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Abstract.

Gridded precipitation datasets are essential for hydrological and climate applications. However, commonly used products

suffer from systematic biases such as seasonal total underestimations in mountainous regions and excessive smoothing of

the spatial variability of extremes. Here, we present a reproducible workflow for generating a daily precipitation ensemble,

conditioned on rain gauges, at 1 km resolution for mountainous regions. The approach leverages climatological information and5

spatial variability from Convection-Permitting Regional Climate Model (CP-RCM) simulations. The workflow corrects rain-

gauge undercatch, incorporates CP-RCM-based climatology to improve seasonal totals, and estimates anisotropic variograms

from CP-RCM daily fields to capture directional precipitation structures. Finally, Sequential Trans-Gaussian Simulations

generate the daily ensemble of 100 members. We evaluate commonly used gridded precipitation products and the proposed

approach using independent evaluation data, including in-situ measurements in mountainous areas (snow water equivalent,10

glacier mass balances, streamflow), regional catchment-scale water balance models, and hydrological models. Results demonstrate

that our framework outperforms deterministic gridded products. First, it more accurately captures seasonal totals in high-

altitude Snow Water Equivalent (SWE) and glacier observations, and reproduces both seasonal precipitation amounts and

their interannual variability. Second, the daily ensemble captures fine-scale spatial variability and quantifies interpolation

uncertainty, improving flood hydrological modelling. The workflow is fully reproducible via open-source code, transferable15

to regions with sparse rain-gauge networks or limited radar coverage. Beyond precipitation, it is adaptable to other climate

variables simulated by weather models.

1 Introduction

Daily gridded precipitation datasets are essential for a wide range of applications, including snowpack modeling (Quéno et al.,

2016), glacier mass balance assessments (Vionnet et al., 2019), hydrological modeling (Evin et al., 2024), or climate model20

evaluation (Fantini et al., 2018). While rain gauges primarily measure precipitation, their sparse and uneven distribution,

especially in mountainous regions, limits their ability to capture spatial variability (Hofstra et al., 2010). Interpolating these

point measurements onto regular grids is therefore necessary, but particularly challenging in complex terrain due to strong

orographically induced gradients (Dura et al., 2024b) and localized extremes.
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Several categories of gridded precipitation datasets exist, each with its specific strengths and limitations, particularly when25

applied to mountainous hydrology. Atmospheric reanalyses, including The Copernicus European Regional ReAnalysis Land

(CERRA-Land, Le Moigne, 2021), the Système d’Analyse Fournissant des Renseignements Adaptés à la Nivologie (SAFRAN,

Vidal et al., 2010), offer physically consistent long-term records but remain limited by their coarse resolution, smoothing

of orographic effects (Dura et al., 2024b), and underestimation of extremes. Radar-based datasets such as COmbinaison en

vue de la Meilleure Estimation de la Précipitation HOraiRE (COMEPHORE , Champeaux et al., 2009) or CombiPrecip30

(Sideris et al., 2014) capture the small-scale variability of extremes. However, ground echoes, beam blockage, and bright-band

contamination (e.g. Berne and Krajewski, 2013) cause large seasonal total underestimations (Faure et al., 2019; Gugerli et al.,

2020), limiting their application in mountain environments. Gauge-based interpolation products such as SPAZM (Gottardi,

2009), and SPARTACUS (Hiebl and Frei, 2018) offer an improved mountain climatology representation using climatological

background fields (Masson and Frei, 2014; Jiang et al., 2023), but remain affected by sparse gauge coverage, undercatch bias35

(Sevruk et al., 2009; Grossi et al., 2017), and oversmoothing of daily spatial variability (Hofstra et al., 2010; Hiebl and Frei,

2018). More recently, ensemble datasets such as E-OBS (Cornes et al., 2018), RhydchprobD (Frei and Isotta, 2019), and FYRE

Climate (Devers et al., 2021) have emerged, improving representation of extremes while quantifying uncertainty. But they still

fall short in capturing high-elevation precipitation patterns required for mountainous hydrology.

Despite these advances, no existing product simultaneously meets the combined requirements of mountainous hydrology,40

namely high spatial resolution, long-term coverage, realistic orographic representation, and uncertainty quantification for

extreme events. This gap limits our ability to robustly model both seasonal water balances and extreme hydrological events

in mountain catchments. This study addresses these shortcomings by introducing a reproducible workflow that combines

climatological background fields from the Convection-Permitting Regional Climate Model (CP-RCM) (Caillaud et al., 2021)

and conditional geostatistical simulation of daily anomalies to generate ensemble daily precipitation fields. The framework45

is distributed as a modular open-source code, allowing users to apply it in other regions or update it with new inputs. We

ensure reproducibility by delivering ensemble precipitation fields for two years over the Southern Alps, relying solely on open-

access gauge stations. We conduct a multi-perspective evaluation of this product using a diverse set of independent datasets.

The novelty of this work does not lie in the individual methods, which are well established, but in their integration into a

coherent framework tailored to mountainous regions, the open-source implementation, and the richness of the multi-evaluation.50

This evaluation encompasses streamflow balances in high-altitude basins, in-situ snow water equivalent sensors, glacier mass

balance observations, and daily streamflow time series. The remainder of the paper is structured as follows: Section 2 describes

the study domain, the data used for interpolation, and the evaluation datasets. Section 3 presents the interpolation framework

and evaluation design. Section 4 reports the evaluation results for hydrological, nivologic, and glaciological applications.

