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Abstract. Anticipating marine ecosystem changes is critical for enabling communities to adapt to climate fluctuations and 

for predicting future climate by considering interactions between Earth’s physical and biogeochemical fields. Earth System 

Models (ESMs) simulate Earth’s multi-facet features, but their predictive capabilities remain limited due to sparse 15 

biogeochemical observations and structural uncertainties in marine biogeochemical models. Here, we develop a deep 

learning–based prediction system to forecast surface chlorophyll concentrations across all Large Marine Ecosystems 

(LMEs). Trained on multi-decadal simulations from various climate models and a coupled physical–biogeochemical 

reanalysis from a data assimilative ESM run, the system demonstrates skillful chlorophyll predictions comparable to ESM-

based dynamic forecasts. The prediction skill arises from physical-biogeochemical coupling processes triggered by large-20 

scale climate variability, consistent with the mechanisms previously identified in dynamical forecasts. Furthermore, 

predicted chlorophyll anomalies are significantly linked to interannual variability in fish catch in several LMEs, 

demonstrating the promise of data-driven biogeochemical forecasting to support adaptive, climate-informed marine resource 

management. 

1 Introduction  25 

Marine ecosystem plays a pivotal role in regulating Earth's climate system, particularly through the cycling of carbon and 

other greenhouse gases at the ocean–atmosphere boundary (Volk and Hoffert, 1985; Falkowski et al., 2000). Phytoplankton, 

a central component of the marine ecosystem, drives the biological carbon pump via photosynthesis (Falkowski et al., 1998; 

Field et al., 1998) and also modulates the physical properties of the ocean surface, such as surface albedo and the vertical 

distribution of solar shortwave radiation, thereby influencing upper ocean temperature (Sweeney et al., 2005; Park et al., 30 
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2018a). These biogeochemical and biogeophysical feedbacks can affect large-scale climate variability and long-term global 

warming patterns across multiple timescales. Understanding and predicting marine biogeochemical variability is therefore 

critical for advancing climate predictions based on bio-climate interactions and supporting the sustainable management of 

marine ecosystems (Bonan and Doney, 2018; Capotondi et al., 2019; Siegel et al., 2023). 

However, translating this understanding into actionable prediction remains challenging. Earth System Models (ESMs), 35 

which integrate biogeochemical processes within physical climate frameworks, serve as primary tools for simulating coupled 

ocean–climate interactions. While these models have demonstrated skillful forecasts of oceanic physical variables, including 

sea surface temperature, upper-ocean heat content, and large-scale variability, on seasonal to decadal timescales (Smith et al., 

2020; Balmaseda et al., 2024), their performance for biogeochemical variables remains limited. Recent advances have shown 

skillful chlorophyll forecasts in many regions (Park et al., 2019), yet fundamental challenges persist. These include limited 40 

three-dimensional observations of biogeochemical fields, with satellite-derived chlorophyll-a records extending only since 

the late 1990s (Henson et al., 2010; Henson et al., 2016), which restricts model initialization and contributes to substantial 

uncertainties in biogeochemical parameterizations (Séférian et al., 2020; Fennel et al., 2022). Additionally, large inter-model 

discrepancies remain, especially in regions with poor observation coverage, where insufficient constraints on model 

parameters amplify uncertainty (Mignot et al., 2023; Kwiatkowski et al., 2020). Moreover, the substantial computational 45 

costs required for extensive ensemble experiments needed for rigorous skill assessment further constrain the operational 

utility of current ESM approaches (Balaji et al., 2022). These limitations have highlighted the need for alternative 

methodologies that can provide skillful biogeochemical forecasts with greater computational efficiency.   

Deep learning has emerged as a promising alternative for predicting marine biogeochemical variability in the presence of 

observational gaps and structural uncertainties in marine biogeochemical models. These data-driven models can learn 50 

complex, nonlinear relationships from limited or noisy inputs, making them well-suited for data-sparse components of the 

Earth system (Reichstein et al., 2019). Deep learning approaches have shown skills in forecasting physical ocean variables—

such as sea surface temperature, sea level, and major climate modes including El Niño–Southern Oscillation (ENSO) and the 

Indian Ocean Dipole (IOD)—across various timescales (Biswas and Sinha, 2021; Xiao et al., 2019; Song et al., 2020; Immas 

et al., 2021; Ham et al., 2019). Building on this, recent studies have applied deep learning to biogeochemical domains, 55 

including historical chlorophyll-a reconstruction (Roussillon et al., 2023), phytoplankton biomass estimation (Yu et al., 

2020), satellite data gap-filling (Hong et al., 2023), and biogeochemical forecasting applications in regional marine systems 

(Cen et al., 2022; Yao et al., 2023). Despite this progress, existing efforts often lack global spatial scope, suffer from limited 

interpretability due to their "black box" nature, show insufficient integration with physics-based models. 

