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Abstract. Biogenic volatile organic compounds (BVOCs) constitute a significant precursor to 10 

tropospheric ozone (O3) over the Qinghai-Tibet Plateau (QTP), yet substantial uncertainties persist in 

BVOC emission inventories for this high-altitude region. This study employs the WRF/CMAQ model to 

systematically compare BVOC emissions between MEGAN v2.1 and v3.2 over the QTP, and their 

impacts on surface O3 simulations for August 2022. MEGAN v3.2 yields total BVOC emissions (127.96 

Gg) 44% lower than v2.1 (229.67 Gg), with isoprene emissions 1.7 times lower and monoterpenes 0.3 15 

times higher. Spatially, the most pronounced differences occur in southeastern Tibet and the Hengduan 

Mountains. Indirect constraints using TROPOMI formaldehyde (HCHO) vertical column densities 

(VCDs) and OMI/MLS total-column ozone (TCO) reveal that CMAQ simulations with v3.2 BVOC 

emissions exhibit a marginally stronger correlation with satellite HCHO VCDs (r = 0.34 vs 0.32, p < 

0.01), while the simulated TCO agree similarly with the OMI/MLS TCO. Simulations with both 20 

inventories indicate that incorporating BVOCs increase regional average MDA8 O3 concentrations by 2-

3%. However, in Lhasa, Xining, and certain cities within the Hengduan Mountains, increases reach 5-

14%. In southeastern Tibet, where NOx is extremely scarce, the response is negligible. Due to its elevated 

isoprene emissions, MEGAN v2.1 increases the MDA8 O3 concentrations by up to 19.61% in the 

aforementioned cities—nearly twice those in v3.2. It is recommended that v3.2 be prioritized for air 25 

quality modelling in pristine alpine region. These findings provide valuable guidance for designing 

effective air quality management policies over the QTP. 
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1 Introduction 

Biogenic Volatile Organic Compounds (BVOCs) from terrestrial vegetation play a crucial role in 

atmospheric chemistry (Atkinson and Arey, 2003; Guenther et al., 2006). They react with hydroxyl 30 

radical (OH), nitrate radical (NO3), and ozone (O3), and serve as important precursors for tropospheric 

O3 (Gu et al., 2021). Cao et al. (2022) estimated that the summertime BVOC emissions led to an average 

increase of 8.6 ppb (17%) in daily maximum 8 h (MDA8) O3 concentration over China in summer 2018. 

As a key input for chemical transport models (CTMs), accurately quantifying BVOC emissions is 

essential for improving CTMs performances, which in turn will support the development of effective air 35 

pollution control strategies (Borge et al., 2014).  

BVOCs, primarily composed of isoprenoids (such as isoprene and monoterpenes), alcohols, carbonyls 

and acids, are biosynthesized and emitted by plants as adaptive responses to environmental changes 

(Šimpraga et al., 2019), herbivory (Yu et al., 2021) or to attract pollinators (Pichersky and Gershenzon, 

2002). BVOC emissions are influenced by a range of abiotic and biotic factors, among which temperature 40 

and solar radiation are considered the most critical (Loreto and Schnitzler, 2010; Feldner et al., 2022; 

Lun et al., 2020; Peron et al., 2021; Possell and Loreto, 2013). Due to limited understanding of the 

underlying biochemical mechanisms, current BVOC emission models predominantly adopt an empirical 

bottom-up approach, where emission factors are defined as functions of environmental variables. One of 

the most widely used BVOC emission models is MEGAN (Model of Emissions of Gases and Aerosols 45 

from Nature), developed by Guenther et al. (2006, 2012, 2020). MEGAN v2.1, released in 2012, employs 

a method to estimate BVOC emissions based on plant function type (PFT)-specific emission factors and 

PFT distributions data. However, studies have shown that different plant species emit distinct BVOCs 

blends and display divergent temperature responses (Grote et al., 2013). This interspecific variability 

introduces substantial uncertainties in BVOC emission estimates derived from PFT-based emission 50 

factors. Notably, Ciccioli et al. (2023) argued that the PFT-based approach may insufficiently resolve 

species-level emission characteristics, especially in ecosystems with high biodiversity. The latest 

MEGAN version 3.2 (MEGAN v3.2) incorporates species-specific emission factors and utilizes global 

ecoregion data based on plant species composition, in order to improve the accuracy of BVOC emission 

estimates (Guenther et al., 2020). Although, MEGAN model has been widely used to investigate the 55 

impacts of BVOC emissions on atmospheric chemistry in China (Gao et al., 2022; Lou et al., 2023; Ma 
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et al., 2019; Wang et al., 2023b), comparative evaluations of the performance of MEGAN versions 2.1 

and 3.2 remain limited.  

The Qinghai-Tibet Plateau (QTP), known as “the Third Pole” and “the Roof of the World”, has an 

extremely low population density compared to other regions, resulting in minimal human activities and 60 

limited anthropogenic disturbances to the natural ecosystem. These characteristics make it one of the 

cleanest regions in the world (Huang et al., 2023). However, recent studies have documented a 

continuous increase in surface O3 concentrations across the QTP, posing a growing threat to the local 

ecosystem and human health (Chen et al., 2022). According to Ye et al. (2024), surface O3 over the QTP 

is predominantly influenced by regional background processes, namely stratospheric ozone intrusion 65 

(contributing at least 25%) and long-range transport from South Asia (9.45%-20.28%); in contrast local 

photochemical production plays a relatively minor role (5.24%-10.46%) (Yin et al., 2023). More recently, 

Xu et al. (2024) reported that surface O3 over the QTP exhibited a faster increase at urban stations (1.71 

ppb yr-1) compared with background stations (0.26 ppb yr-1), which they attributed to enhanced non-local 

transport and local emissions. The QTP covers an area of approximately 2.57 million km2, with more 70 

than 60% of its surface occupied by vegetation (Chen et al., 2020), and hosts over 12,000 species of seed 

plants (Zhang et al., 2016). Nevertheless, BVOC emissions in this region remain poorly quantified. 

