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Abstract.

Geodynamic modeling has become a crucial tool for investigating the dynamics of Earth deformation across various scales.

Such simulations often involve solving mechanical problems with significant material heterogeneities (e.g., strong viscosity

contrasts) under nearly incompressible conditions. Recent advancements have enabled the development of iterative solvers

based on Dynamic Relaxation or Pseudo-Transient schemes, which require minimal global communication and exhibit quasi-5

linear scaling on GPU and supercomputing architectures. These solvers incorporate automatic tuning of iterative parameters,

including pseudo-time steps and damping coefficients, based on spectral estimates of the discrete operators, ensuring both ro-

bust and rapid convergence. We demonstrate the effectiveness of this approach on problems discretized using finite-difference

and face-centered finite volume methods, including heterogeneous incompressible Stokes flows. Moreover, the relative al-

gorithmic simplicity of DR-based methods allows for straightforward extensions to compressible flow, multiphase flow, and10

nonlinear constitutive laws, opening promising avenues for large-scale, high-resolution simulations of geoscientific problems.

1 Introduction

Geodynamic modelling has become an indispensable tool for simulating tectonic processes at various scales, ranging from

the rock sample (e.g. Luisier et al., 2023) and outcrop levels (e.g. Schmalholz and Podladchikov, 2001) to regional (Gerya,

2013), global (e.g. Fuchs and Becker, 2022), and planetary scales (e.g. Tackley, 2023). Geodynamic modelling tools aim at15

solving conservation equations for linear momentum, mass, and energy to produce full-field solutions for velocity, pressure,

and temperature fields in space and time (Gerya, 2019).

While 2D geodynamic simulations can effectively leverage solvers that utilize sparse-direct or direct-iterative schemes (e.g.

Dabrowski et al., 2008; Gerya and Yuen, 2003; Fullsack, 1995; Popov and Sobolev, 2008), 3D simulations generally require

iterative solvers as direct methods become prohibitively expensive. Most approaches in this context rely on multigrid solvers20

(e.g. May et al., 2015; Tackley, 1996; Kronbichler et al., 2012; Kaus et al., 2016; Baumgardner, 1985; Zhong et al., 2008; Shih
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et al., 2022), spectral methods (e.g. Balachandar and Yuen, 1994), or pseudo-transient integration techniques (Duretz et al.,

2019; Räss et al., 2022) to achieve efficient solutions.

In geodynamic models, the viscosity field may exhibit smooth (i.e. thermal variations) and sharp (i.e. material interfaces) spa-

tial variations of several orders of magnitude. This peculiarity makes the iterative solution procedure of the near-incompressible25

and incompressible Stokes equation particularly challenging (e.g. Tackley, 1996; May et al., 2015; Räss et al., 2022; Shih et al.,

2022).

Iterative solvers based on pseudo-transient integration or Dynamic Relaxation (DR) have been employed to solve compress-

ible and incompressible geomechanical and geodynamical problems (Cundall and Board, 1988; Poliakov et al., 1993; Hassani

et al., 1997). These methods exhibit interesting parallel scaling properties on hardware accelerators such as graphics processing30

units (GPU) and have therefore recently been applied to study incompressible Stokes flow and multi-physics coupled problems

(Räss et al., 2022; Duretz et al., 2019; Räss et al., 2019; Halter et al., 2022; Spang et al., 2025). These solvers implement

coupled solving strategies that involve iterative updates of both the velocity and pressure fields within a single iteration loop.

Despite their algorithmic simplicity, their application to heterogeneous mechanical problems remains challenging (e.g. Halter

et al., 2022). One strategy relies on smoothing sharp contrasts in material properties; however, this approach requires the use35

of a very fine spatial resolution to match exact flow solutions (e.g. Räss et al., 2022; Halter et al., 2022). In practice, Stokes

solvers are typically coupled with Marker-In-Cell or Level-Set approaches (e.g. Gerya and Yuen, 2003; Hillebrand et al., 2014;

Samuel and Evonuk, 2010; Schmeling et al., 2008) to handle large viscous deformations and to represent heterogeneous mate-

rials. In the latter case, the degree to which discontinuities in material properties are smoothed depends on the spatial extent (or

support) of the interpolant’s basis functions (e.g. Duretz et al., 2011). The degree of smoothing is therefore not defined in an ad40

hoc manner and must be based on a narrow interpolant basis to best match exact flow solution (Duretz et al., 2011). Moreover,

current geodynamic pseudo-transient solvers rely on either empirical tuning of iterative parameters (e.g. Duretz et al., 2019) or

exact derivation of optimal parameters based on simplified model configuration (Räss et al., 2022; Alkhimenkov et al., 2021).

This situation hinders their applicability in solving "real-life" geodynamic problems, as optimal parameters may adapt to the

evolving internal model state and material configuration. Exploring dynamic strategies to select optimal iterative parameters is45

a motivation to overcome current limitations.

In this study, we aim to solve quasi-steady mechanical problems with large and sharp variations in material properties

using DR-type of iterative solvers and automatic tuning of iterative parameters. We present a decoupled solution strategy that

combines Schur-complement reduction, Powell–Hestenes iterations, and DR-type of iterative solvers.
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2 Mechanical equilibrium50

The equations governing quasi-static mechanical equilibrium in a classical continuum medium may be expressed as:

∇ · τ −∇P − f = 0, (1)

∇ ·v +
1
K

dP

dt
= 0. (2)

where τ is the deviatoric stress tensor, P is pressure and v is the velocity vector. The term f =−ρg is a forcing, where ρ, g

and K correspond to density, gravitational acceleration, and bulk modulus, respectively. The incompressible limit is reached if55

K→∞. The isotropic viscous constitutive relationship takes the form of:

τ = 2η ε̇ = 2η

[
D− 1

3
(∇ ·v)I

]
, (3)

where ε̇ is the deviatoric strain rate tensor, D = 1/2
(∇v + (∇v)T

)
, I is the identity matrix and η is the dynamic viscosity. In

the following, the Stokes equations will be solved for velocity and pressure fields over a domain Π, accounting for Neumann

boundary conditions (σ ·n = TN) on the boundary ∂ΠN, and Dirichlet boundary conditions (v = vD) on the boundary ∂ΠD.60

3 Discretisations

We consider two different types of numerical discretisation of the Stokes equations, the staggered-grid Finite-Difference (FD)

and Face-Centered Finite Volume (FCFV) Method. With either discretisation, both the components of the velocity vector and

the pressure will constitute the primitives, which we aim to solve for.

