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Figure S1. Small-scale lithofacies distribution map on cross-section 1.
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Figure S2. Small-scale lithofacies distribution map on cross-section 2.
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Figure S3. Small-scale lithofacies distribution map on cross-section 3.
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Figure S4. Small-scale lithofacies distribution map on cross-section 4.
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Figure S5. Small-scale lithofacies distribution map on cross-section 5.
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Figure S6. Small-scale lithofacies distribution map on cross-section 6.
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Figure S7. Small-scale lithofacies distribution map on cross-section 7.

QH39Qg28
QH40 QH41 QJ3 QH36 QH

64
146.0 —H~ 333°
(m)

cs
McCs
Ms

FS
SL

OOOENENE

+ 95.0
0 7.54km




Figure S8. Small-scale lithofacies distribution map on cross-section 8.
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Figure S9. Large-scale lithofacies distribution map on cross-section 1.
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Figure S10. Large-scale lithofacies distribution map on cross-section 2.
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Figure S11. Large-scale lithofacies distribution map on cross-section 3.
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Figure S12. Large-scale lithofacies distribution map on cross-section 4.
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Figure S13. Large-scale lithofacies distribution map on cross-section 5.
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Figure S14. Large-scale lithofacies distribution map on cross-section 6.
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Figure S15. Large-scale lithofacies distribution map on cross-section 7.
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Figure S16. Large-scale lithofacies distribution map on cross-section 8.




Table S1. Proportionate values and errors of lithofacies volume counted in
the boreholes and on the profiles of Scale I and Scale 11

PD Ps PD— Ps
Scale | Facies type
X Y X Y X Y

G 0.349 0.332 0.358 0.328 | -0.009 | 0.004
CS 0.058 0.046 | 0.064 0.048 | -0.006 | -0.002
MCS 0.082 0.137 | 0.081 0.138 0.001 | -0.001
MS 0.139 0.111 0.155 0.098 | -0.016 | 0.013

Scale I
MFS 0.181 0.172 0.165 0.174 0.016 | -0.002
FS 0.088 0.076 | 0.079 0.093 0.009 | -0.017
SL 0.031 0.067 | 0.024 0.078 0.007 | -0.011
C 0.072 0.059 | 0.074 0.043 | -0.002 | 0.016
GCS 0.489 0.515 0.503 0.514 | -0.014 | 0.001
Scale 11 MFS 0.409 0.359 | 0.399 0.365 0.010 | -0.006
SC 0.103 0.126 | 0.098 0.121 0.005 0.005

Note: Pp is the volume proportion of lithofacies based on borehole statistics; Ps is the volume
proportion of lithofacies based on profile statistics; Pp-Ps is the error value of the volume
proportion of lithofacies based on borehole and profile statistics. When calculating using borehole
data, the cumulative length of a phase is divided by the total statistical length of all lithofacies to
obtain the volume proportion of that phase.

Table S2. Empirical methods for estimating the hydraulic conductivity

from grain size

Fomula o(n) de C Applicability
Hazen 1+10(n-0.26) dio 6x10+ 0.10mm<de<3.00mm
Slichter n>?7 dio 0.01 0.01lmm< de <5.00mm
Pavichich " diz 1 0.06mm< de <1.50mm

1-n’
0.06mm< de <0.60mm;
Beyer 1 dno 6x 10'410g(ﬂ) mms de mm
n 1<y<20
3 Sands and sandy clay,
Sauerbrei " di7 3.75%10° y e
1—n’ de <0.50mm
Kozeny n dio 8.3x10+ Large-grain sand
1-n’
USBR 1 dao 4.8x104(d20)>3 Medium-grain sands




[S1]. Source and sink calculation

Based on the recharge conditions of phreatic water, the lithology and thickness of
the air-packed zone, building cover and cultivated land, a total of four water resources
calculation zones have been delineated (shown in Figure 1b).

S1.1 Groundwater recharge term
S1.1.1 Lateral groundwater recharge (Qic)

Lateral groundwater recharge from the east boundary is calculated by applying

Darcy's formula:
Oi,=KIML (S1)

Where: Qj is the amount of lateral groundwater recharge (10*m%/a); K is the
equivalent conductivity of the aquifer (m/d); / is the hydraulic gradient of the
groundwater; M is the average thickness of the aquifer (m); and L is the width of the
lateral recharge section (m).