Section 5 discusses limitations, perspectives, and reproducibility. Section 6 gives the conclusions.55
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2 Study domain and hydrometeorological data

2.1 Study domain

The study focuses on the major mountainous regions of France, including the Alps, the Pyrénées, the Massif Central, and

the Cévennes. These areas exhibit strong altitudinal gradients (Dura et al., 2024b), which significantly influence precipitation

patterns and hydrological processes. The Alps and Pyrénées experience a mix of oceanic and continental influences, with60

substantial snow accumulation in winter and convective rainfall in summer. The Massif Central and Cévennes are more exposed

to Mediterranean influences, leading to intense autumnal precipitation events, particularly in the Cévennes. The observational

network used in this study comprises approximately 5,305 rain gauges, from Météo-France and Electricité de France (EDF, the

main electricity provider in France), providing daily precipitation from 1982 to 2018. The rain gauge distribution is irregular

in space: denser in the Massif Central and the Cévennes, and sparser in the Alps and the Pyrénées. In addition, 14 Cosmic Ray65

Snow Sensors (in French Nivomètre à Rayonnement Cosmique, NRC) (Gottardi, 2009) are distributed in alpine catchments

to monitor seasonal SWE, and three glaciers from the GLACIOCLIM observatory network 1 (namely Saint-Sorlin, Sarennes,

Argentière) assess winter accumulation reproduction at high elevations. A subset of 15 catchments, located in the Southern

French Alps, where intense convective storms occur primarily during summer and autumn, will be used in hydrological

modeling. These catchments are particularly well-suited to assess the ability of precipitation products to reproduce high-70

intensity events.

2.2 Gridded precipitation products

2.2.1 ERA5-Land

The fifth generation of European ReAnalysis (ERA5-Land, Muñoz-Sabater et al., 2021) is a global reanalysis dataset that

simulates atmospheric and surface variables, including precipitation on an hourly basis. It builds upon the atmospheric fields75

of ERA5 (Hersbach et al., 2020), downscaled to a finer spatial resolution of 9 km. ERA5-Land solely assimilates satellite and

radar data and does not include rain gauge measurements. The density and coverage of satellite and radar networks involved

in the assimilation, therefore, influence the accuracy of its precipitation estimates (Hassler and Lauer, 2021). Regions such as

Central Europe and the United States exhibit higher data quality, compared to more poorly observed areas like tropical oceans.

A key advantage of ERA5-Land is its enhanced spatial resolution, 9 km versus the 31 km resolution of ERA5 or the 80 km of80

ERA-Interim (Muñoz-Sabater et al., 2021), which contributes to a more accurate representation of precipitation spatial patterns

(Gomis-Cebolla et al., 2023).

2.2.2 CERRA-Land

The Copernicus European Regional ReAnalysis Land (CERRA-Land, Ridal et al., 2024) represents the latest regional reanalysis

product for Europe, available from 1984 onward at a horizontal resolution of 5.5 km. It employs the HIRLAM ALADIN85

1https://GLACIOCLIM.osug.fr/
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Figure 1. Study domain with elevation (meters). Grey dots indicate rain gauges, light blue dots mark glacier sites, and red triangles show

Cosmic Ray Snow Sensors (NRC). Names of major mountain regions and associated catchments are labeled in bold and black, while

catchments used for hydrological modeling are highlighted in red. To assess the hydrological mass balance constraints (see sub-section 3.2),

11 (AlpesSud), 46 (Cévennes), 42 (MassifCentral), and 20 (Pyrénées) catchments are colored in grey.

Regional/Mesoscale Operational NWP In Europe (HARMONIE) atmospheric model, driven by ERA5 boundary conditions,

and is executed every 3 hours at its native resolution. The MESCAN system (Soci et al., 2016) refines the outputs through

optimal interpolation with approximately 8,000 daily rain gauge records. According to Le Moigne (2021), CERRA-Land

offers improved representation of snow depth seasonality in the Alps when compared to ERA5-Land.

2.2.3 SPAZM90

The SPAtialisation en Zones de Montagne (SPAZM) (Gottardi, 2009) is a high-resolution precipitation interpolation tool

tailored for mountainous regions. It combines rain gauge measurements with a meteorological background field adjusted

4

https://doi.org/10.5194/egusphere-2025-5679
Preprint. Discussion started: 25 November 2025
c© Author(s) 2025. CC BY 4.0 License.



based on topographic features and the prevailing weather type of the day. Using geopotential fields, eight distinct weather

patterns are identified (Garavaglia et al., 2010), each associated with a corresponding daily mean precipitation field. Local

linear regressions incorporating altitude generate these 1 km spatial resolution fields. For any specific day, the daily observed95

precipitations are used to derive anomalies, which are interpolated and then applied to the mean precipitation field to obtain

the daily precipitation field. Historically, SPAZM integrates data from 2,101 stations operated by EDF (including rain gauges

(603) and snow totalizers (216)), Météo-France (555), MeteoSwiss (213), Arpa Piemonte (383), and Instituto Nacional de

Méteorologia (131). Although it incorporates fewer stations than COMEPHORE, those used are at higher altitudes. Several

hydrological studies (Gottardi, 2009; Ménégoz et al., 2020; Ruelland, 2020) used SPAZM due to its capacity to yield accurate100

annual precipitation estimates.

subsectionSnow datasets

2.2.4 NRC

The Nivomètres à Rayonnement Cosmique (NRCs, Gottardi, 2009) are innovative instruments developed by EDF to monitor

SWE using cosmic ray neutron sensing at the daily timescale. These sensors estimate the amount of water stored in the105

snowpack without the need for snow pits. NRC improves snowpack evolution tracking in the 2,030-2,730 m altitude range for

operational hydrological forecasting, especially in the framework of EDF’s water resource and hydropower management.