To address these limitations, we developed a global-scale forecasting framework based on a convolutional neural network 60 

(CNN) to predict surface chlorophyll across all Large Marine Ecosystems (LMEs), coastal domains that support the majority 

of the world’s marine fish catch (Fig. 1). The model ingests three consecutive months of global sea surface temperature and 

chlorophyll anomalies and produces monthly or annual chlorophyll forecasts at the LME scale. The training dataset consists 

of multi-decadal simulations from the Coupled Model Intercomparison Project phase 6 (CMIP6) multi-model ensemble 
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(Eyring et al., 2016) and physical–biogeochemical reanalysis fields from an ESM-based data assimilation system developed 65 

at the NOAA Geophysical Fluid Dynamics Laboratory (GFDL). The assimilation system incorporates three-dimensional 

physical observations into a coupled physical–biogeochemical model to reconstruct historical ocean states (Park et al., 

2018b). Model predictions are validated against satellite-derived chlorophyll from the Sea‐viewing Wide Field‐of‐view 

Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) (Lundberg et al., 2020; Lundberg et 

al., 2018), and compared with ESM-based dynamical biogeochemical forecasts. 70 

 
Figure 1: Deep learning model structure. The adapted CNN model comprises three convolutional layers (blue), two max-pooling 
(MP) layers (red), and one fully connected (FC) layer (yellow). Input data include sea surface temperature (SST) and chlorophyll 
anomalies for three consecutive months (e.g., November–January), represented as six channels. The model predicts either monthly 
or annual mean chlorophyll anomalies for each Large Marine Ecosystem (LME). Training data comprise historical and piControl 75 
simulations from 16 CMIP6 models, along with physical–biogeochemical reanalysis (1965–1997). Model validation was performed 
using satellite-based chlorophyll observations from SeaWiFS and MODIS (1998–2021). 
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2 Methods 

2.1 Deep learning model and forecast experiment design 

The convolutional neural network (CNN) model used in this study was adapted from prior work on spatiotemporal 80 

prediction (Ham et al., 2019). It consists of an input layer followed by three convolutional layers, two max-pooling layers, 

one fully connected layer, and an output layer. The network incorporates 35 convolutional filters per layer, uses Gaussian 

Error Linear Unit (GELU) activation functions (Hendrycks and Gimpel, 2016), and is trained using the Mean Absolute Error 

(MAE) loss function.  

Input data for the deep learning model consist of three consecutive months of SST and chlorophyll anomalies (gridded at 1° 85 

× 1° resolution), enabling the prediction of seasonal or annual mean surface chlorophyll anomalies for each Large Marine 

Ecosystem (LME). The model was trained using both historical and piControl simulations from CMIP6 and validated using 

GFDL-ECDA reanalysis (Park et al., 2018b). Satellite-derived chlorophyll served exclusively for final testing. Predictions 

were initialized seasonally to forecast annual chlorophyll anomalies with lead times up to 24 months. A series of sensitivity 

experiments was performed to identify the optimal model configuration.  90 

Prediction performance for seasonal or annual chlorophyll anomalies was evaluated using the anomaly correlation 

coefficient (ACC) between predicted and satellite chlorophyll anomalies at the LME scale. Statistical significance of 

correlations was assessed following a method adapted from previous work (Bretherton et al., 1999), accounting for temporal 

autocorrelation through effective degrees of freedom.  