The conductivity is 61.46 m/d and the width of the inflow section is 20.57 km,
the thickness of the aquifer on the boundary was taken as the average value of 32 m,
and the hydraulic gradient is about 0.0009. The lateral recharge is then calculated to
be 1328.96x10*m%/a.
S1.1.2 Precipitation infiltration recharge (Qp)

Calculations were made according to the 4 plots that were divided:

Qp=X i1 aiFiP (82)
Where: Qp is the amount of precipitation infiltration recharge (10*m3/a); a;is the
precipitation infiltration coefficient of subarea 1 (dimensionless), F;is the area of
subarea i (m?); and P is the multi-year average rainfall (m). The values of above
parameters for each subarea are shown in Table Al. According to the rainfall
monitoring data of Qiqihar City from 1990 to 2013, it is known that the multi-year
average rainfall in the area is 437.7 mm.

Table S3 Calculation of recharge from precipitation

Area F (km?) a C; (mm) Opr (10*m?/a)
1 66.7 0.28 437.7 817.3
2 57.66 0.05 437.7 126.2
3 117.17 0.2 437.7 1025.7
4 189.09 0.15 437.7 1241.4
Total 430.62 3210.6

S1.1.3 Mining return recharge (Qwm)




According to statistics, the total annual mining volume of phreatic water in the
area is 2163.41x10*m3/a, of which the agricultural water consumption is
915x110*m?/a.The mining return coefficient is taken to be 0.3, so that the calculated
mining return recharge volume is 274.50x10*m%/a.

S1.2 Groundwater discharge term
S1.2.1 Evaporative emissions (Q.y)

Phreatic water evaporation is calculated using the evaporation coefficient
method:

Qep=F¢, e=¢co(1-h/1)" (S3)

Where: Q. is the amount of phreatic water evaporation discharge (10*m?%/a); F is
the area of evaporation zone (m?); ¢ is the phreatic water evaporation intensity (m/ a);
€0 1s the water surface evaporation intensity (m/a); 4 is the phreatic water average
depth of burial (m); / is the evaporation limit depth (m); » is the evaporation index
related to the soil texture and climate of the air-bearing zone, and the value taken here
is 1.

Only the evaporation during the thawing period is calculated. The limit depth of
phreatic water evaporation in the area is 3m. Since the average depth of groundwater
in subarea II is greater than 3m, so only subareas I, II, and IV are involved for
calculation. The multi-year average evaporation &) from April to September is 95Imm,
and the multi-year average evaporation intensity &;=¢o'F;/F assigned to each sub-area.
The results are shown in Table A2.

Table S4 Calculated results of evaporation discharge

Area F (km?) & (m) h (m) / (m) 0 (10%m3/a)
1 66.7 0.15 1.79 3 397.8
3 117.17 0.26 2.8 3 202.1
4 189.09 0.42 2.79 3 552.7
Add up the total 372.96 1152.7

Note. F is the area of the evaporation zone; ¢; is the water surface evaporation intensity; /4 is
the average depth of groundwater; / is the maximum depth for groundwater evaporation.
S1.2.2 Vertical discharge (Qy)

As the water level of confined groundwater in this study area is always lower
than the water level of phreatic water, and accompanied by a large number of
concentrated mining of confined groundwater, it increases the water level difference
between phreatic water and confined groundwater so that the phreatic water under the

action of the head pressure of the cross-flow recharge to the confined groundwater.



The amount of discharge of the phreatic water is equal to the amount of recharge of
the confined groundwater:
Oyv=FTAHK'/M' (S4)

Where: Qy for phreatic water discharge (10*m>/d); F for the discharge area (m?);
T is the time for leakage (d/a); AH for phreatic water and confined groundwater
between the water level difference (m); K'/M' for the leakage coefficient (1/d).

Tthe average leakage coefficient is set as 0.0019(1/d) and the average water level
difference AH between phreatic water and confined water is 0.7m. The area of the
main interact zone is 68.6km?. The vertical discharge of phreatic water is calculated to
be 3330.19x10*m%/a.

S1.2.3 Groundwater extraction (Q.x)

The phreatic water is mainly used for irrigation, followed by production and

domestic use. According to the report on groundwater dynamics in Qiqihar City

(1990-2013), the average extraction amount of phreatic water is 2163.41x10*m?/a.