3.1 Staggered-Grid Finite-Differences Method65

The staggered-grid finite-difference is a popular approach to discretising the Stokes equation originally proposed by Harlow

and Welch (1965). This scheme is constructed using conservative second-order finite difference and staggered arrangement

of both velocity and pressure (Fig 1a, b). The strong form of the Stokes equations (Eq. 2) is discretised using central finite

differences:

rmom = ∇̂ · τ − ∇̂P − f , (4)70

rcont =− 1
K

∆̂P

∆̂t
− ∇̂ ·v, (5)

τ = 2η

[
D̂− 1

3
(∇̂ ·v)I

]
, (6)

where the hat symbol denotes the discrete representation of the differential operators. The primitive solution fields v and p

are obtained by minimising the momentum and continuity residuals (rmom and rcont). The staggered FD scheme represents, to
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Figure 1. Grids employed for the discretisation of mechanical problems.(a) 2D FD staggered grid, (b) 3D staggered grid, (c) 2D FCFV grid

and (d) 3D FCFV grid.

our knowledge, the most computationally efficient stencil that satisfies the Inf-Sup stability condition on regular meshes (Shin75

and Strikwerda, 1997). For flows with smooth viscosity variations, FD achieves second-order accuracy in the L1 norm, while

in the presence of sharp material heterogeneities, its accuracy reduces to first-order (Duretz et al., 2011). Geometrically, FD

has been successfully implemented in Cartesian and polar coordinates (Räss et al., 2017), spherical configurations (Tackley,

2008; Macherel et al., 2024), and on adaptively refined meshes (Gerya, 2013; Goldade et al., 2019). However, its application

on non-orthogonal meshes remains uncommon (e.g. de la Puente et al., 2014) due to the need for extended stencils and the80

associated increase in algorithmic complexity. Consequently, the treatment of free-surface boundary conditions remains a

notable challenge (e.g. Duretz et al., 2016; Larionov et al., 2017).
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3.2 Face-Centered Finite Volume Method (FCFV)

The Face-Centered Finite-Volume (FCFV) method is an emerging discretisation scheme rooted in the principles of the hy-

bridisable discontinuous Galerkin (HDG) method (Cockburn and Gopalakrishnan, 2005). This approach has been successfully85

employed to achieve full-field solutions for the Stokes equations across various types of viscosity distributions, including con-

stant (Sevilla et al., 2018), discontinuous (Sevilla and Duretz, 2023), and smoothly varying fields (Sevilla and Duretz, 2024).

The FCFV scheme satisfies the Inf-Sup stability condition, making it particularly suitable for solving the Stokes equations.

The discrete system of equations is derived from the weak formulation of the Stokes problem, using a constant degree of

approximation for both velocity and pressure fields:90

rmom
i =

nelem∑

e=1

Γi

[
τT

e ·ni + Peni + s(ve− v̂i)−χTN

]
(7)

rcont =−
nfac∑

i=1

Γi

(
1
K

∆̂P

∆̂t
+ni · v̂i

)
, (8)

τ = 2η

[
nfac∑

i=1

Γi

2Ω
(ni⊗ v̂i + v̂i⊗ni)−

1
3
ni · v̂iI

]
(9)

ve =
1
a

(
bΩ +

nfac∑

i=1

Γisv̂i

)
(10)

The primitive variables, namely the hybrid velocity vector (v̂) and pressure (P ), are obtained by minimising the momentum95

and continuity residuals (rmom, rcont). The FCFV discretisation requires the outward pointing normal to each face (n), the face

area (Γ), the volume of the element (Ω), the stabilisation parameter (s), the factor a (a =
∑nfac

i=1 Γis), the traction vector (TN )

and the function χ that indicates the presence of an applied traction (0 or 1). The FCFV scheme requires the storage of the

hybrid velocity vector (v̂) at the midpoint of each element face, while the pressure and stress tensor components are stored

in the centroids of the elements (Fig 1c, d). The discretisation considered here yields a first-order approximation of velocity100

and pressure fields (Sevilla et al., 2018), nevertheless second-order solutions can be constructed without altering the sparsity

of the discretisation (Giacomini and Sevilla, 2020; Vieira et al., 2020). In this study, we implement the FCFV approach using

structured quadrangular meshes, although the method is versatile and supports arbitrary element geometries, exhibiting low

sensitivity to mesh distortions (Sevilla et al., 2018). Additionally, FCFV can naturally handle internal boundaries and traction

boundary conditions, such as free surfaces. Due to these features, the FCFV method is becoming increasingly popular in the105

geodynamics community, as highlighted by Burcet et al. (2024).

4 Dynamic Relaxation with automatic tuning

In this section, we discuss the principles behind the Dynamic Relaxation method and illustrate its basic properties using a

simple 1D Poisson example.
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4.1 Principle110

The dynamic relaxation method is designed to solve both linear and non-linear problems through successive iterations. The

iterative procedure resembles an explicit time integration scheme, which is why it is also often referred to as a pseudo-transient

integration method. As in classical iterative procedures, the DR method iteratively refines the unknown u until the magnitude of

the residual of the partial differential operator r(u) drops below a given tolerance. Once this criterion is met, u is considered a

solution satisfying r(u) = 0. Note that the function r(u) may include physical transient terms; thus, this method is not limited115

to solving quasi-static problems (e.g. Räss et al., 2022). The algorithm is formulated by introducing the first and second-order

derivative of the solution u in pseudo-time (Frankel, 1950):

M
d2u
dt̄2

+Mc
du
dt̄

= r(u) (11)

where t̄ refers to pseudo-time, c is a damping parameter and M is a preconditioner. Following previous work (e.g. Papadrakakis,

1981; Oakley and Knight, 1995), the second derivative is taken as the central derivative of the first derivative and the first120

derivative is taken as the average of the new and old values:

d2u
dt̄2
≈ 1

∆t̄

(
∆u
∆t̄

new

− ∆u
∆t̄

old
)

(12)

du
dt̄
≈ 1

2

(
∆u
∆t̄

new

+
∆u
∆t̄

old
)

