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Abstract. Groundwater resources represent Germany’s most important source of freshwater but they are increasingly under

pressure. Climate change, societal developments, and rising abstraction rates are impacting subsurface storage in ways that

are currently difficult to predict, affecting both the quantity and quality of groundwater. To ensure sustainable groundwater

management, it is crucial to evaluate the intrinsic and spatially variable vulnerability of groundwater systems, especially to

prepare for the effects of hydrological extremes. In this context, the groundwater response time, defined as the timescale over5

which a groundwater system responds or adjusts to changes in external or internal conditions, serves as a valuable indicator

for vulnerability assessments. Unlike traditional methods, we propose estimating response times through spectral analysis of

groundwater level data. Time series from nearly 200 selected observation wells across Bavaria in Southern Germany were

processed and transformed into the spectral domain. Corresponding recharge time series were extracted from high-resolution

hydrological model outputs. By integrating these data with hydrogeomorphic information, we fitted a semi-analytical model to10

the groundwater level spectra to obtain aquifer response times. The semi-analytical solution for the spectral domain accurately

reproduced the majority of observed groundwater level spectra. Most estimated response times fall between roughly 50 and

300 days. Significant correlation were found between the response time and the depth of the groundwater table. Groundwater

systems exhibiting longer response times are interpreted as more resilient to drought conditions and therefore potentially better

suited for groundwater abstraction than aquifers with shorter response times.15

1 Introduction

In the last decade, Central Europe experienced a series of hot and dry periods resulting in severe droughts such as the extraordi-

nary drought period in 2018-2020. These conditions greatly affected groundwater systems, as increased abstraction for house-
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holds, industry, and agriculture set additional pressure on water resources (Wanders and Wada, 2015). Furthermore, during the20

winter season, droughts were accompanied by reduced groundwater recharge, leading to lower replenishment of groundwater

systems compared to normal conditions. Jasechko et al. (2024) analyzed more than 100 000 data sets for more than 1 600

aquifer systems worldwide and showed that rapid groundwater level declines (more than 0.5 m per year) are widespread in the

twenty-first century, especially in dry regions with extensive cropland areas. In summary, both reduced recharge and excessive

water withdrawals contribute to declining groundwater levels, which in turn leads to a decrease in baseflow that sustains river25

systems.

Beside evidence from past data analysis, model-based hydrometeorological projections state that the risks of droughts-in

particular longer lasting and stronger droughts-will continue to increase in Europe (Ciscar et al., 2019; European Commission,

2021; IPCC, 2023). Coupled climate-hydrological model simulations by Samaniego et al. (2018) project more frequent soil

moisture droughts across Europe, along with a 40 %± 24 % increase in drought-affected areas, if global warming reaches 3 K.30

The consequences on groundwater recharge and thus groundwater systems, however, are difficult to estimate and subject of

great uncertainty-at least in Central Europe (Kumar et al., 2025).

A central question therefore is: how long are groundwater systems capable of buffering periods of strongly reduced ground-

water recharge or strongly increased groundwater withdraws? An essential property describing the capacity of groundwater

systems to buffer and moderate fluctuations in recharge or pumping stresses is the groundwater response time (also known as35

aquifer response time or characteristic time). This parameter quantifies the time required for the groundwater system to relax

after or respond to changes in recharge rates or excessive abstraction (Houben et al., 2022; Jazaei, 2017).

Various methods exist to estimate groundwater response times, based on time series of groundwater levels or baseflow. A

common approach is to measure the lag time between a specific event such as a drought during which recharge to the system

ceases and the response of the groundwater level. The recession time of baseflow under such drought situations or the recovery40

time of baseflow after the drought has ended is then considered to be the response time of the contributing aquifer systems

(Brutsaert, 2008). Lee and Ajami (2023) analyzed data of baseflow data from 358 anthropogenically unaffected catchments

across the United States to characterize droughts and recovery properties of baseflow. The catchments they investigated showed

baseflow droughts that last between 9–104 months, which is longer than the corresponding precipitation droughts. A challenge

in applying this approach is accurately defining the start and end of a dry period, as these depend on the characteristics of each45

specific event. This might also explain why Hameed et al. (2023) found large variations in recession constants for a single

catchment using event-based recession analysis.

Another approach is to consider groundwater systems as systems that continuously receive recharge driven by precipitation

and also react to this continuously varying stimulus with fluctuating groundwater levels and temporarily varying baseflow.

