
Response to Reviewer #2 

We thank the reviewer for their detailed and insightful comments. We appreciate the 
recognition of the practical relevance and computational efficiency of the proposed 
framework. Below, we address each comment and describe how the manuscript has been 
revised accordingly. 

We indicate the reviewer’s comments in bold and the text modifications in blue. 

 

General Comments 

1) There are some distribution shifts between training and testing datasets that may 
undermine the model generalizability.  

According to Table 1 and Figure 6, the training flood volumes are 220.1±131.4×10⁶ m³, 
while test location ND111 produces volumes of 395.71-974.55×10⁶ m³, far exceeding the 
training range. The MAE at ND111 reaches 247.81×10⁻² m, nearly ten times higher than 
the training error. 

(Also, Table 1 has two rows labeled “test”; please clarify how these correspond to test 
cases/locations.) 

Please discuss the model’s applicable range and extrapolation limits.  

If feasible, include higher-volume training samples or explore domain adaptation for 
out-of-distribution conditions. 

We thank the reviewer for highlighting this important issue.  

Indeed, the testing volume ranges are far greater than the training ones. The test dataset was 
dependent on the availability of official pre-computed simulations from the VNK project. We 
leveraged this high variability to assess the model’s response to extreme events, showing 
that, as expected, the model tends to underestimate them. However, the model still 
understands the spatio-temporal evolution for these floods, as indicated by the high CSI 
values.  

Regarding the duplicate “test” rows, one provides the aggregate summary throughout all the 
test samples, while the second “row” provides a more detailed analysis of each scenario. 
We updated the table caption to better reflect this distinction as: 

“Training, validation, and testing metrics for the mSWE-GNN on dike ring 41, reporting mean 
and standard deviation for the mean absolute error (MAE) for water depth and unit discharge 
and critical success index for a water depth threshold tau (𝐶𝐶𝐶𝐶𝐼𝐼𝜏𝜏) These metrics are reported 



also for the three test locations HD073, ND234, and ND111, for the different return periods 
(RP). …” 

In terms of application range and extrapolation, we evaluated the model on a purposefully 
wide range of conditions and locations in Section 4.2, showing that the model performs best 
in a range that is similar to the training one, while showing progressively less reliable 
predictions outside of it. The reasons why a single model cannot capture well the system’s 
response to all volume ranges are 1) that the training process converges to the mean, leading 
to worse performance towards the extremes and 2) the flow propagation speeds across 
different boundary conditions and time steps can be too different for a single model to 
capture them effectively. In lines 436-437, we propose a possible solution to this problem, 
involving the use of mixture-of-experts models:  

“Moreover, future works could explore the use of mixture-of-experts models to improve the 
model performance across a wider range of boundary conditions, for example by combining 
or selecting the output of different models, each trained with a smaller range of conditions.” 

Regarding the reviewer’s request to include an event with a higher volume, this would not 
necessarily improve the overall performance, for the reason explained above that the model 
will converge to the mean. One solution might be to train on a much larger dataset and use 
a bigger model to cover a broader range of interactions. With the given dataset, when 
focusing on a smaller range of conditions, preliminary experiments showed that the model 
performance increases for the given range, whether these events are very small or very large. 
To prove this, we carried out a small fine-tuning experiment, where we re-trained the best 
model with the single largest training flood event, using a smaller learning rate (0.0005) and 
few epochs (5) to avoid overfitting. 

The results, reported only here in Table R2, show that the overall testing performance 
improves for the largest flood events, reducing the water depth MAE from 247.81 to 170.22, 
from 152.26 to 87.56, and from 55.51 to 39.34 for test location ND111. However, it also 
equivalently drastically reduces the performance of smaller events (locations ND234 and 
HD073). For this reason, we decided not to include further larger events and instead focus 
on a broader training range. 

Table R2. Testing metrics for the mSWE-GNN fine-tuned on a single large flood event, 
reporting mean and standard deviation for the mean absolute error (MAE) for water depth 
and unit discharge and critical success index for a water depth threshold tau (𝐶𝐶𝐶𝐶𝐼𝐼𝜏𝜏). These 
metrics are reported also for the three test locations HD073, ND234, and ND111, for the 



different return periods (RP).

 

 

 

2) The theoretical foundation of the ARME metric requires further clarification.  

In Equation (5), when the predicted volume may be negative in early simulation stages 
due to subtracting V₀ in Equation (4), or when Vt approaches zero, ARME may produce 
numerically unstable or meaningless results.  

Please discuss ARME’s behavior during initial simulation phases and whether such 
issues were handled in the results, as they may bias plausibility assessment. 

We appreciate the reviewer’s examination of the ARME formulation.  