. (13)

This leads to update rules for the rate of change of u, and u itself:

∆u
∆t̄

new

= b
∆u
∆t̄

old

+ aM−1r(u) (14)125

unew = uold + ∆t̄
∆u
∆t̄

new

(15)

where a = 2∆t̄/(2 + c∆t̄) and b = (2− c∆t̄)/(2 + c∆t̄). Alternatively, the DR algorithm can be expressed in analogy to the

conjugate gradient (CG) method (Feng, 2006), using the variable p = ∆u/(β∆t̄):

pnew = βpold +M−1r(u) (16)

unew = uold + αpnew (17)130

where p is analogous to the search direction, α = 2∆t̄/(2 + c∆t̄2) and β = b. The main difference is that the CG method

involves different expressions for the parameters α and β, which need to be reevaluated at each iteration, requiring computa-

tionally expensive reduction operations (e.g., vector norms).
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In either case, two iteration parameters need to be determined as a function of the minimum (λmin) and maximum (λmax)

eigenvalues of the discrete problem (Papadrakakis, 1981; Oakley and Knight, 1995):135

∆t̄ = cCFL
2√
λmax

(18)

c = cdamp 2
√

λmin (19)

where cCFL < 1 and 1/2 < cdamp < 1. The maximum eigenvalue is found using the Gershgorin circle theorem:

λmax = max
i



∣∣∣∣
∂ri

∂ui

∣∣∣∣+
∑

j ̸=i

∣∣∣∣
∂ri

∂uj

∣∣∣∣


 . (20)

The minimum eigenvalue can only be approximated, using for example a Rayleigh quotient approach (e.g. Joldes et al., 2011;140

Rezaiee-Pajand and Sarafrazi, 2011; Oakley and Knight, 1995):

λmin =
∣∣∣∣

∆uT ∆r
∆uT M∆u

∣∣∣∣ , (21)

where ∆u = unew−uold and ∆r = r(unew)− r(uold). The evaluation of iterative parameters requires two reductions. Reduc-

tion operation should be avoided when possible given that reduction algorithms in shared memory architectures are not em-

barrassingly parallel, and global communication between different nodes is needed when using a distributed parallel approach.145

Nevertheless, this procedure can be performed every n iterations, together with the evaluation of the stopping criteria. This

approach provides successful convergence while minimising the cost of global communication.

Lastly, the DR method requires the definition of a preconditioner, typically defined as the Jacobi or diagonal preconditioner:

M = diag
(

∂r
∂u

)
. (22)

While this choice allows for trivial inversion and parallelisation, it restricts the convergence property of the iteration scheme.150

In the context of matrix-free schemes, both the evaluation of the preconditioner and maximum eigenvalue estimates can be

achieved by using automatic differentiation of the residual function.

4.2 Example: 1D Poisson problem

An example of the application of the DR method to a variable coefficient Poisson problem is depicted on Fig. 2. The problem

is defined as:155

r(u) =−∇ ·q−b , (23)

q =−k∇u (24)

where k = k(x). The differential operators are discretised with both the FD and the FCFV over a 1D domain Ω =
[
− 1

2 , 1
2

]

and Dirichlet boundary conditions u
(
− 1

2

)
= 1, u

(
1
2

)
= 2 (Fig. 2a). The coefficient k varies with x (Fig. 2b) and is expressed

7
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Figure 2. Properties of the DR method for the solution of a 1D Poisson problem with variable coefficient using both FD and FCFV. (a)

Solution field in space. (b) Spatial distribution of the conductivity coefficient k. (c) Convergence history for three different resolutions. (d)

Linear scaling of the iteration count versus the resolution. The dashed line corresponds to a linear scaling trend. In all panels, the colored

scatter points correspond to the FD results, while the solid black line represents the FCFV result.

as k(x) = 1 + 100
(
[1 + exp(−200(x + 0.1))]−1− [1 + exp(−200(x− 0.1))]−1

)
. The forcing term is set to zero such that160

b(x) = 0. The problem is converged for different resolutions to a relative residual of 10−10, with evaluation of iterative param-

eters and convergence check every 100 iterations. The typical convergence behaviour of the DR method is shown on Fig. 2c.

As a consequence of diagonal preconditioning, the number of iterations needed to reach convergence depends linearly on the

size of the problem (Fig. 2d). It is worth noting that for the 1D Poisson case, the FD and the FCFV deliver very similar results,

both in terms of the numerical solution and convergence behavior.165

The DR method is particularly well-suited to solving symmetric positive-definite problems. The solution of indefinite prob-

lems, such as those arising in saddle-point systems such as the Stokes equations, requires additional modifications.
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5 Solution of mechanical problems: a decoupled Powell–Hestenes strategy

Geodynamic problems often rely on mixed velocity–pressure formulations, and solvers must be able to perform robustly under

both weakly compressible and incompressible conditions. These problems are generally indefinite or even singular, making170

them well-suited for Schur complement-based approaches (e.g. May and Moresi, 2008; Furuichi et al., 2011; Sanan et al.,

2020), such as the Powell–Hestenes iteration method (Dabrowski et al., 2008; Räss et al., 2017).

Powell–Hestenes iterations provide a solution strategy based on the augmented Lagrangian formulation, L(v,P ):

L(v,P ) =
1
2

∫

Ω

2η |ε̇|2 dΩ−
∫

Ω

p∇ ·vdΩ +
γ

2

∫

Ω

(∇ ·v)2 dΩ−
∫

Ω

b ·vdΩ−
∫

Γ

σBC ·n ·vdΓ. (25)

This approach regularises the original indefinite problem by adding a positive penalisation term, γ, which can be interpreted175

as a numerical bulk viscosity. Powell–Hestenes iterations involve successive decoupled solutions of the velocity and pressure

fields (see Alg. 1). Each velocity update requires the solution of a velocity Schur complement. In matrix–free context, this can

be formulated as a modified momentum equation:

rSCR(vnew) = ∇ · τ (vnew)−∇P old− γ∇rold
cont− f = 0 (26)

where the superscript old denotes values from the previous Powell–Hestenes iteration. This problem is typically positive semi-180

definite, and can therefore be directly tackled using the previously described DR method. Moreover, this solve does not need

to be exact, which is particularly desirable in the context of iterative methods. After each inexact velocity solve, the pressure is

updated using the following:

P new = P old + γ rcont(vnew) (27)

Powell–Hestenes iterations are performed until the residuals of the momentum and continuity equations are satisfied to a given185

tolerance. A known drawback of Powell–Hestenes iterations is their sensitivity to the choice of γ, which is further explored

in this study. Typically, this parameter is defined globally, such that a single value of γ is used for the entire computational

domain.