Within this context, response times are often estimated by correlating standardized groundwater level or baseflow data with50

standardized time series of precipitation accumulated for different periods. Following this approach, Hellwig and Stahl (2018)

investigated past changes and potential future changes in baseflow for 338 headwater catchments across Germany. They pre-

sented baseflow response times that vary across Germany, ranging from a few months to several years. In addition, the resulting

response times depend on the hydrogeological properties of the catchments. A limitation of using baseflow data, however, is
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that it describes the response of aquifer systems at the catchment level. The analogous analysis of groundwater level data allows55

to infer local groundwater response times. Boumaiza et al. (2021) found aquifer response times between one and three months

in Saint-Honoré aquifer in Canada using a sliding cross-correlogram approach and Kumar et al. (2016) analyzed groundwater

level data from the Danube and additional catchments in the Netherlands. Both, Kumar et al. (2016) and Boumaiza et al. (2021)

observed that response times differ within a given aquifer and are influenced by the thickness of the vadose zone. Thicker va-

dose zones lead to longer response times. The latter result points to a limitation of this method: the response time estimates60

include the transit time of the pressure signal through the vadose zone. Therefore, they are not only reflecting the aquifer

response times but also the response time of the whole coupled subsurface system.

Several theory-based approaches have evolved over recent decades (Gelhar and Wilson, 1974; Erskine and Papaioannou,

1997; de Rooij, 2012, 2013; Jazaei, 2017; Carr and Simpson, 2018). For example, dimensional analysis of the linearized

Boussinesq equation (Bear, 1972; Freeze, 1979) demonstrates that a characteristic time scale of an aquifer is governed by a65

combination of three key parameters: a typical length L, the storativity S and the transmissivity T of an aquifer which relate

as follows:

tc =
L2S

T
(1)

Cuthbert et al. (2019) and colleagues applied this formula to estimate groundwater response times on a global scale. They

used globally derived values for the relevant parameters and incorporated them into the formula. The result is a gridded map of70

groundwater response times, which typically range from several years to several hundred years. These results clearly contradicts

results of much smaller response times presented by Hellwig and Stahl (2018), Houben et al. (2022) and Kumar et al. (2016)

for German catchments, Boumaiza et al. (2021) for Canadian aquifer systems, as well as our findings in this work.

Recently, Carr and Simpson (2018) developed a new method for calculating highly accurate estimates of response times for

groundwater flow processes. The analysis is carried out using the linearized, one-dimensional Dupuit-Forchheimer model of75

saturated flow through a heterogeneous porous medium and is based on hydraulic head (i.e., hydrostatic pressure) measure-

ments.

Alternatively, spectral approaches can be used to infer response times. Zhang and Schilling (2004, 2005); Zhang and Li

(2006); Zhang and Yang (2010); Schilling and Zhang (2011); Liang and Zhang (2013, 2015); Zhang et al. (2022); Pujades et al.

(2023) investigated the spectral analysis method (SpA) based on semi-analytical solutions of groundwater flow equations for80

the frequency domain and analyzed various groundwater systems. Houben et al. (2022) demonstrated its capability to estimate

aquifer parameters like response times, storativity as well as transmissivities from long groundwater time series in a virtual

(numerical) aquifer and exemplarily applied the method to measured data from groundwater levels in central Germany. As an

advantage, spectral methods yield response time estimates that reflect the system’s overall dynamic behavior, since the full

spectrum of frequencies is analyzed. This contrasts with recession constant analysis, which relies on identifying and analyzing85

individual events. A potential drawback of frequency domain approaches is that sufficiently long time series of groundwater

data are required.
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In this work, we apply the spectral analysis method (SpA) introduced by Houben et al. (2022) to groundwater level time

series from 209 observation wells in Bavaria, Germany. We confirm and further demonstrate the robustness of the approach in

determining groundwater response times from real data and provide thorough interpretation of the results.90

The Methodology section outlines the theoretical foundations of spectral analysis, detailing a systematic workflow encom-

passing data preparation, pre-processing, and final parameter estimation. The Results section presents representative types of

groundwater level spectra along with the corresponding estimates of aquifer response times. An in-depth Discussion addresses

the uncertainties inherent in the analysis and explores the broader implications of the findings. Finally, concluding remarks are

presented at the end of this work.95

2 Methodology

2.1 Theoretical Background

Aquifers typically act as low-pass filters (Zhang and Schilling, 2004), i.e., they transform incoming signals, such as the

recharge, into a signal with decreased (dampened) high frequency content above a specific cut-off frequency. This cut-off

frequency is inversely related to the aquifer response time.100

Spectral analyses relies on the Fourier transform of a temporal signal g(t) (e.g., measured groundwater levels over time).

