

1 **Unexpected land-surface warming following a low-to-moderate 2 forcing hypothetical nuclear war**

3 Anson Ka Hei Cheung¹, Paul J. Kushner¹, Francesco S. R. Pausata², Zhihong Zhuo², Marguerite
4 L. Brown²

5 ¹Department of Physics, University of Toronto

6 ²Department of Earth and Atmospheric Sciences, University of Quebec in Montreal

7 *Correspondence to:* Anson Ka Hei Cheung (anson.cheung@mail.utoronto.ca), Paul J. Kushner
8 (paul.kushner@utoronto.ca)

9 **Abstract.** Nuclear conflicts could ignite intense urban fires that inject considerable amounts of black carbon (BC)
10 into the upper atmosphere, with the potential to disrupt global climate. While uncertainties in the total BC injection
11 remain large, relatively few modeling studies and limited model diversity have explored the climatic response to
12 low-to-moderate BC injections, leaving key aspects of their climate impact poorly understood. Here, we investigate
13 the climate response to a set of low-to-moderate forcing scenarios (12 to 24 Tg BC) – roughly one-tenth to one-fifth
14 the strength of the standard high-end cases – using the Canadian Earth System Model version 5. Consistent with
15 previous work, we find prolonged global reductions in surface temperature and precipitation, driven by decreased
16 downwelling shortwave radiation at the surface and increased atmospheric stability. Unexpectedly, however, a
17 transient surface warming develops in the first boreal summer following a boreal-winter injection, linked to reduced
18 net longwave and turbulent fluxes. Precipitation remains suppressed because of enhanced stability. The transient
19 warming is most pronounced for the lowest forcing cases, indicating a nonlinear response across the forcing range.
20 These results underscore the need for broader multi-model assessments and systematic exploration across a wider
21 range of scenarios, given their potential for complex, societally relevant outcomes.

22 **1 Introduction**

23 Although the global nuclear arsenal has shrunk since the Cold War, global society is still threatened by potential
24 nuclear conflict due to rising geopolitical tension and the proliferation of regional nuclear powers. In addition to local
25 damage and health effects at the locations of nuclear detonation (Lucas et al., 1990; Solomon & Marston, 1986),
26 regional nuclear conflicts can have global climatic effects, including stratospheric warming, surface cooling, and
27 reduced precipitation (Coupe et al., 2019; Robock et al., 2007a; Toon et al., 2007) as well as reduction in the ozone
28 layer thickness (Mills et al., 2008; Mills et al., 2014).

29 The global effects stem from firestorms that are triggered at targeted urban and industrial centers. The firestorms can
30 induce convection capable of injecting a great amount of inorganic and organic carbon into the upper troposphere -
31 lower stratosphere (UTLS) (Tarshish & Romps, 2022; Toon et al., 2007). Climate modeling studies have shown that
32 the carbonaceous aerosol can heat the upper atmosphere and cool the Earth's surface by increasing the absorption of
33 solar radiation aloft (Pausata et al., 2016; Robock et al., 2007a). Upon local heating, the aerosol-laden air becomes
34 buoyant and rises to a higher altitude. This 'self-lofting' prolongs the aerosol residence time (Johnson & Haywood,

35 2023; Malone et al., 1985; Ohneiser et al., 2023). In a hypothetical case of a full-scale nuclear exchange between the
36 United States and Russia, a UTLS injection of a large amount of black carbon (BC) would drive unprecedented
37 stratospheric warming and surface cooling at a global scale (Robock et al., 2007a). The surface cooling may lead to
38 crop failure and famine, slowing down societal recovery (Xia & Robock, 2013; Xia et al., 2015, Xia et al., 2022).
39 Precipitation would also be reduced globally due to reduction in solar heating, evaporation, and convection. Disruption
40 of stratospheric chemistry would lead to ozone depletion via various mechanisms even for a modest BC injection in a
41 nuclear conflict between India and Pakistan (Mills et al., 2008; Mills et al., 2014). The resulting increase in surface
42 UV radiation could damage human health and ecosystems on a global scale.

43 Both the amounts of BC emission and UTLS injection are highly uncertain. Taking into account the uncertainties in
44 the BC-emission factors of flammable materials and the quantities to be burned, Turco et al. (1990) considered a wide
45 range of plausible BC emissions, from 20 to 290 Tg, that could arise as a result of a full-scale nuclear exchange
46 involving the North Atlantic Treaty Organization (NATO) and Warsaw Pact nations. Beside emission factor uncertainty,
47 variations in local meteorology, modern warfare tactics, and rubblization of fuels all contribute to the uncertainty in
48 the total amount of BC injected into UTLS (Glasstone & Dolan, 1977; NASEM, 2025; Tarshish & Romps, 2022).
49 However, for this full-scale nuclear exchange scenario, most studies considered a UTLS injection of 150 Tg BC as a
50 standard scenario (Bardeen et al., 2021; Coupe et al., 2019; Robock et al., 2007a), with **little attention** given to low-
51 to-moderate forcing scenarios involving smaller BC injections from nuclear-war fires. Yet a nuclear conflict would
52 not necessarily entail the use of the entire arsenal; assessing the climate effects of such partial or regional exchanges
53 is therefore essential to capture the plausible range of outcomes. In this context, smaller injection estimates on the
54 order of 10-25 Tg BC become particularly relevant, as they represent plausible outcomes of limited nuclear exchanges
55 rather than full-scale global war. For instance, a UTLS injection of 10-25 Tg BC for the USA-Russia scenario would
56 be small compared to the 150 Tg load in Coupe et al. (2019) and Robock et al. (2007a) but still **extreme** relative to
57 natural forcing or recent forest fires. For comparison, the 2019 Australian wildfires emitted 0.9 Tg of smoke into the
58 stratosphere, of which 2.5% was BC and the remainder mostly organic carbon (OC) (Yu et al., 2021). Model
59 calculations estimated a statistically significant warming and ozone depletion in the southern hemispheric midlatitude
60 stratosphere for 6 months as a result of these wildfire emissions. Compared to typical wildfires, the smoke injected
61 into the UTLS would have a higher BC-to-OC ratio due to lower oxygen content in large-scale urban fires (Shemwell
62 & Levendis, 2000; Tewarson, 2002; Toon et al., 2007). Therefore, it is a pertinent question to ask how the climate
63 response might differ under a low-to-moderate BC injection scenario.

64 In this study, we look into the climate response to **relatively weak** BC injection with the use of an atmosphere-ocean
65 coupled model, the Canadian Earth System Model version 5.1 (CanESM5; Swart et al., 2019). This is the first time
66 CanESM is used for the study of nuclear war fire emissions. Its independent development from other climate models
67 helps characterize model uncertainty. Although it is a low top model with a coarse stratospheric representation and a
68 lack of stratospheric chemistry and aerosol model, it is a workhorse ESM that has been extensively used in many
69 climate simulations studying anthropogenic climate change effects stemming from the Coupled Model
70 Intercomparison Project phase 6 (CMIP6; Eyring et al., 2016, Samset et al., 2025). We test the sensitivity of the

71 response by varying the total BC injection around the low end of the estimated emission in a full-scale nuclear
72 exchange, between 12 and 24 Tg. This study represents an effort to investigate this model's climate response to such
73 forcing before the CanESM system moves to subsequent more advanced versions with updates to the aerosol scheme.
74 In this study, we find a previously undocumented transient 'whiplash' as the model transitions to a nuclear winter state
75 through an early summertime warming response, unexpectedly strong high-latitude responses to stratospheric BC
76 injection, and other effects. This relatively weak but plausible forcing scenario bears investigating in other models.
77 In Section 2, we provide a description of the model used and parameterizations of relevant processes, as well as the
78 experimental set-up. In Section 3, we investigate the climate response to different amounts of BC emission in the low-
79 to-moderate forcing scenarios. In Section 4, we summarize the results and discuss the potential implications and future
80 work.

81 **2 Methods**

82 **2.1 Model description**

83 We conduct the simulations using the Canadian Earth System Model version 5.1 (CanESM5; Swart et al., 2019), which
84 contains an atmosphere component that incorporates a land model, coupled with the ocean model NEMO (Madec &
85 the NEMO team, 2012). The atmosphere component of CanESM5 is the Canadian Atmospheric Model version 5
86 (CanAM5) with a bulk aerosol scheme employed (Cole et al., 2023). It is a T63 spectral dynamical core model (2.8°
87 horizontal resolution) with 49 vertical layers with layer thickness that increases monotonically from approximately
88 100 m at the surface to 2 km at about 1 hPa, which is the upper bound. The number of vertical levels has been increased
89 from its predecessor, CanAM4 (von Salzen et al., 2013), to match those employed by the Canadian Middle Atmosphere
90 Model (Scinocca et al., 2008), but the stratosphere is still coarsely represented, with 18 levels from about 300 hPa to
91 10 hPa. The quasi-biennial oscillation is not simulated by CanAM5. Biases in stratospheric temperature and zonal
92 wind are reduced in CanAM5 relative to CanAM4 (Cole et al., 2023). Despite having a low model top, CanESM5 has
93 been used in the framework of understanding climate perturbations involving dynamical and radiative coupling of the
94 troposphere to the lower stratosphere. For example, it has been used in the Model Intercomparison Project on the
95 climatic response to volcanic forcing (VolMIP; Zanchettin et al., 2016), which is an endorsed contribution to the
96 CMIP6. It also has good performance in realizing the Arctic sea-level pressure response to sudden stratospheric
97 warming among CMIP6 models when compared to reanalysis (Dai et al., 2024), suggesting that it simulates
98 stratosphere-troposphere interactions adequately for our sensitivity study.