In the following, we will use the DR method to solve for velocity updates within Powell–Hestenes iterations. We refer to

this as the PH/DR scheme. For compressible models, the numerical bulk viscosity used in the Powell–Hestenes method is set190

to equal the local value of the physical (or effective) bulk viscosity which may thus vary in space. In this case, the iterative

procedure converges in a single step.
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Algorithm 1 Powell–Hestenes with inner Dynamic Relaxation velocity solve (PH/DR)

Require: Initial guess for velocity v0, pressure P 0, penalty parameter γ > 0, tolerance ϵPH

1: k← 0

2: repeat

3: Compute continuity residual: rk
cont =−β ∆̂P k

∆̂t
−∇ ·vk

4: Inner DR solve for velocity vk+1:

Initialize v(0) = vk, m = 0, a, b

repeat

(a) Compute Schur complement residual: rm
SCR = ∇ · τ (vm)−∇P k − γ∇rk

cont−b

(b) Update pseudo-rate of velocity: dv
dτ

m+1
= bdv

dτ

m
+ aM−1rm

mom

(c) Update velocity: vm+1 = vm + ∆t · dvdτ

(d) Every n iterations, update DR parameters a, b

(e) m←m + 1

(f) until ∥rSCR∥< ϵDR

Set vk+1 = vm

5: Update continuity residual: rk+1
cont =−β ∆̂P k

∆̂t
−∇ ·vk+1

6: Update pressure: P k+1 = P k + γ rk+1
cont

7: k← k + 1

8: until ∥rmom∥< ϵPH and ∥rcont∥< ϵPH

9: return (vk, P k)

The model implementation is performed in the Julia language (Bezanson et al., 2017) using the ParallelStencil.jl package

(Omlin et al., 2022), which allows to effectively target different CPU and GPU hardware backends. The computations were

performed on a single NVIDIA V100 SXM2 GPU with 32 GB of DRAM.195

6 Solution of mechanical problems: a pathological case

In this section, we present the model configuration used to test the PH/DR solver in the context of the FD. We then provide

several analyses that offer quantitative insight into the scaling behaviour of the PH/DR scheme.

6.1 Model configuration: multiple inclusions

In order to test the robustness of the proposed solution procedure and to evaluate its scaling behaviour, we have designed200

a model configuration that combines known challenging elements for geodynamic flow solvers. These elements include the
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presence of large and sharp viscosity variations, as well as the enforcement of the incompressibility constraint. This type of

flow problem is known to be pathological for geodynamic solvers that rely on iterative solution procedures (May et al., 2014;

Rudi et al., 2017; Räss et al., 2022).

Both viscosity variations and incompressibility contribute to a deterioration in the conditioning of the discrete system. While205

this does not pose a problem for direct solvers, it is problematic for iterative solvers, whose performance strongly depends on

the spectral properties of the discrete system.

The selected model configuration consists of a cubic domain of volume equal to 1.0, centered at the origin. The reference

viscosity is set to ηref = 1, and the viscosity within the inclusions varies according to the viscosity contrast (∆η = ηmax
ηmin

). A

total of 50 spherical inclusions, with variable radii and positions, are distributed throughout the domain (see Appendix A1).210

Weak inclusions have their viscosity set to the minimum viscosity value (ηweak = ηmin), while strong inclusions have their

viscosity set to the maximum viscosity value (ηstrong = ηmax). The flow is driven by boundary conditions that prescribe pure

shear deformation in the x–y plane, with extension along the x-axis. No flow occurs across the z boundaries, and free-slip

conditions are applied to all faces of the domain.

An example of the model results is presented in Fig. 3, showcasing the model configuration and the resulting flow field215

structure for a viscosity contrast spanning four orders of magnitude. The computations were performed with a numerical

resolution of 3203 cells (66 Mdof) for the FD (Fig. 3a) and 2563 cells (168 Mdof) for the FCFV (Fig. 3b). These resolutions

correspond to the largest resolution that can be achieved on a single GPU with 32 GB of DRAM (NVIDIA Tesla V100-SXM2-

32GB).

Overall, the two methods exhibit a consistent and satisfactory qualitative agreement. Small differences between the two220

methods can be observed, particularly in regions where inclusions are in close proximity. These discrepancies stem from the

different spatial resolution used for the FD and the FCFV method, their different order of accuracy as well as their different

treatments of interfaces. A more detailed comparison of FD and FCFV results is provided in Appendix A2. The stopping

criteria of the PH/DR scheme was set to 10−6, the inner DR stropping criteria was set to 10−3, the penalty parameter was set

to 15 times the mean of the viscosity field (γ = 15⟨η⟩).225

6.1.1 Scaling: problem size

The first test investigates the effect of problem size. To this end, we vary the model resolution by increasing the number of

cells (Nx) uniformly along each dimension. The lowest resolution is 323 cells, while the highest resolution is 3203 cells (131

Mdof) for the FD and 2563 cells (168 Mdof) for the FCFV.

The results show that for both the FD and the FCFV methods, 4 to 7 Powell–Hestenes iterations are required to reach230

convergence, regardless of the value of Nx. This number of Powell–Hestenes iterations appears to be largely insensitive to the

problem size (Fig. 4a). In contrast, the total number of DR iterations accumulated throughout the solution process increases

linearly with the problem size (Fig. 4b). This scaling behavior is consistent with that observed for the 1D Poisson problem

discussed earlier (Sec. 4), and reflects the influence of the diagonal preconditioner. When normalized by the number of cells

along one axis, the number of DR iterations required for convergence falls between 70 and 30 per Nx. The iteration count235
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Figure 3. Example of multiple inclusion simulation result. Panels (a) and (b) shows the resulting flow field for the FD (3203 cells and the

FCFV (2563 cells). The inclusions are coloured by the magnitude of the velocity vector (range: [0,0.75]). The black arrows indicate the

velocity vectors.

per Nx tends to decrease at higher resolutions, where the flow field is better resolved (Fig. 4c). The wall-time is reported as a

function of the total number of degrees of freedom, Ndof. For both the FD and the FCFV, the observed scaling is approximately

linear with respect to the problem size, which can be attributed to the combined effects of diagonal preconditioning and GPU

parallelism (Fig. 4d). Interesting the FCFV and the FD achieve comparable wall times for similar number of degrees of freedom

and iterative tolerance (1× 10−6).240

6.1.2 Scaling: penalty factor

We further explore the influence of the penalty factor on the scaling of the PH/DR solver. In contrast to the previous tests, we

vary the value of γ independently of the values of the viscosity field. We perform the computations for three different values

of ∆η.

