of 21, 34, and 207 observing stations were used to fill in missing records for 345 

precipitation, coastal NTR, and groundwater, respectively. Then, a subset of these stations, 13 

precipitation, 15 coastal, and 58 groundwater observing stations, were used after imputation for input to 

the copula models and the final combined compound flood hazard score. The proportions of observed 
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and imputed values are presented in Fig. 2 for these stations, separated by each year of record from 

1970 through 2021. Precipitation data had more than 80% observed values throughout the study period, 350 

whereas observed values for coastal NTR averaged about 15% until 2008 and 80% through 2021. 

Observed data comprised about 20% of groundwater records for 1975–1990, after which the proportion 

of observed records increased to between 40% to 60%. Despite the high proportion of imputed values in 

the NTR and groundwater datasets, their strong intrinsic correlation and sufficient duration of overlap 

justified their inclusion. Precipitation data exhibited lower cross-correlation; however, at least 80% of 355 

precipitation values were observed in any given year of the study period, exceeding the proportion of 

observed values in the NTR and groundwater datasets. Errors (RMSE and bias) were higher than for 

coastal water levels or groundwater, reflecting the greater spatial and temporal variability of 

precipitation. However, because the precipitation record contained a high proportion of observed values, 

only a small fraction of the series was imputed, limiting the influence of these higher errors. 360 

The accuracy of the regression imputation process was assessed using the results from the 

holdout analysis, comparing observed to imputed across precipitation, coastal NTR, and groundwater 

datasets (Table 2).  Higher error and bias resulted from wet-day imputations from dry, where imputation 

on wet days were on average 1.5 mm lower than observed values, and dry-day imputations were on 

average 0.34 mm higher than observed (zero) values (Table 2). Taken as a whole, holdouts from the 365 

entire precipitation dataset were on average 0.08 mm lower than observed values. Corresponding 

RMSEs for each precipitation holdout dataset were highest for wet days, lowest for dry days, and 

approximately 4.5 mm for all precipitation days as a whole. The NTR and groundwater datasets were 

slightly under-predicted by the imputations; however, these errors were relatively small (less than 1/100 

of a meter and foot, respectively).  Full imputation statistics for the entire dataset (not withheld values) 370 

are provided in Tables S1–S3.  
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4.2 Biconditional sampling 

Selected precipitation and surge threshold probabilities ranged from 0.97 to 0.99 across 375 

precipitation and surge datasets for all 24 triads (Table 3) and resulted in the average number events 

ranging from 3.1 to 5.8 events per year. Selected events conditioned on precipitation (CoP) showed a 

slightly seasonal pattern during the warmer months of the year, whereas events conditioned on surge 

(CoS) occurred distinctly between the months of October to April (Fig. 3). Sample size also varied 

across triads and sampling conditions, ranging from 162 (Triad 23, CoP) to 308 precipitation-surge 380 

events (Triad 22, CoP). Correlations across both datasets were weak, with higher and more substantial 

correlations when data were conditioned on surge. Mean Kendall tau of conditional datasets were 0.06 

for CoP samples, and 0.13 for CoS samples. An example of data for Triad 15 (The Battery, NY) with 

selected precipitation and NTR thresholds is shown in Fig. 4. 

Figure 3. Monthly seasonality of unique concurrent events exceeding defined threshold quantiles, pooled across Triads 

1 through 24. Events include rainfall/surge pairs selected from either (a) precipitation-conditioned (CoP) or (b) surge-

conditioned (CoS) samples. Months are labeled on the x-axis by their first letter. 
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 385 

Figure 4. Daily precipitation and non-tidal residual (NTR) data for Triad 15 (Battery, NY), including selected 

fractional percentile thresholds for each variable. (a) Data shown in real space; (b) data shown on log-

transformed axes with zero values excluded. 
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4.3 Dependence 

Sampled events that were conditioned on surge showed more dependence than those conditioned 

on precipitation based on selected copula models. Independence was evident in 14 of the 24 triads 

where event selection was conditioned on precipitation, whereas only one of the triads (triad 10) was 

found to have independent data when events were conditioned on surge.  For events conditioned on 390 

surge, 12 of 24 triads exhibited upper tail dependence (Table 4). Changes in Kendall tau for the period 

of study (1970–2021) were either slightly positive or slightly negative across all 24 triads but increased 

on average less than 0.1 over the study period (e.g., Triad 15, Fig. 5).  Changes in the nonparametric 

upper tail dependence coefficient during the first half (1970–1995) to the second half (1996–2021) of 