99 CanAM5 employs bulk cloud microphysical parameterizations that depend on the mean water content and other
100 moments of droplet size distributions (von Salzen et al., 2013). The autoconversion, cloud liquid water content, and
101 cloud lifetime depend on a cloud droplet number concentration that is a function of sulphate concentration (Ghan et
102 al., 2013; Wood, 2005). The latter parameterization represents what is known as the second aerosol indirect effect.
103 CanAM5 also parameterizes the BC semi-direct radiative effect as a perturbation to existing liquid cloud optical
104 properties according to the volume fraction of BC to cloud water (Li et al., 2013). The cloud processes are limited to

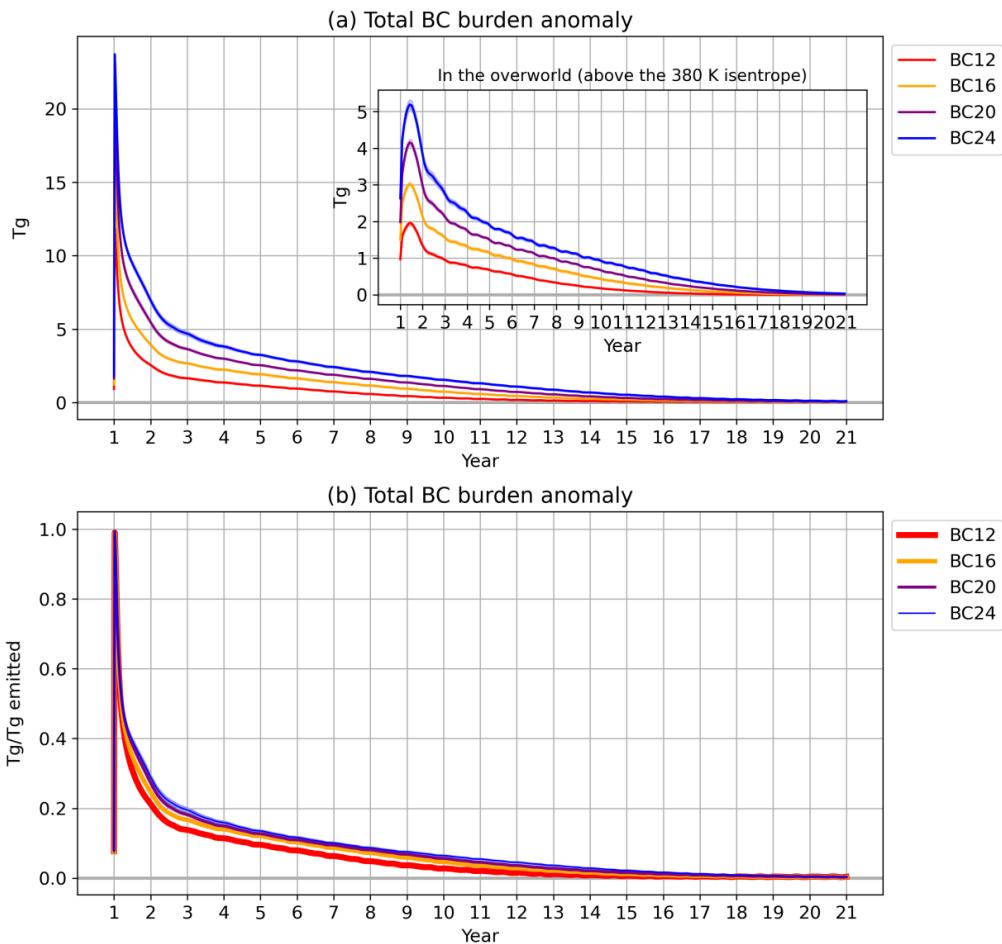
105 pressures greater than 10 hPa given the uncertainty in the applicability of the parameterizations at high altitudes.
106 Aerosols that are considered in CanAM5 include sulfate, BC, OC, sea salt, and mineral dust. Hydrophilic BC,
107 hydrophilic OC, and sulfate are assumed to be internally mixed in CanAM5 and have a refractive index that depends
108 on the fraction, effective radius, and effective variance of each component aerosol, as well as the relative humidity
109 (Wu et al., 2018). CanAM5 does not take into account the aerosol number for determining gravitational settling rate,
110 unlike some other models that have been used for the climate impact study of nuclear conflicts such as NorESM1-M
111 (Pausata et al., 2016) and CESM2-WACCM6 (Gettelman et al., 2019).

112 Aerosols are removed from the atmosphere by dry and wet deposition. In CanAM5, the dry deposition flux is
113 parameterized based on near-surface aerosol concentration and a specified dry deposition velocity that depends on the
114 type of tracer and the local surface condition (Croft et al., 2005; Lohmann et al., 1999). For wet deposition, CanAM5
115 includes below-cloud scavenging for stratiform clouds and in-cloud scavenging for both stratiform and convective
116 clouds. The below-cloud scavenging rate depends on the precipitation rate, whereas the in-cloud scavenging rates
117 depend on the precipitation formation rate. The snow-darkening effect of BC deposition is also included in CanAM5.
118 The total BC deposition flux is used to calculate the BC mass budget in snow layer, whose snow albedo is
119 parameterized as a function of BC mass mixing ratio in snow, snow water equivalent, snow grain size, underlying
120 surface albedo, and solar zenith angle (Namazi, et al., 2015).

121 2.2 Experimental design

122 We generate an ensemble with an injection of 20 Tg of BC (hereafter as BC20), consisting of 15 ensemble members.
123 To generate the ensemble members, we select different years from a 100-year pre-industrial control simulation as the
124 initial years (Eyring et al., 2016). All selected years are at a neutral state of the El Niño-Southern Oscillation (ENSO)
125 in January to avoid potential ENSO imprint on the simulated responses. To test the sensitivity of the global mean
126 climate response to BC aerosol, we generate 3 additional ensembles, each consisting of 3 ensemble members, with an
127 injection of 12 Tg, 16 Tg, and 24 Tg of BC (hereafter as BC12, BC16, and BC24), respectively. While we were
128 interested in extending beyond this limit, we have found that the model was rendered unstable for forcings greater
129 than about 40 Tg and that the climate response exhibits unexpected features even in the low-to-moderate forcing
130 scenarios. All injected BC particles are assumed hydrophilic from the start. As in previous studies, the particles are
131 injected uniformly between 300 to 150 hPa over the United States and Russia at a constant rate over 1 week, starting
132 from January 1st. To evaluate the long-term response, each simulation is run for 20 years from the first day of emission.

133 3 Results


134 3.1 BC burden response and impacts on global shortwave and longwave radiation

135 For all cases, more than two-thirds of the BC burden stays under the overworld, which is defined as the domain above
136 the 380 K potential temperature surface (around 15 km above the Earth's surface) (Holton et al., 1995), and gets
137 removed in the first year (Fig. 1a). The BC burden in the lower atmosphere (under the 380 K potential temperature
138 surface) is relatively greater in the first year before getting removed, which is important for the shorter-term climate

139 response. The overworld burden for BC12 attains its maximum at 2.0 Tg in first year June, while the overworld burden
140 for BC24 attains its maximum at 5.2 Tg in the same month, so doubling the injection from 12 Tg to 24 Tg results in
141 more than 2.5 times more BC being lofted into the overworld. After reaching the maximum burden in the overworld,
142 the overworld BC mass e-folding time, which is defined by the time it takes for the burden to reach e^{-1} of its maximum,
143 for BC16, BC20, and BC24 is estimated between **3 years and 6 months, and 3 years and 8 months**, while the mass e-
144 folding time for BC12 is 3 years and 3 months. In the lower atmosphere, the mass e-folding time is 3 months for all 4
145 cases. Throughout the simulated period, the fraction of remaining mass of BC is greater in the larger-forcing scenario
146 (Fig. 1b). The nonlinear dependence of early-stage BC lofting on the total mass of injection influences the long-term
147 climate response since the overworld burden has a much longer residence time compared to lower atmospheric burden.

148

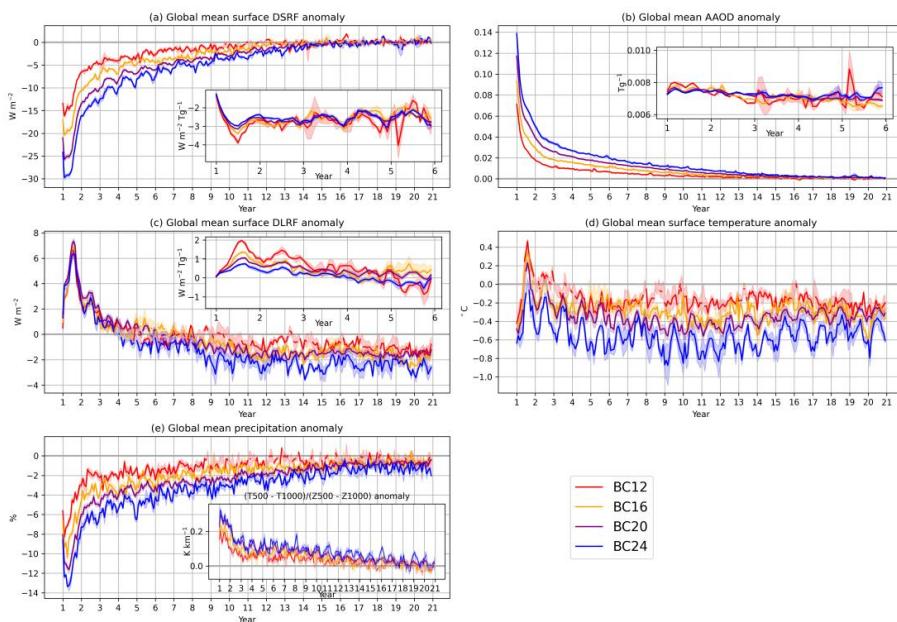
149
150 **Figure 1.** Daily averaged BC burden anomalies relative to the control simulation (a) in the atmosphere, (inset of a) in the overworld
151 domain, and (b) in the atmosphere per Tg of emitted BC. Shading indicates the standard error of the mean. In (b), the lines for
152 different ensembles are varied in thickness to show where they overlap.