The number of Powell–Hestenes iterations strongly depends on the magnitude of the penalty parameter γ. In particular, very245

small values of γ lead to a large number of Powell–Hestenes iterations that exceed 50 (Fig. 5a). This number decreases to

fewer than 10 when γ > 100, across all considered values of ∆η. The total number of DR iterations is also higher for small

values of γ, reflecting the increased number of Powell–Hestenes iterations required for convergence. However, excessively

large values of γ also degrade convergence. Specifically, higher values of γ increase the spectral radius of the discrete velocity

Schur complement, which in turn increases the number of DR iterations needed to reach convergence (Fig. 5b). An optimal250

range for γ is found between 10 and 1000, depending on the value of ∆η. The wall-time exhibits a similar dependence on γ,

closely following the behavior of the total number of DR iterations, with minimum values observed within the range 10–1000

(Fig. 5c).
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Figure 4. Influence of problem size on the convergence of the PH/DR flow solver for a viscosity contrast of 1× 104 using the FD and

the FCFV methods. (a) reports the total number of Powell–Hestenes iterations, (b) the total number of DR iterations for the entire solution

procedure, (c) the number of DR iterations per grid point along one dimension, and (d) the wall-time.

The magnitude of the penalty factor must be selected carefully to avoid an excessive number of iterations and degraded

wall-time. To guide this choice, we systematically varied the viscosity contrast and computed the optimal penalty value (γopt)255

for each corresponding ∆η. The results reveal a linear relationship between γopt and ∆η in log10–log10 space (Fig. 5d). This

relationship allows for a least-squares fit with a slope of 0.3 and an intercept of 0.575. The resulting fit can be used to select an

appropriate penalty parameter when varying the viscosity contrast. This particular scaling produces the best performance for

the given model configuration; however, it should not be regarded as generally applicable to all cases. In most of the examples

presented hereafter, we choose γ to be proportional to the mean of the viscosity field (γ ∝ ⟨η⟩).260

6.1.3 Scaling: viscosity contrast

We investigate the effect of viscosity contrast on the PH/DR solver by systematically varying it over a range spanning two to

six orders of magnitude. As expected, increasing the viscosity contrast impacts the performance of the PH/DR solver.

The number of Powell–Hestenes iterations required for convergence ranges from 6 to 9 (Fig. 6a). The decrease in the number

of Powell–Hestenes iterations with increasing ∆η is attributed to the scaling of the penalty factor with the mean of the viscosity265

field. Therefore, higher values of ∆η lead to higher values of γ, which in turn reduces the number of Powell–Hestenes iterations

required for convergence. The total number of DR iterations scales approximately linearly with the viscosity contrast (Fig. 6b).

Consequently, the wall-time also exhibits a linear dependency on the viscosity contrast (Fig. 6c).
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Figure 5. Influence of the penalty factor on the convergence of the PH/DR flow solver for a resolution of 1283 cells and 3 values of ∆η. (a)

reports the total number of Powell–Hestenes iterations, (b) the total number of DR iteration for the entire solution procedure, (c) the wall

time, and (d) the optimal value of γ as function of ∆η

6.1.4 Scaling: DR solve tolerance

Another important numerical parameter of the PH/DR procedure is the tolerance ϵDR selected to exit the inner DR iterations270

(ϵDR). We have systematically varied the value of ϵDR from 10−5 to 10−0.5.

The magnitude of ϵDR has a significant impact on the number of Powell–Hestenes iterations. Small values lead to more

accurate inner DR solves, resulting in fewer Powell–Hestenes iterations. In contrast, increasing ϵDR causes a quadratic increase

in the number of Powell–Hestenes iterations (Fig. 7a). The trend differs for the total number of DR iterations. Very small and

very large values of ϵDR lead to a high total iteration count, while a minimum is observed for ϵDR in the range 10−3 to 10−2.275

High values of ϵDR result in inaccurate inner solves, increasing the number of Powell–Hestenes iterations. In contrast, very

low values lead to over-solving of the inner system, unnecessarily increasing the total DR iterations (Fig. 7b). This behaviour

directly affects the wall-time, which can vary by up to a factor of 2 depending on the choice of ϵDR. Therefore, ϵDR must be

carefully tuned to avoid these two limiting cases.
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Figure 6. Influence of viscosity contrast on the convergence of the PH/DR flow solver for a resolution of 1283 cells and using γopt. (a) reports

the total number of Powell–Hestenes iterations, (b) the total number of DR iteration for the whole solution procedure, (c) the wall time.

7 Compressibility, multi-physics and non-linear models280

In this section, we show how the proposed PH/DR solution strategy can be further extended to solve steady mechanical prob-

lems that involve enriched physical models. These models are performed using the FD method, as the FCFV method still needs

to be developed to tackle two-phase flow and non-linear mechanical problems.

7.1 Compressible mechanical problem

Although the previous examples were performed in the incompressible limit, the PH/DR scheme can adequately handle285

compressible deformation or flow. Here, we show examples of compressible flow performed in 2D, using the FD. The model

configuration consists of a [0,1]× [0,1] domain with a circular inclusion of radius 0.2 (Fig. 8a). The background viscosity is

set to 1 and the inclusion viscosity is 100. Pure shear background deformation is applied at the boundaries. Compressibility is
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Figure 7. Influence of the inner DR solve tolerance on the convergence of the PH/DR flow solver for a resolution of 1283 cells and ∆η = 104.