2.2 Data sources and preprocessing 95 

Satellite monthly surface chlorophyll-a concentrations were obtained from the SeaWiFS and MODIS ocean color sensors 

(Esaias et al., 1998; Mcclain et al., 1998), and sea surface temperature (SST) data were from NOAA’s optimally interpolated 

SST version 2 (OISSTv2) dataset based on the Advanced Very High Resolution Radiometer (AVHRR) (Reynolds et al., 

2007). The original chlorophyll and SST data were provided at daily resolution with fine spatial scales (0.25 degrees for SST 

and 9 km × 9 km for chlorophyll). For consistency and computational efficiency in deep learning applications, all 100 

observational data spanning 1998 to 2021 were resampled to monthly means and interpolated onto a 1° × 1° regular global 

grid. Due to cloud cover and persistent polar night, the ocean color datasets contained missing values. A standard zero-filling 

strategy was applied, where pixels with missing values were identified, masked, and filled with zeros. The same 

preprocessing scheme, including temporal aggregation and spatial resampling, was uniformly applied to both chlorophyll 

and SST datasets used for training, validation, and testing. 105 

Reanalysis data used for validation and sensitivity testing were obtained from the NOAA Geophysical Fluid Dynamics 

Laboratory’s Ensemble Coupled Data Assimilation (GFDL-ECDA) system, integrated with the COBALT biogeochemical 

model (Park et al., 2018b). This system assimilates observed physical variables into a coupled physical–biogeochemical 
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framework while excluding direct assimilation of biogeochemical variables to avoid spurious vertical velocity artifacts near 

the equator. Data from 1965 to 1997 were used for validation, while the 1998–2017 period supported sensitivity analysis.  110 

Long-term simulated chlorophyll and SST data were drawn from historical and preindustrial control (piControl) runs of 16 

models from the Coupled Model Intercomparison Project Phase 6 (CMIP6). While simulated chlorophyll underwent the 

same gap-filling treatment, the SST fields were not gap-filled but were resampled to the same spatiotemporal grid for 

consistency. Given variability in the length of piControl simulations among models, only the most recent 500 years were 

used when available; for models with shorter records, the entire simulation period was included. Historical simulations 115 

covering 1850–2014 were also used. CMIP6 simulations were employed exclusively for training and validation purposes.  

2.3 SHAP Analysis 

To interpret the model’s predictions and identify dominant spatial drivers, we applied SHapley Additive exPlanations (SHAP) 

(Lundberg et al., 2020; Lundberg et al., 2018). SHAP provides feature-level attributions by estimating the marginal 

contribution of each input (grid cell) to the final model output. For each prediction, the SHAP decomposition follows Eq. 120 

(1): 

𝑦 = 𝑦# + ∑ 𝜑!! ,            (1) 

where 𝑦 is the prediction, 𝑦# is the mean prediction, and 𝜑! is the SHAP value (i.e., the contribution) of feature i, which in 

this case corresponds to a specific grid point in the input map. 

Because the target variable is chlorophyll concentration anomalies, which can be positive or negative, we analyze the 125 

absolute SHAP values to interpret how each grid point contributes to pushing the anomalies in either the positive or negative 

direction. Large absolute SHAP values indicate that the input conditions at a particular grid point have a strong influence on 

the predicted chlorophyll anomaly for the region of interest. SHAP values are calculated by estimating the marginal 

contribution of each grid point across all possible permutations of the input map. This is done by comparing the model's 

predictions with and without the grid point of interest, while considering all possible subsets of the other grid points.  130 

2.4 Fish catch prediction 

We utilized annual reported fish catch data from the Sea Around Us project (Pauly and Zeller, 2016), which compiles 

species-resolved annual harvests by LME. Total annual catches per species were calculated, and ambiguous or non-specific 

entries were excluded. To identify the ten most harvested fish species in each LME, the top ten species were selected by 

cumulative catch volume. Catch anomalies were computed as normalized values by subtracting the mean and dividing by the 135 

standard deviation for each species.  

To examine the linkage between chlorophyll predictions and fisheries, we employed simple linear regression models. 

Specifically, we used chlorophyll anomaly forecasts initialized in November–January (NDJ) to predict annual fish catch 

anomalies in selected LMEs. Statistical significance of correlation coefficients between predicted and reported fish catch was 
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assessed using effective degrees of freedom to account for temporal autocorrelation (Bretherton et al., 1999), similar to the 140 

statistical test for chlorophyll prediction. The linear regression analysis was performed with statistical significance evaluated 

at p < 0.05 and p < 0.10 levels.  