Figure 5. Time-varying Kendall correlations for Triad 15 (refer to Figure 1 for location), computed using a 20-

year moving window shifted by one year. Correlations are based on selected precipitation/surge events under both 

sampling conditions: conditioned on precipitation (CoP) and conditioned on surge (CoS). Statistically significant 

correlations (p < 0.05) are shown in red. 
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the period evaluated in this study showed no persistently increasing or decreasing patterns across the 24 395 

triads (Fig. 6).  Based on these results, stationarity was assumed for this analysis. 

 For samples for which independence could not be ruled out, the independence copula was 

assigned; this explicit “snap” to independence means that reliance on a given nonindependent copula 

model with its empirical parameter was not made for this study (Table 4).  Graphical comparison to the 

empirical copula (not shown), and p-values from the semi-parametric goodness-of-fit (GOF) test 400 

indicate the copula chosen by the AIC and uTDC criteria acceptably fit with the empirical data (p-

values for GOF test shown in Table 4).  Model fit diagnostics for all candidate models are shown in 

Tables S5 and S6. 

 

4.4 Precipitation- surge return period shifts 405 

 Figure 7 and Table 5 show and list, respectively, the results from the copula analysis as return 

period adjustments between the assumption of independence to dependence for concurrent 

Figure 6. Empirical upper tail dependence coefficients (uTDC) computed at (a) u = 0.6 and (b) u = 0.9, corresponding to 

moderate and extreme upper-tail co-occurrence, respectively. Values are shown for the first (1970–1995) and second 

(1996–2021) halves of the record to assess potential nonstationarity in joint extremes. The diagonal line indicates the 1:1 

(equal value) line. Points are jittered slightly to reduce overplotting. 
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precipitation-surge events. The weighted average return period adjustment encompasses all values 

across the selected univariate return period pairs, inversely weighted by the variability from the 

bootstrap resampling (Fig. 7).  Because higher return period adjustments generally indicate more 410 

variability between the bootstrapped samples, the weights put more emphasis on shorter univariate 

return period events.  Weighted average adjustments to return period due to the assumption of 

independence and dependence ranged from 1 (independent data) to 8.51 (triad 4, conditioned on surge, 

Table 5), meaning that coincident rain-surge events are more than eight times likely to occur when 

taking their dependence structure into account.  The average return period adjustment conditioned on 415 

precipitation was 2.99, whereas the average adjustment conditioned on surge was 4.32 across all station 

triads.  These return period adjustments correspond to copula models that exhibit upper tail dependence 

as well as statistically significant correlations represented in the Kendall’s tau correlation coefficient 

(Tables 3 and 4).   
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 420 

 

Figure 7. Precipitation–surge return period (RP) shifts versus weights used in the final averaging. (a) All triads 

combined. (b) Example of 95% confidence intervals for return period shifts corresponding to the 50-year univariate 

return period for rainfall, shown for Triad 15 at Battery, NY.  Weights across univariate return periods shown in orange 

dashed line. 
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4.5 Groundwater and Multivariate rating score 

 Over the 1975–2021 period of data, the median shallowest (minimum) depth to groundwater 

was extracted for each station triad’s cluster of groundwater wells (Table 5).  Groundwater shallower 

than 6 feet or 1.8 m was associated with triads 16, 17, and 23 along the southern shore of Long Island 425 

and Connecticut, respectively.  Depths to water between 6 and 10 feet (1.8 to 3 m) were found around 

the coastline of Long Island Sound at triads 11, 13, 14, and 24.  Minimum groundwater depths less than 

6 feet (1.8 meters) have the potential to interfere with drainage infrastructure, natural infiltration of 

soils, and may contribute to more overland runoff during precipitation events (Bosserelle et al., 2022). 

