Response to Reviewer #2

We thank the reviewer for their detailed and insightful comments. We appreciate the
recognition of the practical relevance and computational efficiency of the proposed
framework. Below, we address each comment and describe how the manuscript has been
revised accordingly.

We indicate the reviewer’s comments in bold and the text modifications in blue.

General Comments

1) There are some distribution shifts between training and testing datasets that may
undermine the model generalizability.

According to Table 1 and Figure 6, the training flood volumes are 220.1+131.4x10° m°,
while test location ND111 produces volumes of 395.71-974.55x10° m®, far exceeding the
training range. The MAE at ND111 reaches 247.81x10~2 m, nearly ten times higher than
the training error.

(Also, Table 1 has two rows labeled “test”; please clarify how these correspond to test
cases/locations.)

Please discuss the model’s applicable range and extrapolation limits.

If feasible, include higher-volume training samples or explore domain adaptation for
out-of-distribution conditions.

We thank the reviewer for highlighting this important issue.

Indeed, the testing volume ranges are far greater than the training ones. The test dataset was
dependent on the availability of official pre-computed simulations from the VNK project. We
leveraged this high variability to assess the model’s response to extreme events, showing
that, as expected, the model tends to underestimate them. However, the model still
understands the spatio-temporal evolution for these floods, as indicated by the high CSI
values.

Regarding the duplicate “test” rows, one provides the aggregate summary throughout all the
test samples, while the second “row” provides a more detailed analysis of each scenario.
We updated the table caption to better reflect this distinction as:

“Training, validation, and testing metrics for the mSWE-GNN on dike ring 41, reporting mean
and standard deviation for the mean absolute error (MAE) for water depth and unit discharge
and critical success index for a water depth threshold tau (CSI;) These metrics are reported



also for the three test locations HD073, ND234, and ND111, for the different return periods
(RP)...”

In terms of application range and extrapolation, we evaluated the model on a purposefully
wide range of conditions and locations in Section 4.2, showing that the model performs best
in a range that is similar to the training one, while showing progressively less reliable
predictions outside of it. The reasons why a single model cannot capture well the system’s
response to all volume ranges are 1) that the training process converges to the mean, leading
to worse performance towards the extremes and 2) the flow propagation speeds across
different boundary conditions and time steps can be too different for a single model to
capture them effectively. In lines 436-437, we propose a possible solution to this problem,
involving the use of mixture-of-experts models:

“Moreover, future works could explore the use of mixture-of-experts models to improve the
model performance across a wider range of boundary conditions, for example by combining
or selecting the output of different models, each trained with a smaller range of conditions.”

Regarding the reviewer’s request to include an event with a higher volume, this would not
necessarily improve the overall performance, for the reason explained above that the model
will converge to the mean. One solution might be to train on a much larger dataset and use
a bigger model to cover a broader range of interactions. With the given dataset, when
focusing on a smaller range of conditions, preliminary experiments showed that the model
performance increases for the given range, whether these events are very small or very large.
To prove this, we carried out a small fine-tuning experiment, where we re-trained the best
model with the single largest training flood event, using a smaller learning rate (0.0005) and
few epochs (5) to avoid overfitting.

The results, reported only here in Table R2, show that the overall testing performance
improves for the largest flood events, reducing the water depth MAE from 247.81 to 170.22,
from 152.26 to 87.56, and from 55.51 to 39.34 for test location ND111. However, it also
equivalently drastically reduces the performance of smaller events (locations ND234 and
HDO073). For this reason, we decided not to include further larger events and instead focus
on a broader training range.

Table R2. Testing metrics for the mSWE-GNN fine-tuned on a single large flood event,
reporting mean and standard deviation for the mean absolute error (MAE) for water depth
and unit discharge and critical success index for a water depth threshold tau (CSI;). These

metrics are reported also for the three test locations HD073, ND234, and ND111, for the



different return periods (RP).

1)) RP  Total volume MAE | CSI, [%]1
[y1s] [10° m3] h[10=%m] g/ [107?m?s™1] 7=0.,05m =03 m
3234 £3492 9836 £37.95 4,30 £ 078 6349 £2273 61,16 £22.73
10000 £9.70 96.29 3.62 6223 574
HDO73 1000 48.86 99.45 3.61 48.24 45.3
100 15.99 90.46 3.22 36.15 36.29
10000 29945 62.37 4.42 70.73 73.19
ND234 1000 17048 104,32 4,08 57.93 58.1
100 6221 13521 4,32 42,52 39.55
10000 974,55 170.22 5.67 85.66 7827
NDI111 1000 734.98 87.56 52 895 83.27
100 39571 39,34 4,51 78.42 79.07

2) The theoretical foundation of the ARME metric requires further clarification.