3 Results 

3.1 Sensitivity experiments of model configuration 

 145 
Figure 2: Sensitivity test of model configuration. Bars indicate the average correlation skill across 16 selected regions for each 
model variation. All configurations are derived from the reference model (red bar), which exhibited the highest overall predictive 
performance. In each sensitivity experiment (blue bars), a single component of the reference model was modified, either a 
structural aspect (e.g., kernel size, number of layers) or input data configuration (e.g., resolution, predictor variables, log 
transformation). The baseline model, shown at the top, shares the same architecture as the reference model but differs in training 150 
settings, including weight initialization and loss function. The green dashed line shows the average skill across regions where 
prediction was statistically significant (p < 0.10) in at least one configuration. 

 

A systematic evaluation of model configurations was performed to assess how architectural and data choices affect 

chlorophyll prediction skill across global marine ecosystems (Fig. 2). For computational efficiency, the sensitivity 155 

experiments were conducted by selecting 16 representative LMEs, and the average prediction skill across these regions was 

used for comparison. The reference model, optimized through these sensitivity experiments, showed high skill in forecasting 
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annual chlorophyll anomalies across LMEs during 1998-2021. This optimized configuration employed three convolutional 

layers with 3×3 kernels, GELU activation functions, and mean absolute error loss. Compared with a baseline model using 

standard settings, such as ReLU activation functions and mean squared error loss, the reference model substantially 160 

outperformed this baseline, reflecting the importance of task-specific optimization for marine ecosystem prediction.  

To assess the sensitivity of model performance to individual components of the reference configuration, we modified one 

element at a time while keeping all other settings constant. For example, replacing the 3×3 convolutional kernels in the 

reference model with broader 5×5 kernels reduced prediction skill relative to the reference configuration, despite the increase 

in trainable parameters. This suggests that the smaller kernel size is more effective at capturing local structure while still 165 

integrating small-scale biogeochemical structures. This result aligns with established principles in CNN architecture design, 

where smaller kernels can effectively capture local features without compromising model performance.  

In addition to architectural considerations, model performance was highly sensitive to input data configuration and 

preprocessing. High-resolution (1°) input data produced markedly higher predictive skill than coarser (5°) fields, reflecting 

the importance of resolving mesoscale variability that drives chlorophyll dynamics (Keerthi et al., 2022). Predictor selection 170 

for the input data proved equally critical: models trained with surface chlorophyll anomalies as input substantially 

outperformed those using only physical variables, such as sea surface temperature (SST) or subsurface potential temperature. 

This suggests that surface chlorophyll captures nonlinear, ecologically relevant signals potentially linked to subsurface 

processes or serving as early indicators of climate-driven ecosystem shifts as shown in previous studies (Park et al., 2018a).   

The inclusion of additional input datasets generally improved the model’s prediction skill. Incorporating CMIP6 piControl 175 

simulations, designed to represent long-term natural variability in the absence of anthropogenic forcing, enhanced the model 

performance, despite the temporal gap with present-day climate conditions. Similarly, inclusion of the ESM-based reanalysis 

product, which provides physically consistent and observationally constrained ocean states, also improved chlorophyll 

prediction skill by enabling the model to learn from longer historical biogeochemical variability informed by climate-scale 

physical dynamics. 180 

Finally, the impact of applying a log transformation to chlorophyll data on the prediction skill was also tested. While log 

transformation is often used to normalize skewed chlorophyll distributions, our results indicate that retaining the original 

scale shows better prediction skills. This advantage suggests that preserving the raw variability better captures the full range 

of biogeochemical signals relevant for ecosystem prediction, as log-scaling dampens high chlorophyll variability, leading the 

deep learning model to underestimate chlorophyll, particularly in coastal regions with high concentrations (Cen et al., 2022).  185 

Overall findings here informed the development of an optimized model configuration that combines an efficient model 

architecture, high-resolution inputs, ecologically meaningful predictors, and physically consistent long-term training data. 

Rather than representing ad hoc tuning, this configuration reflects deliberate design choices informed by empirical 

performance and domain knowledge. The reference model, which achieved the highest prediction skill across the LMEs, 

serves as the foundation for all subsequent analyses, including model validation against satellite data, investigation of the 190 

mechanisms driving skillful predictions, and applications to fish catch forecasting.  
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3.2 LME-scale chlorophyll prediction 

The optimized reference model derived from the sensitivity experiments was applied across all global LMEs to evaluate its 

skill in forecasting monthly to annual chlorophyll anomalies. Annual forecasts were initialized in early winter (November to 

January) of the preceding year and tested with different combinations of physical and biogeochemical inputs, that is, SST 195 

only, chlorophyll only, and both SST and chlorophyll, to assess the contribution of each predictor.    