2.2.5 Glacier winter mass balance measurements

Winter Surface Mass Balance (WSMB) data is available for five glaciers, namely Saint-Sorlin, Sarennes, Gebroulaz, Argentière,

and Mer de Glace, located throughout the French Alps. These glaciers are part of the GLACIOCLIM observatory (Six110

and Vincent, 2014). WSMB is measured (in kg×m−2) at the end of the snow accumulation season (typically between late

April and early May), using snow cores combined with density measurements in both accumulation and ablation zones, with

approximately 200 [kg × m−2] (200 mm of SWE) uncertainty (Thibert et al., 2008). We exclude the Argentière and Mer

de Glace glaciers from the evaluation as the CP-RCM simulations, used in this study, contain artefacts that cause excessive

precipitation in the Mont-Blanc area (Monteiro et al., 2022). Measurement points on the three remaining glaciers are located at115

relatively high elevations, typically between 2,690 and 3,390 m, thus providing valuable information at altitudes not covered by

NRCs. For each glacier and accumulation period, we average WSMB measurements because of the small size of the glaciers

(≤ 3 km2).

2.3 Hydrological models

2.3.1 GR6J120

The Génie Rural à 6 paramètres Journalier (GR6J, Pushpalatha et al., 2011) is a lumped daily rainfall–runoff model developed

in the context of the airGR I hydrological modelling package (Coron et al., 2017). It simulates streamflow based on daily

precipitation and potential evapotranspiration, using six parameters that control storage, routing, and exchange processes. Its
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simplicity and parsimony make it well-suited for large-sample hydrological studies (Tyralis et al., 2023; Devers et al., 2024).

GR6J performs well across diverse catchments and climatic conditions (Flores et al., 2021; Kuana et al., 2024; Hrour et al.,125

2025). We calibrate the model using Kling–Gupta efficiency (Gupta et al., 2009, KGE,) on the daily streamflow.

2.3.2 MORDOR-SD

The MOdèle de RUissellement et de Débit d’ORdre Supérieur – Semi-Distribué (MORDOR-SD) is a semi-distributed conceptual

hydrological model, structured by elevation bands, and developed by EDF (Garavaglia et al., 2017) for simulating river

discharges at hourly to daily scales. It incorporates snow accumulation and melt, evapotranspiration, soil moisture dynamics,130

and flow routing. The catchments are discretized based on elevation bands to better simulate snow and rainfall processes.

It is particularly suited for mountainous catchments (Evin et al., 2024) and operational use (Paquet, 2004). Calibration uses

multi-objective criteria (Garavaglia et al., 2017).

3 Methods

3.1 Interpolation framework135

Interpolating daily precipitation fields over mountainous terrain requires addressing both measurement errors and spatial

variability. The proposed methodology involves three main steps:

(1) correction of gauge undercatch,

(2) construction of climatological background fields stratified by weather regimes, and

(3) conditional geostatistical simulation of daily precipitation anomalies.140

Figure 2 illustrates the spatial interpolation workflow.

3.1.1 Step 1: Gauge correction

We corrected rain gauge observations for wind-induced undercatch by multiplying all snowfall measurements by 1.6, although

undercatch depends on local wind (Sevruk et al., 2009), precipitation intensity (Cauteruccio et al., 2024), gauge type, and

also affects rainfall (Pollock et al., 2018). The order of magnitude of 1.6 as a snow correction factor is commonly applied for145

hydrological and snow applications (e.g. Gottardi, 2009; Jonas and Schirmer, 2022). Daily precipitation at station xs and day

t, denoted P corr(xs, t), is corrected for gauge undercatch before interpolation as follows:

P corr(xs, t) = αsnow · fsnow[T (xs, t)] ·P (xs, t) +αliquid · {1− fsnow[T (xs, t)]} ·P (xs, t) (1)

where αsnow = 1.6 is the correction factor for solid precipitation and αliquid = 1.0 for the liquid precipitation. The solid fraction

fsnow depends on the mean daily temperature T (xs, t). Appendix A gives more details on the expression of the solid fraction150
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Figure 2. Workflow for generating an ensemble of 100 daily precipitation fields. The process integrates rain gauge undercatch correction,

topographical variables, and convection-permitting climate model simulations. These inputs are used in a random forest spatial interpolation

to produce climatological fields by weather patterns. Simultaneously, climate model outputs inform 2D daily anisotropic variograms, which

are used to generate 100 conditional simulations of daily anomalies. The final ensemble is obtained by multiplying climatological fields with

daily anomalies.

given the temperature. Determining appropriate temperature thresholds for rain–snow partitioning remains an active area of

research, and the sensitivity to this choice was not evaluated in this study.

3.1.2 Step 2: Climatological construction

A key component of the interpolation framework is the use of climatological background fields stratified by class that represent

the mean spatial distribution of precipitation and account for orographic effects. These fields are built from CP-RCM simulations155
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AROME (Caillaud et al., 2021), and refined using long-term rain gauge observations. A machine learning model is used to

adjust the model climatology to match observed seasonal totals (Dura et al., 2024a). For each station s and climatological class

c (e.g., month, season, or weather regime), the ratio between corrected observations and CP-RCM climatology is R(xs, c) =
P corr(xs,c)

M(xs,c)
where overlines denote climatological averages, and M(xs, c) is the CP-RCM climatology at station xs. The log-

ratios logR(xs, c) are interpolated spatially with a Random Forest regression using the following predictors:160

logR(x,c) = f [M(x,c), logM(x,c), alt(x), lon(x), lat(x), d(x,S)] , (2)

where alt(x) is the altitude at pixel x, lon(x) is the longitude at pixel x, lat(x) is the latitude at pixel x, d(x,S) are buffer

distances to the station network S. We tune the Random Forest algorithm to choose the hyperparameters. Appendix B indicates

the hyperparameters tested. We use the ranger I (Wright and Ziegler, 2017) package for Random Forest spatial interpolation.