Considering the relatively minor contribution of anthropogenic sources, BVOCs are likely to play an 

important role in driving local O3 photochemical production over the QTP. Under the context of climate 

change and land-cover dynamics in this region, it is essential to improve our understanding of BVOC 75 

emissions and their influence on O3 formation over the QTP. 

This study aims to systematically evaluates the BVOC emissions estimated by two different versions of 

the MEGAN (v2.1 and v3.2) and assesses their impacts on O3 simulations over the QTP using WRF-

CMAQ modeling results. Numerical experiments were conducted for August 2022 to capture the period 

of peak photosynthetic and biological activity. This study provides new insights into the role of BVOCs 80 

in controlling O3 formation within this high-altitude and ecologically vulnerable region.  
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2 Materials and Methods. 

2.1 Study area 

The Qinghai-Tibet Plateau (QTP) (26-39°N, 73-104°E) is located in the southwestern part of China, 

encompassing Qinghai, Tibet and parts of Xinjiang, Sichuan and Yunnan provinces (Fig. 1). The average 85 

annual temperature in QTP varies from -15℃ to 10℃ (You et al., 2013). Precipitation follows a distinct 

spatial gradient, decreasing from over 1,000 mm in the humid southeast to less than 100 mm in the arid 

northwest (Kuang and Jiao, 2016). Corresponding to this climatic gradient, the vegetation distribution 

across QTP displays a distinct zonal pattern: broadleaf forests are dominate in the humid southeastern 

regions, alpine meadows prevail across the central areas, and alpine steppes characterize the arid 90 

northwestern zones (Han et al., 2023). The growing season for most vegetation on the QTP typically 

spans from April to October, culminating in peak photosynthetic and biological activity during July and 

August (Sun et al., 2020; Che et al., 2014). 

 

 95 

Figure 1: Map of the study area. Model domains (red boxes), plant function types (PFTs, coloured areas), and 

the locations of meteorological stations (blue triangles) and air quality monitoring stations (black dots). 
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2.2 Ground observation data 

2.2.1 Meteorological data 

Meteorological variables, including 2 m temperature (T2), 10 m wind speed (WS10), and 10 m wind 100 

direction (WD10), were acquired from 25 meteorological stations across the QTP (see blue triangles in 

Fig.1) via the National Climate Data Center (NCDC). WS10 and WD10 were used to derive the zonal 

(u10) and meridional (v10) wind components. These data, recorded at 3-hour intervals, were used to 

evaluate the simulated meteorological fields in this study.  

2.2.2 Surface O3 Concentrations  105 

Hourly surface ozone concentrations were obtained from the China National Environmental Monitoring 

Center. Data quality assurance and control procedures followed the technical guidelines outlined in the 

National Environmental Protection Standards of the People's Republic of China (HJ 630-2011). Stations 

with valid data less than 75% in August 2022 were excluded. After quality control, 30 stations were 

selected, with their locations shown in Fig. 1 as black dots. 110 

2.3 Satellite Remote Sensing data 

2.3.1 Vegetation-specific leaf area index (LAIv) 

The MEGAN quantifies foliage abundance in a landscape using the vegetation-specific leaf area index 

(LAIv), defined as the leaf area index (LAI) per vegetated cover fraction (VCF). In this study, LAIv was 

derived using the MODIS MOD15A2H V6.1 and MOD44B.006 datasets for the period of August 2022. 115 

2.3.2 Plant Functional Type (PFT) 

The MODIS MCD12Q1.061 LC_Type5 classifications for the year 2022 was directly utilized to identify 

the seven PFTs, i.e. needleleaf evergreen trees, needleleaf deciduous trees, broadleaf evergreen trees, 

broadleaf deciduous trees, shrubs, grass, and crop. The global monthly climatologies of surface air 

temperature and precipitation from WorldClim were used to reclassify the 7 PFTs into 15 PFTs. The 120 

reclassification was conducted following the climate-based rules outlined in Bonan et al. (2002). As 
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illustrated in Fig. 1, the land cover over the QTP exhibits a clear gradient, transitioning progressively 

from forest-dominated regions in the southeast, through grassland-centred central regions, to largely 

barren land in the northwest. The dominant PFTs across the QTP include Arctic C3 grass, needleleaf 

evergreen boreal tree, needleleaf evergreen temperature tree, broadleaf evergreen temperature tree, 125 

broadleaf deciduous boreal tree, and broadleaf deciduous temperature tree. 

2.3.3 Formaldehyde (HCHO) vertical column density (VCD) 

The emissions of BVOCs, particularly isoprene and terpenes, serves as a significant source of precursors 

for HCHO (Trimmel et al., 2023). Accordingly, HCHO has been used in previous studies as an indirect 

indicator for evaluating BVOC simulations (Wang et al., 2021a). The Sentinel-5P TROPOMI daily 130 

offline level 3 (OFFL L3) HCHO dataset, with a spatial resolution of 1113.2 m × 1113.2 m and covering 

the period from August 1 to 31, 2022, obtained from the Google Earth Engine cloud platform, was used 

to assess the estimated BVOC emissions. To minimize anomalies, we excluded data with cloud fraction 

greater than 0.3, solar zenith angle exceeding 70°, and vertical column density values outside the range 

of -0.81015 and 7.61015 molec cm-2 (Zhu et al., 2017). 135 

2.3.4 Tropospheric Column Ozone (TCO) 

The OMI/MLS monthly-mean TCO dataset, with a spatial resolution of 1°1°, was used to evaluate the 

simulated TCO concentrations. TCO was derived from the OMI and MLS instruments on board the Aura 

satellite and calculated using the tropospheric ozone residual (TOR) method, which involves subtracting 

the MLS stratospheric column ozone from the OMI total column ozone after adjusting for calibration 140 

differences between the two instruments (Ziemke et al., 2006, 2011).  