 
Figure 3: Chlorophyll prediction skill in Large Marine ecosystem (LME). a Correlation coefficients between satellite-derived 
annual chlorophyll and predicted annual chlorophyll. Significant correlations (P < 0.1) are denoted by asterisks. Shading 
represents the prediction skill using both chlorophyll (CHL) and sea surface temperature (SST). Green asterisks indicate the 200 
region with a significant correlation using only chlorophyll, yellow asterisks using only SST, while black asterisks using both 
variables (forecast lead time = 1 year). b-i Time series data for LMEs with significant prediction skill when both chlorophyll and 
SST inputs are used (corresponding to black asterisks in panel (a). Panels show normalized annual mean chlorophyll anomalies 
from satellite (black) and model predictions (red). Correlation values are indicated with significance levels (* : P<0.1, ** : P<0.05). 

 205 

The model demonstrated skillful annual mean chlorophyll predictions in many LMEs (Fig. 3). Statistically significant skill 

indicated by asterisks in Fig. 3a was observed in regions along the Central-North American coast, the western Indian Ocean, 
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and the Australian coast. Among the regions showing successful predictions, eight LMEs using both SST and chlorophyll 

inputs were selected to compare the time series of predicted and satellite chlorophyll. The predicted annual chlorophyll 

successfully captured both interannual and long-term variability, closely following satellite-derived chlorophyll. One notable 210 

point here is that when the model was trained using only SST as input, significant predictive skill was achieved in only three 

LMEs. In contrast, including surface chlorophyll anomalies, either alone or as an additional predictor, substantially increased 

the number of LMEs where the model achieved high prediction skill. This result indicates the benefit of incorporating 

biogeochemical variables into data-driven models alongside physical predictors in improving chlorophyll forecasts. 

Chlorophyll prediction skill was further evaluated at shorter time scales. We examined monthly forecasts by selecting two 215 

representative systems from Pacific and Indian Oceans, exhibiting significant annual mean chlorophyll prediction skill: the 

Pacific Central-American Coastal (LME 11) and the Agulhas Current (LME 30). For each LME, we conducted monthly 

forecasts from 1998 to 2021, with each forecast extending up to 24 months. Each forecast used three consecutive months of 

input data and employed five ensemble members per initialization. Model predictions were compared to satellite-derived  

 220 
Figure 4: Monthly prediction and mechanism underlying chlorophyll prediction skill. a,c  Anomaly correlation skill as a function 
of forecast initialization month (x-axis) and lead time (y-axis). White dots indicate significant skill at P < 0.05, while grey dots 
indicate P < 0.10. Correlation coefficients are based on 3-month running mean anomalies. b,d Temporal evolution of spatial maps 
of absolute Shapley values Panels (a) and (b) correspond LME 11 (Pacific Central-American Coastal), while panels (c) and (d) 
correspond to LME 30 (Agulhas Current). 225 
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In the Pacific Central-American region, the model exhibits seasonally varying forecast skill, with statistically significant 

correlations extending up to 12-month lead times for forecasts initialized during boreal winter (Fig. 4a). Prediction skill for 

chlorophyll is enhanced during boreal fall and winter, when large-scale climate variability such as ENSO is more predictable, 

but diminished during boreal spring and early summer, coinciding with the well-documented “spring predictability barrier” 230 

of ENSO. These patterns suggest that the model leverages ENSO-related signals to enhance chlorophyll prediction in this 

region, consistent with previous observational and modeling studies of primary productivity in the tropical Pacific (Park et 

al., 2019; Pennington et al., 2006; Sasai et al., 2012). 

In the Agulhas Current LME, the model exhibited a seasonally modulated pattern of forecast skill, marked by alternating 

bands of high and low correlation that persisted across lead times up to 24 months (Fig. 4c). This diagonal structure is 235 

particularly pronounced for austral winter initializations and resembles the winter-to-winter reemergence mechanism 

observed in dynamical prediction systems. In this process, wintertime anomalies are subducted beneath the mixed layer, 

preserved during summer stratification, and reemerge the following winter as seasonal mixing deepens the surface layer. The 

recurrence of this pattern in the model’s predictions indicates that it captures subsurface ocean memory in addition to surface 