The Fourier transform is defined by the following equation:

ĝ(ω) =

∞∫

−∞

g(t) e2πiωtdt (2)

where i =
√
−1 and ω is the frequency. ĝ(ω) represents the frequency share of the original signal. The Fourier transform of

the temporal autocorrelation function Rhh of the signal is the spectral density Shh (in this work also referred to as spectrum)105

Shh(ω) =

∞∫

−∞

Rhh(τ) e−2πiωτdτ (3)

where Rhh is assumed to be stationary in time and τ is the time. Based on this relation, Liang and Zhang (2013) developed a

semi-analytical solution for a groundwater head spectrum of an 1D groundwater transect with homogeneous aquifer properties.

Details of its derivation can be found in Liang and Zhang (2013) and Houben et al. (2022). The final equation reads:

Shh(x,ω) =
16

π2S2

∞∑

m=0

∞∑

n=0

(−1)m+nBmBnSww

(2m2 + 2n2 + 2m + 2n + 1)
· (2m + 1)2

(2m + 1)4( 4
pi2 tc)−2 + ω2

(4)110

Bm =
cos[(2m + 1)πx′/2]

(2m + 1)
, x′ =

x

L
(5)
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It relates the spectrum of groundwater level fluctuations Shh at a certain location to the groundwater recharge spectrum Sww.

S is the storativity, x is the distance of the observation well (where time series are recorded) to the water divide and L is the

aquifer length from the water divide to the river. Then, the response time tc is given by

tc =
L2S

T
(6)115

tc depends on the length L, the storativity S and the transmissivity T of the observed aquifer. It can range from a few

weeks for small and highly conductive aquifers with low specific storage to several months or years for large aquifers with low

transmissivities and higher storativities.

2.2 Data and Workflow

2.2.1 Study Area: Bavaria120

Central for the analysis are long time series of groundwater level measurements at different locations and hydrogeological

units. For this study, 298 groundwater observation wells from the monitoring network of the Bavarian State Office for the

Environment (LfU) representing the upper groundwater stockwork (groundwater table depth smaller than 100 m) were selected

and the corresponding groundwater level time series were downloaded via the online service (Bayerisches Landesamt für

Umwelt, 2022). The wells are distributed throughout the state and cover relevant hydrogeological units where groundwater125

abstraction takes place (Fig. 1a. The State of Bavaria is located in the south of Germany and its southern border is dominated

by the up to 3 000 m high Alpine Mountains with steep folded hard rocks with low groundwater yield. Northward the mountains

transit into the wide and flat Molasse Basin, which is filled with unconsolidated debris from the Alps, hosting most productive

shallow aquifers. Similarly, Quaternary valley fillings constitute productive aquifers. In the center and northern parts of the state

however, faulted blocks of Mesozoic lime-, dolo- and sandstones form the hilly landscape and host groundwater in medium130

productive and partly karstified aquifers. These areas are framed by lifted blocks of crystalline Paleozoic basement forming a

few hundreds meters high mountain ranges. No groundwater observations exist there. Even if the time series are distributed

all over the hydrogeological units, forming the upper groundwater storey, the majority of observation wells are located in the

Molasse Basin and Quaternary sediments surrounding the larger rivers draining from the Alps through glacier valleys towards

the Danube River (Fig. 1a).135

2.2.2 Time Series Preparation (Fig. 2a and b)

The majority of the groundwater time series cover at least 15-20 years of data with a few being 50 years long. All of them end

at the beginning of 2019. Houben et al. (2022) demonstrated that time series should cover a time duration of at least ten times

the expected characteristic time of the aquifer to obtain correct estimates of the power spectrum containing all frequencies with

enough spectral power. Following this, time series with a length of less than 2 years were discarded. Finally 224 time series140

remained for the analysis.
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First, the raw data was processed to obtain time series suitable for the analysis. In a first step, outliers were removed using

the interquartile range IQR = Q3−Q1. The lower limit was determined as limlow = (Q1− 1.5 ∗ IQR) while the upper limit

was defined as limup = (Q3−1.75∗IQR). In a second step, the time series were interpolated to ensure equidistant time steps

of one day. Linear, cubic, polynomial and PCHIP interpolation methods were applied to the time series. PCHIP turned out to145

be the best performing method since it preserves monotonicity without overshooting and avoids artificial curvatures (Fritsch

and Carlson, 1980).

In addition, recharge time series were required. The necessary recharge time series were provided as a gridded dataset

generated by the mesoscale Hydrologic Model (mHM) (Marx et al., 2021; Samaniego et al., 2010; Kumar et al., 2013; Zink

et al., 2017). The recharge time series from multiple grid cells surrounding the grid cell containing the observation well were150

extracted and spatially averaged.