The spatial distribution of the median shallowest groundwater levels are shown in panel C of Fig. 9. 430 

Groundwater levels between 6 and 15 feet (1.8 to 4.5 m) will likely intersect with basements and other 

subsurface infrastructure (Conestoga-Rovers and Associates, 2007; New Jersey Department of 

Environmental Protection, 2021).  During most precipitation-surge events, groundwater across the study 

area was elevated (more shallow) above median levels (Fig. 8).  Because of the seasonal pattern of high 

storm surge, events that were sampled conditioned on surge occurred during the winter when regional 435 

groundwater storage and levels are highest (Bjerklie et al., 2012; Li et al., 2015).   

 Overall compound flood hazard rating was scored according to the criteria described in section 

3.4, stratifying the scoring by magnitude of precipitation-surge return period adjustments and shallow (0 

to 6 feet or 0 to 1.8 m) versus deeper (6 to 15 feet or 1.8 to 4.6 m) monthly average groundwater levels.  

Final scores ranged from 1 to 5 and are generally higher (indicating higher compound flood risk) on the 440 

western south shore of Long Island, as well as along the Connecticut coast. Final compound hazard 

scores along with their scoring components are shown spatially in Fig. 10, plotted at the centroid of 

groundwater wells associated with each precipitation–coastal station pair. Interpolated results across the 

study area are shown in Fig. 10a and as a shapefile in Glas et al. (2025).  Compound flood hazard scores 

were lowest across central and eastern Long Island, both south and north shores.   445 
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5 Discussion 

The findings from this study demonstrate that there is quantifiable seasonality of compound 

coastal flood events across the study area (Fig. 3). For example, storm surges occur more frequently 

during the winter months when extratropical cyclones are at their strongest (Frame et al., 2017), which 450 

is a conclusion consistent with previous studies (e.g., Chen et al., 2024; Liu et al., 2020; Maduwantha et 

al., 2024) that characterized the temporal variability of coastal storm impacts in this area.  For example, 

Chen et al. (2024) found that for stations surrounding New York City, tropical storms are associated 

with compound events with joint return periods of 50 years and higher, whereas extratropical cyclones 

tend to generate compound events with return periods of less than about 10 years.  Booth et al. (2016) 455 

found that although hurricanes have historically created the conditions for the highest storm surge over 

 

Figure 8. Median groundwater percentiles (based on the full monthly period of record during 1975–2021) 

during selected events: conditioned on precipitation (CoP), conditioned on surge (CoS), and during events 

where both variables exceeded their respective thresholds.  
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the past century along the mid-Atlantic and Northeastern U.S. coastline, moderate storms generated by 

extratropical cyclones have occurred more frequently, affect larger areas of coastline, and should not be 

ignored as important drivers of coastal flooding.  In addition, the longer durations of extratropical 

cyclones than relatively short duration of tropical storms enhances the relative probability that 460 

extratropical cyclones will occur sometime during a high tide, whereas compound events generated by 

shorter duration, albeit more intense tropical systems, may miss the high tides entirely.  For example, 

Marsooli and Wang (2020) found that if Post-Tropical Cyclone Sandy had arrived just 6 to 12 hours 

earlier, New York City would have experienced more severe flood impacts than those that occurred 

because it would have coincided with higher tides, along with variable effects from local bathymetry, 465 

coastal geometry, and floodwater speed. 

The results of this study demonstrate relatively high dependence between daily precipitation and 

storm surge for both the south shore of Long Island and interior coastal Connecticut (Fig. 9a and 9b), 

which are areas exposed to storm tracks originating both on land and sea (Colle et al., 2010; Liu et al., 

2021).  Shallow depths to groundwater and substantial proportions of impervious area attributable to 470 

population density make coastal Connecticut and Long Island’s south shore vulnerable to damages 

associated with all three drivers of compound flooding (Bjerklie et al., 2012; Walter et al., 2024). The 

regionally complex coastal geometry and bathymetry tends to enhance storm surge, mainly because of 

the relatively shallow continental shelf and low-level easterly winds (Bowman et al., 2013).  