2.4 Model descriptions and Experimental Design 

2.4.1 MEGAN model for BVOC Emissions 

MEGAN is a widely used modeling framework for estimating fluxes of biogenic compounds between 

terrestrial ecosystems and the atmosphere. It employs simplified mechanistic algorithms to represent the 145 

primary known processes that regulate emissions from biogenic sources. The biogenic emission (Fi) (μg 
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m−2 h−1) of a given compound (i) is estimated based on the weighted average of the emission factors (EFi) 

(μg m−2 h−1), and activity factor (γi), which are influenced by environmental conditions: 

Fi = EFi × γi  (1) 

The MEGAN v2.1 and MEGAN v3.2 implement different approaches for calculating EFi. In MEGAN 150 

v2.1, EFi is determined based on PFT-specific emission factor (εi,j) and the area coverage fraction (fPFT(j)) 

of each PFT (j) in a grid box: 

EFi = ∑ε𝑖,𝑗 𝑓PFT(j)  (2) 

In contrast, MEGAN v3.2 calculates EFi using plant species-specific emission factor (εi,k) and the area 

coverage fraction (fSpecies(k)) of each plant species (k) in a grid box: 155 

EFi = ∑ε𝑖,𝑘 𝑓Species(𝑘)  (3) 

For MEGAN v2.1, the PFTs data as detailed in Section 2.3.2 were used. For MEGAN v3.2, the default 

ecotype and growth data provided within the model were employed. During the following simulations, 

only the default functions in MEGAN were applied to ensure consistency with the standard model 

configuration. 160 

2.4.2 WRF/CMAQ Model Configuration  

In this study, the US EPA’s CMAQ version 5.4 was used with a modified version of the Carbon-Bond 

Mechanism version 6 (CB6R3) chemical mechanism. Fig. 1 shows the CMAQ modelling domain (the 

red boxes) that consists of two nested domains with spatial resolutions of 27 and 9 km. Vertically there 

are 44 σ-layers extending from the surface to an altitude of 50 hPa. The default ICON/BCON program 165 

was employed to generate the initial and boundary conditions for the CMAQ 27 km simulation, while 

the initial and boundary conditions for the 9 km simulation were derived from the results of the 27 km 

simulation. 

The WRF-ARW version 4.4.2 was used to generate the hourly meteorological fields for MEGAN, 

SMOKE, and CMAQ. The WRF was configured to have two nested domains, covering and aligning with 170 

the CMAQ domains with each of the WRF domain being at least four grid cells larger than the 

corresponding CMAQ domains. The Final (FNL) Operational Global Analysis data of the National 

Centers for Environmental Prediction (NCEP), with a spatial resolution of 1°1° and updated every 6 

hours, were used as the initial and boundary conditions for WRF simulations. The simulations began at 

00:00 UTC on July 27, 2022 and ended at 23:00 UTC on August 31, 2022. The first five simulation days 175 
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were used as “spin-up” period to minimize the influence of initial conditions. The key physical and 

chemical parameterizations used in the WRF-CMAQ simulations are listed in Table 1.  

Anthropogenic emissions within China were obtained from the 2020 Multi-resolution Emissions 

Inventory (MEIC2020) and processed using the MEIAT-CMAQ (Wang et al., 2024b). For regions 

outside China, anthropogenic emissions were sourced from the 2018 Emissions Database for Global 180 

Atmospheric Research (EDGAR v6.1) and processed using SMOKE v4.7. Biomass burning emissions 

were derived from the Fire Inventory from NCAR version 2.5 (FINN v2.5) (Wiedinmyer et al., 2023) 

and integrated using FINN2CMAQ. 

To investigate the differences in the estimated BVOCs by the two versions of MEGANs and their impact 

on O3 concentrations, three experiments with different BVOC emission schemes were conducted (see 185 

Table 2). The BVOC emissions estimated using MEGAN v2.1 and MEGAN v3.2 were compared and 

their correlations with observed HCHO VCD was analyzed. The impact of BVOC emissions on O3 

simulations was evaluated by examining the differences between simulations with and without BVOC 

emissions.  

Table 1 Physical and chemical options in the WRF/CMAQ simulation. 190 

 Process Option 

 Microphysics WRF Single-Moment 6-class (Hong and Lim, 2006) 

Physical Surface Layer Yonsei University Scheme (Hong et al., 2006) 

 Shortwave/Longwave 

radiation 

NCAR Community Atmospheric Model (Collins et al., 

2004) 

 Land surface model Noah land surface model (Chen et al., 1996; Chen and 

Dudhia, 2001) 

 Cumulus Parameterization Kain-Fritsch (Kain, 2004) 

 Photolysis scheme  In-line Photolysis (Binkowski et al., 2007) 

Chemical Gas-phase chemistry CB6R3 (Emery et al., 2015) 

 Aerosol module AERO7 (Appel et al., 2021) 

 

Table 2 Numerical experiments 

Experiments Emissions 

NoBVOC Anthropogenic emissions + Biomass burning 

InBVOCv2.1 Anthropogenic emissions + Biomass burning + MEGAN v2.1 

InBVOCv3.2 Anthropogenic emissions + Biomass burning + MEGAN v3.2 

https://doi.org/10.5194/egusphere-2025-5579
Preprint. Discussion started: 19 November 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