The groundwater level and recharge time series were aligned to the same time period, and linear trends were removed.

Removing the linear trend prevents artificial low-frequency components from distorting the frequency domain analysis, ensures

the data are closer to stationarity, and helps revealing true periodic signals by reducing spectral leakage. It is often applied when

dealing with groundwater data in the spectral domain (Jiménez-Martínez et al., 2013, e.g.,). Some exemplary time series of155

groundwater head time series are depicted in Fig. 1b.

2.2.3 Transformation of time series into frequency domain (Fig. 2a and b)

Power spectra of head and recharge time series were estimated with Welch’s method (Welch, 1967), with segment periodograms

computed as the magnitude squared of the Fast Fourier Transform (FFT). Some exemplary time series of groundwater head

spectra are depicted in Fig. 1b.160

2.2.4 Estimation of Flow Line Length (Fig. 2c)

Using the semi-analytical solution for the spectrum from Liang and Zhang (2013) requires knowledge about the aquifer length

L (from water divide to the river intersecting the well location) and the position x of the groundwater observation well along

this transect.

The estimation of the flow line length (FLL) is solely based on DEM (digital elevation model) data. Required processing165

steps are similar to a watershed delineation with geospatial libraries. In a first step, data gaps in the DEM with a resolution of

roughly 70x70 m (OpenTopography, 2013) were filled and a flow direction map was calculated providing the drainage direction

for each cell. It serves as a basis for calculating the flow accumulation and by that the river network. Within that process, the

flow accumulation threshold determines the complexity of the resulting river network. A large threshold (e.g., 1 000) generates

a coarser dendritic network and small creeks disappear (purple and blue in Fig. 3). While a smaller value of 100 results in a170

denser river network with several sub-catchments (orange Fig. 3) and head water catchments (Fig. 3c).

The selection of an appropriate threshold depends not only on the geological and geomorphological context, but also on the

intended application of the resulting river network. Setting a low threshold produces a network that includes streams which may

be intermittent or even ephemeral (Woessner, 2020). As a result, these streams may not always maintain a connection to the
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Figure 1. The German state of Bavaria with the locations of the shallow groundwater observation wells from the state monitoring network

including their aquifer geology. The digital elevation map was acquired from an SRTM data base (OpenTopography, 2013) while the rivers

and lakes were provided by the German Federal Institute for Hydrology (BfG) and downloaded from their geopoartal (German Federal

Institute for Hydrology - BfG, 2022). Coordinate reference system EPSG:25832 - ETRS89 / UTM zone 32N.
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Figure 2. Overview of the spectral analysis (SpA) workflow. The aim is to acquire aquifer parameters based on the spectral representation of

groundwater and recharge time series, accompanied by geometric information of the aquifer (flow line lenth) derived from DEM processing.
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groundwater table and may not consistently exhibit effluent conditions. This predominantly happens in hilly countrysides with175

larger depths to the groundwater surface, while in flat areas with shallow groundwater tables, even smaller streams might be

directly and continuously connected to the groundwater. We evaluated three thresholds (100, 500 and 1 000) and compared the

resulting networks with the official drainage network provided by the German Federal Institute for Hydrology (German Federal

Institute for Hydrology - BfG, 2022). A threshold of 1 000 turned out to be the best compromise: The resulting network exhibits

the highest agreement with the official drainage network and provides a realistic representation of a river system composed of180

perennial streams that are regionally well connected to the aquifers. This connectivity is essential for satisfying the boundary

conditions of the analytical solution (see Equation 4), to which the spectra will later be fitted.

Next, we approximated the flow lines (FL) by tracing back the path of the water particle starting at the observation well

down-slope towards the river (blue, Fig. 2) as well as vice versa, up-slope towards to the water divide (red, Fig. 2). Real

groundwater paths can be very complex and are usually unknown without detailed on-site experiments on the catchment scale.185

Since our study has a regional focus, we decided to use flow direction maps derived from the DEM. Flow direction maps

are often very noise, in particular in flat regions. In order to remove noisy patterns, avoid short flow lines and obtain robust

estimates, we smoothed the flow direction map (Appendix A1).

The actual path of the water particle along the hill slope (and flow direction) represents the longest path called arc length

(Fig. 2c, while the shortest and straight distance between summit/river and observation well is called direct. For estimating the190

distance between the observation well and the river, the direct distance was applied. A detailed example comparing different

FLL can be found in the Appendix A2. The sum of the length of both parts is then equal to the flow line LGW and the length of

the upper part determines the location of the groundwater observation well xGW (for water divide x = 0 and river x = LGW ).

The SpA was performed on three different parameter combinations, leading to relatively short, medium and long flow lines.