Additionally, Long Island’s vulnerability to damages incurred by compound flooding is potentially 475 

exacerbated by factors such as the lack of protective dunes and expansive construction of coastal 

engineering infrastructure that inhibit the natural movement of beach sediment and increase the severity 

of beach erosion along the southwestern coast (Coch, 2015).  Results from this study show that eastern 

Long Island, by contrast, showed both the lowest occurrence of compound events and also comprises 

more natural and agricultural land cover that potentially mitigate flood impacts compared to the more 480 

urbanized western part of the island (Glas et al., 2023). The potential for groundwater flooding was 

considered in this study, though data limitations restricted their direct integration into return period 

computations. However, the minimum monthly depth to groundwater serves as a valuable precondition 

for understanding the potential for groundwater flooding during precipitation-surge compound events. 
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Groundwater levels in the uppermost hydrogeologic units throughout the study area are highest (depth 485 

to water shallowest) in the winter (Barclay et al., 2024; Walter et al., 2024), when the likelihood of 

compound events is also highest.  The connection between sea level rise forecasts (Shepard et al., 2012) 

and groundwater levels for coastal New York and Connecticut is not yet fully understood but will likely 

give rise to more dewatering demands for subsurface infrastructure and will likely interfere with natural 

drainage, exacerbating pluvial flooding (Masterson and Garabedian, 2007; Rosenzweig et al., 2024). 490 
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Figure 9. Maps of resulting compound flood hazard. (a) Return period shift for events exceeding threshold values in 

precipitation-conditioned (CoP) samples. The shift represents the factor difference between assumptions of dependence and 

independence, averaged using inverse 95% confidence interval weighting across several univariate return periods. (b) Return 

period shifts conditioned on surge (CoS). (c) Median shallowest groundwater depth (in feet) for well clusters located within 

the precipitation / surge search radius. Projection World Geodetic System of 1984, Base modified from U.S. Geological 

Survey digital data, 1:2,000,000. 
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5.1 Study Limitations 

An important aspect of our results is their sensitivity to data quality, particularly in imputation 495 

techniques. Extreme values that have been estimated by imputation may be under-represented because 

of the tendency for regression to underpredict the variance of time series (Newman, 2014), potentially 

underestimating the true variability and risk of compound flooding. Imputation techniques that include a 

maintenance of variance (Vogel and Stedinger, 1985) may yield results that more accurately represent 

the variance of the system; however, these methods generally have lower predictive power than 500 

ordinary least squares or ridge regression (Levy et al., 2025) and should be used with caution if records 

show autocorrelation patterns typical of coastal water levels and groundwater (Matalas and Jacobs, 

1964).  Data imputation for this study is deemed prudent because imputation gains access to multiple 

stations throughout the study area that do not have complete data and have been traditionally left out of 

previous studies of compound flooding in the region (Ghanbari et al., 2021; Lai et al, 2021; Nasr et al., 505 

2023; Wahl et al., 2015). Threshold selection approaches widely vary across the literature and can 

introduce variability in the results by influencing sample sizes and consequently the robustness of 

derived conclusions. Uncertainty associated with different threshold detection and declustering methods 

can be further increased under potentially nonstationary conditions (Agilan et al., 2021).  Employing a 

variety of threshold selection techniques and investigating the sensitivity of results may be necessary to 510 

fully understand the spatial distribution of extreme events. 

Multiple copula models were studied to understand precipitation-surge dependence better, 

limiting those models to two choices of elliptical copulas and four Archimedean types that may display 

tail dependence and such tail dependence in the appropriate tail (for this study the upper tail). These 

choices were based on previous studies (e.g., Phillips et al., 2022) and associated fit metrics for each 515 

copula choice. However, some studies have used a single copula model to describe a region so that the 

differences in dependence arise from the variability of parameter estimates instead of the practitioner’s 

choice of copula model (e.g., Chen et al., 2024). This study incorporates elements of sampling and 

parameter uncertainty in the bootstrap procedure but does not address imputation uncertainty or model 

selection uncertainty. Ultimately, we chose not to implement a nonstationary copula model because 520 
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changes in tail dependence and overall correlation were judged as not substantial enough over the 

period of study to merit the introduction of additional uncertainty (Serinaldi and Kilsby, 2015).   

6 Conclusion 

 An analysis of the co-occurrence of high precipitation, storm surge, and shallow groundwater 

depths was conducted across New York City, Long Island, and southern Connecticut to characterize the 525 

spatial distribution of compound flood potential.  This study harnessed daily precipitation, storm surge, 

and monthly groundwater data from multiple stations, employing data imputation techniques to 

construct a more cohesive regional perspective on compound event occurrences than previous research. 

