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Abstract. Many atmospheric measurement techniques involve inversion of photon counts detected by multi-spectral sensors
spanning the X-ray to microwave regions of the electromagnetic spectrum. Although photon counts follow Poisson statistics,
commonly used inversion techniques often rely on statistical assumptions that disregard the Poisson nature of the sensor
data, limiting the scientific utility of datasets. Motivated to overcome this limiting assumption, this study focuses on retrieval
techniques that involve the ratio of counts received in different sub-bands and introduces a new computationally efficient and
robust approach to this type of inverse problem that respects the underlying count statistics. The method assumes that the
received photon counts in each channel are a realization of a binned point process, allowing the ratio of the channel intensities
to be modeled within a hierarchical Bayesian framework. This allows us to directly incorporate correlation between the bins
via the prior that is modeled using a permanetal process. It further enables more accurate uncertainty quantification without
costly sampling procedures common in Bayesian inversion methods. The method is verified and validated on thermospheric
neutral temperature retrievals from simulated top-of-atmosphere FUV disk emission data corresponding to 2-8 November
2018, which includes a minor geomagnetic storm. It is also demonstrated on calibrated photon counts data from the NASA
Global-scale Observations of the Limb and Disk (GOLD) mission from the same time period and from 11 May 2024 during a
severe geomagnetic storm. The study demonstrates the method’s ability to accurately recover neutral temperature in a variety
of geomagnetic conditions, attesting to its potential to extend the fidelity of neutral temperature retrievals over broader solar

zenith angles than currently possible with existing techniques.

1 Introduction

In recent decades, far-ultraviolet (FUV) remote sensing has played a key role in advancing space physics by providing valuable
measurements of space plasma and neutral species. In the upper atmosphere, these emissions are primarily caused by various
physical processes such as photoionization, photoexcitation, charge exchange and recombination that depend on thermospheric
composition and temperature and ionospheric plasma density. The fact that these FUV emissions are observable from space
without contending with significant background emissions makes FUV remote sensing attractive for upper atmosphere research
(Paxton et al., 2017). In particular, the Lyman-Birge-Hopfield (LBH) band, one of the most prominent emission features, has

been used to retrieve the column-averaged thermospheric temperature and composition, which are important parameters for
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space weather research due to their relationship to aerodynamic drag experienced by objects in low Earth orbit (e.g., Aksnes
etal., 2006; Zhang et al., 2019; Cantrall and Matsuo, 2021; Eastes et al., 2025). Current inverse modeling techniques, however,
often make inappropriate assumptions on the statistical nature of photon count data that are especially problematic when
photon counts are low, such as when solar zenith angle (SZA) is large. Even when photon counts are moderate to high,
inversion techniques assuming Gaussian statistics have been observed to introduce bias into retrievals (e.g., Humphrey et al.,
2009; Yamada et al., 2019; Nicolaou et al., 2024). Additionally, commonly used inversion techniques do not take into account
the spatial structure of the photon count sensor data, limiting their ability to recover the underlying spatially correlated physical
parameters.

One class of inversion methods widely used to retrieve neutral temperature and composition from LBH band emission
is based on ratios of total observed counts in sub-bands of the received spectra. For example, portions of the LBH band
corresponding to different transitions of molecular nitrogen are correlated with the changes in ambient temperature (e.g.,
Aksnes et al., 2006), and the ratios of these channels have been shown to have an approximately linear relationship with
temperature (e.g., Cantrall and Matsuo, 2021; Zhang et al., 2019). Related techniques are widely used for ¥O /N, and QEUV
FUV data products (e.g., Strickland et al., 1995; Zhang et al., 2004; Meier, 2021; Correira et al., 2021) as well as retrievals
of ionospheric structure from FUV nightglow (Yin et al., 2023). Other examples include LiDAR profiling (Jia and Yi, 2014),
spectrometry (Coath et al., 2013), x-ray astronomy (Park et al., 2006; Jin et al., 2006; Wang et al., 2024), astrochemistry
(Boersma et al., 2012), and synthetic aperture radar (Gallardo i Peres et al., 2024). The relative simplicity of the two-channel
ratio inversion techniques makes them amenable to integration of spatial models.

Following the work by Jin et al. (2006) and Park et al. (2006), we reformulate the problem of estimating the column-
integrated neutral temperature from ratios of LBH channels as a hierarchical Bayesian inference problem. Specifically, the
photon count data are used to infer the ratio of Poisson means, which we consider the geophysically relevant variable. This
formulation allows us to rigorously characterize the effect of shot noise on the estimate of channel means, leading to a better
understanding of the uncertainties in the estimated temperatures due to the shot noise. It is particularly relevant to upper
atmosphere FUV remote sensing as shot noise effects are considered to be argest source of uncertainty in the neutral
temperature retrieval algorithm used for GOLD mission data product (Evans CE., 2024b). Additionally, this new formulation
facilitates explicitly introducing spatial structure into the estimation by treating the received photon count data as a realization
of a Poisson point process (Streit, 2010).