In Equation (5), when the predicted volume may be negative in early simulation stages
due to subtracting V, in Equation (4), or when V. approaches zero, ARME may produce
numerically unstable or meaningless results.

Please discuss ARME’s behavior during initial simulation phases and whether such
issues were handled in the results, as they may bias plausibility assessment.

We appreciate the reviewer’s examination of the ARME formulation.

In principle, ARME could become numerically unstable when the total volume V; is close to
zero. However, the ARME is computed starting from time step t = 1(Eq. 5) and the
simulations start only once boundary conditions are non-zero, as they would be trivial
otherwise. As a result, there is always positive inflow entering the domain. Furthermore, V;
is a strictly positive variable that does not approach zero unless the domain completely
empties out. Moreover, while predicted volumes could in theory be lower than the initial
volume V), this does not cause numerical issues because (i) the absolute value in Eq. (5)
prevents sign-related instabilities and (ii) water depths are physically constrained to be non-
negative, preventing unphysical negative volumes.

We noticed that this relevant physical component (already present in the original mSWE-
GNN model) was not reported in the manuscript. As such, we updated Eq. 1 to be U!*! =
g(Ut + @ (X,, Ut7PE, £)) and changed lines 112-114 to:



“where Ut*1

is the predicted hydraulic variables, Ut are the hydraulic variables (water depth
[m] and unit discharge [m?s~1]) at time t, @ ( * ) is the model for a fixed time step, X; are
static node features, Ut Pt are dynamic node features for time stepst-ptot, o is a rectified
linear unit (ReLU) used for guaranteeing positive hydraulic variables, and E are edge

features.”

As regards the ARME behavior during initial simulation phases, we did not encounter any
issues. While some instabilities might have originated from a low total volume V, i) the
model’s predictions were generally the best right after the beginning of the flood event and
ii) a high instability would entail a bad prediction and hence should result in a high ARME.

3) The finding that approximately 50% of simulations are classified as implausible
(ARME>0.4) raises concerns about operational applicability.

How can users determine prediction reliability when encountering new boundary
conditions in practical applications?

Does this high discard rate introduce bias in probability distribution estimates?

The authors should analyze whether there are systematic differences in spatial
distribution or boundary conditions between discarded and retained simulations, and
discuss strategies for improving the plausibility rate.

We thank the reviewer for this important point of discussion.

When encountering new boundary conditions, we can always determine prediction
reliability thanks to the ARME metric. If this value is too high, we can just discard the
corresponding simulations and run more, with small differences in boundary conditions.
This compromises only speed, as we have to execute the model more times, but not
reliability, as we can always calculate the ARME for new boundary conditions.

As for the high discard rate on the probability distribution estimates, selected simulations
tend to be more central in terms of volume ranges, so the probability distributions will also
be less spread out than considering the full set of simulations.

We modified lines 365-366 to clarify this: “Selecting only plausible results skews the
probability distributions to be less spread out with respect to the complete set, giving a
clearer distribution estimate.”

To analyse the differences in spatial distributions and boundary conditions, we carried out
the experiments in Section 4.2 which on purpose have much wider distributions than the
training one to provide a more complete overview of the model’s response. This is also the



main reason why 50% of the simulations are not reliable. As shown in Figures 9 and 10, most
unplausible simulations have a total flood volume much smaller or higher than that of the
training range. Similarly, some locations (Figure 12b) have a much lower percentage of
plausible simulations which negatively influences the overall performance, as explained in
lines 353-358. We clarified these points in the manuscript in lines 315-316: “We designed
this range to be purposefully much wider than for a practical scenario, to assess a more
complete response of the model to different boundary conditions and locations.”

Minor Comments

1) What criteria guided the selection of dike-breach locations, and are they
representative and physically justified?

For the test dataset, all three locations are representative and physically justified as they are
taken from selected homogeneous dike segments that are potentially prone to breach,
based on a geotechnical evaluation. All other locations in training, validation, and large-
scale testing are randomly selected by considering approximately equidistant points along
the part of the dike that is in contact with a river. Because of the presence of the river, we
assume all locations to be potential breach points, and thus also representative and
physically justified, even if in practice they might have a low probability of failure. The
purpose of selecting equidistant locations is to evaluate the general functioning of the
model. We clarified this in lines 234-236 as:

“For training and validation data, we used, respectively, 30 and 10 numerical simulations
performed with Delft3D (Deltares, 2025), each with a different breach location, selected to
be approximately equidistant along the dike ring boundary, and a different dike outflow
hydrograph over time as boundary conditions.”