We applied bivariate joint probability copula models to estimate the frequency of potentially extreme 

precipitation-surge events, utilizing a biconditional sampling method that analyzes the extremes of each 530 

variable alongside the corresponding maximum precipitation or surge values over defined time lags. 

We quantified the risk of compound event occurrences through a return period adjustment, 

representing the ratio of bivariate 'AND' return periods under independence versus dependence 

assumptions between precipitation and storm surge. A return period adjustment close to one indicates a 

minimal likelihood of compound events, while larger adjustments signify a substantially increased 535 

frequency when dependencies are considered. These adjustments are influenced by the univariate 

frequencies of interest. For instance, when assessing the co-occurrence probability of a 10-year 

precipitation event alongside a 10-year coastal event, the return period adjustment may reach a factor of 

4. In contrast, for two 100-year events, this shift could soar to as high as 50. Notably, the univariate 

return periods are differentially adjusted, which in turn creates the curvature in the dependent return 540 

periods. To streamline these variations into a single representative value, we calculated a weighted  
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Figure 10. Breakdown of scoring assignments used to compute the compound flood hazard score. (a) Final hazard scores 

by triad. (b) One point assigned for biconditional dependence, defined as dependence in both rainfall-conditioned (CoP) 

and surge-conditioned (CoS) samples. (c) One point assigned if either CoP or CoS samples were best fit by a copula model 

exhibiting upper tail dependence. (d) Groundwater scores based on the median shallowest depth among selected wells per 

triad: 2 points for less than 6 ft below land surface (bls), 1 point for 6 to15 ft bls, and 0 points for greater than 15 ft bls.  
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average of shifts, where the weights corresponded to the inverse of model variability derived from 

bootstrap-style resampling.  

 Results of this study show a regional gradient of compound event occurrence between 545 

precipitation and storm surge. Stronger dependence between flood drivers tends to occur in the southern 

part of Long Island, NNY and across interior coastal Connecticut. Smaller shift values were found for 

eastern Long Island and New York City. These differences are likely the result of interactions between 

storm tracks, coastal geometry, and local bathymetry that can enhance or amplify storm surges.   

Although unconfined groundwater levels are shallow throughout the study area, they are most 550 

shallow in southern Nassau County, Long Island, which encompasses some of the higher return period 

adjustments and contribute to overall higher compound flood hazard scores (5 out of 5) than other 

station triads across the study area.  Extremely shallow levels are also found in southwestern 

Connecticut. More study is required to evaluate the short-term response of groundwater to coastal and 

atmospheric extreme events in this region. Informed risk management is critical for effective coastal 555 

compound flood protection, particularly in regions like Long Island and Long Island Sound, where the 

interplay among groundwater, precipitation, and storm surge amplifies flood risk. Considering a 

combined framework that integrates these flood drivers together rather than in isolation could help 

increase understanding of hydrologic hazards in the study area. This approach is particularly important 

given the region's exposure to strong coastal storms and the presence of a dynamic shallow depth to 560 

groundwater, which can exacerbate flooding in urbanized and developing coastal zones. More work is 

needed across the region to examine process-based interactions of flood waters during compound 

events, extending the results of this study into site-specific interactions of subsurface infrastructure, 

groundwater dynamics and coastal processes in a coupled modelling framework for both present and 

future conditions. 565 
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Code and Data Availability 

All data and R scripts supporting this study are archived in a U.S. Geological Survey data release (Glas et al., 2025). The 

release contains input files, both raw and imputed, scripts to replicate the analyses, and associated outputs to ensure full 

reproducibility. 
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Triad Station IDpcpt Longpcpt Latpcpt Station IDcoastal Agencycoastal Longcoastal Latcoastal Gwrad, km Gwnwells LongGW LatGW Map ID 