153

154 As will be shown, the climate responses exhibit distinct behaviours during January to February (JF) of first year, June
155 to August (JJA) of first year, and years 6 to 15. The temporal means of the climate responses for these primary periods
156 of interest will be highlighted throughout this section (Table 1).

157 Absorption of solar radiation by BC reduces surface downwelling shortwave radiative flux (DSRF). The response in
158 the global mean surface DSRF reaches a minimum in two months following the UTLS injection BC (Fig. 2a). The
159 response is -14.80 W m^{-2} and -26.96 W m^{-2} in first year January and February for BC12 and BC24, respectively (Table

160 1). As the BC aerosol is removed from the atmosphere, the response gradually diminishes. The reduction in the global
 161 mean DSRF per unit mass of burden has not been maximized in the first two months when the global mean DSRF
 162 reduction reaches the maximum since the BC aerosol is still concentrated in the Northern Hemisphere (NH) (Fig. 2a
 163 inset and see description of Fig. 3a on BC interhemispheric transport). The efficiency of reduction is maximized in
 164 July of the first year as the BC is transported globally (see below). Doubling the BC injection from 12 to 24 Tg causes
 165 the reduction per Tg burden to decrease from -3.63 to $-2.91 \text{ W m}^{-2} \text{ Tg}^{-1}$ in first year JJA (Table 1). After the first year,
 166 the surface DSRF reduction per Tg burden is comparable across all the cases. This indicates approximately a linear
 167 scaling of the surface DSRF reduction with the atmospheric burden of BC, which is expected for low-to-moderate
 168 forcing scenarios. Although the surface DSRF reduction per Tg burden is comparable across the scenarios, the BC
 169 burden decreases at a faster rate for the weaker forcing scenarios (Fig. 1b), resulting in a smaller surface DSRF
 170 reduction per Tg injection in the long term (Table 1). Comparing BC12 and BC24, the surface DSRF reduction per Tg
 171 injection for BC12 is initially comparable to that for BC24 but becomes only about half of the value for BC24 in years
 172 6 to 15 (Table 1). This implies that by allowing more BC aerosol to reach the overworld, the stronger early-stage self-
 173 lofting effect in BC24 contributes to the reduction of DSRF at the surface in the long term. This translates to a nonlinear
 174 response in the long-term surface temperature response, as will be shown below.


175

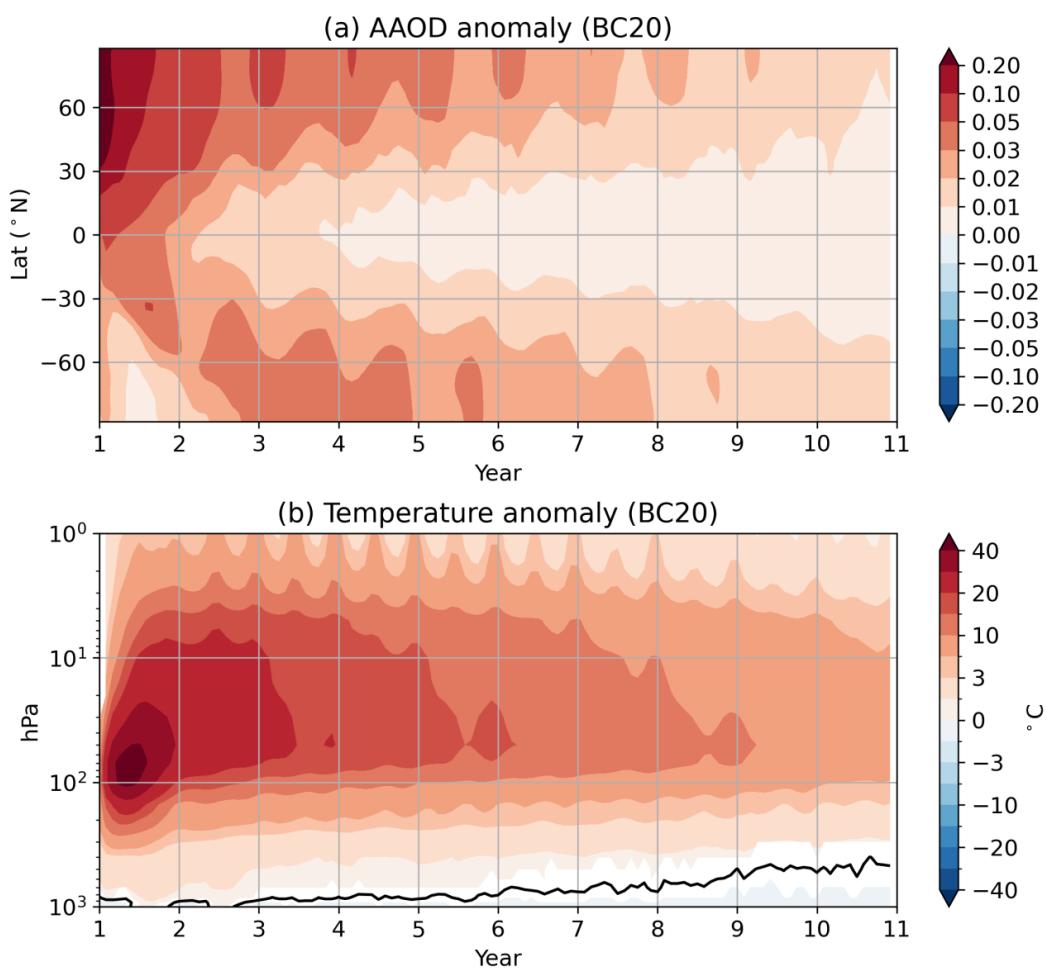
	DSRF	DSRF per Tg burden	DSRF per Tg injection	DLRF	DLRF per Tg burden	DLRF per Tg injection	TS	TS per Tg burden	TS per Tg injection
First year JF	-26.96 ± 2.38 (-14.80 ± 1.29)	-1.58 ± 0.26 (-1.77 ± 0.30)	-1.12 ± 0.10 (-1.23 ± 0.11)	$+2.56 \pm 1.03$ ($+1.65 \pm 0.98$)	$+0.16 \pm 0.07$ ($+0.21 \pm 0.13$)	$+0.11 \pm 0.04$ ($+0.14 \pm 0.08$)	-0.597 ± 0.077 (-0.389 ± 0.113)	-0.034 ± 0.004 (-0.046 ± 0.013)	-0.025 ± 0.003 (-0.032 ± 0.009)
First year JJA	-27.06 ± 1.19 (-13.09 ± 0.84)	-2.91 ± 0.06 (-3.63 ± 0.17)	-1.13 ± 0.05 (-1.09 ± 0.07)	$+6.02 \pm 0.49$ ($+6.36 \pm 0.33$)	$+0.65 \pm 0.07$ ($+1.78 \pm 0.15$)	$+0.25 \pm 0.02$ ($+0.53 \pm 0.03$)	-0.096 ± 0.087 ($+0.356 \pm 0.070$)	-0.010 ± 0.009 ($+0.101 \pm 0.023$)	-0.004 ± 0.004 ($+0.030 \pm 0.006$)
Years 6-15	-3.01 ± 0.89 (-0.78 ± 0.23)	-1.95 ± 0.19 (-2.40 ± 1.11)	-0.13 ± 0.04 (-0.07 ± 0.02)	-1.92 ± 0.30 (-0.46 ± 0.19)	-2.10 ± 0.87 (-3.42 ± 1.43)	-0.08 ± 0.01 (-0.04 ± 0.02)	-0.619 ± 0.047 (-0.172 ± 0.026)	-0.586 ± 0.163 (-0.919 ± 0.233)	-0.026 ± 0.002 (-0.014 ± 0.002)

176 **Table 1.** Temporal means of the global responses of DSRF (in W m⁻²), DLRF (in W m⁻²), and surface temperature (TS; in °C) for
177 BC24 (BC12 in brackets), with the 95% confidence intervals. The confidence intervals for the responses in years 6-16 are computed
178 with lag-1 autocorrelation taken into account, assuming first-order autoaggressive dependence.

179

180 **Figure 2.** Monthly averaged global mean responses of (a) surface DSRF, (b) AAOD, (c) surface DLRF, (d) surface temperature,
181 and (e) precipitation. Insets of (a) and (d) are the radiative flux responses divided by the atmospheric BC burden, respectively.
182 Inset of (e) is the monthly averaged global mean responses of the temperature difference between 500 hPa and 1000 hPa, divided by
183 the thickness of the column. Shading indicates the standard error of the mean. Dashed lines indicate where the standard error overlaps
184 with the zero line.
185

186


187 The global mean aerosol absorption optical depth (AAOD) response is consistent with the surface DSRF response
188 (Fig. 2b), also with an approximately linear scaling (Fig. 2b inset). Unlike the surface DSRF response, the AAOD
189 response starts at its extremum since it depends on the relative radiant flux absorbed by the aerosol rather than the
190 absolute change in the radiative flux. For our best-sampled simulation, BC20, the zonal mean AAOD ranges from 0.1
191 to 0.3 in most of NH in the first simulated year (Fig. 3a). The AAOD becomes comparable between the hemispheres
192 after about 2 simulated years and is reduced to about 0.01-0.02 at high latitudes after 10 years.

193 In addition to the perturbation to shortwave radiative transfer, the longwave radiative transfer would also be perturbed
194 by the aerosol injection due to changes in emissivity and thermal structure of the atmosphere (Ramaswamy & Kiehl,
195 1985). The surface downwelling longwave radiative flux (DLRF) response is initially negligible and then increases as
196 the atmosphere is heated by the BC (Fig. 2c, 3b). For the best-sampled scenario, BC20, the global mean air temperature

197 response exceeds 40°C at 70 hPa in the first April following the injection and attains a maximum of 45°C at 70 hPa
198 few months later in June at the beginning of the boreal summer (Fig. 3b). The changes in longwave radiative transfer
199 result in a global mean surface DLRF increase that peaks at $+7.33 \text{ W m}^{-2}$ in August of the first year (Fig. 2c). The
200 response in surface DLRF in first year JJA is similar among the different scenarios (Fig. 2c, Table 1). This implies that
201 the surface DLRS increase per Tg burden in first year JJA is greater for the weaker forcing scenarios than the stronger
202 forcing scenarios, in contrast to the approximate linearity of surface DSRF response (Fig. 2a,c insets, Table 1). In the
203 long term, the positive response of surface DLRF decays faster than the negative response of surface DSRF (Fig. 2a,c).