signals. 240 

3.3 Mechanisms underlying chlorophyll prediction skills 

To examine the physical basis of the regional chlorophyll forecast skill, we applied SHapley Additive exPlanations (SHAP) 

to quantify the contribution of input features across lead times, focusing on the two regions where monthly forecasts were 

conducted. In the Pacific Central-American region, we examined boreal winter 2014–2015, which captured the early 

development phase of El Niño conditions, as documented by satellite chlorophyll observations. Attribution maps from the 245 

models initialized from this period reveal coherent patterns at 1-, 6-, and 12-month horizons, aligning with the canonical 

progression of ENSO-related anomalies, including the emergence and eastward propagation of SST signals along the 

equatorial Pacific (Fig. 4b). While SHAP does not infer causality, the spatial alignment between feature importance and 

known ENSO structures shows that the deep learning model can detect climate-scale variability relevant to chlorophyll 

prediction. 250 

Attribution analysis during 2000–2002 in the Agulhas region, a period of peak chlorophyll concentrations in the region, 

revealed westward-propagating chlorophyll anomalies originating in the eastern Indian Ocean and extending toward the 

western boundary (Fig. 4d). This pattern is consistent with the dynamics of upwelling Rossby waves, which have been 

previously identified as key contributors to long-lead chlorophyll predictability in ESM-based dynamical forecasts in this 

region (Jeon et al., 2022). The presence of such physically interpretable propagation features indicates that the model 255 

captures spatiotemporal dynamics embedded in the training data, beyond capturing surface-level statistical associations. 

Results from the both Pacific Central-American Coastal and Agulhas Current LMEs demonstrate that the deep learning 

model captures statistical regularities as well as physically interpretable signals underlying chlorophyll variability. SHAP-

based attribution reveals mechanisms consistent with previously-established ocean–climate processes, including ENSO 
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evolution, wintertime reemergence, and westward-propagating off-equatorial Rossby waves, suggesting that the model 260 

internalizes aspects of coupled physical–biogeochemical dynamics from the training data. These findings highlight the 

potential of data-driven approaches to support mechanistically informed, climate-relevant biogeochemical forecasts.  

3.4 Prediction skill comparison with dynamic forecasts 

We next compared the predictive performance of our deep learning model with that of a dynamical prediction system to 

assess relative skill. Chlorophyll prediction skill was evaluated against an ESM-based biogeochemical prediction system 265 

across global LMEs. This dynamical system, developed at the Geophysical Fluid Dynamics Laboratory (GFDL), builds on a 

seasonal climate prediction framework with coupled ocean-atmosphere data assimilation system and is run with a marine 

ecosystem model, the Carbon, Ocean Biogeochemistry and Lower Tropics (COBALT) (Zhang et al., 2007; Stock et al., 

2014). The retrospective predictions were initialized on the first day of each calendar month from 1991 to 2017 and consist 

of 2 year-long forecasts with 12-member ensembles (see Park et al., 2019, for details). 270 

 

Figure 5: Comparison of prediction skills for chlorophyll anomalies in Large Marine Ecosystems (LMEs). a Correlation 
coefficients between satellite-derived and predicted annual mean chlorophyll anomalies in LMEs at a 1-year lead time. The deep 
learning model (1998-2021; red bars) and the dynamic model (1998-2017; green scatter plots) are compared. Filled bars and 
marks indicate significance at the 90% level (P < 0.10). b Map representation of panel (a), comparing the prediction skill of the 275 
deep learning model with that of the dynamic model. Areas where one model outperforms the other are highlighted, with a 
correlation difference ≥ 0.2 at the 90% significance level indicating model strength. The deep learning model is shown in red, and 
the dynamic model in green. Areas with a correlation difference < 0.2 are depicted in blue. Non-significant or NaN regions are not 
displayed. 