In principle, ARME could become numerically unstable when the total volume 𝑉𝑉𝑡𝑡 is close to 
zero. However, the ARME is computed starting from time step 𝑡𝑡 = 1(Eq. 5) and the 
simulations start only once boundary conditions are non-zero, as they would be trivial 
otherwise. As a result, there is always positive inflow entering the domain. Furthermore, 𝑉𝑉𝑡𝑡 
is a strictly positive variable that does not approach zero unless the domain completely 
empties out. Moreover, while predicted volumes could in theory be lower than the initial 
volume 𝑉𝑉0, this does not cause numerical issues because (i) the absolute value in Eq. (5) 
prevents sign-related instabilities and (ii) water depths are physically constrained to be non-
negative, preventing unphysical negative volumes.  

We noticed that this relevant physical component (already present in the original mSWE-
GNN model) was not reported in the manuscript. As such, we updated Eq. 1 to be 𝑈𝑈�𝑡𝑡+1 =
𝜎𝜎(𝑈𝑈𝑡𝑡  + 𝛷𝛷(𝑋𝑋𝑠𝑠,𝑈𝑈𝑡𝑡−𝑝𝑝:𝑡𝑡, 𝜀𝜀)) and changed lines 112-114 to: 



“where 𝑈𝑈�𝑡𝑡+1 is the predicted hydraulic variables, Ut are the hydraulic variables (water depth 
[m] and unit discharge [𝑚𝑚2𝑠𝑠−1]) at time t, 𝛷𝛷 (・) is the model for a fixed time step, 𝑋𝑋𝑠𝑠 are 
static node features, 𝑈𝑈𝑡𝑡−𝑝𝑝:𝑡𝑡 are dynamic node features for time steps t−p to t,  𝜎𝜎 is a rectified 
linear unit (ReLU) used for guaranteeing positive hydraulic variables, and E are edge 
features.” 

As regards the ARME behavior during initial simulation phases, we did not encounter any 
issues. While some instabilities might have originated from a low total volume 𝑉𝑉𝑡𝑡, i) the 
model’s predictions were generally the best right after the beginning of the flood event and 
ii) a high instability would entail a bad prediction and hence should result in a high ARME. 

 

3) The finding that approximately 50% of simulations are classified as implausible 
(ARME>0.4) raises concerns about operational applicability.  

How can users determine prediction reliability when encountering new boundary 
conditions in practical applications?  

Does this high discard rate introduce bias in probability distribution estimates?  

The authors should analyze whether there are systematic differences in spatial 
distribution or boundary conditions between discarded and retained simulations, and 
discuss strategies for improving the plausibility rate. 

We thank the reviewer for this important point of discussion.  

When encountering new boundary conditions, we can always determine prediction 
reliability thanks to the ARME metric. If this value is too high, we can just discard the 
corresponding simulations and run more, with small differences in boundary conditions. 
This compromises only speed, as we have to execute the model more times, but not 
reliability, as we can always calculate the ARME for new boundary conditions.  

As for the high discard rate on the probability distribution estimates, selected simulations 
tend to be more central in terms of volume ranges, so the probability distributions will also 
be less spread out than considering the full set of simulations. 

We modified lines 365-366 to clarify this: “Selecting only plausible results skews the 
probability distributions to be less spread out with respect to the complete set, giving a 
clearer distribution estimate.” 

To analyse the differences in spatial distributions and boundary conditions, we carried out 
the experiments in Section 4.2 which on purpose have much wider distributions than the 
training one to provide a more complete overview of the model’s response. This is also the 



main reason why 50% of the simulations are not reliable. As shown in Figures 9 and 10, most 
unplausible simulations have a total flood volume much smaller or higher than that of the 
training range. Similarly, some locations (Figure 12b) have a much lower percentage of 
plausible simulations which negatively influences the overall performance, as explained in 
lines 353-358. We clarified these points in the manuscript in lines 315-316: “We designed 
this range to be purposefully much wider than for a practical scenario, to assess a more 
complete response of the model to different boundary conditions and locations.” 

 

Minor Comments 

1) What criteria guided the selection of dike-breach locations, and are they 
representative and physically justified? 

For the test dataset, all three locations are representative and physically justified as they are 
taken from selected homogeneous dike segments that are potentially prone to breach, 
based on a geotechnical evaluation. All other locations in training, validation, and large-
scale testing are randomly selected by considering approximately equidistant points along 
the part of the dike that is in contact with a river. Because of the presence of the river, we 
assume all locations to be potential breach points, and thus also representative and 
physically justified, even if in practice they might have a low probability of failure. The 
purpose of selecting equidistant locations is to evaluate the general functioning of the 
model. We clarified this in lines 234-236 as: 

“For training and validation data, we used, respectively, 30 and 10 numerical simulations 
performed with Delft3D (Deltares, 2025), each with a different breach location, selected to 
be approximately equidistant along the dike ring boundary, and a different dike outflow 
hydrograph over time as boundary conditions.” 