Among a variety of methods proposed to estimate the Poisson intensity from point process data, including the work by
Nowak and Kolaczyk (2000); Antoniadis and Bigot (2006); De Oliveira (2013), we choose to model the intensity with a
permanental process model (McCullagh and Mgller, 2006), allowing us to use the theory of reproducing kernel Hilbert spaces
to recover the intensity and perform uncertainty quantification (Flaxman et al., 2017; Walder and Bishop, 2017). Once the ratio
of Poisson means Z is estimated, the effective neutral temperature is then recovered using the approximate linear relationship
(Cantrall and Matsuo, 2021)

Z%mTeff-i-Zo (1)
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where T¢ ;s is the effective neutral temperature and m and 2, are slope and intercept parameters that depend on the specific
LBH band and the observation geometry. These parameters are fitted using the Budzien vibrational-rotational model (Budzien
et al., 2001). The method is verified and validated with simulated GOLD disk emission photon count data generated using an
instrument simulator (Cantrall, 2022) and the NOAA Whole Atmosphere Model (WAM, Akmaev (2011)) for 2-8 November
2018. The method is furthermore demonstrated on calibrated, geolocated photon count data collected by GOLD for the same
time period, as well as data from the Gannon storm in May 2024 (Grandin et al., 2024). These examples show that the proposed
new approach is able to accurately retrieve the column-integrated temperature in a wide variety of geophysical conditions, both
during geomagnetically calm and severely disrupted periods, and attest to the potential for extending temperature retrievals
based on the LBH band emission to higher SZAs than currently considered. In addition, the method yields robust results with
a computational cost that is feasible as an operational algorithm. Specifically, it achieves a full characterization of the posterior
distribution of the neutral temperature without computationally intense sampling procedures that are common in Bayesian
inversion methods. The method is implemented in an R package (R Core Team, 2025) that is publicly available.

In Sect. 2 we introduce the statistical modeling framework for temperature inference. In Sect. 3 and Sect. 4, we illustrate the
new inversion procedures on simulated and actual GOLD disk emission data, respectively. Section 5 contains discussion of the

computational performance, as well as directions for future research. Lastly, in Sect. 6 we provide the conclusion.

2 Hierarchical Bayesian Inverse Method
2.1 Building on Previous Work: The Forward Model

We seek to estimate the column-integrated thermospheric temperature from the top-of-atmosphere LBH band emission sensed
by the GOLD instrument. Specifically, photon counts from radiometrically calibrated, geolocated L1C GOLD science data
products are considered (McClintock et al., 2020). The column-integrated (effective) temperature 7.7 can be given as a

function of the wavelength A as

_ fooo V(s,A\)exp(—7(s,A))Tn(s)ds

Ters(N) IV (s, M) exp(—7(s,A))ds

2

where s (cm) is the slant path distance, V (photons X s~ lem™3) is the LBH volume emission rate, 7 the optical depth, and
Ty (K) the neutral temperature (Evans et al., 2024b). This represents a weighted average of the neutral temperature along the
line of sight, with the weight determined by the product V (s, A) exp(—7(s,A)). As shown in Figure 4 of Evans et al. (2024b),
the most weight is assigned to altitudes around 120-200 km. Since these observations are integrated quantities, they cannot be
assigned to a specific altitude without a-priori knowledge of the temperature structure (e.g., Cantrall et al., 2019; Cantrall and
Matsuo, 2021).

e forward modeling of the neutral temperature is based on the vibrational-rotational model (Budzien et al., 2001), which is
ﬂtial]y a lookup table of emission intensities for vibrational populations of molecular nitrogen as a function of temperature.

This is convolved with the spectral point-spread function of the instrument to approximate the intensities as seen by the detector.
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Principal component analysis of simulated GOLD data has shown that the intensity in the upper portion of the LBH (2,0) band,
from wavelength 138.56-139.2 nm, is positively correlated with temperature, while the intensity in the lower portion from 138-
138.56 nm is negatively correlated with temperature (Cantrall and Matsuo, 2021). A similar structure is shown to hold in the
(1,1) and (2,3) bands as well (Cantrall et al., 2019). So, as the column-integrated temperature increases, the observed photon
counts in the upper portion of the band increases while the observed counts in the lower portion of the band decrease. This leads
to the approximately linear relationship between the ratio of the long wavelength to short wavelength portions of the band and
the neutral temperature (Cantrall and Matsuo, 2021), which is used in the study. As noted in Zhang et al. (2019) and Cantrall
and Matsuo (2021), this two-channel ratio approach has several advantages. The most prominent is that determining the slope
and intercept parameters in Eq. (1) does not require knowing the exact brightness of the band, meaning a fully calibrated

instrument model is not required.
2.2 Modeling the Intensity Ratio

The first step is to model the two-channel intensity ratio as a random process. To motivate the choice of model for the process,

rst consider the case where the inversion is done pointwise, as in Park et al. (2006) and Jin et al. (2006). If we assume
che count data from the channels are independently Poisson distributed with different mean parameters A, and Ay, then
the posterior distribution of the ratio Z = A, /Ay is a generalized Beta-Prime distribution BP(«, 3,p, q), which has a density

of the form

Zap—l

pz(z) x ( 3)

L+ (z/q)P)>t?
if z > 0, and 0 elsewhere, where o > 0,3 > 0,p > 0 and ¢ > 0 are parameters. A proof of this is given in Appendix A, and
further discussion of this distribution along with applications can be found in McDonald (1987) and McDonald and Xu (1995).