The resulting differences for tc, x and L are presented in the Appendix as well as results for S and T (Appendix A3 and A4).195

Since the estimation of tc once again proved to be robust-showing little sensitivity to the choice of flow lines (Appendix A3),

as demonstrated previously by Houben et al. (2022)—we selected a parameterization representative of an intermediate FLL.

2.2.5 Parameter Optimization and Evaluation (Fig. 2d)

Having groundwater level and recharge spectra in addition to estimates for L at hand, the semi-analytical solution was fitted to

the observed head spectrum to finally obtain the response time tc. The fitting of the analytical solution to the observed spec-200

trum was accomplished through an iterative optimization process minimizing least-squares between observed and analytical

spectrum to find optimal parameters, tc and S. Due to the method, the contribution of lower frequencies to the spectra were

weighted stronger during optimization than the corresponding ones of higher frequencies. Consequently, the fitted spectra

matched better with the observed spectrum for low frequencies (left part in the log-log spectrum plots) while the deviation

between both spectra generally appeared at high frequencies (right part of the spectrum plots).205
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Figure 3. Maps of different geomorphological settings in the study region (a,b,c) showing the resulting river network for different flow

accumulation thresholds. The DEM, which was the basis for the watershed analysis, is provided as background map with elevation in meter

above sea level (masl). In addition, a river network acquired from the BfG (German Federal Institute for Hydrology - BfG, 2022) is provided

to compare it to the extracted river from flow accumulation. (d,e,f) Zoom to three observation wells and their identified flow lines for threshold

1 000 (downward toward the river and upward towards a summit). Depending on the chosen threshold, the flow line would stop earlier or

later when it reached a stream.

2.3 Software and Tools

The pre-processing of the time series, as well as other described methods were accomplished by python scripts which will

be available via Zenodo upon acceptance of this publication. For the spectral analysis a python library called AquiPy was

developed, which is open source and available on GitHub unde this url https://github.com/timohouben/AquiPy and should be

referenced via Zenodo (Houben, 2025a).210

The AquiPy library allows to handle and pre-process time series (interpolation, detrending), harmonize the recharge and

groundwater level time series, calculate the spectra and fit the semi-analytical solution to the observed spectrum of the ground-

water levels. Furthermore, the library was used to perform the flow line length estimation based on a digital elevation model

(DEM).
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3 Results215

3.1 Groundwater Level Spectra

209 time series of groundwater levels were analyzed, their spectra were generated and fitted with the analytical solution

following the workflow presented in the Fig. 2. Figure 4 depicts a random choice of 48 spectra calculated from observed

groundwater level time series (black) and the corresponding fits of the analytical solution ShhFit (blue).

The general shape of most of the spectra is similar, showing a plateau at low frequencies (left part of the spectrum) while220

gently decreasing for frequencies larger than a specific cut-off frequency. The low frequency regime describes the long time

behavior of the groundwater time series. At intermediate frequencies, the onset of the filtering behavior and the response time

can be identified. From the mid to the high frequency regime, filtering properties of an aquifer become visible.

Partly there are differences between the spectra for frequencies larger than the cut-off frequency. Visual inspection of these

spectra reveals four distinct GoF (Goodness of Fit) categories (Fig. 5). When the observed Shh and theoretical spectra ShhFit225

exhibit close alignment across the entire frequency range, the result is classified as a good fit. If the observed spectrum Shh

exhibit steeper slope than anticipated in the theoretical spectrum ShhFit they are labeled as overestimation. These spectra show

a stronger filter effect leading to generally smoother corresponding groundwater time series. In contrast, for observed spectra

Shh with a weaker slope, the fitted spectra ShhFit are underestimating the actual conditions, thus representing a groundwater

system acting as a weaker filter than anticipated. Lastly, there are spectra that show a second plateau for medium frequencies230

or intermittent shape which is not reproducible by the theoretical spectrum, therefore labeled as irregular.

Approximately 60% of the spectra received the label good fit. In these cases, we can conclude that the theoretical model

based on the Dupuit approximation captures the dynamic behavior of groundwater very well. Around 15% of the observed

groundwater spectra underestimate frequencies larger than 1/30 days (right part of spectrum, see vertical line corresponding

to 30 days in Fig. 4), showing a weaker filtering effect that anticipated from the theoretical spectra. Around 19% of observed235

spectra show an overestimation in the mid-range frequency (corresponding to 1 year - 1 month), indicating a stronger filtering

effect than in theory. The remaining part, around 5 %, shows irregular spectra, where the theoretical spectra deviate across

large parts of or even the whole frequency range.