(a) reports the total number of Powell–Hestenes iterations, (b) the total number of DR iteration for the whole solution procedure, (c) the wall

time. (d) Influence of the viscosity contrast.

accounted for by including a bulk viscosity term:

∇ · τ −∇P = 0, (28)290

∇ ·vs +
P

ηb
= 0 (29)

The degree of compressibility varies with the value of bulk viscosity (ηb). To solve this problem, one can use PH/DR , setting the

penalty factor independently of the bulk viscosity. Here, we express the penalty factor as the quasi-harmonic average of a refer-

ence numerical bulk viscosity (γnum = 60⟨η⟩) and the physical bulk viscosity, γphys = ηb, so that γ = (1/γphys + 1/γnum)−1. In

this case, several Powell–Hestenes iterations will be needed to reach convergence. Alternatively, one can set the penalty factor295

to the bulk viscosity (γ = ηb). In that case, PH/DR becomes equivalent to a basic DR scheme and only one Powell–Hestenes it-

eration is needed to reach convergence. We observe that in the case of compressible problems (ηb = 2.0, equivalent to a Poisson

ratio of 0.286), the basic DR can be beneficial, leading to a lower number of iterations in comparison to PH/DR (Fig. 8b).

The PH/DR solver exhibits a characteristic sawtooth convergence history that reflects the update of pressure at each Powell–

Hestenes iteration (Fig. 8b). In contrast, in weakly compressible cases (ηb = 2× 103, equivalent to a Poisson ratio of 0.499),300
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Figure 8. Example of compressible flow: pure shear deformation with viscosity heterogeneity. (a) Divergence field either compressible

case (ηb = 2) or weakly compressible case (ηb = 2e3). Convergence history of DR and PH/DR for the (b) compressible and (c) weakly

compressible case. For the PH/DR case, iterations are summed over the Powell–Hestenes needed for converging the problem.

the PH/DR schemes outperform the standard DR iteration approach. In the context of geodynamic problems involving weakly

compressible-to-incompressible materials, PH/DR is preferred.

7.2 Hydro-mechanical coupling

We further applied the PH/DR scheme to the solution of a coupled multi-physics problem. The equations governing deformation

and fluid flow in a Darcy poro-viscous medium can be expressed following Yarushina and Podladchikov (2015):305

∇ · τ̄ −∇P̄ = 0, (30)

∇ ·vs +
P̄ −P f

(1−ϕ)ηϕ
= 0, (31)

∇ ·qD− P̄ −P f

(1−ϕ)ηϕ
= 0. (32)
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Here, the Darcy flux is expressed as qD =−kf/ηf∇P f. The overbar denotes phase-averaged quantities, ϕ is porosity, and the

superscripts s and f indicate solid and fluid properties, respectively. k and η refer to permeability and viscosity. An elliptic310

equation for fluid pressure can be obtained by substituting the Darcy flux into Equation (32).

The PH/DR scheme is extended by including fluid pressure updates within the inner DR iterations. The update parameters

for fluid pressure are obtained from the automatic DR procedure described in Section 4. The pseudo-time steps and damping

coefficients for velocity and fluid pressure are determined independently, with each variable assigned its own value. As in

previous examples, the total pressure is updated at each Powell–Hestenes iteration.315

The test case we consider uses a configuration similar to that in the previous example (Sec. 7.1). The shear viscosity of the

inclusion is assigned a value 100 times greater than that of the matrix, while the bulk viscosity is taken as twice the shear

viscosity. In addition, the background porosity is set to 1× 10−3, and the fluid permeability-viscosity ratio
(
kf/ηf

)
is set to

1× 10−3. The penalty factor is defined as

γ =
(

1
γphys

+
1

γnum

)−1

,320

where γphys = (1−ϕ)ηϕ and γnum = 5⟨ηs⟩.
Figure 9 shows examples of solution fields and the scaling properties of the PH/DR scheme. We compute the two-phase

flow problem with a resolution varying from 312 to 9922 cells and apply a tolerance of 1× 10−7. For the chosen parameters,

pronounced differences are observed between the total and fluid pressure fields (Fig. 9a,b). The total pressure field is sharply

defined and zero inside the stiff inclusion, in contrast to the fluid pressure field, which is smoother and diffuses within the325

inclusion. We observe the characteristic sawtooth convergence history for both momentum and fluid continuity (Fig. 9c).

We find that low-resolution models require a relatively high number of iterations (Fig. 9d). Nevertheless, the number of

DR iterations per Nx drops to a stable low value (approximately 20) for resolutions greater than 1002 cells. This indicates a

linear dependence of the number of iterations on the problem size, which is consistent with the behavior documented in the

previous examples.330

7.3 Visco-elasto-viscoplasticity

In this example, we show how non-linear material properties can be incorporated into the PH/DR solution strategy, considering

the case of non-associated plasticity. With such non-linear problems, parameters such as the effective viscosity vary throughout

the non-linear solution procedure, which directly affects the eigenvalues of the discrete operator. It is thus important to reeval-

uate the maximum pseudo-time step (Eq. (18)) during the iterations to ensure stability of the procedure. Here, we reevaluate335

the pseudo-time step every 100 iterations by applying the Gershgorin circle theorem (Eq. (21)).
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Figure 9. Poro-viscous hydro-mechanical simulation. (a) Total pressure field. (b) Fluid pressure field. (c) Convergence history for a resolution

of 9922. (d) Scaling of iterations relative to the problem size.

We adopt a single-phase formulation and apply a visco-elasto-viscoplastic material model (de Borst and Duretz, 2020). An

additive decomposition of the deviatoric strain rate and the divergence rate is assumed:

ε̇ = ε̇v + ε̇e + ε̇p (33)

∇ ·v = (∇ ·v)e + (∇ ·v)p (34)340

where the superscripts v, e, and p correspond to the viscous, elastic, and plastic components, respectively.