We extend this to incorporate spatial information by utilizing Poisson point processes (Streit, 2010). A Poisson point process
is a random measure defined on a space S, which for our application becomes a spherical cap domain, such that, for all

measurable subsets R of S, we have that N (R) the number of points in R is Poisson distributed with

E(N(R)) = A(R) = / A(s)duw(s)

R

for some intensity A(s), where w(s) is the ambient measure on .S. These are extended by the Cox process model, where A(s)
is itself a random function (Cox, 1955). We are interested in a special kind of Cox process known as the permanental process,
where the assumption is that A(s) = 1¢f(s)?, with f(s) a Gaussian process (McCullagh and Mgller, 2006; Mgller, 2005). The
estimation of A(s) then becomes a problem of estimating the latent process f(s). In our specific case, the underlying point
process has been binned, losing knowledge of the emission latitude and longitude. For this reason, instead of estimating A(s)
we estimate A(R;) for each bin. However, our model can be generalized to the model of Walder and Bishop (2017) if, instead
of binned data, the raw point process data are available.

Consider a region S divided into disjoint bins R, such that S = U?:l R;. Given a point process on S, our data become pairs

of counts a; per bin R;, i =1,...,d. We assume each a; is Poisson distributed with intensity A(R;) = g ff and attempt to
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recover the latent vector f = (f1, fo,..., fd)T. The log-likelihood of f is given by

(FHae Zazlog( ) =S )

where (-, -) is the standard inner product on R¢. Adding the prior f ~ N/(0, %K) for some positive definite Hermitian matrix

K, we have that the log-posterior is

C Y -1
(FHae Zazlog( P =S (FH -2 (FKTE), 5)

Since K is a covariance matrix, it can be written as K = ®H®7 with ®;; the value of the jth eigenvector at location i and

H = diag(n;), with n; the eigenvalues of K. Then the inner products can be combined to generate an equivalent norm as

CUD TR ) = S K T) £, ©

This new norm defines a norm on an equivalent kernel space with kernel K which we can write as

K =dH®",

fi:dmg( i ). 7
cni +y

As in the infinite-dimensional case, we can say that the solution has the form f = Ké for some coefficients a'. This leads to
the likelihood

d o 1
(al{a;}L ) = ;ai log (; (Ka)l) — iaTKa 8)

with (Koz)Z the i*" entry of K. This is the form of the log-posterior distribution of a with log-likelihood function given by
the first term in Eq. (8) and prior distribution e ~ N (O, K_l).

Using a Laplace approximation (Rasmussen and Williams, 2005) for the posterior, we find that the predictive mean is given
by f — K&, where é is the maximum a-posteriori (MAP) estimate, and the predictive covariance of f is approximated by

ﬁ::KfK(D*HK)_lK,

A2

D:m@<%>. 9)
Qai

These results are derived in Appendix B. Then the distribution of A(RZ) =3 ff given the data is well-approximated by

42 402
o2c(2pu? +0?)

A B wih e W)
A(R;) ~T'(&,3), with a—m7 B= (10)

I'This is not strictly necessary for the problem we are solving of recovering f in a binned point process, however it is critical for the feasiblity of the method

in recovering a random function, which is the case with unbinned point process data. This allows the estimation to be reduced to a finite dimensional problem.


reviewer
Comment on Text
Is this derivation actual new? It looks similar to Rogers 2000


145

150

155

160

165

https://doi.org/10.5194/egusphere-2025-5570
Preprint. Discussion started: 19 December 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

O

where 1 and o are the posterior mean and standard deviation of the estimate of f; from the Laplace approximation and & and
B are the shape and rate parameters of the gamma distribution (analogous to Walder and Bishop (2017) Sect. 4.1.5, which uses
the shape/scale parameterization).