2.5 Determination of O3 production sensitivity regimes 

Photochemical indicators, such as VOC/NOx, HCHO/NO2, H2O2/HNO3, and O3/HNO3, are widely used 

to diagnose O3 production regimes as they can be derived directly from observations or chemical 195 

transport models (Sillman and He, 2002; Li et al., 2022; Jin and Holloway, 2015). In this study, we apply 

the tropospheric HCHO/NO2 ratio as the diagnostic metric. Vertical column densities of tropospheric 

HCHO and NO2 between 15:00 and 18:00 local time for August 2022 were obtained from CMAQ 

simulations used to calculate the HCHO/NO2 ratio; the threshold value that marks the transition between 

NOx-limited and VOC-limited regimes was assumed to occur at HCHO/NO₂ = 2.5-4.5 following Ren et 200 

al. (2022). 

 

3 Results and Discussions 

3.1 Model Performance Evaluation 

3.1.1 Meteorological Field Simulation (WRF) 205 

To evaluate the model performance, statistical metrics including correlation coefficients (r), mean bias 

(MB), root-mean-square error (RMSE) and the Index of Agreement (IOA) were calculated. Table 3 

summarizes the statistical results of the WRF-simulated hourly T2, u10 and v10 for the 25 meteorological 

stations, and the corresponding scatter plots are shown in Fig. S1. The performance of WRF in simulating 

T2 was good, with IOA and r of 0.88 and 0.82, respectively. The model slightly underestimated T2, with 210 

MB and RMSE of -1.93 and 4.00℃, respectively. In contrast, the model’s performance in capturing wind 

speed was relatively poor, with IOA for u10 and v10 being 0.58 and 0.55, respectively, and the 

corresponding r being 0.30 and 0.27, respectively. The model modestly underestimated the u10 and 

overestimated the v10. The complex topography of the QTP poses significant challenges for simulating 

wind fields compared to other meteorological fields (Lu et al., 2022). Nevertheless, our results align 215 

closely with those reported in previous studies (Yang et al., 2020; Hu et al., 2024). These results 

demonstrate that the WRF model successfully reproduced meteorological conditions over the study 

region and can thus provide reliable meteorological inputs for MEGAN, SMOKE and CMAQ. 

 

 220 
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Table 3 Performance statistics for simulated meteorological variables. 

 Obs mean Sim mean MB RMSE IOA r 

T2 (℃) 16.06 ± 5.79 14.07 ± 5.74 -1.93 4.00 0.88 0.82 

u10 (m s-1) -0.38 ± 2.10 -0.91 ± 2.50 -0.50 2.79 0.58 0.30 

v10 (m s-1) 0.33 ± 1.84 0.58 ± 2.17 0.25 2.45 0.55 0.27 

 

3.1.2 Surface O3 Simulation (CMAQ)  

Table 4 summarizes the performance statistics of the CMAQ-simulated surface MDA8 O3 concentrations 

for the 30 air quality stations, and the corresponding scatter plots are shown in Fig. S2. The model 225 

consistently overestimated O3 levels across all simulations. The highest MB occurred in experiment 

InBVOCv2.1, while the lowest MB was observed in experiment NoBVOC. A similar pattern was found 

for the RMSE. All experiments exhibited correlation coefficients (r) values exceeding 0.3 and IOA values 

exceeding 0.4, which is consistent with previous modeling studies over complex terrain (Hu et al., 2024). 

 230 

Table 4 Performance statistics for simulated MDA8 O3 concentrations in August 2022. 

Experiments Obs mean 

(μg m-3) 

Sim mean 

(μg m-3) 

MB RMS

E 

IOA r 

NoBVOC  

102.71 ± 21.93 

133.60 ± 30.43 30.89 43.87 0.46 0.33 

InBVOCv2.1 141.75 ± 35.09 39.04 51.10 0.45 0.41 

InBVOCv3.2 138.73 ± 31.66 36.03 47.84 0.44 0.35 

 

3.2 BVOC emissions: MEGAN v2.1 vs. MEGAN v3.2 

The total BVOC emissions simulated by MEGAN v2.1 over the QTP for August 2022 are 229.67 Gg, of 

which isoprene and monoterpene accounted for 56.49% (129.73 Gg) and 11.82% (27.14 Gg), 235 

respectively. In comparison, MEGAN v3.2 estimated a lower total emissions of 127.96 Gg, with isoprene 

and monoterpene contributing 37.68% (48.22 Gg) and 27.96% (35.78 Gg), respectively. On average, the 

isoprene emissions simulated by MEGAN v2.1 were 1.7 times higher than those of MEGAN v3.2, while 

monoterpene emissions were approximately 0.3 times lower. On the QTP, the forests emitted the most 

BVOCs, with an average contribution of 70.25% for MEGAN v2.1 and 74.85% for MEGAN v3.2, 240 

followed by the grasslands (20.45% for MEGAN v2.1 and 16.48% for MEGAN v3.2), and the other land 

use types only contributed 9.31% for MEGAN v2.1 and 8.67% for MEGAN v3.2. Overall, the BVOC 
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emissions accounted for 58.33 ± 44.16% and 56.23 ± 41.58% of the total VOCs (TVOCs) (TVOCs = 

BVOCs + AVOCs + Biomass burning VOCs) emissions for MEGAN v2.1 and MEGAN v3.2 in August 

over the QTP, respectively. The values even reached 100% in remote and suburban areas. 245 

The BVOC emissions estimated in this study for Qinghai province are markedly lower than the top-down 

estimate of Li et al. (2023) and the G95-based estimate of Wang et al. (2023a) using locally measured 

emissions factors (Table S1). Nevertheless, the range of estimated annual total BVOC emissions for this 

region is wide: 10.70-455.60 Gg C for Qinghai and 187.00-577.80 Gg C for Tibet (Klinger et al., 2002; 

Yin et al., 2020). Our estimates lie within these bounds. The discrepancies in BVOCs emission estimates 250 

among different studies can be attributed to variations in simulation periods, model algorithms, emission 

factors, land cover datasets, and meteorological conditions. 