204

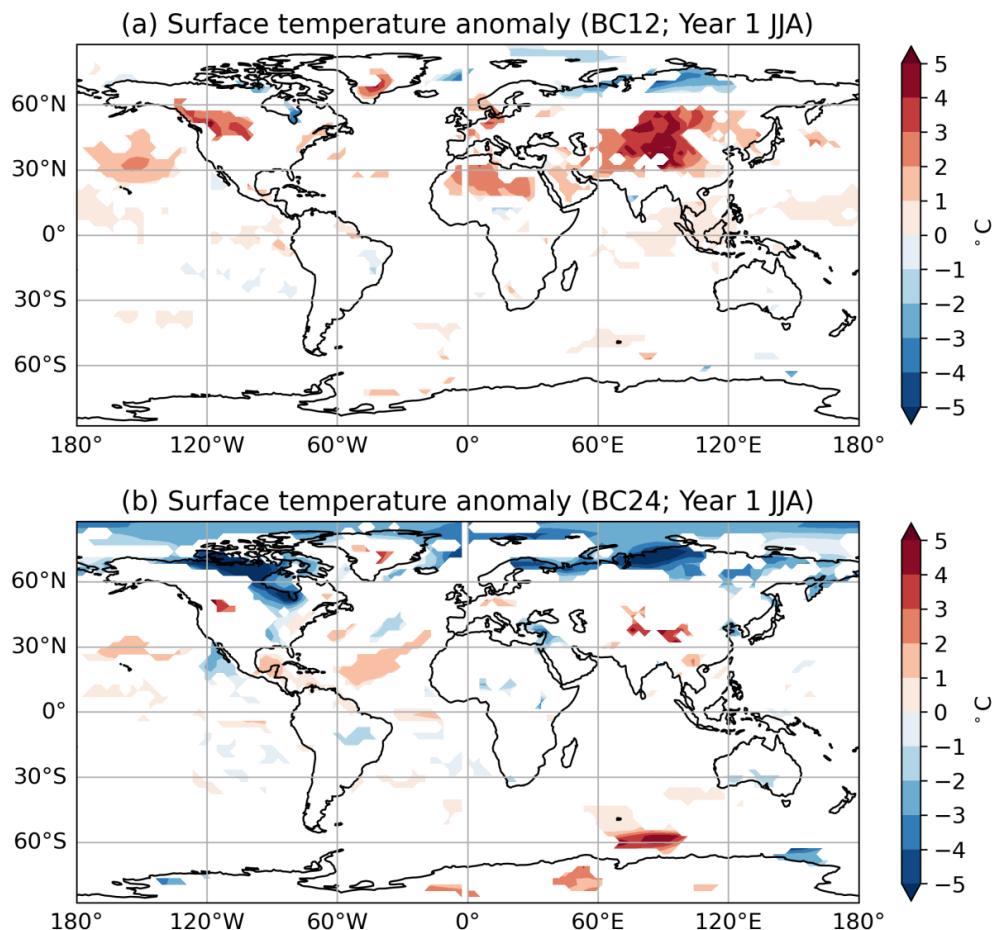
205
206 **Figure 3.** Monthly averaged responses of (a) zonal mean aerosol absorption optical depth at 550 nm and (b) horizontally averaged

207 air temperature. White patches indicate changes that are not significant at 95% confidence level using a t test. In (b), solid black
208 line is the line of 0 K.

209

210 **3.2 Impacts on global temperature and precipitation**

211 The global mean surface temperature is decreased in response to the reduction in surface DSRF, but an unexpected
212 oscillation is seen in the temperature response during the first boreal summer. The reduction in surface DSRF of -14.80 W m^{-2} and -26.96 W m^{-2} causes a rapid global mean surface cooling of $-0.389 \text{ }^{\circ}\text{C}$ and $-0.597 \text{ }^{\circ}\text{C}$ in first year
213 JF for BC12 and BC24, respectively (Fig. 2d, Table 1). Surprisingly, instead of a gradual return to the climatological
214 mean, the global mean surface temperature response increases drastically until it reaches a maximum in first year JJA.
215 It is $+0.356 \text{ }^{\circ}\text{C}$ and $-0.096 \text{ }^{\circ}\text{C}$ for BC12 and BC24, respectively (Table 1). This implies that the global surface
216 temperature response increases by more than $0.7 \text{ }^{\circ}\text{C}$ for BC12 from first year JF to JJA, whereas it increases by 0.5
217 $\text{ }^{\circ}\text{C}$ for BC24 in the same period. The surface DLRF increase is consistent with the striking transient surface warming.
218 It peaks at $+6.36 \text{ W m}^{-2}$ and $+6.02 \text{ W m}^{-2}$ in first year JJA, the same season in which the surface temperature response
219 is at its highest (Fig. 2c,d, Table 1). After the temperature peak in first year JJA, the global mean surface temperature
220 transitions back to a negative response and remains somewhat steady in years 6 to 15 before slowly returning to the
221 climatological mean towards the end of the simulations (Fig. 2d). This is consistent with the trade-off between surface
222 DSRF and DLRF, with the positive response of surface DLRF decaying faster than the negative response of surface
223 DSRF (Fig. 2a,c). In years 6 to 15, the global mean surface temperature responses are $-0.172 \text{ }^{\circ}\text{C}$ and $-0.619 \text{ }^{\circ}\text{C}$ for
224 BC12 and BC24 (Table 1). The surface temperature responses per Tg injection are $-0.014 \text{ }^{\circ}\text{C Tg}^{-1}$ and $-0.026 \text{ }^{\circ}\text{C Tg}^{-1}$.
225 The nonlinear dependence of surface temperature response on the mass of injection is controlled by the nonlinear
226 dependence of surface DSRF reduction on the mass of injection, $-0.07 \text{ W m}^{-2} \text{ Tg}^{-1}$ and $-0.13 \text{ W m}^{-2} \text{ Tg}^{-1}$ in years 6 to
227 15. As mentioned above, the stronger early-stage self-lofting effect in the stronger forcing scenarios contributes to the
228 long-term surface DSRF reduction. Thus, the nonlinear self-lofting effect translates to a nonlinear response in the
229 long-term surface temperature response.

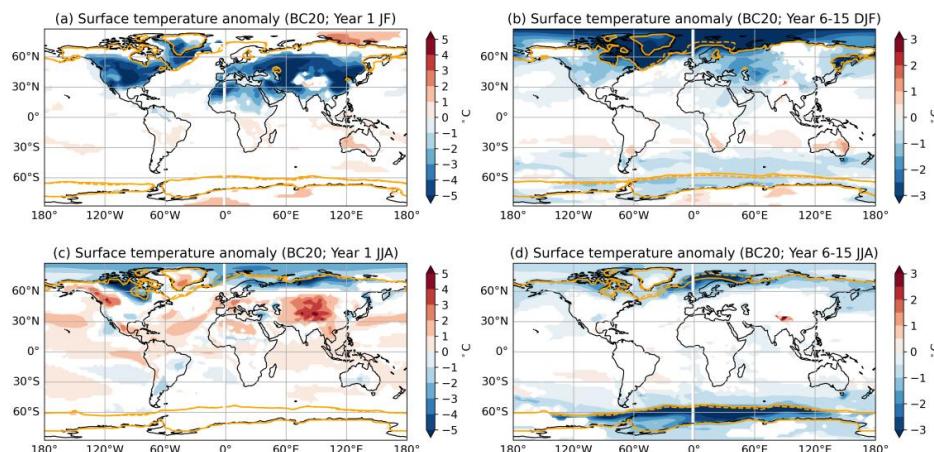

230 Despite having surface temperature increase in the first boreal summer, the global mean precipitation response remains
231 negative from the start to near the end of the simulations (Fig. 2e). While reduced precipitation is an expected part of
232 the weakened hydrological cycle associated with nuclear winter (Robock et al., 2007a), the pronounced reduction of
233 precipitation during the period of warming in the first year is consistent with the increase in static stability (Fig. 2e
234 inset). The troposphere is stabilized as the upper troposphere is heated by the light-absorbing BC. This is clear from
235 the best-sampled simulation, BC20 (Fig. 3b). Although the lower tropospheric response is a warming in the first boreal
236 summer, the mid-tropospheric warming is greater. The greater static stability inhibits convection and reduces
237 precipitation. The strongest vertical gradient of temperature response between 100 and 500 hPa emerges in the first
238 year and is weakened afterward, but the sign of the temperature response gradient persists until the end of the simulated
239 period, indicating a more stable troposphere throughout the simulation.

241 3.3 Spatial pattern of impacts on surface temperature

242 The regional pattern of surface temperature is forcing-dependent. Comparing the first year JJA responses between
243 BC12 and BC24 reveals stronger polar cooling and larger sea ice expansion under higher forcing (Fig. 4). Moreover,
244 mid-latitude warming is less intense in the higher forcing scenario. Although enhanced mid-tropospheric heating may
245 increase DLRF, the stronger longwave effect under weaker forcing remain uncertain and is examined further below.

246

247
248 **Figure 4.** Responses of surface temperature for (a) BC12 and (b) BC24 in JJA of the first simulated year. White patches indicate
249 changes that are not significant at 95% confidence level using a t test. The solid and dashed orange lines indicate the sea ice lines
250 for the scenario and for the climatology, respectively. It is defined as the grids with 15% sea ice area.