1 USW00094789 -73.7639 40.6392 01311875 USGS -73.885136 40.57371636 8 3 40.66038142 -73.85207963 R1- C1 

2 USW00094789 -73.7639 40.6392 01311850 USGS -73.7579103 40.6173266 6 2 40.67038128 -73.7869389 R1- C2 

3 USW00014732 -73.8803 40.7794 8516945 NOAA -73.7650033 40.80999678 5 3 40.77248147 -73.80349073 R2- C3 

4 USW00014732 -73.8803 40.7794 8516990 NOAA -73.78166929 40.79333757 9 2 40.74863888 -73.90804169 R2- C4 

5 USW00094789 -73.7639 40.6392 01310521 USGS -73.5754058 40.6276026 5 2 40.66530555 -73.64354169 R1- C5 

6 USW00094789 -73.7639 40.6392 01310740 USGS -73.5837396 40.5934366 8 3 40.67594172 -73.68191403 R1- C6 

7 USW00094789 -73.7639 40.6392 01311145 USGS -73.7373543 40.59316026 9 4 40.67966767 -73.7386687 R1- C7 

8 USW00054787 -73.4164 40.7344 01310521 USGS -73.5754058 40.6276026 6 2 40.69148991 -73.52373709 R3- C5 

9 USW00054787 -73.4164 40.7344 01310740 USGS -73.5837396 40.5934366 13 2 40.68242593 -73.56518865 R3- C6 

10 USW00054787 -73.4164 40.7344 01311145 USGS -73.7373543 40.59316026 6 6 40.67746142 -73.61586381 R3- C7 

11 USC00067970 -73.5475 41.1247 8516945 NOAA -73.7650033 40.80999678 15 4 40.84183701 -73.70124159 R4- C3 

12 USC00067970 -73.5475 41.1247 8516990 NOAA -73.78166929 40.79333757 22 3 40.85384259 -73.54185187 R4- C4 

13 USC00063207 -72.0378 41.3503 01194796 USGS -72.3459166 41.3125983 18 2 41.40519723 -72.17144725 R5- C8 

14 USC00063207 -72.0378 41.3503 8461490 NOAA -72.09499657 41.37167072 23 2 41.41445834 -71.95556669 R5- C9 

15 USW00094789 -73.7639 40.6392 8518750 NOAA -74.0150011 40.70000404 5 8 40.67155779 -73.90988824 R1- C10 

16 USW00054787 -73.4164 40.7344 01309225 USGS -73.3556765 40.66926687 5 4 40.717625 -73.37287499 R3- C11 

17 USW00004781 -73.1019 40.7939 01309225 USGS -73.3556765 40.66926687 5 2 40.74805554 -73.1894861 R6- C11 

18 USW00054790 -72.8675 40.8211 01309225 USGS -73.3556765 40.66926687 5 2 40.76749999 -73.1363472 R7- C11 

19 US1NYSF0123 -72.7981 40.8068 01309225 USGS -73.3556765 40.66926687 8 3 40.76776851 -73.08955553 R8- C11 

20 USC00300889 -72.2978 40.9519 8510560 NOAA -71.95930163 41.04812618 5 3 40.98185951 -72.17026343 R9- C12 

21 USC00301309 -73.3731 40.8833 8514560 NOAA -73.07666422 40.95000233 8 2 40.86670833 -73.21156945 R10- C13 

22 USC00307134 -72.7161 40.9625 8514560 NOAA -73.07666422 40.95000233 12 2 40.879 -72.87479165 R11- C13 

23 USW00094702 -73.1267 41.1642 8467150 NOAA -73.18166364 41.1733364 13 4 41.18623542 -73.2990625 R12- C14 

24 USW00014758 -72.8892 41.2589 8465705 NOAA -72.9083334 41.28333752 15 3 41.39843517 -72.89087036 R13- C15 

 

Table 1.  Station triad locations and associated precipitation (pcpt) and coastal station identification numbers (Station ID), including Map 

IDs referenced in Fig. 1. Agency operating each coastal station indicated as either U.S. Geological Survey (USGS) or National Oceanic 

and Atmospheric Administration (NOAA) indicated as Agencycoastal. Each triad consists of a National Oceanic and Atmospheric 

Administration (NOAA) precipitation gage (NOAA NCEI, 2023), a U.S. Geological Survey (2023) or NOAA tidal station (NOAA CO-

OPS, 2023), and the centroid of a number of clustered groundwater observation wells (GWnwells, U.S. Geological Survey, 2023) selected 

within the search radius in kilometers (GWrad,km) centered on the precipitation–tidal station midpoint. 
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  RMSE  Average Bias  

PPTwet 8.96 mm -1.49 mm  
PPT*dry 1.66 mm 0.34 mm  

PPT*all 4.59 mm -0.08 mm  
NTR 0.09 m -0.0011 m  
GW 1.1 ft -0.0012 ft  
    

*ARCHI imputed values have been censored such that values less 
than 1mm are forced to zero.  