The background field is reconstructed as:165

B(x,c) = exp
[
logR(x,c)+ logM(x,c)

]
. (3)

3.1.3 Step 3: Daily anomaly interpolation

Each day t is considered independently. These background fields are then adjusted to match daily rain gauge observations.

Anomalies relative to the climatological background are computed as A(xs, t) = P corr(xs,t)
B(xs,ct)

where ct is the climatological class

of day t. Positive anomalies are transformed into the Gaussian domain through a quantile transformation, which accounts for170

the skewed nature of precipitation data. Appendix C shows the applied formula for the transformation and back-transformation

steps.

The transformed anomalies are modeled as a Gaussian random field as:

Z(x,t) = m(x) + ε(x,t), (4)

175

m(x) = β0 + β1 alt(x) +β2 lon(x) +β3 lat(x) +β4 B(x,ct), (5)

where all covariates are standardized. The trend m(x) helps capture large-scale spatial gradients in precipitation while allowing

the residual component to model finer-scale variability. Spatial variability of the residuals ε(x,t) is modeled using a daily

anisotropic exponential variogram, estimated from CP-RCM precipitation fields. This allows the interpolation to incorporate

directional dependence and reproduce elongated structures typical of convective or orographic precipitation. The exponential180

variogram is widely adopted in geostatistics (Masson and Frei, 2014; Frei and Isotta, 2019), as it captures the smooth decrease

of autocorrelation with distance.

γ(h) = c0 + c

[
1− exp

(
−daniso(h)

a

)]
, (6)

8

https://doi.org/10.5194/egusphere-2025-5679
Preprint. Discussion started: 25 November 2025
c© Author(s) 2025. CC BY 4.0 License.



where c0 denotes the nugget, c the partial sill, a the range parameter, and daniso the anisotropic distance. Appendix D defines

the anisotropic distance. The variogram parameters are optimized by weighted least squares on CP-RCM anomalies, using185

weights w(h) = Nh

h2 , where Nh is the number of pixel pairs separated by distance h..

For each day t, N = 100 conditional simulations {Z(n)(x,t)}N
n=1 are generated with Sequential Gaussian Simulation,

conditioned on gauge anomalies, using the gstat I package (Pebesma, 2004). These simulations reproduce both the observed

anomaly values and the spatial structure inferred from the variogram and trend, while providing spatial uncertainty. Back-

transformation yields N = 100 conditional simulations {A(n)(x,t)}N
n=1 of anomaly fields, and final daily precipitation fields190

are P̂ (n)(x,t) = A(n)(x,t)B(x,ct). This precipitation product is named Interpolated Station precipitation for Alpine Regions

at Daily resolution (ISARD).

We use the raster I (Hijmans, 2025) package to manipulate spatial matrix, sf (Pebesma, 2018) and sp (Pebesma and

Bivand, 2005) I packages to deal with spatial point data.

3.2 Evaluation195

3.2.1 Accumulated precipitation amounts in mountain catchments

To assess the performance of precipitation products in mountainous environments, a two-scale evaluation strategy is applied:

one at the catchment scale, utilizing hydrological mass balance constraints, and another at high-altitude point locations using

independent snow-related observations.

At the catchment scale, the evaluation is based on the long-term hydrological mass balance. The Turc-Pike models (also200

known as the Turc or Budyko-type function) (Turc, 1955; Pike, 1964) are widely used to relate runoff (Q) to precipitation (P )

and potential evapotranspiration (ETP ) via a simple empirical relationship. It expresses the runoff coefficient Q
P as a function

of the humidity index P
ETP as follows:

Q

P
=

[
1 +

(
P

ETP

)n]− 1
n

. (7)

Q, P , and ETP are in mm.yr−1, and n is a shape parameter fitted using least squares, and describing the climate of the205

catchments. Low n values (≈ 1) are associated with humid climates and energy-limited regimes. High n values (≈ 3) reveal

arid or semi-arid regions, where water is limited and potential evapotranspiration exceeds precipitation. For each precipitation

product and mountainous region, we compute the deviation of individual catchments from the fitted regional Turc-Pike model,

summarized by the sum of squared errors.

3.2.2 Accumulated precipitation amounts at high-elevation sites210

At high-elevation sites equipped with NRC, seasonal snow accumulation assesses the interannual variability of gridded pre-

cipitation products. For each year, we compute the seasonal SWE accumulation as the difference between the maximum and

minimum daily SWE values over the winter season (December 1 to February 28). We select the NRC above 2,000 m, where we
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assume negligible melt during winter. Considering the sum of daily SWE variations over a season would relax this assumption,

but such comparisons are sensitive to snow redistribution and measurement noise. For each year and precipitation product,215

the correlation coefficient between accumulated SWE and total precipitation assesses interannual agreement. In the case of

the ISARD ensemble, the correlation is computed between the SWE accumulation and the ensemble-mean precipitation. We

conduct a similar analysis using winter glacier mass balance data from GLACIOCLIM observatories. Since the measurement

dates change each year, precipitation accumulation is computed based on the observed start and end dates of the winter

mass balance survey. The correlation between observed glacier winter mass balance and accumulated precipitation provides a220

complementary evaluation of precipitation products in glacierized environments.