With the above derivations, we can proceed as in the previous section to determine the parameters of the distribution of Z at

a given spatial location. Once we know that A, ~ &, Ba) and A ~ I(aw, Bb) we have

Ag AN
7 = — NBP(aaaabylaQ)a (11)
Ay

where ¢ = By / Ba, analogous to the pointwise model in Eq. (3). Due to the construction of the intensities as spatial processes,
the parameters of the marginal posteriors are calculated using spatial information and thus endow spatial structure on the

resulting temperature field.
2.3 Modeling the Temperature

From Eq. (1) we know that Z ~ mT.¢¢ + 2o. Since Z ~ BP (G, 1,q), the temperature T, 5 = % (Z — zp) has the distri-
bution and MAP estimate

Z T
i A= EO +BP (aa,ab,l,%)

q G&q—1 A
N z |3 Qg >1
L] L - (12
0, else
This allows estimation of the posterior of the neutral temperature without any sampling, leading to fast inference once the
intensities are known. It also allows extension to problems where Z & (iT¢f} + 20)" for some exponent p, in which case
Teff ~ -2 + BP (&a»&bvpv %ql/p)

m

3 Application to Simulated Data

To verify and validate the new approach, we apply the method developed in Sect. 2 to simulated GOLD LBH disk emission
data generated using the NOAA National Weather Service Whole Atmosphere Model (WAM, Akmaev (2011)). The simulation
study corresponds to Nov 2-8 2018. Synthetic GOLD emission data are generated as follows. WAM simulations conducted
with realistic solar and magnetosphere forcing are used as input to the Global Airglow Model (GLOW, Solomon (2017)) which
calculates the volume emission rates. These volume emission rates are passed into a GOLD instrument simulator developed in
Cantrall (2022), which returns the slant column brightness (in units of counts per Angstrom) at each location on the detector.
These brightnesses are convolved with the GOLD instrument point spread function to account for instrument effects and then
used to simulate Poisson-distributed photon counts to include the effects of shot noise. Finally, these data are binned spatially,
as done in the GOLD mission TDISK algorithm, to 250x250 km? resolution at satellite nadir, corresponding to about 1500

bins (Evans et al., 2024b). The emission location is assigned to the middle of the combined spatial bins. The column-integrated
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effective temperatures directly calculated from WAM temperature fields using Eq. (2) in the same resolution serves as the
ground truth.

Each retrieval takes approximately 40 seconds and uses less than 2GB of memory on a desktop computer with 16 GB RAM
and an Intel 17 CPU. Most of the computing time is spent solving the optimization problem in Eq. (8) twice, although for large
problems generating the equivalent kernel matrix is also costly. Because we have a closed form approximation to the posterior
given by Eq. (12), we are able to avoid costly sampling algorithms that are common in other Bayesian retrievals, making the

computations relatively efficient on these datasets. See Sect. 5.1 for more discussion on computational performance.
3.1 Choice of Kernel

Since the process we are interested in is observed on a section of a spherical shell by GOLD, we choose a kernel given by
1

k(s1,82) :gmwm(smm@) (13)
where the V;,,, are spherical cap harmonics (SCHAs), which are eigenfunctions of the Laplacian on the spherical cap (Haines,
1985). Then the kernel matrix is given by K; ; = k(s;, s;) and s; is the reference latitude and longitude of R;. These functions
are well-studied in geophysics, especially in inverse problems that involve estimating the gradient of a process from incomplete
measurements, where only a small portion of the globe can be observed at a time (e.g., Haines, 1988; Richmond and Kamide,
1988; Hwang and Chen, 1997). The parameter v, which we call the smoothness parameter, controls the decay of the coefficients
in the eigenvector expansion, leading to smoother fields with suppressed high-frequency variation when v is large. In the context
of random function estimation, for example when the data come from a realization of an unbinned point process, f(s) is in
HY(S) the Sobolev space of order ¥ when v > 1, and the Sobolev embedding theorem implies that f(s) has n derivatives if
v > 14n (Hunter and Nachtergaele, 2020). For this reason, we focus our analysis on the cases v = 0.5,1+1078,241078, with
the latter two corresponding to a continuous and differentiable random field, respectively. Further details on the construction
of the spherical cap harmonics are included in Haines (1985) and Hwang and Chen (1997), and a more in depth discussion of

the kernel along with a comparison with other common choices is included in Appendix C.
3.2 Model Evaluation

We evaluate the model performance primarily using the continuous rank probability score (CRPS). The CRPS is given by

CRPS(Fly) = / (F(z) — H(z —y))*dz (14)
R
where F' is the predictive cumulative distribution function (CDF) of the neutral temperature, y the true neutral temperature, and

H the Heaviside step function. This is a strictly proper scoring rule, meaning its unique minimizer is the deterministic CDF
H(z—y) (Gneiting and Rafferty, 2007). Since it incorporates the entire distribution rather than just a point estimate it allows us
to assess the quality of the posterior beyond the error in estimation. CRPS is negatively-oriented in that smaller values indicate

superior predictive models.
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Figure 1. Estimated neutral temperature (first 3 rows) vs simulated field (last row), JD 306-310 at 15:00 UTC (Noon satellite local time) for
smoothness parameters v = 0.5 (top row), 1+ 1078 (2nd row), and 2+ 108 (3rd row). The algorithm is able to generate accurate estimates
of the neutral temperature regardless of the smoothness parameter selected, although the parameter has a noticeable effect on the smoothness

of the retrieved field.