 

Table 2.  Imputation performance statistics from a 5% holdout analysis conducted separately for wet days (precipitation (PPT) > 1 mm) 

and dry days (precipitation = 0 mm). Metrics include root mean square error (RMSE) and percent bias between withheld and imputed 

values. Results are shown for daily nontidal residual (NTR, in meters) and monthly depth to groundwater (GW, in feet). 
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Triad Thrpcpt NCoP TauCoP PcorrCoP EPYpcpt ThrSG NCoS TauCoS PcorrCoS EPYSG 

1 0.99 167 0.069 0.19 3.21 0.98 201 0.12 0.012 3.87 

2 0.99 167 0.08 0.12 3.21 0.98 201 0.13 0.0062 3.87 

3 0.99 169 0.077 0.14 3.25 0.98 202 0.12 0.009 3.88 

4 0.99 169 0.069 0.19 3.25 0.97 265 0.16 0.00017 5.1 

5 0.99 167 0.065 0.21 3.21 0.98 198 0.12 0.01 3.81 

6 0.99 167 0.066 0.21 3.21 0.97 272 0.12 0.0033 5.23 

7 0.99 167 0.069 0.19 3.21 0.97 268 0.11 0.01 5.15 

8 0.98 296 0.092 0.018 5.69 0.98 198 0.11 0.019 3.81 

9 0.98 296 0.088 0.025 5.69 0.98 199 0.11 0.017 3.83 

10 0.98 296 0.083 0.033 5.69 0.98 200 0.09 0.058 3.85 

11 0.98 298 0.092 0.018 5.73 0.98 202 0.11 0.023 3.88 

12 0.98 298 0.087 0.025 5.73 0.97 265 0.18 1.30E-05 5.1 

13 0.98 305 0.081 0.034 5.87 0.97 271 0.16 7.60E-05 5.21 

14 0.98 305 0.077 0.045 5.87 0.97 286 0.14 0.00034 5.5 

15 0.99 167 0.077 0.14 3.21 0.98 201 0.13 0.0046 3.87 

16 0.98 296 0.094 0.016 5.69 0.97 268 0.14 0.00092 5.15 

17 0.99 170 -0.019 0.72 3.27 0.97 268 0.11 0.0052 5.15 

18 0.98 296 0.092 0.018 5.69 0.97 268 0.16 9.90E-05 5.15 

19 0.98 297 -0.041 0.29 5.71 0.97 268 0.17 4.10E-05 5.15 

20 0.98 301 -0.052 0.18 5.79 0.97 272 0.098 0.016 5.23 

21 0.98 298 0.019 0.62 5.73 0.97 271 0.17 2.80E-05 5.21 

22 0.98 308 0.051 0.19 5.92 0.97 271 0.19 3.60E-06 5.21 

23 0.99 162 0.11 0.04 3.12 0.98 202 0.14 0.0043 3.88 

24 0.99 164 0.05 0.35 3.15 0.97 270 0.12 0.0032 5.19 
 

Table 3. Summary of biconditional samples for rainfall and coastal storm surge. The table includes selected threshold quantiles (Thr), 

Kendall’s tau correlation coefficients (Tau) and corresponding p-values (Pcorr), and the average number of events per year (EPY). Values 

are shown for precipitation (pcpt), surge (SG), and the number (N) of bivariate events conditioned on precipitation (CoP) and conditioned 

on surge (CoS).  Bold P values indicate tau is significant. 
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 Conditioned on Rain Conditioned on Surge   

Triad Copula family Parameter estimate PGOF ΔAIC ΔuTDC Copula family Parameter estimate PGOF ΔAIC ΔuTDC 