251

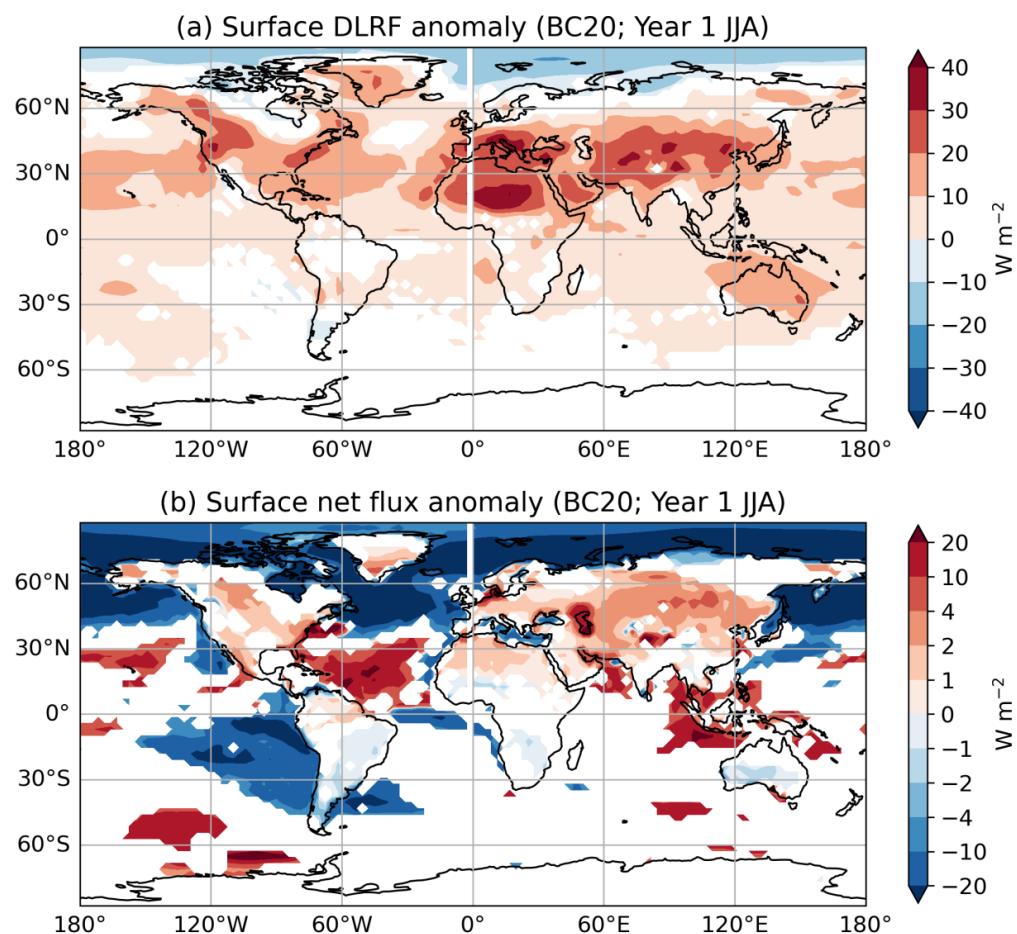
252 To characterize this transient evolution from the initial year to subsequent years, we show the best sampled simulation,
253 BC20, contrasting JF and JJA of the first year – marked by the pronounced surface temperature oscillation – with the
254 quasi-steady response over years 6 to 15.

255 In the first two months following the injection, substantial surface cooling is seen on land as a result of the surface
256 DSRF reduction. In NH, there is a statistically significant maximum cooling of about 8 °C in continental regions in
257 the JF-mean (Fig. 5a). The reduction in surface DSRF causes most of the cooling, but the dynamical response likely
258 contributed to some of the temperature responses. For example, the cooling around Greenland and the warming north
259 of Siberia are likely due to a positive Arctic-Oscillation-like (AO) response (Fig. 5a; also see Fig. A1 for the regressed
260 positive AO pattern in the control simulations; Stenchikov et al., 2002). A stronger AO-like response was shown for a
261 5 Tg India-Pakistan case by Robock et al. (2007b). In December to January (DJF) over years 6 to 15, the maximum
262 cooling is at high latitudes, accompanied by sea-ice extent increase (Fig. 5b). This extends to a significant cooling of
263 2-3 °C in Europe and around 1.5 °C in southern Canada and the United States.

264

265 **Figure 5.** Responses of surface temperature as in Fig. 4 but for BC20 in (a) JF of the first year, (b) DJF of years 6-15, (c) JJA of
266 the first year, and (d) JJA of years 6-15. White patches indicate changes that are not significant at 95% confidence level using a t
267 test.
268

269


270 In the first boreal summer following the fire, substantial warming is seen in parts of Africa, North America, Greenland,
271 and Tibet. A warming of up to +3-5 °C develops around Tibet, +2-3 °C in southern Greenland and the western North
272 America, and +1-2 °C in northern Africa (Fig. 5c; and see Fig. 4 for the corresponding plots for BC12 and BC24).
273 These areas are associated with relatively larger surface DLRF response (Fig. 6a). To better understand changes in the
274 surface energy exchange, we calculated the surface net energy imbalance, which takes into account net shortwave
275 radiative flux, net longwave radiative flux, sensible heat flux, and latent heat flux. The surface net energy imbalance

276 is highly localized during the first boreal summer (Fig. 6b). For most land surfaces in NH, the net energy imbalance
277 ranges from +2 to +5 W m⁻² (a positive sign corresponds to warming). Contributing to this positive response is not
278 only a decrease in surface net longwave radiative flux (defined positive upward), but also a decrease in the turbulent
279 fluxes as the atmospheric stability increases (turbulent fluxes not shown). Although the net energy imbalance is mostly
280 negative for oceanic surface regions, especially at high latitudes, the higher heat capacity of ocean buffers the ocean
281 surface temperature changes. The localized warming on land with adjustment by advection may result in the
282 temperature response pattern and the positive global mean surface temperature response in the first boreal summer
283 (Fig. 2c, 5c, A2). The long-term response for boreal summer shows statistically significant surface cooling mostly at
284 high latitudes (Fig. 5d).

285 Overall, these simulations reveal a whipsaw effect on the surface temperature in the first year, where there is a quick
286 transition from the very cold initial conditions to much warmer conditions over midlatitude land surfaces, and then a
287 transition to strong mid-to-high latitude cooling as sea ice and ocean adjustments kick in.

288

289
290
291
292

Figure 6. Responses of (a) surface DLRF, and (b) surface net flux in JJA of the first year for BC20. The surface net flux includes net shortwave radiative flux, net longwave radiative flux, latent heat flux, and sensible heat flux. The fluxes are defined as positive downward. White patches indicate changes that are not significant at 95% confidence level using a t test.

293

294 **4 Discussions and conclusions**

295 In this study, we explore the potential climate impacts of a hypothetical nuclear war between the United States and
296 Russia, using a set of sensitivity studies with different low-to-moderate forcing scenarios using CanESM5. The forcing
297 scenarios range from 12 to 24 Tg of BC injection at UTLS over the United States and Russia. We demonstrate, for the
298 first time, the possibility of a transient global warming response in the first year following fire emissions in low-to-

299 moderate forcing nuclear war scenarios. The result highlights the nonlinear nature of the aerosol lifetime and thermal
300 response, which can diverge substantially from those in strong-forcing cases.

301 During the first few months after injection, the global mean surface DSRF is drastically reduced, resulting in
302 substantial global surface cooling, especially over NH land areas. Midway through the first year, however, a sign
303 reversal occurs in the global mean surface temperature response, producing a transient warming before temperature
304 returns to a negative response by year's end. This short-term warming is more pronounced under the weaker forcing
305 scenario, where a larger fraction of BC remains in the lower atmosphere. The enhanced DLRF at the surface, together
306 with reduced cooling via turbulent fluxes, contributed substantially to this warming. This signal is consistent with a
307 stronger nighttime temperature increase (see Fig. A3 for daily minimum surface temperature and daily maximum
308 surface temperature responses during year 1 JJA). The downwelling longwave enhancement likely stems from
309 increased emissivity associated with tropospheric BC burden (Ramaswamy & Kiehl, 1985), although concurrent water
310 vapor changes could also modulate radiative transfer. **Further investigation into the sensitivity of the longwave**
311 **response to the vertical smoke profile and varying water vapor content** is warranted for the low-to-moderate forcing
312 scenarios.

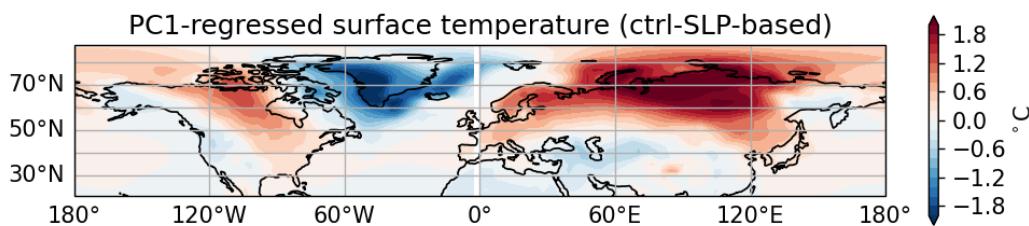
313 Absorbing particles above reflective surfaces can induce warming by absorbing shortwave radiation reflected from
314 below and reemitting in the longwave (Bond et al., 2013). This may explain why the warming is mainly confined to
315 dry, high-albedo regions such as Tibet, western North America, and northern Africa (see Fig. A4 for surface albedo in
316 year 1 JJA). Although BC deposition slightly decreased surface albedo in these regions (not shown), the effect was
317 too small to significantly influence DSRF. Moreover, a decreased albedo and greater shortwave absorption could not
318 account for the simulated nighttime warming (Fig. A3; Kleidon & Renner, 2017).