As a first pass, we test how our model performs in estimating the neutral temperature at 15:00 UTC, or local noon at satellite
nadir. At this time the largest portion of the instrument’s viewing area is sunlit, meaning that the algorithm is expected to
perform best in this situation. The retrieved fields from JD 306 - JD 310 are shown in Fig. 1, along with the "true" field from
WAM simulations. The algorithm closely tracks the true temperature field for all cases, with variations in v leading to smoother
or rougher estimates of the underlying field.

In addition to performance at local noon, we are interested in the performance of our algorithm in low-light conditions.
Currently, the GOLD mission discards data collected at an observing zenith angle (OZA) greater than 75° or SZA greater than
80° (Evans et al., 2024b). However, we expect that incorporating spatial information into the estimates can allow the limit on
SZA to be pushed upward slightly. To investigate this, we processed data from 12:00 and 18:00 UTC as well. In this situation,

a portion of the viewing area has a solar zenith angle higher than the nominal observation boundary of 80° used by the GOLD
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Mean CRPS vs UTC, different smoothness factors

EGUsphere\

30 T T T T T 8
® =05
25 - ® ,-1+10®
® ,—2:10%| g
L / — — —Kpindex
20 ° N \\ L4 °
X— \/ N é
%) \ L k]
g 15 - . ° ! e {4 ¢
° ® ! [} /\ Y (=%
© ) L4 "/ " \ /\\ '. N\ ! /1 /’\Oo. <
10 |- s ’ v $ (N LAt 2
\ e ° N / \ / A
\ ° ra / \ / \ / Yoy 12
I\ / AN / [EVAN
5 N I AN J N— Ny [
\ AN /N \ /
_/ \ /
| ~ | | | |
0 0
306 307 308 309 310 311 312 313

Fractional day, UTC

Figure 2. CRPS vs UTC for different kernel smoothness parameters, along with the K, index from Matzka et al. (2021). The performance

of the model depends strongly on local time and decreases slightly during storm time, especially in the case v = 24 1075,

mission, however there is still a large portion of the viewing area that is sunlit. Additionally, there are portions of the viewing
area where the solar zenith angle exceeds 80° at local noon. These results for the average CRPS at each time are shown in Fig.
2 along with the K, index. What we see is that the CRPS of the models for v = 0.5 and v = 14 10~® are roughly constant
with time and show only a slight increase with the K, index, never exceeding a CRPS of 15 K. However, the CRPS of the
model with v = 2 + 1078 increases significantly, especially in the afternoon, and exceeds 20 K at 18:00 UTC on JD 308. This
is because the onset of even this relatively minor storm generates structure in the field that the model is unable to capture.

Average CRPS over latitude, longitude, OZA, and SZA from the simulated data, is plotted in Figure 3. The CRPS is roughly
constant in longitude, but varies with latitude, OZA, and SZA. To clarify whether SZA, OZA, or latitude is the primary driver
of the increased CRPS, more case studies may be required. It is notable that these models maintain a CRPS less than 20 K up
to solar zenith angles of roughly 90°, suggesting that the method can potentially help extend the scientific utility of FUV disk
emission data at higher SZA than currently considered by the GOLD mission.

3.3 Uncertainty Quantification

Our model provides a full posterior distribution of the intensity ratio, and therefore the temperature. In this section, we examine
how accurately our model captures uncertainty. This exercise is important to ensure that the model handles uncertainty induced
by shot noise properly and that the estimates of the neutral temperature are reliable. We quantify the uncertainty captured by
the model by determining the highest posterior density sets with coverage rate r (r—HPD set) for varying values of . The
r—HPD set is the set I, such that flr f(z)dz =rand thatV (z € I,y € IY), f(z) > f(y) (Amaral Turkman et al., 2019). If
the posterior distribution accurately quantifies the uncertainty, then the true parameter lies in the r—HPD set with probability
r. To determine how well the posterior HPD matches the nominal coverage for varying coverage parameters r, we compare the

probability that the true value is within /,. for varying values of r from 0.05 to 0.95. These results are shown in Fig. 4 for the
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Figure 3. Mean CRPS for varying latitude, longituge, observing angle, and solar zenith angle for the simulated data study. All latitudes
and longitudes are included when determining the mean CRPS as a function of latitude, observing angle, and solar zenith angle, while only

latitudes between +10° are considered when determining the CRPS as a function of longitude.

SCHA kernel with v = 0.5,1+1078,2+ 1078, and have been divided into times where K p < 3, indicating calmer conditions,
and K, > 3, indicating higher levels of geomagnetic disturbance.