 280 

Prediction skills between the deep learning and dynamic models were assessed using correlation coefficients between 

predicted and satellite-derived annual chlorophyll anomalies at a 1-year lead time (Fig. 5a). Although skill varied regionally, 

both models showed a similar number of LMEs with statistically significant correlations. They also exhibited comparable 

performance in regions such as the Bay of Bengal, Mediterranean Sea, and Agulhas Current, where correlation values 

exceeded 0.6. These regions are strongly influenced by basin-scale climate modes such as ENSO and the IOD, whose 285 

surface signals are well captured by both physical and biogeochemical predictors (Fiedler, 2002; Beal and Bryden, 1999).  
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A categorical global map of relative performance shows that the deep learning model outperformed the dynamical system in 

several coastal LMEs, particularly around northern Australia and along the Pacific Central-American coast (Fig. 5b). These 

regions exhibit complex chlorophyll-SST relationships that likely reflect the integrated effects of multiple environmental 

drivers. The data-driven approach of deep learning appears well-suited to identifying predictive patterns in these surface 290 

variables without requiring explicit parameterization of underlying processes. Feature attribution analyses further support 

this interpretation, consistently highlighting the contributions of climate-sensitive predictors such as surface chlorophyll and 

SST (Amorim et al., 2021; Liu et al., 2025).  

In contrast, the deep learning model showed lower prediction skill relative to the dynamical system in some regions, most 

notably the Pacific Eastern Boundary Upwelling Systems, including the Humboldt and California Currents. These regions 295 

are strongly influenced by wind-driven upwelling and episodic vertical nutrient fluxes, which are explicitly resolved in 

dynamical models with process-based parameterizations. While surface chlorophyll can partially reflect subsurface 

variability, especially in regions with coherent thermocline dynamics (Park et al., 2018a), such signals may be too 

intermittent or weakly expressed at the surface in those upwelling zones. This limits the ability of surface-based predictors to 

capture the timing and magnitude of upwelling-driven productivity variations, and likely contributes to the superior 300 

performance of the dynamical model in these physically dominated systems. 

Overall, the results here suggest the importance of aligning model inputs with the dominant processes in each system. The 

deep learning model performed well in coastal LMEs characterized by complex and nonlinear dynamics, such as the 

northern Australian coast and the Pacific Central-American region, where dynamical models often face skill limitations due 

to the spring predictability barrier. These regional performance patterns reflect the different ways each modeling approach 305 

captures biogeochemical variability. Taken together, these findings suggest that deep learning and dynamical approaches 

offer complementary strengths. Hybrid frameworks that combine data-driven learning with physically informed constraints 

may help improve biogeochemical forecasts across diverse marine environments. 

3.5 Fish catch prediction  

The successful prediction of chlorophyll anomalies in many coastal LMEs suggests potential applications for marine 310 

resource management. To demonstrate the practical utility of deep learning based biogeochemical forecasting, we evaluated 

the capacity to anticipate interannual fish catch variations using predicted chlorophyll anomalies as environmental drivers. 

We focused on key species in selected LMEs where the deep learning model demonstrated high predictive skill. For each 

region, the ten most frequently caught species were identified, and linear regression was applied to assess the relationship 

between chlorophyll anomalies and species-specific catch anomalies. 315 
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Figure 6: Prediction skill for annual fish catch of individual species in Large Marine Ecosystems (LMEs). a–d Time series show 
correlations between predicted and reported annual fish catches for dominant species in selected LMEs, based on chlorophyll as 
the primary predictor with varying time lags. (a) LME 11, lag 0: correlation coefficients for Skipjack tuna. (b) LME 11, lag 0: 
correlation coefficients for South American pilchard. (c) LME 6, lag 1: correlation coefficients for Northern white shrimp. (d) 320 
LME 50, lag 1: correlation coefficients for Japanese jack mackerel. Asterisks indicate significant anomaly correlation skills (*P < 
0.1, **P < 0.05). Predictions are initialized in NDJ (November(0), December(0), January(1)), with each panel representing one of 
the top 10 dominant species in the respective LME. 

 

The results revealed distinct regional and species-level associations (Fig. 6). In the Pacific Central-American Coastal LME 325 

(LME 11), statistically significant contemporaneous correlations were found for skipjack tuna (Katsuwonus pelamis, r = 0.58, 

p < 0.1) and South American pilchard (Sardinops sagax, r = 0.69, p < 0.1). These findings are consistent with previous 

studies showing that tuna and small pelagic species respond sensitively to productivity fluctuations in ENSO-influenced 

convergence zones (Lehodey et al., 2008; Wang et al., 2018; Kim et al., 2020).  