Figure 2 illustrates the spatial distribution of isoprene and monoterpene emission rates simulated by 

MEGAN v2.1 and MEGAN v3.2. Although the spatial patterns are similar, the magnitudes differ. The 

monthly average isoprene emission rate simulated by MEGAN v2.1 ranged from 0 to 0.48 ton grid-1 h-1 255 

(mean: 0.006 ± 0.028 ton grid-1 h-1), while MEGAN v3.2 produced a lower range of 0 to 0.20 ton grid-1 

h-1 (mean: 0.002 ± 0.011 ton grid-1 h-1). The monthly average monoterpene emission rate simulated by 

MEGAN v2.1 ranged from 0 to 0.08 ton grid-1 h-1 (mean: 0.001 ± 0.005 ton grid-1 h-1). In contrast, 

MEGAN v3.2 produced higher values, ranging from 0 to 0.13 ton grid-1 h-1 (mean: 0.002 ± 0.008). The 

differences between the two MEGAN versions were most pronounced in southeastern Tibet and the 260 

Hengduan Mountains region, areas characterized by high forest density (Fig. 1) and biodiversity (Li et 

al., 2020; López-Pujol et al., 2006). 

Discrepancies in BVOC emissions between the two MEGAN versions stem from different approaches 

for assigning emission factors (EFs) (Eq. (2) vs Eq. (3)) and differences in the underlying emission 

processes, such as temperature and light responses, represented in each model (Guenther et al., 2020). In 265 

addition, MEGAN v3.2 includes an updated species-specific emission factor (ε) database, resulting in 

differences in EFs between the two versions. The isoprene EF from MEGAN v3.2 was lower than that 

from MEGAN v2.1 (Fig. S3). In contrast, the monoterpene EF was lower in southeastern Tibet and the 

Hengduan Mountains region, but higher across most other regions. MEGAN v3.2 also incorporated 

previously unrepresented BVOC emission processes, such as canopy heterogeneity, which can alter 270 

activity factors. Overall, the activity factors for isoprene and monoterpenes differed only slightly between 
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the two versions across most regions, but showed pronounced differences in southeastern Tibet and 

northwest QTP, where MEGAN v3.2 have substantially higher and lower values, respectively (Fig. S4). 

Guenther et al. (2020) reported that MEGAN v3 yields lower isoprene emissions than MEGAN v2.1, 

which is consistent with our findings. However, their study indicated that MEGAN v3 also produces 275 

lower monoterpene emissions than MEGAN v2.1. This is in contrast to our results: the higher 

monoterpene EFs over grasslands and the enhanced activity factors over southeastern Tibet in MEGAN 

v3.2 resulted in higher monoterpene emissions compared to MEGAN v2.1. 

 

Figure 2: Spatial distribution of August average isoprene and monoterpene emission rate (ton grid-1 h-1) over 280 

the QTP simulated by MEGAN v2.1 (a, d) and MEGAN v3.2 (b, e) and their differences (c, f). 

3.3 Evaluation of BVOC Emission Estimates Using Satellite Products  

Due to the absence of in situ BVOC measurements over the QTP, direct evaluation of the two versions 

of MEGAN is unfeasible. This limitation necessitates the use of alternative proxy-based evaluation 

approaches. Formaldehyde (HCHO), an intermediate product in the oxidation of most VOCs, has been 285 

widely used as a tracer to constrain BVOC emissions in previous studies (Guion et al., 2023; Wang et 

al., 2022). In this study, satellite-derived HCHO vertical column densities (VCDs) are employed to assess 

the performance of both MEGAN versions. Additionally, tropospheric column ozone (TCO) is used as a 
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supplementary indicator, given its close linkage with photochemical processes driven by VOC oxidation 

processes. 290 

3.3.1 Constraints from HCHO Vertical Column Densities  

To evaluate the performance in estimating the spatial distributions of BVOC emissions by the two 

versions of MEGAN, the correlation between simulated HCHO vertical column densities (VCDs) by 

experiments InBVOCv2.1 and InBVOCv3.2 and satellite-derived HCHO VCDs, was firstly analysed 

(Fig. 3d). The spatial distribution of MEGAN v3.2 simulated HCHO VCDs in August exhibited a 295 

stronger correlation (r = 0.34, p < 0.01) with satellite-observed HCHO VCDs than MEGAN v2.1 (r = 

0.32, p < 0.01). It suggests that the MEGAN v3.2 could simulate the spatial variations of BVOC 

emissions over the QTP better. 