319 The lifetime and transport of BC aerosol are key for understanding the resulting climate effects. In our low-to-moderate
320 forcing scenarios, a larger initial injection led to a greater portion of BC reaching and persisting in the upper
321 atmosphere due to enhanced self-lofting (Stenke et al., 2013). This nonlinear dependence of upper atmospheric burden
322 on the initial injection is critical for the long-term climate response as aerosols in the upper atmosphere have longer
323 lifetime. Hence, both the transient surface warming and the subsequent long-term cooling exhibit nonlinear
324 dependence on injection mass. Our simulations show a faster removal rate compared to the previous studies: over two-
325 thirds of the emitted BC is removed within the first simulated year, whereas other studies reported less than one-third
326 removal for cases with a UTLS injection of 150 Tg over the United States and Russia and of 5 Tg over India and
327 Pakistan (Coupe et al., 2019; Mills et al., 2014; Pausata et al., 2016; Robock et al., 2007b; Wagman et al., 2020). This
328 may reflect the lower concentrations of BC in our 12-24 Tg injections compared to both 150 Tg United States-Russia
329 and 5 Tg India-Pakistan cases. Additionally, model differences – such as aerosol coagulation treatment, gravitational
330 settling, and model-top height – also affect the removal rate (Pausata et al., 2016; Coupe et al., 2019; Robock et al.,
331 2007b). Future research should include **systematic model intercomparisons** to constrain these uncertainties.

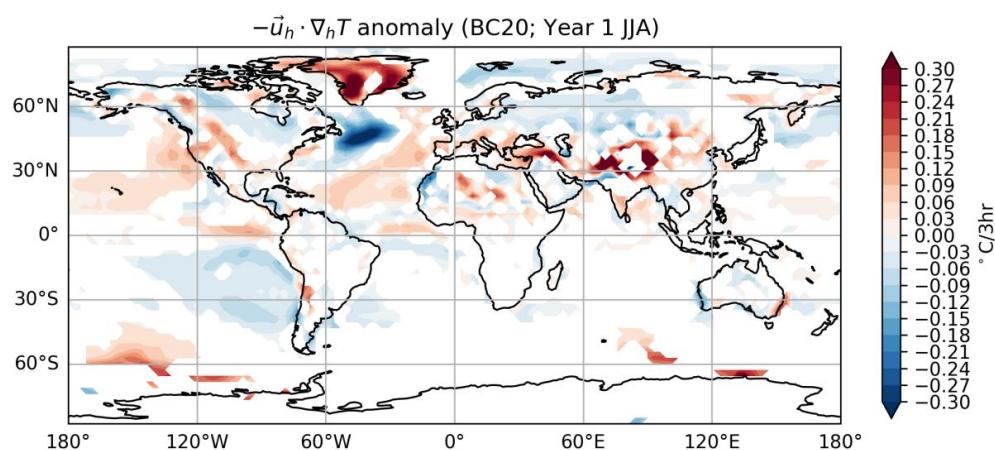
332 The upper atmosphere experiences intense heating the absorbing BC. For BC20, the average temperature response at
333 200 hPa exceeds 15 °C midway through the first year (Fig. 3b). This is comparable to the temperature response at 200
334 hPa in the 150 Tg USA-Russia scenario (Coupe et al., 2019; Robock et al., 2007a). However, unlike those studies, our

335 zero-isotherm remained near the surface in the first few years, (Fig. 3b), likely because their injections were greater
336 and occurred in May, whereas ours began in January. The temperature response at 200 hPa for BC20 also exceeds that
337 in the 5 Tg India-Pakistan case from Mills et al. (2014) and Pausata et al. (2016). Although Mills et al. (2014) have
338 reported that the choice of the initial season did not significantly affect the BC distribution or the climate impact for
339 the 5 Tg India-Pakistan case, this may not be true for our 20 Tg USA-Russia case, which has initially less concentrated
340 BC particles and less insolation in January. Also, for the same 5 Tg India-Pakistan scenario that starts the injection on
341 January 1st, Pausata et al. (2016) found the temperature change to peak at 50 hPa 4 months after the injection in
342 NorESM1-M (model top at 3 hPa), unlike the peak below 1 hPa at the beginning in CESM1-WACCM4 (model top at
343 5.1×10^{-6} hPa) from Mills et al. (2014). This indicates that the heating rate and vertical temperature structure depend
344 strongly on the model configuration as well.

345 The climate effects on temperature and precipitation in our results are linked to impacts that warrant further study. The
346 vertical structure of the warming enhances stability in the troposphere during the entire course of the simulation, which
347 is coherent with the decreased precipitation (Fig. 2e inset). The long-term cooling is mainly confined to high latitudes
348 and is not as drastic as the initial cooling in the midlatitudes. Together persistent cooling and reduced precipitation
349 could still depress agricultural productivity (Xia & Robock, 2013; Xia et al., 2022). Conversely, the first-year transient
350 warming occurs mostly over arid regions that are not major croplands and thus is unlikely to enhance yields. Instead,
351 the warmer and drier surface conditions could heighten wildfire risk (Byrne et al., 2024).


352 OC is also a possible constituent of the smoke apart from BC. While OC is more short-lived and less absorbing in the
353 visible range (Forrister et al., 2015), recent studies show that including OC can enhance surface cooling and
354 stratospheric heating but reduce aerosol residence time by promoting coagulation (Pausata et al., 2016). We did not
355 include OC emission in our scenarios, as our version of CanESM5.1 lacks coagulation processes. For further work,
356 we will address this limitation using an updated version of CanESM with the Piecewise log-normal Aerosol Model
357 (PAM; von Salzen, 2006), which allows for a more complete treatment of aerosol microphysics.

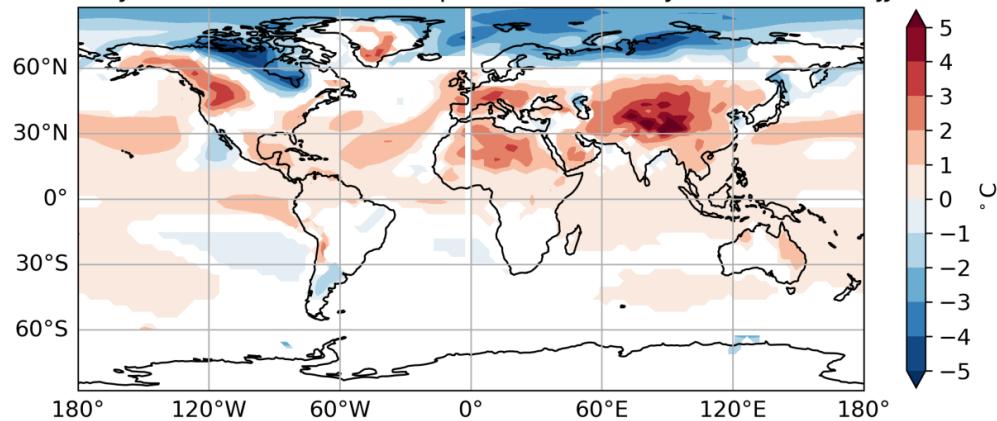
358 In summary, our simulations demonstrate, for the first time, the possibility of a transient global warming signal during
359 the first year following fire emissions in low-to-moderate forcing nuclear war scenarios. This finding stands in contrast
360 to the uniformly cooling response typically associated with strong-forcing nuclear winter events. The result highlights
361 the nonlinear nature of the aerosol lifetime and thermal response, which can diverge substantially from those in strong-
362 forcing cases. The warming arises from a complex balance between surface shortwave, longwave, and turbulent fluxes.
363 While this longwave-driven warming is likely overwhelmed by surface shortwave reduction as the forcing increases
364 and more BC aerosol is lofted into the stratosphere, its emergence here underscores the importance of model
365 representations of aerosol microphysics and feedbacks involving turbulent heat exchange. The transient and spatially
366 heterogeneous surface warming revealed in our simulations merits attention for its potential societal and
367 environmental implications, even under relatively modest nuclear exchange scenarios.


368 Appendix A

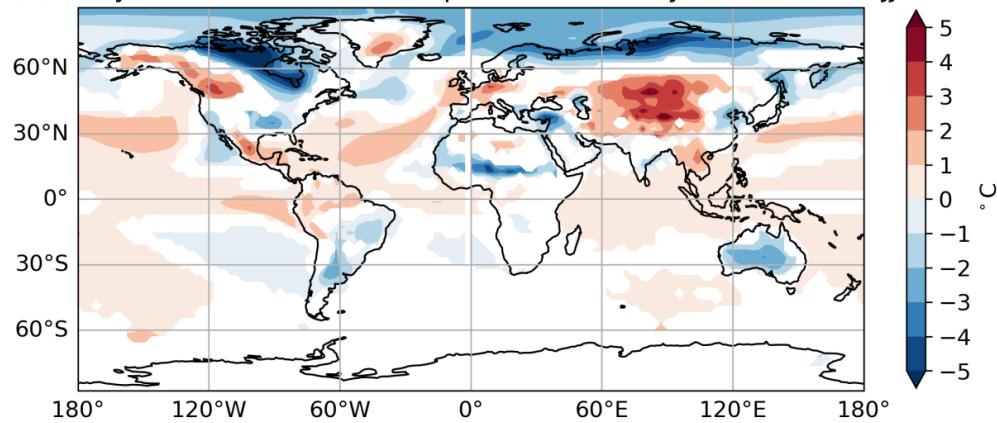
369

370
371 **Figure A1.** The positive AO pattern in the control simulations, obtained by regressing surface temperature onto the first principal
372 component (PC1) of sea-level pressure (SLP). 20°N-90°N daily zonal-mean SLP anomalies in DJF were used.