The coverage probabilities are estimated from 10 retrievals for each simulated field, and then compiled according to K,
index. The plots in Fig. 4 show the median coverage probability over all applicable times and spatial locations from the
simulations, and error bars show the 10th and 90th percentiles of coverages. Generally, we see that the v =1+ 1078 and
v =2+ 1078 models appear to do best at quantifying uncertainty, especially in geomagnetically calm conditions, and their
performance degrades in geomagnetically active time periods. The v = 2 + 10~® model appears especially affected by this
transition. This is due to the fact that setting v higher makes the retrieved field smoother, so it cannot properly recover the
smaller scale structures that appear during a storm. Regardless of the conditions, the model with v = 0.5 appears significantly
overdispersed and unable to accurately quantify uncertainty. So, in addition to providing us with good predictive accuracy as

seen in the previous section, selecting v = 1 + 108 provides us with the best uncertainty quantification in all conditions.
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Figure 4. Reliability diagram for the model with varying smoothness parameters and K, indices. Dots show median coverage probability of
a highest-posterior density interval with nominal coverage probability along the x axis, error bars are 10th and 90th percentiles. The models
perform worse at uncertainty quantification as K, increases, however for calm conditions the v = 1 + 10~% model captures the uncertainty

very well.

4 Application to GOLD Disk Emission Data
4.1 Nov 2018 Geomagnetic Storm

As a first demonstration of the method on real GOLD data, we apply it to GOLD L1C data from 2-8 November 2018. This is
the same time period studied using WAM simulations in Sect. 3, and includes a minor geomagnetic storm on 4-5 November.

Since the GOLD instrument scans each hemisphere independently, the inversion incorporates two consecutive scans into
each retrieval. The start times of these scans are separated in time by 12 minutes, which is short enough relative to the nominal
thermospheric timescales to ignore the time difference between the scans. Since the scans overlap, we average the data in the
overlap region, which reduces (but does not completely eliminate) the bias in the retrievals caused by the varying sensitivity of
the detector near the equator (Evans et al., 2024b).

The results of this inversion are shown for 5 November (JD 309) in Fig. 5. We can see that the main features present in
the GOLD TDISK data products are accurately recovered. There is a visible discrepancy near the equator, corresponding to
the lower portion of the scan of the northern hemisphere and the upper portion of the scan of the southern hemisphere. Upon
examination of the L1C data, we can see a corresponding enhancement in the count ratio at the same location that is present in
the scan of the northern hemisphere, but not the southern hemisphere. This, coupled with the fact that similar artifacts are not
seen in the results on simulated data (Fig. 1) suggests that this variation is due to the varying sensitivity of the detector across

scans. In order to use this method, therefore, it is important to have a complete understanding of the variations in the detector
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Figure 5. Retrieved temperature (left) compared to TDISK (center) and the ratio of counts in the upper and lower portion of the LBH (2,0)
band (right) for JD 309, 2018 (5 November 2018) at around 1500 UTC (K, ~ 3.3). The retrieved temperature shares the most prominent
features of the TDISK retrieval, however it contains an additional feature along the equator. This feature appears to be inherited from the
data, which shows elevated count ratios near the equator due to differences in the sensitivity of the instrument in the different scans of the

equatorial region. Similar artifacts can be seen in older versions of the TDISK data.

sensitivity with look direction and eliminate artifacts in the retrievals. Similar artifacts can also be found in earlier versions of

the TDISK data (e.g. Figure 7 of Cantrall and Matsuo (2021)).
4.2 May 2024 Geomagnetic Storm

The second demonstration example includes a major geomagnetic storm that occurred in May 2024 (also known as the Gannon
Storm, Grandin et al. (2024)). With the Dst index reaching below -400 nT and a peak K, index of 9, this storm resulted in a
major expansion of the upper atmosphere causing the neutral temperature to elevate, leading to orbital decay of low Earth orbit
satellites due to increased atmospheric drag.

The GOLD mission has detected previously unseen structure in the thermosphere during this event, simultaneously seen in
both LBH and 135.6 nm radiances, as well as retrievals of neutral temperature, atmospheric composition, and total electron
content. The detected equator-to-pole differences in neutral temperature of over 400K, with high-latitude temperatures in excess
of 1400K (Evans et al., 2024a) are well beyond a typical FUV observation and retrieval scenario under nominal conditions.
To investigate the performance of our algorithm with the corresponding GOLD L1C data under somewhat extreme conditions,
we compare our results to the TDISK data product using both the SCHA kernel and a Wendland kernel function given by
(Wendland, 1995)

L-12)° (354 +18]¢]+3), | <r

|d| >r

K(d;r) = (15)

=

Note that in the model model evaluation with simulated data for Novemeber 2018, the Wendland kernel with » = 1 is found to

perform similarly to the SCHA kernel, albeit with slightly worse uncertainty quantification (see Appendix C for details). The
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Figure 6. Retrieved temperatures for 12:10-18:10 UTC on 11 May 2024 compared with TDISK. The retrieved spatial structure generally
resembles the TDISK feature, especially early in the day.

results of the retrieval for May 2024 are shown in Fig. 6 using »r = 1 and v = 14 1072 in the Wendland and SCHA kernels
respectively. We see that both models are able to recover most of the spatial structure in the field, especially earlier in the day.
The retrievals can be improved by more careful selection of the parameters of the kernel, allowing capture of smaller scale
structure such as the vortices that are apparent in TDISK at 16:10 and 18:10 UTC. These results also motivate future work for
a retrieval method that does not need spatial binning. The spatial binning leads to a greatly increased SNR, however it ends
up averaging out small-scale spatial structure generated by the storm that could be of scientific interest to the space physics

community.