Four examples of time series from groundwater wells, their recharge, the resulting spectra and the results of the SpA can be

found in the Appendix A5, A6, A7 and A8.240

3.2 Intermediate Frequency Regime: Identification of Aquifer Response Times

Half of the groundwater wells (48 %) show response times between a few days to 100 days, while 28 % have response times

between 100 - 200 days. The majority (around 75 %) of the estimated response times from the analyzed aquifers range from

approximately 50 days (about 2 months) to 300 days (about 10 months, Fig. 6a which is consistent with the results presented

in Kumar et al. (2016).245

Two clusters can be identified. A cluster with shorter response times of about 70 to 130 days (2-5 months) and a second

cluster with response times ranging approximately from 130 to 340 days (5-10 months). The first cluster predominantly com-
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Figure 4. A random choice of 48 groundwater wells from the analysis. Each subplot showing the groundwater level (black line at the bottom),

the corresponding spectrum Shh (black spectrum), the extracted and averaged recharge (red line) from which the spectrum Sww was used

for the fit of the analytical solution ShhFit (blue spectrum).
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Figure 5. Evaluation of the goodness of the fit. (a) The four categories (good, underestimation, overestimation, irregular) and a representative

example from the results. (b) Percentage of wells determined for each category.

Figure 6. (a) Box plots of resulting aquifer response times for each category. Y-limits were trimmed and three outliers were cut off. (b) Map

of Bavaria with SRTM OpenTopography (2013) as basemap and rivers from German Federal Institute for Hydrology - BfG (2022) showing

the spatial distribution of obtained tc.
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prises data from shallow groundwater wells (category good fit, underestimation, Fig. 7) which show shorter response times,

indicating a relatively rapid reaction to recharge events. These wells are predominantly located in unconsolidated Quaternary

sedimentary formations such as Lower Terrace and gravel plains, which are characterized by high hydraulic conductivities,250

facilitating a direct transmission of recharge signals (Fig. 8). In contrast, the second cluster originates from data from deeper

groundwater wells (category overestimation, irregular, Fig. 7), which exhibit longer response times (Fig. 6), suggesting a more

attenuated response to recharge due to the thicker unsaturated zone and deeper flow paths. These wells are commonly located

in consolidated formations such as Buntsandstein, Muschelkalk, and the Tertiary, where medium hydraulic conductivities and

medium to high storativities result in a stronger damping of high-frequency recharge fluctuations (Fig. 8). A correlation of255

aquifer geology to the GoF categories could not be identified (Appendix A9).

3.3 High Frequency Regime: Filtering Behavior

Groundwater level fluctuations characterized by less high-frequency content (category overestimation, indicating a stronger

filter) tend to occur at greater depths, whereas fluctuations containing more high-frequency components (category underesti-

mation, weaker filter) are generally associated with shallower water tables. This behavior is illustrated by maps in Fig. 9. The260

left panel presents wells for which the theoretical spectra showed a good fit to the observed spectra. These wells are distributed

throughout Bavaria and exhibit the full range of depths to the water table.

The middle panel, representing the underestimation cases, consists predominantly of wells with shallow water tables. Un-

derestimation occurs when the model does not fully capture the high-frequency variability, for example due to a dynamic

groundwater recharge with more short-term fluctuations than assumed in the semi-analytical solution. Despite this limitation,265

the method still provides a good estimate for mid-range frequencies and with that groundwater response times on monthly to

seasonal scales. Consequently, the inferred characteristic response time tc remains a robust estimate.

The right panel highlights overestimation cases, which occur mainly in the southern and more elevated parts of the study

area, where deeper groundwater tables are prevalent. Overestimation is observed in around 18 % of cases, where the semi-

analytical solution predicts greater short-term variability than observed, indicating a stronger filtering effect than in reality.270

This could result from missing mid-term variability in the input signal (recharge) or unaccounted storage effects that further

dampen mid-term fluctuations.

While the Transmissivity T and Storativity S are outcomes of the fitting workflow, they have not been discussed in detail

in this study. The reason for this decision is that previous research (Houben et al., 2022) has demonstrated that especially

T is highly sensitive to the the length of flow line (FLL = L, see Equation 6), leading to considerable uncertainties in their275

estimation (Appendix A4). Therefore, we suggest further studies to improve the accuracy of the estimation of the FLL and

the recharge time series. Additionally, considering lateral groundwater flow or aquifer leakage might enhance the predictive

power of the semi-analytical solution, though this data are difficult to acquire and hard to integrate into analytical solutions.