The viscoplastic Drucker–Prager yield and potential functions are defined as:

f = τII−P sinΦ−C cosΦ− λ̇ηvp (35)

q = τII−P sinΨ (36)

where tauII C, Φ, Ψ, and ηvp denote the second deviatoric stress invariant, the cohesion, the friction angle, the dilatancy angle,345

and the viscoplastic viscosity, respectively.
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The model domain spans [0,2]× [0,1] km2 and contains a circular inclusion of radius 1×10−1 km (Fig. 10a). A pure shear

loading rate of −1× 10−15 s−1 is applied, inducing horizontal extension. The inclusion has a low viscosity (1× 1010 Pa.s),

while the surrounding matrix is effectively elasto-plastic (1× 1023 Pa.s). Both shear and bulk moduli are set to 3× 1010 Pa

. The cohesion is set to 50 MPa, the friction and dilatancy angles are set to 35◦ and 5◦, respectively, and the viscoplastic350

viscosity is 2× 1020 Pa.s. The simulation proceeds over 50 time steps, each of size ∆t = 4× 1010 s.

The temporal evolution of the second invariant of the deviatoric strain rate is shown in Fig. 10a, b, and c, while the evolution

of the mean stress is shown in Fig. 10d. The model undergoes an initial phase of elastic loading (Fig. 10a), after which shear

banding initiates, propagates (Fig. 10b), and reflects off the domain boundaries (Fig. 10c). As a result, stress drops after 30 ky

witnessing underlying structural softening (Fig. 10d). With a relative tolerance of 1× 10−6, the number of iterations per Nx355

varies between 5 and 25 (Fig. 10e). Low iteration counts correspond to linear-elastic steps, while higher counts occur during

non-linear steps involving significant changes in the solution pattern (e.g., reflections). The convergence history for the most

challenging step is shown in Fig. 10f, where a sawtooth pattern is also observed.

Overall, the model converges reliably without the need for manual tuning of numerical parameters throughout the simulation.

8 Discussion360

Our study presents a quantitative assessment of the performance of the DR method, extends it to incompressible flow problems

through a Powell–Hestenes strategy, and demonstrates its applicability to nonlinear and multiphysics problems.

The efficiency of pseudo-transient (PT) solvers relies on a careful selection of iterative parameters. The proposed DR and

PHDR solvers are not expected to outperform standard PT solvers with optimally chosen parameters. However, the DR-based

methods introduced here are designed to automatically determine these iterative parameters. This automated selection intro-365

duces only a minor computational overhead and has a negligible impact on the convergence history compared to an optimally

tuned PT solver (see Appendix A3. Unlike multigrid methods, DR-based approaches exhibit a total iteration count that in-

creases linearly with problem size (see Fig. 2 and Fig. 4b). Although this behavior may appear disadvantageous, DR methods

are straightforward to parallelize and require only a few global communication steps. In all the presented examples, global

communication operations (e.g., norms and inner products) and iterative parameter updates were performed every 100 DR it-370

erations. This makes DR-based methods particularly suitable for GPU-type parallelism.

In particular, we show that, when using a single GPU, the wall time for three-dimensional incompressible and heterogeneous

Stokes problems scales quasi-linearly with problem size (Fig. 4d). This property is attractive for large-scale 3D geodynamic

simulations and makes DR-based algorithms competitive with legacy multigrid-based solvers.

Furthermore, DR-based solvers can be naturally extended to multi-GPU parallelism. Computational frameworks such as375

ImplicitGlobalGrid.jl (Omlin et al., 2022) provide efficient communication scheduling schemes, enabling near-ideal

scaling behavior on modern computing clusters (Räss et al., 2022).

In the future, several improvements may be envisaged, in particular regarding preconditioning. To our knowledge, Jacobi

preconditioning is known to be relatively inefficient in comparison to other preconditioners (e.g., incomplete Cholesky). Never-
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Figure 10. Visco-Elasto-Viscoplastic shear banding. (a), (b) and (c) Model evolution (strain rate field). (d) Evolution of the mean stress. (e)

Number of iteration per grid point in x over simulation time. (f) Convergence history for the most demanding time step.

theless, the application of Jacobi is fully parallel and thus efficiently implemented on GPUs. Recently, iterative implementations380

of incomplete LU and Cholesky preconditioners have been introduced (Anzt et al., 2016; Chow et al., 2018). Although these

methods are fully parallel, achieving effective preconditioning requires accurate application of the LU/Cholesky operators, of-

ten necessitating many iterations. Whether such an approach would offer benefits within the framework of DR solvers remains

to be established. Multigrid preconditioning represents another possible avenue. In principle, it could maintain a constant itera-

tion count as the resolution increases. However, its implementation requires hierarchical data structures and coarse-grid solvers385
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on GPUs, and it remains uncertain whether this added complexity would yield tangible reductions in wall time, or enhance the

already quasi-linear wall time scaling.

DR solvers are traditionally used in conjunction with the Finite Element Method (FEM; Oakley and Knight (e.g., 1995);

Joldes et al. (e.g., 2011)). Here, we have shown that such solvers can also be applied to finite difference methods, as well as

finite volume or low-order discontinuous Galerkin methods. In practice, efficient implementation is facilitated by the struc-390

tured nature of these problems, which allows information from neighboring cells to be easily gathered for stencil evaluations.

Extending DR solvers to unstructured FEM or FCFV discretizations in the context of GPU computing requires specialized

algorithms to improve memory access (e.g., Fu et al., 2014; Kiran et al., 2019). The combination of these approaches with

DR solvers may provide an alternative to traditionally employed solvers, a possibility that remains to be explored.

The relatively low algorithmic complexity of DR methods makes them particularly attractive for solving nonlinear and395

multiphysics coupled problems. While we have focused on basic hydro-mechanical and linear plasticity models, future imple-

mentations could naturally extend these solvers to include thermal or chemical couplings.

9 Conclusions

In this contribution, we have employed DR-based techniques to develop robust and high-performance solvers for geodynamic

problems. These solvers incorporate automatic tuning of iterative parameters — including pseudo-time steps and damping400

coefficients — based on estimates of the spectral bounds of the discrete operators.

The approach was applied to problems discretized on structured grids using both finite-difference (FD) and face-centered

finite-volume/discontinuous Galerkin (FCFV) methods. To handle incompressible deformations, DR-based solvers were com-

bined with Powell–Hestenes iterations, enabling the successful solution of heterogeneous Stokes problems.

When implemented on GPU architectures, the solvers exhibit a quasi-linear scaling of solution time with problem size,405

demonstrating excellent computational efficiency. Moreover, the method can be trivially extended to handle compressible flow,

multiphase flow, and nonlinear constitutive laws.