5 Discussion
5.1 Computational Performance

One of the drawbacks of Bayesian methods as practical retrieval algorithms is their computational load. Often, these methods
require generating samples from the posterior distribution using an algorithm such as Markov Chain Monte Carlo, which can
be computationally expensive. This work overcomes this problem with the use of a closed form posterior distribution, shifting
the computational load to maximizing the likelihood in Eq. (8). Other options, such as a variational inference approach, are
possible (e.g. Lloyd et al. (2015)); however, as shown in Walder and Bishop (2017), variational inference is much less efficient

than the techniques described in this paper.
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The algorithm presented in the previous section is timed on a small runtime analysis study to recover the intensity function:

~ 25sin(Z2)° 410

8cos (gx)2 +10 ’

Z(x) —1<z<1 (16)

a plot of which is shown in the upper portion of Fig. 7, using logarithmically spaced numbers of bins from 10 to 5600. A Wend-
land kernel with » = 3/4 as the kernel is used for the timing study. The minimization is performed with the implementation of
conjugate gradient in the opt im function in base R using the analytic gradient of Eq. (8) as an input.

With 1500 bins, the average time to retrieve the ratio function is about 40 seconds on a desktop computer with 16 GB RAM
and an Intel i7 CPU. For problems involving less than 500 bins, the algorithm converges in an average of about 3 seconds,
and in about 30 minutes for problems involving 5600 bins. This suggests that the model can be made fast enough to run in
an operational capacity if desired, especially for problems involving data sets in the low to mid thousands of points or less.
Due to the eigenvalue decomposition necessary to determine K the algorithm scales asymptotically as O(n?), which can be
mitigated by using a low-rank decomposition rather than a full eigendecomposition or sparse kernel matrices. Additionally, if
the kernel has an explicit Mercer expansion, the need for the eigenvalue decomposition can be avoided altogether. The rest of
the algorithm does not require any matrix inversions and scales approximately as O(n?). For problems with 1500 bins the peak

usage is approximately 2 GB, making it easily small enough to run on commercially available laptops.
5.2 Future Work

The LBH (1,1) and (2,3) bands are not used in this study in part because they are not considered to have sufficient SNR for
temperature retrievals (Cantrall, 2022). However, both of these bands may be beneficial to consider in the future. While the
(2,0) band is not isolated from other LBH emissions, with the lower portion of the band overlapping with the (5,2) band, the
(1,1) and (2,3) bands are. This means that, in principle, retrievals using these bands are independent of the specified populations
of molecular nitrogen, removing a significant source of model specification error. Although several works, such as Aryal et al.
(2022), Ajello et al. (2020), and Nicholls (1961), have attempted to determine these populations, any errors in the relative
populations of the v = 2 and v' = 5 species will lead to errors in the temperature estimation. For this reason, extending these
techniques in a way to account for the lower SNR of the (1,1) and (2,3) bands or developing a technique that incorporates
uncertainty in the vibrational populations may be of interest to practitioners.

One drawback of the two channel ratio method is that it is not robust to wavelength specification errors (Cantrall and Mat-
suo, 2021; Eastes et al., 2025). This can be partially overcome by using multiple bands, such as the (1,1) and/or (2,3) bands in
conjunction with the (2,0) band, to do estimation and weighting observations by their inverse variance, as observed in Cantrall
(2022). Under our model the posterior distribution no longer takes on a closed form. ferm; being given by the Lauricella D
function (Pham-Gia and Turkkan, 2002). One avenue of future research is to determine whether there are suitable approxima-
tions to these distributions that would allow incorporation of additional spectral information into the retrieval approach while

maintaining efficient computational performance.
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Figure 7. On the top: The ratio function Z(x) estimated in the timing study. On the bottom: timing study results. Times shows are the mean

wall times (in seconds) for the code to execute on a desktop computer over 5 repetitions.

While we have developed this method with the assumption that the data contain counts generated by a single process, that
is not necessarily true. Photons from other sources inhibit retrieval, especially when the source counts are low, and the GOLD
instrument’s geostationary orbit means it can be subjected to high energy particles from outside sources (Evans et al., 2024b).
While the GOLD mission L1C data product mitigates most of the effect of the background (McClintock et al., 2020), an
algorithm that can account for it independently is desirable for further improvement. For instance, the model of Park et al.
(2006) handled this by adding a separate term for the background count intensity and estimating both jointly. It is feasible to

adopt such an approach to extend this work in the future.