3.2.3 Hydrological modeling of floods

The hydrological models allow the assessment of precipitation intensity and variability at the catchment scale, using measured

streamflow as a reference. 15 catchments in the Southern French Alps are selected due to the high occurrence of intense

precipitation in summer and autumn. A split-sample approach is applied independently for each catchment and hydrological225

model. The available simulation period is split into two equal-length sub-periods. For each configuration, the model is calibrated

on the first half and evaluated on the second half, then the procedure is reversed. In both cases, one additional year is used as

a warm-up period before each calibration or evaluation phase to minimize the influence of initial conditions. We calibrate

independently the models for each precipitation forcing. In the case of the 100-member ensemble precipitation forcing, a first

calibration is conducted using the ensemble mean precipitation. The resulting parameter set constitutes initial conditions for230

calibrating each of the 100 individual ensemble members.

Flood events are selected based on the observed discharge time series. We pick an average of three events per year, ensuring

a minimum 5-day separation: if multiple events occur within a 5-day window, we retain only the maximum. Additional criteria

are applied to ensure the events are rainfall-driven. Specifically, at least one of the two days preceding the flood must exhibit

precipitation above the 90th percentile, and the basin-averaged daily air temperature on the flood day must be greater than 0◦C.235

To evaluate the quality of ensemble streamflow forecasts during flood events, we use the Continuous Ranked Probability

Score (CRPS), which measures the distance between a predicted cumulative distribution function (CDF) and an observed

scalar value. Let yt ∈ R be the observed streamflow on day t, and Ft(x) the forecasted CDF for that day. The CRPS is defined

as:

CRPSt =

+∞∫

−∞

(
Ft(x)−1{x≥yt}

)2
dx, (8)240

where 1{x≥yt} is the step function equal to 1 when x≥ yt and 0 otherwise. We compute CRPS values using the scoringRules

I package (Jordan et al., 2019).

The mean CRPS over the set of flood days in month m, denoted Tm, is equal to:

10
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CRPSm =
1
|Tm|

∑

t∈Tm

CRPSt. (9)

To compare gridded precipitation products, we compute the Continuous Ranked Probability Skill Score (CRPSS) relative to245

SPAZM as:

CRPSSm(P | SPAZM) = 1− CRPSm(P )
CRPSm(SPAZM)

, (10)

where P denotes any gridded precipitation product under evaluation (ERA5-Land, CERRA-Land, ISARD). CRPSS equals

0 indicates similar skill in hydrological modeling of floods to SPAZM. Positive (negative) values indicate improvements

(degradation) over SPAZM.250

Furthermore, we evaluate how well the model reproduces the distribution of observed streamflows using the Quantile

Relative Error (QRE) metric (Evin et al., 2024). This indicator compares the simulated and observed streamflow quantiles

and is defined as follows:

QREp = 1− F̂−1
o (p)− F̂−1

s (p)
F̂−1

o (p)
, (11)

where F̂−1
o (p) is the empirical distribution of observed streamflows associated with probability p, F̂−1

s (p) is the empirical255

distribution of simulated streamflows associated with the same probability. QRE below (above) 1 indicates quantile underestimation

(overestimation).

4 Results

4.1 Accumulated precipitation amounts in mountain catchments

Figure 3 displays the fitted Turc-Pike models, stratified by mountainous regions, for the four precipitation products under260

consideration. Points located in the red zones correspond to catchments exhibiting non-physical hydrological behavior. Spe-

cifically, the annual runoff Q must not exceed the yearly precipitation P , and the difference P −Q (i.e., the water available

for evapotranspiration) must not exceed the potential evapotranspiration ETP . For each region and precipitation product, the

sum of squared errors (SSE) between individual catchments and the fitted curve can be computed. A lower SSE indicates a

better agreement between the precipitation estimates and the expected hydrological behavior of the catchments, assuming that265

catchments within a given region share similar physical characteristics. The ERA5-Land product underestimates average annual

precipitation, resulting in inconsistencies in the hydrological balance. Specifically, the scaled runoff coefficient (Q/P ) is too

high, and the humidity index (P/ETP ) is too low in the Cévennes and Massif Central regions. For instance, the catchment ID

187 situated in the Massif Central is close to 1. In contrast, CERRA-Land shows notable improvements over ERA5-Land, with
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point clouds aligning more closely with the Turc-Pike model curves. For example, in the Cévennes, CERRA-Land reduces the270

sum of squared errors (SSE) from 0.58 to 0.22. SPAZM ranks second among the precipitation products, but its interpolation

lacks robustness in the Massif Central, where the SSE reaches 0.16, compared to 0.11 with CERRA-Land. This discrepancy is

due to several catchments falling into the red zone, indicating a possible overestimation of annual precipitation. The ISARD

product helps reduce the spread of deviations from the Turc-Pike models in all studied regions. In the Pyrénées, ISARD

produces more annual precipitation amounts than SPAZM for some high-altitude catchments (ID 118 and 120), reducing SSE275

from 0.17 to 0.1.

4.2 Accumulated precipitation amounts at high-elevation sites

The Turk-Pike model provides an indirect assessment of the mean precipitation amounts at the catchment scale and over a

climatological period, by comparison with long-term means of streamflow measurements and empirical formulations of the

evapotranspiration. In-situ snow measurements can provide a complementary reference at the point scale and for different years,280

highlighting interannual variability and systematic biases. Figure 4 displays the reproduction of the inter-annual variability of

SWE measurements at (a) NRC and (b) glacier sites.