We further compared the spatial distributions of monthly mean HCHO VCDs simulated by experiments 

InBVOCv2.1 and InBVOCv3.2 against satellite observations (Fig. 3). Both experiments reproduced the 300 

spatial distribution of HCHO VCDs reasonably well (the spatial distribution of HCHO VCDs simulated 

with InBVOCv3.2 was almost identical to that with InBVOCv2.1 and is therefore not shown here), 

showing higher values over southeastern Tibet, northeastern Qinghai, and the Hengduan Mountains 

region, and relatively lower values over western QTP. The differences in simulated HCHO VCDs 

between InBVOCv2.1 and InBVOCv3.2 were most pronounced over southeastern Tibet and the 305 

Hengduan Mountains region, consistent with the spatial patterns of BVOC emissions (Fig. 2c, f). The 

spatial averaged HCHO VCDs from satellite observations, experiments InBVOCv2.1 and InBVOCv3.2 

were 4.76 ± 2.26, 3.32 ± 1.94, and 2.91 ± 1.41 Pmolec cm−2, respectively, suggesting that VOC emissions 

may be underestimated over the QTP. Li et al. (2023) reported that bottom-up VOC emissions from 

biogenic sources, anthropogenic sources (MEIC) and biomass burning (GFED 4.1) were 2.6, 1.1 and 8 310 

times lower, respectively, than top-down estimates in Qinghai province.  

A comparison across PFTs (Fig. S5) indicates that both experiments InBVOCv2.1 and InBVOCv3.2 

performed better over grassland and cropland regions (Fig. S5h-j), with experiment InBVOCv3.2 

showing higher correlation coefficients than experiment InBVOCv2.1. In contrast, simulated results over 

forested areas, with the exception of BETT, showed relatively lower accuracy. Although trees are the 315 

dominant emitters of BVOCs, the large diversity in species and emission strengths introduces 
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considerable uncertainties in the estimates. Nevertheless, experiment InBVOCv3.2 generally 

outperformed experiment InBVOCv2.1 across most forest types, whereas experiment InBVOCv2.1 

performed better in shrubland regions. 

 320 

Figure 3: Spatial distribution of monthly mean HCHO vertical column densities (VCDs) (a) simulated by 

experiment InBVOCv2.1, (b) differences between InBVOCv3.2 and InBVOCv2.1, and (c) derived from 

Sentinel-5P observations. (d) Correlation between simulated and Sentinel-5P HCHO VCDs, with Pearson 

correlation coefficients (r) and p-values shown for experiments InBVOCv2.1 (red) and InBVOCv3.2 (black).  

3.3.2 Constraints from Tropospheric Ozone Columns 325 

Figure 4 presents the spatial distribution of monthly mean tropospheric column ozone (TCO) simulated 

by CMAQ with BVOC emissions from MEGAN v2.1 (experiment InBVOCv2.1) (the spatial distribution 

of TCO simulated with InBVOCv3.2 was almost identical to that with InBVOCv2.1 and is therefore not 

shown here), the differences in simulated TCO between InBVOCv3.2 and InBVOCv2.1, and the satellite-

derived TCO. Similar to HCHO VCDs, both experiments (InBVOCv2.1 and InBVOCv3.2) reproduced 330 

the spatial distributions of TCO reasonably well, with higher values over the northwestern margin of the 

QTP, southeastern Tibet, northeastern Qinghai, and the Hengduan Mountains region, and lower values 

over the southwestern QTP. The simulated TCO differences between InBVOCv2.1 and InBVOCv3.2 
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were generally positive across most parts of the QTP, whereas negative values were observed over the 

eastern Hengduan Mountains region. The spatially averaged TCO from satellite observations, 335 

experiments InBVOCv2.1 and InBVOCv3.2 were 30.05 ± 3.71, 42.69 ± 3.51, and 42.95 ± 3.44 DU 

respectively. The correlation coefficients (r) between satellite-derived TCO and those simulated by the 

two experiments are similar (Fig. 4d).  

A comparison across PFTs (Fig. S6) reveals that experiment InBVOCv3.2 achieves slightly better 

agreement with observations in grassland and cropland regions (Fig. S6h-j), though the improvement in 340 

correlations are marginal. In forest and shrubland regions, however, the differences between the two 

experiments (InBVOCv2.1 and InBVOCv3.2) become more complex: experiment InBVOCv3.2 shows 

slightly improved agreement with observations in deciduous areas but performs slightly worse in 

evergreen regions compared to experiment InBVOCv2.1. Ozone production is influenced not only by 

VOCs availability but also NOx levels, with ozone production efficiency differing significantly between 345 

NOx-limited and VOC-limited regimes (Zhao et al., 2009). Previous studies have demonstrated that 

BVOC emissions generally enhance O3 concentrations under high-NOx conditions, whereas under low-

NOx environments they may promote O3 loss through increased consumption of O3 by reaction with 

BVOC-derived peroxy radicals (Liaskoni et al., 2024; Rowlinson et al., 2020; Trainer et al., 1987; 

Williams et al., 2009; Zeng et al., 2008). 350 
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Figure 4: Spatial distribution of monthly mean tropospheric column ozone (TCO) (a) simulated by 

InBVOCv2.1, (b) differences between InBVOCv3.2 and InBVOCv2.1, and (c) derived from OMI/MLS 

observations. (d) Correlation between CMAQ-simulated and OMI/MLS derived TCO, with Pearson 

correlation coefficients (r) and p-values shown for experiments InBVOCv2.1 (red) and InBVOCv3.2 (black). 355 

Overall, the performance differences between the two experiments are modest, although the simulated 

HCHO VCDs and TCO by experiment InBVOCv3.2 exhibit slightly better agreement with observations 

than those by experiment InBVOCv2.1. Previous studies have reported that MEGAN v2.1 tends to 

overestimate isoprene emissions (Carlton and Baker, 2011; Warneke et al., 2010; Emmerson et al., 2016). 