 

 

2) Figure 6(b) caption reads “Training and testing discharge hydrographs…”. Given 
validation in Figure 6(a), consider “Training and validation discharge hydrographs…” (or 
include testing if applicable). 

Thank you for noting this inconsistency. We change the caption as: 

“… (b) Training, validation, and testing discharge hydrographs used as boundary conditions 
for the simulations.” 

 



3) Pearson’s r (Line 16, Figure 11, Table 2) is outlier-sensitive and assumes linearity. 
Given Figure 11’s scatter, please justify Pearson’s r or report Spearman’s rank as a 
complementary robust measure. 

We agree with the reviewer that Pearson’s correlation can be sensitive to outliers and 
assumes linear dependence. In the experiments, all data pairs for which a clear correlation 
exists (i.e., between CSI and ARME) tend to follow a linear relationship, as also suggested by 
similar values of both coefficients. In the revised manuscript, we now report Spearman’s ρ 
both in line 16 and Figure 11. In Table 2, we kept both metrics to present a more complete 
picture of the correlations. 

 

4) Lines 30–32 contain many references for one statement on dike-breach 
uncertainties; retain the most representative and recent. 

We have reduced the number of citations in this section by retaining at most up to two 
references per uncertainty variable. 

These lines now read as: 

“Building probabilistic hazard maps remains challenging as the number of uncertain 
variables can be large, particularly for dike breaching, where additional geotechnical 
properties must be considered. Uncertainties include breach location (D’Oria and 
Maranzoni, 2019; Westerhof et al., 2023), breach width (Mazzoleni et al., 2014; de Moel et 
al., 2014), breach development time (Apel et al., 2006; Ferrari et al., 2020), failure time 
(D’Oria and Maranzoni, 2019), and failure mechanism (D’Oria and Maranzoni, 2019; 
Mazzoleni et al., 2014).” 

 

5) Cite more recent references (ideally last 10 years) when discussing computation 
costs. 

We updated the references in lines 34-36, where we talk about computational costs of 
standard approaches, as follows: 

“Estimating output uncertainty may require up to hundreds of thousands of simulations, 
making standard numerical flood models computationally prohibitive, unless using large 
high-performance clusters (Gibbons et al, 2020).” 

Reference:  



Gibbons, S. J., Lorito, S., Macías, J., Løvholt, F., Selva, J., Volpe, M., Sánchez-Linares, C., 
Babeyko, A., Brizuela, B., Cirella, A., Castro, M. J., de la Asunción, M., Lanucara, P., Glimsdal, 
S., Lorenzino, M. C., Nazaria, M., Pizzimenti, L., Romano, F., Scala, A., Tonini, R., Manuel 
González Vida, J., and Vöge, M.: Probabilistic Tsunami Hazard Analysis: High Performance 
Computing for Massive Scale Inundation Simulations, Frontiers in Earth Science, Volume 8 
- 2020, https://doi.org/10.3389/feart.2020.591549, 2020.510 

 

6) The 8-hour output resolution in Section 3.1 may be coarse for rapid flood-front 
dynamics. Briefly discuss how this choice affects ARME and CSI. 

We agree with the reviewer on this observation. We selected this output temporal resolution 
to match that of the official VNK simulations.  

In terms of effect on ARME, this choice does not affect its performance as this metric only 
considers the total volumes at each time step, which are independent of their spatial 
distribution.  

Regarding the CSI, increasing the temporal resolution might improve the performance. This 
is because most errors occur at the front of the flood wave. A higher temporal resolution 
would correspond to fewer spatio-temporal variations, making it easier for the model to 
learn the correct flood spreading.

 

7) Line 344: fix “outlier Contrarily” to “Contrarily” (or rephrase). 

We thank the reviewer for spotting this typo. The phrase “outlier Contrarily” has been 
corrected to “Contrarily”. 

 

8) The computational efficiency claim of "10,000 times faster" requires more detail, 
including the specific Delft3D configuration (number of CPU cores, parallelization), 
whether data I/O time is included. 

We have expanded the description of the computational configuration for the numerical 
simulations to include more configuration details.  

Lines 246-247 now read as: 

“All numerical simulations are run on an AMD Ryzen 7 5700X 8-Core Processor (3.40 GHz) 
CPU, using four OpenMP threads.” 



In terms of speed-up calculations, as mentioned in line 288, “Both times exclude mesh 
creation, data pre-processing and post-processing.” 