1 Independence - - - - Gumbel 1.1 0.22 0 0.082 

2 Independence - - - - Survival Clayton 0.27 0.96 0 0.067 

3 Independence - - - - Survival Clayton 0.29 0.52 0 0 

4 Independence - - - - Survival Clayton 0.35 0.5 0.37 0.085 

5 Independence - - - - Survival Clayton 0.27 0.8 0 0.056 

6 Independence - - - - Gumbel 1.1 0.98 0 0.028 

7 Independence - - - - Gumbel 1.1 0.72 0 0.056 

8 Gaussian 0.16 0.51 0 0.083 Survival Clayton 0.23 0.39 0 0.049 

9 Gaussian 0.16 0.63 0 0.083 Frank 1 0.64 0.27 0 

10 Gaussian 0.15 0.65 0 0.083 Independence - - - - 

11 Gumbel 1.1 0.55 0 0.056 Gumbel 1.1 0.73 0 0.046 

12 Survival Clayton 0.19 0.56 0 0 Gaussian 0.29 0.29 0 0.11 

13 Frank 0.72 0.76 0 0.062 Frank 1.5 0.67 1.3 0.077 

14 Frank 0.68 0.4 0 0.062 Frank 1.3 0.18 0 0.071 

15 Independence - - - - Gaussian 0.23 0.12 0 0 

16 Gaussian 0.17 0.9 0 0.083 Gumbel 1.1 0.32 0 0.082 

17 Independence - - - - Frank 1.1 0.91 0 0.082 

18 Frank 0.83 0.33 0 0.067 Frank 1.5 0.41 0 0 

19 Independence - - - - Frank 1.6 0.15 0 0 

20 Independence - - - - Frank 0.89 0.65 0 0.009 

21 Independence - - - - Gaussian 0.26 0.9 0 0.043 

22 Independence - - - - Frank 1.7 0.53 0 0.006 

23 Survival Clayton 0.21 0.57 0.58 0 Gumbel 1.2 0.15 0 0 

24 Independence - - - - Gumbel 1.1 0.23 0 0.09 
 

Table 4.  Selected copula models and their corresponding parameter estimates, along with ΔAIC and ΔuTDC values used in the model 

selection process.  ΔuTDC represents the difference between the empirical upper tail dependence coefficient and the median of the 

bootstrapped fitted model estimates. P values are presented for the semi-parametric goodness of fit test (PGOF, Huang and Prokhorov, 2014).  
Dashes indicate that independence copula was fit and no parameters are applicable. 
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Triad RPshiftCoP RPshiftCoS MedGW GW score 
Biconditional 

Dependence Score 

Upper Tail 
Dependence 

Score 
Component 
Score Sum 

Final Hazard 
Score 

 
 

1  5.62 15.76 0 0 1 1 2  

2  5.47 15.46 0 0 1 1 2  

3  5.84 21 0 0 1 1 2  

4  8.51 15.755 0 0 1 1 2  

5  5.33 13.955 1 0 1 2 3  

6  7.43 13.63 1 0 1 2 3  

7  7 11.6 1 0 1 2 3  

8 2.45 4.67 13.64 1 1 1 3 4  

9 2.38 1.55 11.215 1 1 0 2 3  

10 2.33  16.1 0 0 0 0 1  

11 6.86 5 8.405 1 1 1 3 4  

12 5.48 3.82 18.78 0 1 1 2 3  

13 1.37 1.86 7.805 1 1 0 2 3  

14 1.37 1.76 7.82 1 1 0 2 3  

15  2.76 15.9 0 0 0 0 1  

16 2.48 7.38 4.015 2 1 1 4 5  

17  1.57 1.77 2 0 0 2 3  

18 1.45 1.85 19.365 0 1 0 1 2  

19  1.92 14.73 1 0 0 1 2  

20  1.47 18.64 0 0 0 0 1  

21  3.56 17.855 0 0 0 0 1  

22  2.01 24.735 0 0 0 0 1  

23 3.74 5.94 1.835 2 1 1 4 5  

24  7.05 9.07 1 0 1 2 3  

 

Table 5.  Summary of average return period shifts for rain–surge events conditioned on precipitation (CoP) and on surge (CoS), along with 

the median shallowest depth to groundwater (MedGW, in feet) for each well cluster associated with a triad. Component-based scores for 

groundwater depth, biconditional dependence, and upper tail dependence were summed and scaled to produce an integrated composite 

hazard rating (Final Hazard Score). Data available in Glas et al. (2025). 
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