At NRC sites, the ISARD spread derived from the ensemble often contains the SWE measurements, whereas the other

gridded precipitation largely underestimates SWE observations. We find the same ranking of performance as in Fig. 3. ERA5-

Land severely underestimates winter precipitation and the inter-annual variability. CERRA-Land shows a notable but insufficient285

improvement. SPAZM outperforms CERRA-Land only in terms of inter-annual variability, but not in terms of bias. ISARD is

the least biased gridded precipitation product, but it overestimates SWE for some NRCs (N1669, N1716). Additionally, it can

represent, as does SPAZM, the inter-annual variability of SWE measurements.

Figure 4 (b) provides the same information as Fig. 4 (a) using winter mass balance measured at glaciers as references

instead of SWE measurements. The glaciers are slightly at a higher altitude than SWE-measured sites, but the same conclusions290

remain. ISARD is the most accurate precipitation product, remaining unbiased at Gebroulaz and Saint-Sorlin glaciers, slightly

underestimating precipitation at the Sarennes glacier, while effectively capturing the inter-annual variability of the observations.

ISARD is the least biased precipitation product in mountainous regions according to three different data sources: water

balance at catchment scale, SWE, and winter mass balance observations. The confidence intervals derived from interpolation

uncertainty contain the observations, while not being excessively widespread. We will also evaluate the proposed approach as295

precipitation input for hydrological modeling to simulate floods.

4.3 Hydrological modeling of floods

4.3.1 Case study

Figure 2 illustrates the spatial interpolation workflow of ISARD for 1996-01-11. The climatological background field is

adjusted using 100 conditional simulations of anomaly fields. These anomaly fields show distinct spatial patterns, reflecting300

interpolation uncertainty, and give precipitation members with associated spatial patterns. The 32nd and 81st members yield
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Figure 3. Turc–Pike model results showing the runoff coefficient (y-axis) as a function of the humidity index (x-axis). Black points represent

individual catchments. Vertical facets correspond to different regions, and horizontal facets to different gridded precipitation products. Within

each facet, the dotted line indicates the fitted Turc–Pike curve, with the fitted parameter n and the sum of squared errors (SSE) reported.

200 mm precipitation cells in the Var at Entrevaux catchment (colored in red), whereas the 41st member exhibits much lower

precipitation totals. The members appear less smooth than the deterministic gridded products ERA5-Land, CERRA-Land, and

SPAZM, and contain high-intensity cells. The color of the catchments is reflected in the sub-titles of Fig. 6.

Figure 6 illustrates the estimated average precipitation time series for two catchments, along with the associated streamflows305

derived from hydrological modeling using MORDOR-SD. We focus on the 1991-01-12 flood peak, related to Fig. 5. The
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Figure 4. (a) Interannual variability of winter snow water equivalent (SWE) accumulation and accumulated precipitation from 1 December

to 28 February, for CERRA-Land, ERA5-Land, SPAZM, and ISARD. Black points denote in-situ measurements. (b) Same as (a), but for

glacier winter mass balance measurements.
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Figure 5. Interpolation workflow illustrated for 11 January 1996. (a) Climatological background field (shown three times for visualization),

(b) three randomly selected daily anomaly fields from conditional simulations, and (c) daily precipitation estimates from ERA5-Land,

CERRA-Land, SPAZM, and three ensemble members of ISARD corresponding to the simulated anomalies. Catchment outlines are indicated;

simulated runoff for the blue and red catchments is presented in Fig. 6.

precipitation uncertainty is significant, even averaged at the catchment scale, and propagates up to hydrological modeling. At

the Issole at Mourefrey catchment, the deterministic gridded precipitation products smooth out the spatial variability of the

precipitation field, resulting in an underestimation of intense cells, followed by an understimation of the flood peak. On the

contrary, ISARD precipitation ranges from 60 to 130 mm. This corresponds to an estimated flood between 25 and 100 m3s−1,310

which enables the reproduction of the flood peak, measured at 65 m3s−1. At the Var at Entrevaux catchment, deterministic

products can reproduce the flood peak this time, and some ISARD members show excessive precipitation.

4.3.2 Systematic evaluation

Figure 7 exhaustively evaluates the precipitation products as inputs for hydrological modeling of floods. In Fig. 7 (a), for

each catchment, month, and hydrological model, the mean CRPS for floods is computed for both SPAZM and the other315

precipitation products, with their relative differences shown. Regardless of the catchments, months, and hydrological models

considered, SPAZM consistently outperforms ERA5-Land and CERRA-Land in flood modeling. Additionally, the ISARD

ensemble outperforms the deterministic SPAZM. We observe substantial improvements in autumn, which is the season most

susceptible to flooding due to heavy rainfall. Figure 7 (b) compares the precipitation products in terms of flood distribution.

ERA5-Land underestimates the high flood quantiles, across all hydrological models, which is expected and explains the320

results in Fig. 7 (a). CERRA-Land, in contrast, yields unbiased distribution scores. The poorer CRPS performance relative

to SPAZM is therefore not due to a systematic bias in flood quantiles. Despite an improvement in CRPS, ISARD shows similar

performance to SPAZM in terms of distribution, with both products being unbiased for large quantiles.
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Figure 6. Simulated catchment precipitation and runoff for the 1995 hydrological year (1 September to 31 August), colored by gridded

precipitation product, for (a) the Issole at Mourefrey catchment and (b) the Var at Entrevaux catchment. Black curves indicate observed

runoff.