Exploratory modeling approaches incorporating leakage or lateral inflows could quantify these influences and their sensitivity

within the spectral approach.280
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Figure 7. The four categories of the GoF in relation to the mean depth to the groundwater table. Good fitting spectra appear for across all

depths. Shallow wells tend to be underestimated while deeper wells tend to be overestimated.
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Figure 8. Scatter plot of depth to the water table (m) versus aquifer response time tc (days), categorized by aquifer geology. Each point

represents a groundwater well, with colors indicating different aquifer types.
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Figure 9. Spatial distribution of wells separated by GoF (Goodness of Fit) categories. The well locations are plotted together with the

elevation map and markers for the GW wells, which are color-coded by depth to the water table.

4 Discussion

This study introduces a novel spectral analysis method as part of a workflow to estimate characteristic response times of ground-

water systems. These response times reflect how rapidly groundwater levels respond to changes in recharge or extraction and

serve as a critical indicator of aquifer resilience under climatic and anthropogenic stresses. We applied this approach to approx-

imately 200 groundwater level time series across southern Germany, integrating modeled recharge data and hydrogeomorphic285

parameters derived from digital elevation models. Our findings demonstrate that the semi-analytical spectral solution generally

provides a strong fit to observed groundwater spectra and allows robust estimation of response times, which predominantly

range from 50 to 300 days across shallow Bavarian aquifers (> 100 m depth).

Within groundwater level spectra, three frequency regimes are distinguished. The low-frequency regime corresponds to

long-term seasonal behavior, while intermediate frequencies reveal the onset of filtering related to the groundwater response290

time. The high-frequency regime exposes the aquifer’s filtering properties. While the model fits most spectra well, deviations

primarily occur in the high-frequency regime (corresponding to less than 30 days period), which suggests the semi-analytical

solution may not fully capture rapid recharge fluctuations or effects of processes such as anthropogenic withdrawals and lateral

groundwater flow.

At locations with stronger filtering than estimated (overestimation), actual groundwater recharge dynamics may be less295

variable than modeled by the mesoscale hydrological model mHM. Conversely, weaker filtering behavior (underestimation)
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likely indicates more dynamic recharge fluctuations than anticipated. These observations highlight potential limitations of the

recharge inputs and imply that the method may also serve as a tool for evaluating distributed hydrological models.

The estimated characteristic response times align well with previous studies (Houben et al., 2022; Boumaiza et al., 2021;

Kumar et al., 2016). Generally, deeper groundwater tables correspond to longer response times, implying greater resilience to300

droughts through higher buffering capacity. Shallow systems respond more quickly to recharge changes and are more vulnera-

ble to extended dry periods, underscoring the relevance of aquifer depth in resilience assessments.

Comparing groundwater response times with drought durations is essential. Short response times may lead to rapid water

table declines during dry seasons, while long response times correspond to prolonged aquifer recovery, maintaining low-

water conditions. Given climate change-induced increases in drought frequency and severity, flexible and regionally targeted305

groundwater management strategies are critical.

While response time provides valuable insight into aquifer resilience, additional indicators are necessary for a comprehensive

assessment. We propose incorporating metrics such as the duration of water storage in the subsurface, beside information on

water abstraction rates. Future work will focus on identifying storativity S alongside tc in order to evaluate the aquifer resilience

comprehensively and quantifying associated uncertainties.310

Overall, this spectral approach proves to be a powerful tool for characterizing groundwater system dynamics and offers

important implications for assessing aquifer resilience under changing climatic conditions.

5 Conclusions

This study successfully demonstrates that spectral analysis of groundwater levels with semi-analytical solutions, can robustly

estimate characteristic response times across a large number of aquifers. Groundwater response times predominantly range315

between 50 and 300 days in the studied Bavarian systems. The semi-analytical solution for the spectral domain applies well

to the majority of investigated groundwater time series. Furthermore, the correlation between groundwater depth and spectral

filtering underlines the importance of aquifer characteristics in quantifying resilience to drought and recharge variability.

Incorporation of additional anthropogenic and hydrological factors, such as withdrawal rates, as well as improvements of

FLL estimations, is needed to further refine the estimation of aquifer parameters, including transmissivities and storativities.320

Future research will extend these methods to include storage estimation, improving our understanding of aquifer vulnerabil-

ity and informing water resource management in a changing climate.