Ciccioli et al. (2023) further showed that a species-specific BVOCs model yields more accurate estimates 360 

of isoprene emissions compared to MEGAN v2.1. It should be noted, however, that satellite retrievals of 

both HCHO VCDs and TCO are subject to uncertainties, highlighting the need for direct BVOC 

concentration measurements to more robustly evaluate the performance of the two MEGAN versions 

over the QTP. In particular, in situ measurements of emission factors for locally prevalent trees and shrub 

species would help improve the accuracy of BVOC emission estimates in this region. 365 
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3.4 Impact of BVOC Emissions on Surface O3 Formation 

The CMAQ simulated monthly mean maximum daily 8 hour average (MDA8) O3 concentration over the 

QTP for August 2022 were 122.51 (± 10.56) μg m-3, 125.38 (± 13.42) μg m-3, and 126.19 (± 11.42) μg 

m-3 for experiments NoBVOC, InBVOCv2.1 and InBVOCv3.2, respectively. The spatial distribution of 

MDA8 O3 was generally consistent with observations across all experiments (Fig. 5a-c), with high values 370 

over northeastern Qinghai, the Hengduan Mountains region, and Lhasa, and relatively lower values over 

the southeastern Tibet. Although the InBVOCv2.1 simulation yields a slightly better correlation 

coefficient with observed MDA8 O3 (Table 4), it simultaneously exhibits larger mean bias (MB) and 

root-mean-square error (RMSE) relative to InBVOCv3.2. These complementary metrics collectively 

demonstrate that WRF-CMAQ achieves overall better skill in reproducing surface O3 when driven by 375 

BVOC emissions from MEGAN v3.2. 

 

Figure 5: Spatial distribution of monthly mean maximum daily 8 hour average (MDA8) O3 concentrations 

(μg m-3) over the QTP in August 2022 from (a) InBVOCv2.1, (b) InBVOCv3.2, and (c) NoBVOC experiments. 

Differences in MDA8 O3 between (d) InBVOCv2.1 and NoBVOC, (e) InBVOCv3.2 and NoBVOC, and (f) 380 

InBVOCv3.2 and InBVOCv2.1 experiments. Observation data from monitoring sites are overlaid as colored 

circles in panels (a) - (c).  

Compared with the NoBVOC experiment, the experiments InBVOCv2.1 and InBVOCv3.2 substantially 

increased the monthly mean MDA8 O3 concentration across the QTP, with an average increase of 2.87 

± 3.72 μg m-3 (2.01% ± 2.11%) and 3.68 ± 1.40 μg m-3 (2.89% ± 0.97%), respectively. Experiment 385 
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InBVOCv2.1 showed stronger increase in specific urban and topographically complex regions including 

Lhasa (8.84 μg m-3, 7.10%), Xining (19.12 μg m-3, 14.22%), and the Hengduan Mountains region (Fig. 

5d). The maximum O3 increase reached 53.03 μg m-3 (19.61%) in Mianyang, Sichuan, while the weakest 

effect occurred in Nyingchi (-1.59 μg m-3, -2.40%), Tibet. In contrast, experiment InBVOCv3.2 produced 

a more spatially uniform increase (Fig. 5e). Nevertheless, pronounced increase were still simulated in 390 

Lasha (5.89 μg m-3, 4.97%) and Xining (6.32 μg m-3, 5.13%), with a maximum increase of 15.59 μg m-3 

(10.17%) in Mianyang and minimal effects near 0 μg m-3 in Nyingchi.  

The differences in monthly mean MDA8 O3 between the two experiments ranged from -37.50 μg m-3 to 

4.96 μg m-3 (Fig. 5f). Most of the QTP (76.36% of grid cells) showed differences between 0 and 5 μg m-

3. However, pronounced negative differences were observed in Lhasa and the eastern QTP, with the most 395 

substantial difference of -37.50 μg m-3 occurring in the Hengduan Mountains region. The pronounced 

differences in surface O3 concentrations over Lhasa, Xining, and the Hengduan Mountains region 

correspond well to the large discrepancies in isoprene emissions between MEGAN2.1 and MEGAN3.2, 

highlighting the role of BVOCs in modeling regional ozone variability. However, in southeastern Tibet, 

the difference in O3 responses between experiments InBVOCv2.1 and InBVOCv3.2 remained small 400 

despite substantial discrepancies in isoprene emissions.  

As an important O3 precursor, isoprene strongly affects O3 formation (Paulot et al., 2012), particularly 

under NOx-rich environments such as urban areas (Liaskoni et al., 2024). For example, Li et al. (2007) 

reported that a 50% increase in isoprene emissions could enhance O3 concentration by 10-50 μg m-3 in 

urban Houston, USA. While under NOx-limited environments they have limited impact. Jiang et al. (2019) 405 

showed that although isoprene emissions estimated by MEGAN v2.1 were about three times higher than 

those from a species-specific model (PSI) in Europe, the resulting increase in O3 concentrations was 

limited to approximately 14 μg m-3 (~ 10%). They attributed this weak response to the relatively stronger 

sensitivity of O3 formation to NOx rather than VOCs, as well as the relatively low incremental in O3 

production compared to background O3 levels in Europe. Ozone formation in most regions over the QTP 410 

is NOx-limited, except in Lhasa, Xining and the Hengduan Mountains region (Fig. 6), where relatively 

high NOx emissions make O3 concentrations more responsive to VOCs variability (Ren et al., 2022; 

Zhang et al., 2022).  
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One may notice the inconsistent spatial distribution between the BVOC emissions (Fig. 2) and the 

BVOC-induced variation in the MDA8 O3 (Fig. 5). Specifically, at Xining, although the BVOC emission 415 

rate was relatively low (Fig. 2), the O3 increase was very high (Fig. 5d). This is related to a transitional 

regime or VOC-limited regime in the area (Fig. 6c), where the BVOC emissions can interact with the 

anthropogenic NOx emissions and increase O3. A similar situation occurred in Lasa. While in the 

southeastern Tibet, the increase of O3 was not obvious (Fig. 5), though with a relatively higher BVOC 

emission rate (Fig. 2), which is due to the substantially low anthropogenic emissions and the NOx-limited 420 

regime in the area. 