5 Discussion

5.1 Seasonal accumulation in mountains325

The interpolation framework reproduces accumulated precipitation amounts in mountainous regions with good consistency

across multiple independent datasets. At the catchment scale, annual precipitation balances well with evapotranspiration and

runoff (see Fig. 3). At the point scale, the ensemble reproduces seasonal snow water equivalent (SWE) from nivological

reference catchments (NRCs) and winter mass balances of glaciers, providing confidence in the representation of high-elevation

precipitation. Despite this overall agreement, some limitations remain:330

• Methodological limitations: The applied methodology presents two main limitations.

– Uniform snowfall undercatch correction: To account for the systematic undercatch of snowfall by rain gauges,

we applied a uniform correction factor of 1.6 to all snowfall measurements. This choice is consistent with values

reported in Alpine studies (Gottardi, 2009; Jonas and Schirmer, 2022), but we emphasize that it represents a

coarse approximation. To our knowledge, no operational gridded precipitation product currently includes an explicit335

undercatch correction. At the seasonal scale, this adjustment largely removes the bias in total snowfall accumulation

(see Fig. 4). However, it inevitably compensates both overestimations and underestimations at shorter timescales.

In particular, the correction likely misrepresents daily precipitation amounts, since undercatch is not constant

but depends on wind speed (Sevruk et al., 2009), precipitation intensity (Cauteruccio et al., 2024), and gauge

exposure. Spatial variability is also an issue: in some regions, especially the southernmost NRCs, the correction340
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Figure 7. (a) Continuous Ranked Probability Skill Score (CRPSS, % relative to SPAZM) for flood modeling across catchments (y-axis)

and months (x-axis), stratified by gridded precipitation products (horizontal facets) and hydrological models (vertical facets). Catchments

are ordered by increasing surface area. Box colors correspond to CRPSS values, with red (blue) indicating performance degradation

(improvement) relative to SPAZM. Boxes marked with a star indicate more than 10 flood events for the given catchment and month, while

empty boxes correspond to fewer than 2 events. (b) Distribution of quantile relative errors (y-axis) for the two hydrological models (x-axis),

filled by gridded precipitation products and stratified by quantiles (horizontal facets).

appears to produce unrealistically high accumulations. We therefore caution that our corrected dataset should not

be interpreted as a physically consistent representation of snowfall at the daily scale. Instead, it should be seen as a

first-order seasonal adjustment. Further improvements could rely on more refined transfer functions that explicitly
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account for wind speed and station metadata (Buisán et al., 2017; Kochendorfer et al., 2020), for example, by

exploiting hourly AROME reanalysis winds. The main challenge is the availability and quality of rain gauge345

metadata, which are often incomplete or subject to change over time.

– Dependence on CP-RCM quality: The reliability of high-altitude precipitation estimates in ungauged regions

strongly depends on the capacity of the CP-RCM to reproduce spatial variability in complex mountainous terrain.

In particular, the quality of the precipitation–altitude relationship (lapse rates) provided by the CP-RCM is critical.

We therefore caution potential users that these lapse rates should always be evaluated before the interpolation step,350

as illustrated in Dura et al. (2024b). This dependence becomes more pronounced when the rain gauge network is

sparse: the sparser the rain gauge network, the more critical the CP-RCM performance becomes.

• Evaluation biases: Some limitations could alter the evaluation of high-altitude precipitation.

– No-melt assumption: Our evaluation against SWE and glacier mass balances assumes negligible melt during

winter. This assumption, historically valid above 2,000 m, is increasingly questionable under present warming. The355

SWE chronicles of NRC N1669 and N1716 show (not shown here) snow melting in winter, which could explain the

supposedly overestimation of ISARD (see Fig. 4). Considering daily SWE variations would relax this assumption,

but such comparisons are sensitive to snow redistribution.

– Scale mismatch: Furthermore, the native resolution of the precipitation ensemble is 1 km, but the resolved resolution

is coarser, which is insufficient to explain the spatial variability of snowfall. NRCs are point data, and the Sarennes360

only covers 0.09 km2. This scale mismatch could also explain the differences between precipitation accumulated

at the km scale and point SWE measurements, especially in this complex topography area.

5.2 Reproduction of floods using hydrological models

The proposed spatial interpolation framework allows hydrological modeling of floods by providing an ensemble to represent the

spatial variability of daily precipitation. The cross-reading of Fig. 5 and Fig. 7 illustrates this point. The ensemble outperforms365

the best deterministic gridded precipitation products in terms of flood peak representation, but not in long-term runoff frequency

distributions. Here are a few points that need to be discussed.

– Model calibration: Hydrological models are recalibrated for each precipitation forcing, which may attenuate differences

between the gridded products. We try to mitigate this issue by performing a split-sample evaluation. One possible

improvement would be to generate a synthetic reference precipitation field each day, and use it for model calibration.370

From this field, we could extract several points to act as virtual rain gauges, then apply different spatial interpolation

methods to reconstruct the full field. Streamflow simulations could then be performed using the parameters obtained

from the full-field calibration, allowing us to assess how interpolation methods affect hydrological performance.

– Hydrological model structure: The models used here are lumped or stratified by elevation bands, which do not fully

exploit the ensemble’s spatial variability. While mean precipitation inputs appear similar across products, spatial patterns375
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differ notably. Fully distributed hydrological models such as MORDOR-TS (Rouhier et al., 2017) would better value

the ensemble information and represent the link between spatial rainfall variability and flood response (Bárdossy and

Anwar, 2023).