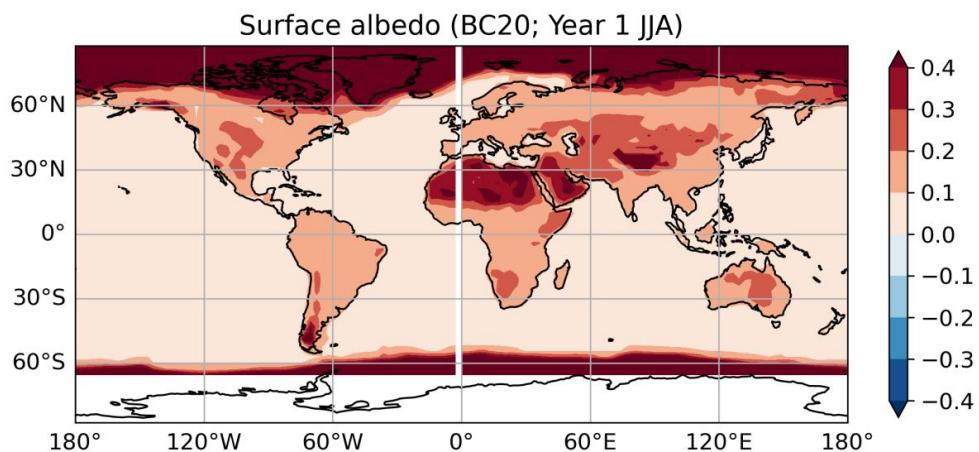
373



374
375 **Figure A2.** Temperature advection responses in JJA of the first year for BC20. The sign is defined such that positive values imply
376 a positive local temperature tendency due to temperature advection. White patches indicate changes that are not significant at 95%
377 confidence level using a t test.


378

(a) Daily minimum surface temperature anomaly (BC20; Year 1 JJA)


(b) Daily maximum surface temperature anomaly (BC20; Year 1 JJA)

379
380
381

Figure A3. Responses of (a) daily minimum and (b) daily maximum surface temperature in JJA of the first year for BC20. White patches indicate changes that are not significant at 95% confidence level using a t test.

382

383
384 **Figure A4.** Surface albedo in JJA of the first year for BC20.

385

386 **Code and data availability**

387 Both CanESM and the related tool `imsi` are released under the Open Government Licence Canada – 2.0. This license
388 permits anyone to use or adapt them for lawful purposes, including commercial use, provided appropriate
389 acknowledgement is given. Postprocessed output from the CanESM simulations, needed to reproduce the main figures,
390 are publicly available on the University of Toronto Dataverse at <https://doi.org/10.5683/SP3/UG2598>. The full model
391 outputs from the simulations are large and stored on the Trillium supercomputer at the SciNet HPC Consortium.
392 Additional data from these simulations can be provided upon request by contacting Anson Cheung or Paul Kushner.

393 **Author contributions**

394 PJK and FSRP coordinated the project and acquired financial support for the project; PJK and AKHC designed the
395 simulations; AKHC adapted CanESM code and performed the simulations; AKHC analyzed the model output with
396 contributions from all co-authors; AKHC wrote the manuscript draft; PJK, FSRP, ZZ, and MB reviewed and edited
397 the manuscript.

398 **Competing interests**

399 The authors declare that they have no conflict of interest.

400 **Acknowledgements**

401 This work made use of resources provided by the Collaborative Platform for CanESM (CP4C). CP4C is supported by
402 funding from Environment and Climate Change Canada (ECCC, Project Number GCXE25S055) and uses
403 computational resources provided by SciNet and the Digital Research Alliance of Canada (RPP #1234 [RPP2025]).
404 CanESM is a project of ECCC. The authors acknowledge Knut von Salzen and Jason N. S. Cole at ECCC for providing
405 information about the existing model parameterizations and configurations.

406 **Financial support**

407 This work has been supported by the Future of Life Institute (<https://futureoflife.org/>), project title “Constraining
408 Nuclear War Fire Emissions and their Impacts on the Climate System”.

409 **References**

410 Bardeen, C. G., Kinnison, D. E., Toon, O. B., Mills, M. J., Vitt, F., Xia, L., Jägermeijer, J., Lovenduski, N. S., Scherrer,
411 K. J. N., Clyne, M., and Robock, A.: Extreme ozone loss following nuclear war results in enhanced surface ultraviolet
412 radiation, *Journal of Geophysical Research: Atmospheres*, 126(18), <https://doi.org/10.1029/2021JD035079>, 2021.

413 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S.,
414 Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman,
415 C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z.,
416 Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black
417 carbon in the climate system: A scientific assessment. *J. Geophys. Res. Atmos.*, 118, 5380-5552,
418 doi:10.1002/jgrd.50171, 2013.

419 Byrne, B., Liu, J., Bowman, K. W., Pascolini-Campbell, M., Chatterjee, A., Pandey, S., Miyazaki, K., van der Werf,
420 G. R., Wunch, D., Wennberg, P. O., Roehl, C. M., and Sinha, S.: Carbon emissions from the 2023 Canadian wildfires,
421 *Nature* 633, 835-839, <https://doi.org/10.1038/s41586-024-07878-z>, 2024.

422 Cole, J. N. S., von Salzen, K., Li, J., Scinocca, J., Plummer, D., Arora, V., McFarlane, N., Lazare, M., MacKay, M.,
423 and Verseghy, D.: The Canadian Atmospheric Model version 5 (CanAM5.0.3), *Geosci. Model Dev.*, 16, 5427-5448,
424 doi:<https://doi.org/10.5194/gmd-16-5427-2023>, 2023.

425 Coupe, J., Bardeen, C. G., Robock, A., and Toon, O. B.: Nuclear Winter Responses to Nuclear War Between the United
426 States and Russia in the Whole Atmosphere Community Climate Model Version 4 and the Goddard Institute for Space
427 Studies ModelE, *Journal of Geophysical Research: Atmospheres*, 124(15), 8522-8543.
428 doi:<https://doi.org/10.1029/2019JD030509>, 2019.

429 Croft, B., Lohmann, U., and von Salzen, K.: Black carbon ageing in the Canadian Centre for Climate modelling and
430 analysis atmospheric general circulation model, *Atmospheric Chemistry and Physics*, 5, 1931-1949, 2005.

431 Dai, Y., Hitchcock, P., and Simpson, I. R.: What Drives the Spread and Bias in the Surface Impact of Sudden
432 Stratospheric Warnings in CMIP6 Models? *J. Climate*, 37, 3917-3942, <https://doi.org/10.1175/JCLI-D-23-0622.1>,
433 2024.

434 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the
435 Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. *Geoscientific Model*
436 *Development*, 9(5), 1937-1958, <https://doi.org/10.5194/gmd-9-1937-2016>, 2016.

437 Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemb, L., Thornhill, K. L., Anderson, B., Diskin, G., Perring, A. E.,
438 Schwarz, J. P., Campuzano-Jost, P., Day, D. A., Palm, B. B., Jimenez, J. L., Nenes, A., and Weber, R. J.: Evolution of
439 brown carbon in wildfire plumes, *Geophys. Res. Lett.*, 42, 4623–4630, doi: 10.1002/2015GL063897, 2015.

440 Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Tilmes, S., Vitt, F., Bardeen,
441 C. G., McInerny, J., Liu, H.-L., Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J.-F., Richter, J. H.,
442 Glanville, A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B., Simpson, I. R., DuVivier, A. K., Hodzic, A., and Randel,
443 W. J.: The whole atmosphere community climate model version 6 (WACCM6), *Journal of Geophysical Research: Atmospheres*, 124(23), 12380-12403, <https://doi.org/10.1029/2019JD030943>, 2019.

444 Ghan, S. J., Smith, S. J., Wang, M., Zhang, K., Pringle, K., Carslaw, K., Pierce, J., Bauer, S., and Adams, P.: A simple
445 model of global aerosol indirect effects, *Journal of Geophysical Research. Atmospheres*, 118(12), 6688-6707,
446 <https://doi.org/10.1002/jgrd.50567>, 2013.

447 Glasstone, S., Dolan, P. J., United States. Department of Defense, United States Department of Energy, and United
448 States Defense Atomic Support Agency.: *The effects of nuclear weapons* (3rd ed.), U.S. Dept. of Defense, 1977.

449 Holton, J. R., Haynes, P. R., McIntyre, M. E., and Douglass, A. R.: Stratosphere-troposphere exchange, *Rev. Geophys.*,
450 33, 403-439, <https://doi.org/10.1029/95RG02097>, 1995.

451 Johnson, B. T. and Haywood, J. M.: Assessing the impact of self-lofting on increasing the altitude of black carbon in
452 a global climate model, *Journal of Geophysical Research: Atmospheres*, 128, <https://doi.org/10.1029/2022JD038039>,
453 2023.

454 Kleidon, A. and Renner, M.: An explanation for the different climate sensitivities of land and ocean surfaces based on
455 the diurnal cycle, *Earth System Dynamics*, 8(3), 849-864, <https://doi.org/10.5194/esd-8-849-2017>, 2017.

456 Li, J., von Salzen, K., Peng, Y., Zhang, H., and Liang, X.: Evaluation of black carbon semidirect radiative effect in a
457 climate model, *Journal of Geophysical Research. Atmospheres*, 118(10), 4715-4728,
458 <https://doi.org/10.1002/jgrd.50327>, 2013.

459 Lohmann, U., von Salzen, K., McFarlane, N., Leighton, H. G., and Feichter, J.: Tropospheric sulfur cycle in the
460 Canadian general circulation model, *J. Geophys. Res.*, 104(D21), 26833-26858, doi:10.1029/1999JD900343, 1999.

461 Lucas, K. A., Orient J. M., Robinson A., Maccabee H., Morris P., Looney G., and Klinghoffer M.: Efficacy of bomb
462 shelters: with lessons from the Hamburg firestorm, *South Med J.*, 83(7), 812-820, doi: 10.1097/00007611-199007000-
463 00022, 1990.

464 Madec, G. and the NEMO team: NEMO ocean engine, version 3.4, *Institut Pierre-Simon Laplace Note du Pole de*
465 *Modélisation* 27, 367 pp, 2012.

466 Malone, R. C., Auer, L., Glatzmaier, G., Wood, M., and Toon, O. B.: Influence of solar heating and precipitation
467 scavenging on the simulated lifetime of post-nuclear war smoke, *Science*, 230(4723), 317-319,
468 <https://doi.org/10.1126/science.230.4723.317>, 1985.