Code and data availability. The groundwater level data used in this study were provided by the Bavarian State Office for the Environment

(LfU) representing the upper groundwater storey (groundwater table depth smaller than 100 m). The selected time series were downloaded

via the online service https://www.gkd.bayern.de/de/grundwasser/oberesstockwerk (Bayerisches Landesamt für Umwelt, 2022). The recharge325

data was produced with the mHM hydrological model (Marx et al., 2021). The digital elevation map was acquired from an SRTM data base

(OpenTopography, 2013) while the rivers and lakes were provided by the German Federal Institute for Hydrology (BfG) and downloaded

from their geoportal (German Federal Institute for Hydrology - BfG, 2022). The data which were finally used within the scope of this study
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Figure A1. (a) Standard flow direction map derived from a DEM, (b) smoothed flow direction map. The flow direction was smoothed with

a python function by averaging neighboring direction vectors over a specified "level" of neighborhood. Here, level 2 was used, meaning that

two levels of surrounding cells where included, mapping back the average value to the center cell. The corresponding code can be found in

the AquiPy package on GitHub https://github.com/timohouben/AquiPy.

are available on Zenodo (Houben, 2025b). This upload also contains workflow scripts required for the reproduction of the results of this

study. The scripts are based on the AquiPy python library which was developed for the analysis. The package is available on GitHub under330

this url https://github.com/timohouben/AquiPy and should be referenced via the corresponding Zenodo publication (Houben, 2025a).
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Figure A2. Resulting flow lines for three different parameter sets. (a) Flow lines generated with the smallest flow accumulation threshold

(100), resulting in the shortest flow paths. Streams extend far into the hills, reducing the distance from the well to the nearest river (blue

lines). With no smoothing applied to the flow direction, the upstream path terminates early (red lines). (b) The longest flow lines, produced

using a higher flow accumulation threshold (1000). Here, rivers appear less dendritic, and the distance from the well to the river increases.

Strong smoothing of the flow direction (level 4) causes the upstream segment to reach higher elevations. The arc length (indicated by stars) is

used to measure the path, in contrast to the direct connection (dashed lines). (c) A parameter set that yields flow lines of intermediate length,

which is selected for further analysis in this study. (d) A table summarizing the key values for each parameter set. The distance to the water

divide x represents the distance from the well to the water divide. The aquifer length L is defined as the sum of the upstream and downstream

segments.
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Figure A3. Flow line estimation results and spectral analysis results for three different parameter configurations. (a) Distance to water divide

x and (b) aquifer length L as a result of the Flow Line Length estimation with different flow accumulation thresholds t, selection of flow

lines fl and smoothed flow direction map s. Short flow lines are created when the flow accumulation threshold is small, because a dendritic

river network is created. Direct flow lines connect the starting and end point of the flow lines with a straight line, while the arc length follows

the whole flow path along the hillslope (i.e. the DEM). The higher the number for the smoothing of the flow lines, the longer the flow paths.

(c) Resulting characteristic time tc for the three parameter sets.

Figure A4. spectral analysis results for the three parameter sets for the flow line estimation. (a) storativity S and (b) transmissivity T . While

resulting storativities differ only slightly, the transmissivities show stronger deviations due to different flow line lengths (=aquifer length) L.
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Figure A5. An example of a summary of analysis for a groundwater well of the category good fit. The figure shows the observed groundwater

level time series and the modeled mHM recharge Marx et al. (2021), the resulting power spectra for the observed groundwater level and the

fitted spectrum with the semi-analytical solution. Only the colored part of the spectrum up to a frequency corresponding to 30 d was taken

for the goodness of fit evaluation. The table summarizes the results of the workflow for the selected parameter set.
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Figure A6. An example of a summary of analysis for a groundwater well of the category underestimation. The figure shows the observed

groundwater level time series and the modeled mHM recharge Marx et al. (2021), the resulting power spectra for the observed groundwater

level and the fitted spectrum with the semi-analytical solution. Only the colored part of the spectrum up to a frequency corresponding to 30 d

was taken for the goodness of fit evaluation. The table summarizes the results of the workflow for the selected parameter set.
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Figure A7. An example of a summary of analysis for a groundwater well of the category overestimation. The figure shows the observed

groundwater level time series and the modeled recharge mHM Marx et al. (2021), the resulting power spectra for the observed groundwater

level and the fitted spectrum with the semi-analytical solution. Only the colored part of the spectrum up to a frequency corresponding to 30 d

was taken for the goodness of fit evaluation. The table summarizes the results of the workflow for the selected parameter set.
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Figure A8. An example of a summary of analysis for a groundwater well of the category irregular. The figure shows the observed ground-

water level time series and the modeled mHM recharge Marx et al. (2021), the resulting power spectra for the observed groundwater level

and the fitted spectrum with the semi-analytical solution. Only the colored part of the spectrum up to a frequency corresponding to 30 d was

taken for the goodness of fit evaluation. The table summarizes the results of the workflow for the selected parameter set.
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Figure A9. Spider plots showing the aquifer geology for the four GoF (goodness of fit) categories.
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