– Evaluation uncertainties: Imperfect hydrological modeling could also contaminate the evaluation of precipitation

forcings. Several factors could affect the modeling, such as poor temperature inputs, imperfect evapotranspiration formulation,380

undercatch of snowfall and rainfall, groundwater exchanges, and hourly hydrological signatures modeled at the daily

timescale.

5.3 Scope and reproducibility of the framework

A considerable strength of the framework lies in its reproducibility and applicability across contexts. It requires only rain gauge

observations and CP-RCM simulations, making it transferable to regions with varying data availability.385

– Station density: We speculate that the interpolation framework is designed for whatever the available rain gauge density,

and could also be successful in a low rain gauge density scenario. The construction of the climatological background

fields is robust to low station density. The use of Random Forest to interpolate climatological anomalies of rain gauge

amounts on CP-RCMs simulations produces unbiased fields even for low rain gauge density, while reproducing the

spatial variance of the observations (Dura et al., 2024a). This approach considerably values CP-RCMs simulations,390

keeping in mind that our ability in precipitation modeling is now outperforming our ability to measure precipitation

in mountainous regions (Lundquist et al., 2019). The final step of the interpolation framework, the interpolation of

anomalies, is performed through conditional simulations using CP-RCM variograms. As a result, the variogram estimation

is not affected by an insufficient rain gauge density, and the interpolation does not produce overly smooth fields (Hofstra

et al., 2010). With fewer gauges, the ensemble members diverge more strongly, reflecting actual interpolation uncertainty.395

In sparser rain gauge networks, generating more members should be considered.

– Flexibility of inputs: While we use CP-RCMs at 2.5 km resolution, the framework might ingest any high-quality RCM

depending on the target application scale.

– Extension to other variables: Although developed for daily precipitation, the framework is likely applicable for temperature,

wind, or radiation. Temperature is less spatially variable and better represented by CP-RCM, while anisotropic variograms400

support wind interpolation.

Overall, the framework successfully merges point observations and CP-RCM information, providing ensemble precipitation

fields that improve hydrological modeling while remaining transparent and reproducible. Its main current limits lie in snowfall

undercatch correction, CP-RCM dependence, and evaluation uncertainty, defining clear pathways for future research.
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6 Conclusion405

This study presents a spatial interpolation reproducible workflow applied to daily precipitation in alpine regions. The workflow

consists of: (i) correcting rain-gauge measurements for undercatch, (ii) constructing climatological background fields stratified

by weather regimes by merging rain gauges with CP-RCM climatologies to account for orographic effects, and (iii) generating

conditional simulations of daily anomalies that exploit CP-RCM-derived spatial variability. The approach is benchmarked

against widely used products (ERA5-Land, CERRA-Land, and SPAZM, a regression-based interpolator) and evaluated with410

multiple independent datasets, including catchment-scale water balance, in-situ SWE, glacier winter mass balance, and flood

hydrological modelling.

Results show that the proposed workflow outperforms existing gridded precipitation products in reproducing seasonal

totals in mountainous regions and hydrological modelling of floods. By correcting undercatch and integrating CP-RCM

climatology, it provides higher and more realistic precipitation totals at high-elevation sites, while preserving observed inter-415

annual variability. The ensemble simulations explicitly represent interpolation uncertainty and capture fine-scale spatial variability,

leading to improved flood simulations across all studied catchments and with both hydrological models. Even higher benefits

might arise with fully distributed hydrological models.

Overall, these findings highlight the potential of the proposed workflow as a robust approach for precipitation interpolation

in regions with complex topography. It is particularly promising in data-scarce areas where high-quality CP-RCM or RCM420

simulations are available. By providing modular, open-source code and a test case, we ensure the workflow’s adaptability to

other regions and its extension to diverse climate variables.
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Appendix A: Solid fraction of precipitation

fsnow[T (xs, t)] =





1, T (xs, t) <−2◦C,

0.5 +
T (xs, t)

4
, −2◦C≤ T (xs, t)≤ 2◦C,

0, T (xs, t) > 2◦C.

, T (xs, t) =
Tmin(xs, t) +Tmax(xs, t)

2
(A1)

Appendix B: Random Forest hyperparameters440

The Random Forest algorithm hyperparameters are chosen by cross-validation. We perform cross-validation separately for

each weather pattern. nobs refers to the number of observations in the training dataset.

– Number of trees ntree ∈ {50;100;500}

– Number of co-variables to test to split a leaf mtry ∈
{

nobs

3 ; nobs

2 ; 2×nobs

3

}

– Number of minimum observations to split a leaf nodesize = 1445

Appendix C: Transformation into Gaussian distribution and back-transformation

Zs,t =





Φ−1[u0 + (1−u0)Fγ(As,t)], As,t > 0,

Φ−1[U(0.01,u0)], As,t = 0,

(C1)

where Fγ is the Gamma CDF fitted to nonzero values,Φ−1 the Gaussian quantile function, u0 the empirical probability of zero

precipitation, and U is the uniform distribution.

Back-transformation yields simulated anomalies450

A(n)(x,t) =





F−1
γ

{
Φ[Z(n)(x,t)]−u0

1−u0

}
, Φ[Z(n)(x,t)] > u0,

0, otherwise,

(C2)

Appendix D: Anisotropic distance

The anisotropic distance daniso(h) between two locations separated by a lag vector h = (hx,hy) is defined as:

daniso(h) =

√(
hx cosθ +hy sinθ

ax

)2

+
(−hx sinθ +hy cosθ

ay

)2

, (D1)

with ax = a, ay = a/η, η the anisotropy ratio, and θ the anisotropy direction (measured counterclockwise from the x axis).455
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