470 Mills, M. J., Toon, O. B., Lee-Taylor, J., and Robock, A.: Multidecadal global cooling and unprecedented ozone loss
471 following a regional nuclear conflict, *Earth's Future*, 2(4), 161-176, <https://doi.org/10.1002/2013EF000205>, 2014.

472 Mills, M. J., Toon, O. B., Turco, R. P., Kinnison, D. E., and Garcia, R. R.: Massive global ozone loss predicted
473 following regional nuclear conflict, *Proceedings of the National Academy of Sciences - PNAS*, 105(14), 5307-5312,
474 <https://doi.org/10.1073/pnas.0710058105>, 2008.

475 Namazi, M., von Salzen, K., and Cole, J. N. S.: Simulation of black carbon in snow and its climate impact in the
476 Canadian Global Climate Model, *Atmos. Chem. Phys.*, 15, 10887-10904, <https://doi.org/10.5194/acp-15-10887-2015>,
477 2015.

478 National Academies of Sciences, Engineering, and Medicine: Potential Environmental Effects of Nuclear War,
479 Washington, DC: The National Academies Press, <https://doi.org/10.17226/27515>, 2025.

480 Ohneiser, K., Ansmann, A., Witthuhn, J., Deneke, H., Chudnovsky, A., Walter, G., and Senf, F.: Self-lofting of wildfire
481 smoke in the troposphere and stratosphere: simulations and space lidar observations. *Atmos. Chem. Phys.*, 23(4),
482 2901-2925, <https://doi.org/10.5194/acp-23-2901-2023>, 2023.

483 Pausata, F. S. R., Lindvall, J., Ekman, A. M. L., and Svensson, G.: Climate effects of a hypothetical regional nuclear
484 war: Sensitivity to emission duration and particle composition, *Earth's Future*, 4(11), 498-511,
485 <https://doi.org/10.1002/2016EF000415>, 2016.

486 Ramaswamy, V. and Kiehl, J. T.: Sensitivities of the radiative forcing due to large loadings of smoke and dust aerosols,
487 *J. Geophys. Res.*, 90(D3), 5597-5613, doi:10.1029/JD090iD03p05597, 1985.

488 Robock, A., Oman, L., and Stenchikov, G. L.: Nuclear winter revisited with a modern climate model and current
489 nuclear arsenals: Still catastrophic consequences, *Journal of Geophysical Research - Atmospheres*, 112(D13),
490 D13107-n/a, <https://doi.org/10.1029/2006JD008235>, 2007.

491 Robock, A., Oman, L., Stenchikov, G. L., Toon, O. B., Bardeen, C., and Turco, R. P.: Climatic consequences of
492 regional nuclear conflicts, *Atmospheric Chemistry and Physics*, 7(8), 2003-2012, <https://doi.org/10.5194/acp-7-2003-2007>, 2007.

493 Samset, B. H., Wilcox, L. J., Allen, R. J., Stjern, C. W., Lund, M. T., Ahmadi, S., Ekman, A., Elling, M. T., Fraser-
494 Leach, L., Griffiths, P., Keeble, J., Koshiro, T., Kushner, P., Lewinschal, A., Makkonen, R., Merikanto, J., Nabat, P.,
495 Narazenko, L., O'Donnell, D., Oshima, N., Rumbold, S. T., Takemura, T., Tsigaridis, K., and Westervelt, D. M.: East
496 Asian aerosol cleanup has likely contributed to the recent acceleration in global warming, *Commun Earth Environ*,
497 6543, <https://doi.org/10.1038/s43247-025-02527-3>, 2025.

498 Scinocca, J. F., McFarlane, N. A., Lazare, M., Li, J., and Plummer, D.: Technical Note: The CCCma third generation
499 AGCM and its extension into the middle atmosphere, *Atmos. Chem. Phys.*, 8, 7055-7074, <https://doi.org/10.5194/acp-8-7055-2008>, 2008.

500 Shemwell, B. E. and Levendis, Y. A.: Particulates Generated from Combustion of Polymers (Plastics), *Journal of the*
501 *Air & Waste Management Association*, 50(1), 94-102, <https://doi.org/10.1080/10473289.2000.10463994>, 2000.

502 Solomon, F. and Marston, R. Q.: *The Medical Implications of Nuclear War*, National Academy Press, 1986.

505 Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton, K., and Ramachandran, S.: Arctic
506 Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion, *J.*
507 *Geophys. Res.*, 107(D24), 4803, doi:10.1029/2002JD002090, 2002.

508 Stenke, A., Hoyle, C. R., Luo, B., Rozanov, E., Gröbner, J., Maag, L., Brönnimann, S., and Peter, T.: Climate and
509 chemistry effects of a regional scale nuclear conflict, *Atmospheric Chemistry and Physics*, 13(19), 9713-9729,
510 <https://doi.org/10.5194/acp-13-9713-2013>, 2013.

511 Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J.
512 R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmund, M., Solheim,
513 L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), *Geosci.*
514 *Model Dev.*, 12, 4823-4873, <https://doi.org/10.5194/gmd-12-4823-2019>, 2019.

515 Tarshish, N. and Romps, D. M.: Latent heating is required for firestorm plumes to reach the stratosphere, *Journal of*
516 *Geophysical Research: Atmospheres*, 127, <https://doi.org/10.1029/2022JD036667>, 2022.

517 Tewarson, A.: Chapter 4 Generation of Heat and Chemical Compounds in Fires, In P. J. DiNenno (Eds.), SFPE
518 *Handbook of Fire Protection Engineering* (3rd ed., pp. 3-82--3-161), National Fire Protection Assoc, Inc. Quincy,
519 Mass, 2002.

520 Toon, O. B., Turco, R. P., Robock, A., Bardeen, C., Oman, L., and Stenchikov, G. L.: Atmospheric effects and societal
521 consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism, *Atmospheric Chemistry and*
522 *Physics*, 7(8), 1973-2002, <https://doi.org/10.5194/acp-7-1973-2007>, 2007.

523 Turco, R. P., Toon, O. B., Ackerman, T. P., Pollack, J. B., and Sagan, C.: Climate and Smoke: An Appraisal of Nuclear
524 Winter, *Science*, 247(4939), 166-176, <https://doi.org/10.1126/science.11538069>, 1990.

525 von Salzen, K.: Piecewise log-normal approximation of size distributions for aerosol modelling, *Atmospheric*
526 *Chemistry and Physics*, 6(5), 1351-1372, <https://doi.org/10.5194/acp-6-1351-2006>, 2006.

527 von Salzen, K., Scinocca, J. F., McFarlane, N. A., Li, J., Cole, J. N. S., Plummer, D., Verseghy, D., Reader, M. C., Ma,
528 X., Lazare, M., and Solheim, L.: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4).
529 Part I: Representation of Physical Processes, *Atmosphere-Ocean*, 51(1), 104-125,
530 <https://doi.org/10.1080/07055900.2012.755610>, 2013.

531 Wagman, B. M., Lundquist, K. A., Tang, Q., Glascoe, L. G., and Bader, D. C.: Examining the climate effects of a
532 regional nuclear weapons exchange using a multiscale atmospheric modeling approach, *Journal of Geophysical*
533 *Research: Atmospheres*, 125, <https://doi.org/10.1029/2020JD033056>, 2020.

534 Wood, R.: Drizzle in Stratiform Boundary Layer Clouds. Part II: Microphysical Aspects, *Journal of the Atmospheric*
535 *Sciences*, 62(9), 3034-3050, <https://doi.org/10.1175/JAS3530.1>, 2005.

536 Wu, K., Li, J., von Salzen, K., and Zhang, F.: Explicit solutions to the mixing rules with three-component inclusions,
537 *Journal of Quantitative Spectroscopy & Radiative Transfer*, 207, 78-82, <https://doi.org/10.1016/j.jqsrt.2017.12.020>,
538 2018.

539 Xia, L. and Robock, A: Impacts of a nuclear war in South Asia on rice production in Mainland China, *Climatic Change*,
540 116, 357-372, <https://doi.org/10.1007/s10584-012-0475-8>, 2013.

541 Xia, L., Robock, A., Mills, M., Stenke, A. and Helfand, I.: Decadal reduction of Chinese agriculture after a regional
542 nuclear war, *Earth's Future*, 3(2), 37-48, <https://doi.org/10.1002/2014EF000283>, 2015.

543 Xia, L., Robock, A., Scherrer, K., Harrison, C. S., Bodirsky, B. L., Weindl, I., Jägermeyr, J., Bardeen, C. G., Toon, O.
544 B., and Heneghan, R.: Global food insecurity and famine from reduced crop, marine fishery and livestock production
545 due to climate disruption from nuclear war soot injection, *Nat Food*, 3, 586–596, [https://doi.org/10.1038/s43016-022-00573-0](https://doi.org/10.1038/s43016-022-
546 00573-0), 2022.

547 Yu, P., Davis, S. M., Toon, O. B., Portmann, R. W., Bardeen, C. G., Barnes, J. E., Telg, H., Maloney, C., and Rosenlof,
548 K. H.: Persistent Stratospheric Warming Due to 2019-2020 Australian Wildfire Smoke, *Geophysical Research Letters*,
549 48(7), <https://doi.org/10.1029/2021GL092609>, 2021.

550 Zanchettin, D., Khodri, M., Timmreck, C., Toohey, M., Schmidt, A., Gerber, E., Hegerl, G., Robock, A., Pausata, F.,
551 Ball, W., Bauer, S., Bekki, S., Dhomse, S., LeGrande, A., Mann, G., Marshall, L., Mills, M., Marchand, M., Niemeier,
552 U., Poulain, V., Rozanov, E., Rubino, A., Stenke, A., Tsigaridis, K., and Tummon, F.: The Model Intercomparison
553 Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6,
554 *Geosci. Model Dev.*, 9, 2701-2719, <https://doi.org/10.5194/gmd-9-2701-2016>, 2016.