The variation of BVOC emissions not only influence O3 formation by acting as O3 precursor but also 

change the O3 formation regime (Lu et al., 2021; Wang et al., 2021b). Fig. 6c shows the spatial 

distribution of the O3 formation regime for the NoBVOC experiment. The O3 formation regime tended 

to be VOC-limited and transitional in urban areas, including Lhasa, northern Qinghai and the Hengduan 425 

Mountains region, whereas it was NOx-limited in remote areas. In general, the area characterized by the 

NOx-limited regime was 76.28%, and the corresponding values were 10.61% and 13.11% for the 

transitional and VOC-limited regimes. Compared with NoBVOC, the InBVOC experiment showed a 

shift from VOC-limited or transitional regimes to NOx-limited regimes, especially in eastern QTP (Fig. 

6a, b). Thus, the area with NOx-limited regimes expanded by 6.76% and 3.33%, while the areas with 430 

transitional and VOC-limited regimes shrank by 5.19% and 2.76%, and 1.57% and 0.57%, respectively, 

in InBVOC2.1 and InBVOC3.2 experiments. This has implications for the design of future region-

specific air quality management policies. 

 

Figure 6: Spatial distributions of the O3 formation regimes for experiments (a) InBVOC2.1, (b) InBVOC3.2 435 

and (c) NoBVOC. Blue, green, and orange denote the VOC-limited, transitional, and NOx-limited regimes, 

respectively. The total areas (%) with VOC-limited, transitional, and NOx-limited regimes are shown in each 

subplot. 
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4 Conclusions 440 

This study compared the differences in biogenic volatile organic compounds (BVOCs) emissions 

between MEGAN v2.1 and the latest MEGAN v3.2 over the Qinghai-Tibet Plateau (QTP), and their 

impact on surface MDA8 O3 simulations for August 2022 by high-resolution WRF-CMAQ simulations. 

The results indicate notable differences between the two versions of MEGAN, with v3.2 giving a 44% 

less total BVOC emissions compared to v2.1. Isoprene emissions from MEGAN v3.2 is approximately 445 

1.7 times lower, while monoterpene emissions are about 0.3 times higher than those from v2.1. Spatially, 

the differences are most pronounced in southeastern Tibet and the Hengduan Mountains, where dense 

forest and high biodiversity are present.  

Despite these quantitative differences in BVOC emissions, WRF-CMAQ simulations using both 

MEGAN versions demonstrate relatively similar overall performance in capturing satellite-derived 450 

HCHO vertical column densities and tropospheric ozone columns, with simulations using v3.2 emissions 

exhibiting a modest improvement. The lack of in situ BVOC measurements limits a definitive assessment 

of the two MEGAN versions. Field campaigns targeting species-specific emission factors are needed to 

reduce uncertainties and constrain regional BVOC inventories.  

WRF-CMAQ simulations with both inventories indicate increases in surface O3 concentrations when 455 

BVOC emissions were incorporated, especially in regions with high NOx emissions, such as Lhasa 

(4.97%-7.1% increase) and Xining (5.13%-14.22% increase). Across the QTP, the mean relative 

contribution of BVOCs to surface O3 was 2-3%. However, substantial difference of -37.50 μg m-3 

occurred along the eastern margin of the QTP, indicating sensitivity of ozone modelling in high-altitude 

cold regions to BVOC inventories.  460 

Overall, the findings underscore the need to improve emission factors for local tree and shrub species 

and refine BVOCs emission estimates, particularly in high-NOx regions, to achieve more reliable 

constrains on O3 simulations over the QTP. Furthermore, the results highlight the critical role of NOx 

emission control in mitigating O3 formation in this ecologically sensitive region. This study provides 

new insights into the uncertainties associated with biogenic emission inventories and their implications 465 

for O3 formation over the QTP. Future work should prioritize in situ BVOC emission for representative 

coniferous, broadleaf, and shrub communities on the QTP, updating local emission factor databases, and 
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integrating NOx-VOC chemical mechanism observations. This will further reduce ozone prediction 

errors and provide scientific basis for ecological conservation in the ‘Third Pole’. 

 470 

Code and data availability. The MAGEN code is freely available at https://bai.ess.uci.edu/megan. The 

WRF model code is freely available at https://www.mmm.ucar.edu/models/wrf. The CMAQ and 

SMOKE model code can be accessed at https://www.cmascenter.org/. The hourly surface ozone 

concentrations used for model evaluation were obtained from the China National Environmental 

Monitoring Center (https://air.cnemc.cn:18007/, last access: November 4, 2025). The surface 475 

meteorological data used for model evaluation are available at National Climate Data Center (NCDC) 

(https://www.ncei.noaa.gov/, last access: November 4, 2025). The MODIS MOD15A2H V6.1 and 

MOD44B.006 data used for LAIv calculation and MODIS MCD12Q1.061 LC_Type5 used for PFTs 

identification were obtained from the Google Earth Engine cloud platform. The global monthly 

climatologies of surface air temperature and precipitation are from WorldClim 480 

(https://www.worldclim.org/data/worldclim21.html, last access: November 4, 2025). The Sentinel-5P 

TROPOMI daily offline level 3 (OFFL L3) HCHO dataset were obtained from the Google Earth Engine 

cloud platform. The OMI/MLS monthly-mean TCO dataset are available at https://acd-

ext.gsfc.nasa.gov/Data_services/cloud_slice/index.html#nd (last access: November 4, 2025). Data from 

model simulations can be shared upon request via email to yyu@lzb.ac.cn. 485 
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