This flexibility stems from the algorithmic simplicity of DR-based methods, which makes them particularly well-suited for

large-scale geoscientific simulations and opens new avenues for exploring complex coupled physical processes.

Appendix A: Appendix410

A1 Three-dimensional multiple inclusion problem

The position and type of inclusion used in the example in the main text are provided in the following table (Tab. A1). The

extent of the model domain and the viscosity contrast are detailed in the main text.
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x0 y0 z0 r type x0 y0 z0 r type

0.333 0.123 0.436 0.134 weak 0.337 -0.037 0.339 0.133 weak

0.153 -0.427 0.431 0.149 strong 0.326 0.296 -0.209 0.104 weak

0.079 -0.367 0.318 0.053 strong 0.148 0.138 0.047 0.086 strong

-0.217 -0.020 0.319 0.030 strong -0.144 -0.041 0.090 0.094 weak

0.328 -0.128 0.302 0.103 weak -0.394 -0.197 0.060 0.109 weak

-0.337 0.244 0.123 0.114 weak 0.293 -0.456 -0.114 0.026 strong

-0.152 -0.347 -0.493 0.045 strong -0.479 -0.123 -0.069 0.033 weak

-0.039 0.359 0.077 0.112 weak 0.478 -0.103 -0.098 0.046 strong

-0.463 0.289 -0.317 0.110 weak -0.495 0.189 -0.309 0.086 strong

0.280 0.260 -0.373 0.131 strong -0.064 0.386 0.034 0.098 strong

-0.209 0.470 0.245 0.110 strong -0.474 0.403 -0.387 0.030 weak

0.302 -0.241 0.099 0.080 weak -0.227 0.025 0.456 0.048 weak

-0.159 -0.379 0.434 0.009 strong 0.323 -0.293 0.446 0.008 strong

-0.356 -0.048 0.309 0.129 strong -0.293 -0.331 0.225 0.072 weak

-0.047 -0.326 -0.434 0.113 strong -0.364 0.014 0.270 0.096 weak

-0.289 -0.273 0.458 0.083 weak 0.298 -0.073 0.390 0.079 weak

-0.482 0.327 0.168 0.033 weak 0.462 -0.020 -0.047 0.036 strong

-0.145 -0.190 0.389 0.111 strong -0.084 0.479 -0.000 0.133 strong

0.440 0.226 -0.178 0.054 weak -0.381 0.448 0.218 0.008 strong

-0.471 0.265 0.311 0.056 weak -0.123 0.103 -0.014 0.039 weak

0.091 -0.407 0.242 0.013 strong 0.477 0.380 0.386 0.082 weak

-0.402 0.069 -0.425 0.137 weak -0.430 0.403 -0.313 0.027 strong

-0.198 -0.122 -0.371 0.035 strong -0.134 -0.081 -0.222 0.018 weak

-0.114 0.403 0.414 0.091 strong 0.353 0.131 -0.090 0.095 weak

-0.332 -0.051 0.374 0.014 strong 0.218 0.146 -0.143 0.002 strong
Table A1. Tabulated values of x0, y0, z0, r, and type (weak/strong). Each block of 5 rows is shown side by side.

A2 Two-dimensional heterogeneous Stokes flow with FD and FCFV

To verify our implementation of the PH/DR iterative solvers, results were compared against solutions obtained using direct415

solvers. This verification could only be conducted in 2D due to the prohibitive computational cost of direct solvers in 3D. Both
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FD and FCFV models were executed using configurations analogous to the 3D setups. The inclusion positions are given in

the table below (Tab. A2): weak inclusions have a viscosity of 1× 10−3, while strong inclusions have a viscosity of 1000. No

smoothing of the viscosity contrast was applied. A background pure shear rate and free-slip boundary conditions were imposed

on the box boundaries.420

The FD models solved with a direct solver follow the approach of Räss et al. (2017), whereas the FCFV direct-solver

implementation is based on Sevilla and Duretz (2023). All simulations were performed on meshes of 1282 cells. The resulting

pressure fields are shown in Fig. A1.

For both discretizations, good agreement is obtained between models solved iteratively and those solved directly, demon-

strating that the FD and FCFV implementations are consistent with previous studies. In addition, this comparison highlights425

differences between the two schemes: while the FD approach exhibits spurious oscillations at sharp viscosity contrasts, the

FCFV method yields a smoother pressure field. It should be noted that the mesh used in the FCFV simulations is similar to that

of the FD models and does not explicitly capture the material interface through traction continuity enforcement.

x0 y0 r type

0.0 0.0 0.2 weak

0.2 0.4 0.09 strong

-0.3 0.4 0.05 strong

-0.4 -0.3 0.08 weak

0.0 -0.2 0.08 strong

-0.3 0.2 0.1 weak

0.4 -0.2 0.07 strong

0.3 -0.4 0.08 weak

0.35 0.2 0.07 weak

-0.1 -0.4 0.07 strong
Table A2. Tabulated values of x0, y0, r, and type (weak/strong). Each block of 5 rows is shown side by side.

A3 Comparison with results of Räss et al. (2022)

We employed the PT solvers developed by Räss et al. (2022) to assess the relative performance of the PH/DR solver, using430

the single-inclusion benchmark configuration. The inclusion has a viscosity of 1× 10−3, while the surrounding matrix has a

viscosity of 1. A smoothing of the viscosity contrast similar to that used in Räss et al. (2022) was applied. Both the PT and

PH/DR models were run to the same relative tolerance of 1× 10−6. The resulting model fields are shown in Fig. A2.

The PT models of Räss et al. (2022) were computed using optimally tuned iterative parameters and thus represent the

best possible performance bound. The present results demonstrate that the additional computational cost associated with the435
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Figure A1. (a) Pressure field obtained with FD using a PH/DR scheme. (b) Pressure field obtained with a direct solution scheme. (c) Pressure

field obtained with FCFV using a PH/DR scheme. (d) Pressure field obtained with FCFV using a direct solution scheme.

automatic parameter selection inherent to the PH/DR scheme is very small. Both methods converge in fewer than 20 iterations

per grid point for this model configuration.
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Figure A2. (a) Pressure field obtained by Räss et al. (2022). (b) Pressure field obtained in this study. (c) Convergence of momentum and

continuity residuals.
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