2) Figure 6(b) caption reads “Training and testing discharge hydrographs...”. Given
validation in Figure 6(a), consider “Training and validation discharge hydrographs...” (or
include testing if applicable).

Thank you for noting this inconsistency. We change the caption as:

“.. (b) Training, validation, and testing discharge hydrographs used as boundary conditions
for the simulations.”



3) Pearson’s r (Line 16, Figure 11, Table 2) is outlier-sensitive and assumes linearity.
Given Figure 11’s scatter, please justify Pearson’s r or report Spearman’s rank as a
complementary robust measure.

We agree with the reviewer that Pearson’s correlation can be sensitive to outliers and
assumes linear dependence. In the experiments, all data pairs for which a clear correlation
exists (i.e., between CSl and ARME) tend to follow a linear relationship, as also suggested by
similar values of both coefficients. In the revised manuscript, we now report Spearman’s p
both in line 16 and Figure 11. In Table 2, we kept both metrics to present a more complete
picture of the correlations.

4) Lines 30-32 contain many references for one statement on dike-breach
uncertainties; retain the most representative and recent.

We have reduced the number of citations in this section by retaining at most up to two
references per uncertainty variable.

These lines now read as:

“Building probabilistic hazard maps remains challenging as the number of uncertain
variables can be large, particularly for dike breaching, where additional geotechnical
properties must be considered. Uncertainties include breach location (D’Oria and
Maranzoni, 2019; Westerhof et al., 2023), breach width (Mazzoleni et al., 2014; de Moel et
al., 2014), breach development time (Apel et al., 2006; Ferrari et al., 2020), failure time
(D’Oria and Maranzoni, 2019), and failure mechanism (D’Oria and Maranzoni, 2019;
Mazzoleni et al., 2014).”

5) Cite more recent references (ideally last 10 years) when discussing computation
costs.

We updated the references in lines 34-36, where we talk about computational costs of
standard approaches, as follows:

“Estimating output uncertainty may require up to hundreds of thousands of simulations,
making standard numerical flood models computationally prohibitive, unless using large
high-performance clusters (Gibbons et al, 2020).”

Reference:



Gibbons, S. J.,, Lorito, S., Macias, J., Levholt, F., Selva, J., Volpe, M., Sanchez-Linares, C.,
Babeyko, A., Brizuela, B., Cirella, A., Castro, M. J., de la Asuncion, M., Lanucara, P., Glimsdal,
S., Lorenzino, M. C., Nazaria, M., Pizzimenti, L., Romano, F., Scala, A., Tonini, R., Manuel
Gonzalez Vida, J., and Voge, M.: Probabilistic Tsunami Hazard Analysis: High Performance
Computing for Massive Scale Inundation Simulations, Frontiers in Earth Science, Volume 8
- 2020, https://doi.org/10.3389/feart.2020.591549, 2020.510

6) The 8-hour output resolution in Section 3.1 may be coarse for rapid flood-front
dynamics. Briefly discuss how this choice affects ARME and CSI.

We agree with the reviewer on this observation. We selected this output temporal resolution
to match that of the official VNK simulations.

In terms of effect on ARME, this choice does not affect its performance as this metric only
considers the total volumes at each time step, which are independent of their spatial
distribution.

Regarding the CSlI, increasing the temporal resolution might improve the performance. This
is because most errors occur at the front of the flood wave. A higher temporal resolution
would correspond to fewer spatio-temporal variations, making it easier for the model to
learn the correct flood spreading.

7) Line 344: fix “outlier Contrarily” to “Contrarily” (or rephrase).

We thank the reviewer for spotting this typo. The phrase “outlier Contrarily” has been
corrected to “Contrarily”.

8) The computational efficiency claim of "10,000 times faster" requires more detail,
including the specific Delft3D configuration (nhumber of CPU cores, parallelization),
whether data I/0 time is included.

We have expanded the description of the computational configuration for the numerical
simulations to include more configuration details.

Lines 246-247 now read as:

“All numerical simulations are run on an AMD Ryzen 7 5700X 8-Core Processor (3.40 GHz)
CPU, using four OpenMP threads.”



In terms of speed-up calculations, as mentioned in line 288, “Both times exclude mesh
creation, data pre-processing and post-processing.”