In other LMEs, catch anomalies were more strongly linked to lagged chlorophyll signals. In the Southeast U.S. Continental 330 

Shelf (LME 6), northern white shrimp (Litopenaeus setiferus) catch anomalies were correlated with chlorophyll anomalies 

from the previous year (r = 0.64, p < 0.05), reflecting the influence of environmental conditions on juvenile recruitment. A 

similar lagged relationship was observed for Japanese jack mackerel (Trachurus japonicus) in the Sea of Japan (LME 50, r = 

0.57, p < 0.1), potentially reflecting sensitivity to prior-year productivity during early life stages (Diop et al., 2007; Delancey 

et al., 1994; Takahashi et al., 2022). These results show the potential of incorporating chlorophyll-based forecasts into 335 
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fishery prediction frameworks. They also highlight the importance of accounting for species-specific life histories and 

ecological mechanisms when evaluating forecast performance across diverse ecosystems.  

4 Conclusion and Discussion 

This study demonstrates that deep learning models can achieve skillful marine ecosystem prediction in global LMEs while 

capturing physically interpretable signals underlying chlorophyll variability. The model successfully reproduced known 340 

ocean-climate processes, including ENSO-driven productivity fluctuations and wintertime reemergence mechanisms, 

suggesting that statistical learning can internalize aspects of coupled physical-biogeochemical dynamics from training data. 

Systematic sensitivity analyses further showed that successful data-driven ecosystem prediction requires careful 

consideration of both model architecture (e.g., kernel size, activation functions) and input data characteristics (e.g., 

horizontal resolution, log-transformation, and variable selection). 345 

Comparisons with an ESM-based dynamical prediction system revealed regional differences in forecast skill that provide 

insight into the observability of marine ecosystem drivers. The deep learning model excelled in regions dominated by large-

scale climate variability, where surface signals of coupled physical-biogeochemical interactions are well captured by satellite 

observations. However, performance limitations in eastern boundary systems highlighted the challenges of predicting large 

coastal ecosystems strongly influenced by subsurface processes that may not be consistently detectable at the surface. These 350 

findings emphasize that forecast skill depends not only on model design but also on the extent to which key ecological 

drivers are represented in available data. 

The demonstrated links between predicted chlorophyll anomalies and fish catch variability provide initial evidence for the 

practical utility of biogeochemical forecasting in marine resource management. Statistically significant correlations were 

found for both contemporaneous responses (skipjack tuna, sardines) and lagged responses (shrimp, jack mackerel), patterns 355 

consistent with known life history traits and recruitment dynamics. While these relationships were identified in only a subset 

of LMEs, they demonstrate the feasibility of integrating environmental forecasts into fisheries applications. Such 

applications will require careful consideration of species-specific ecological mechanisms and regional oceanographic 

contexts. 

Several limitations should also be acknowledged. The model treated LMEs as independent units, potentially overlooking 360 

cross-basin connectivity and anomaly propagation that could enhance predictive skill across regional boundaries. While 

sensitivity tests showed that surface chlorophyll anomalies effectively captured subsurface variability, other key physical 

drivers, such as wind stress, mixed-layer depth, and vertical nutrient gradients, were not systematically evaluated. The 

superior performance of dynamical models in some upwelling systems suggests that certain process-based parameterizations 

may be difficult to replicate through surface-based statistical learning alone. Future research should address these limitations 365 

by incorporating additional physical variables and exploring architectures that retain spatial context, such as encoder-decoder 

frameworks or graph-based networks, to better represent cross-basin connectivity and process-dominated systems. Moreover, 
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hybrid frameworks that combine machine learning with dynamical simulations, leveraging expanding Earth observation 

archives, offer a promising path toward transparent, flexible, and operational biogeochemical forecasting systems capable of 

supporting adaptive, climate-informed marine resource management. 370 

 

 

 

Code and data availability 

The code for the deep learning model and training procedures is available at Zendo: 375 

https://doi.org/10.5281/zenodo.17614507 (Park et al., 2025). All observational datasets used are publicly available: satellite 

chlorophyll from NASA Ocean Biology Processing Group (SeaWiFS and MODIS, https://oceandata.sci.gsfc.nasa.gov/ 

directdataaccess/Level-3%20Mapped), sea surface temperature from NOAA OISSTv2 (https://www.ncei.noaa.gov/ 

products/optimum-interpolation-sst), and fish catch data from Sea Around Us project (https://www.seaaroundus.org/ 

data/#/lme). CMIP6 simulations are accessible via Earth System Grid Federation (https://aims2.llnl.gov/search/cmip6/). 380 

GFDL-ECDA reanalysis data may be requested from JYP.  
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