6 Conclusions

While Poisson-distributed multi-spectral sensor data are common in many atmospheric remote sensing applications, current
inversion methods used for retrieval of physical parameters often rely on statistical assumptions that disregard the real statistical

properties of sensor data, limiting the scientific utility of datasets. To address this limitation, we introduce a retrieval approach
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that is based on ratios of photon counts in non-overlapping spectral bands with a focus on FUV upper atmospheric remote
sensing applications. This two-channel intensity ratio approach facilitates the development of a computationally efficient and
robust method that respects the underlying statistics of the sensor data and naturally incorporates spatial structure. Specifically,
the method uses a Poisson point process model with the intensity for each channel independently modeled with a squared
Gaussian prior distribution. The new inverse modeling approach is shown to accurately recover spatial structure observed in
the true fields and provide a complete posterior distribution of the physical parameter of interest that more faithfully captures
variability of underlying geophysical process. The approach is demonstrated on thermospheric neutral temperature retrievals
from simulated top-of-atmosphere FUV disk emission data during a minor geomagnetic storm period in November 2018, and
from actual calibrated disk emission (L1C) data from the GOLD mission for the same period as well as a major geomagnetic
storm that occurred in May 2024. We show that the retrieved column-integrated temperature generally agrees well with the
GOLD mission (TDISK v5) data product, with the notable advantage of allowing retrieval of thermospheric neutral temperature

at more extreme solar zenith angles than currently considered in the GOLD mission data product algorithms.

Code and data availability. The R package developed for this study is available on github at https://github.com/mfleduc/PoissonRatioUQ.
GOLD data is available at https://gold.cs.ucf.edu/data/search/ courtesy of NASA/GOLD and the mission science team.
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Appendix A: Derivation of Eq. (3)

In Eq. (3), we present without proof the posterior distribution of the intensity ratio in the case of pointwise inversion with no
background, as done in Jin et al. (2006) and Park et al. (2006), as a BP(«, 3, p, ¢) distribution. This model contains as a special
case priors of the form x ki equivalent to ; = 1 — k; and 3; = 0. The proofs for the cases n, =n, =1 with k, =k, =0
and k, =k, = 0.5 are given in Jin et al. (2006), but the distributions are not named as the BP(a+1—k,,b+1—kp,1,1)
distribution.

Assume that the count data {a; }¢; from the upper channel and {b;};?, from the lower channel are independent with

ai‘Aa 14 Poisson (An)
b; |Ab 14 poisson (Ap)

for all 4, where n, and n; are the number of independent observations of the total counts in each channel. In the case of
GOLD data where we do 2x2 spatial binning prior to processing, n, = n, = 4. Now consider the prior A; ~ I'(«ay;,5;) for
each A;. Let a=) 7" a; and b=)_." b;. Then since the Gamma distribution is the conjugate prior of A we have that
Ay ~T(a+ ag,ng+ Bq) and Ay ~ T'(b+ a, Bp + 1.

So, the intensity ratio Z = //\TZ has the distribution

plz< s —p[he <2] - [o[2 < —o] apins =

::/PMﬂSZMMn:xMPMb:ﬂ
0

zT

(Ba 4 1g)0 % (B +np) 0T /00 / Faa—1,=(Batna)y btap—1,—(Bp+ns)
— aT+xQgq aTNag d ap b TNy :Ed Al
T(a+ )T (b+ ) v ¢ ypee ’ (AD

0

The integrand is differentiable in z and is an £! function in z, so by Lebesgue’s Dominated Convergence Theorem we can

pass derivatives into the integral. Then the probability density is given by

zT

(Ba +10)" " (B + 1) meb]oa / +aa—1,—(Ba+mna) btap—1,—(By+ns)
pz(2) = — AT ™ WaTRa)Ydy | T 2T WPoT )T g
TPla+a,)T'(b+a 1o}
( )L(b+ ) J
a oca b a x
_ _ (Ba 4;(nal+ T 6217% +ap /xa+b+(xa+ab71e*(ﬁb+nb+(ﬁa+na)z)wdx (A2)
a—+ o, «
2 0

Letting t = (8p + 1y, + (Ba +14)2)x We see that
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which is a BP(a+ aq,b+ ayp, 1, gbizb ) distribution as desired.
Appendix B: Derivation of the Posterior Mean and Covariance from Eq. (8)
From Eq. (8) we know that
talf Z tog (£ (Ka) ")~ La"K
« az i= a;lo — - «
1) g D)
In order to derive the posterior mean and covariance, we will first write f = @Tﬁ. Then the likelihood becomes
1 _
oz|{a1}Z 1) Zaﬂog( 'I)TB) ) —§<ﬁ, (cI—|—7H 1) ,8> B1)

where H = diag (1;). From this we can see that the posterior mode estimate of 3 must satisfy

. N 20,®
B=(I+H )V il ( ®' )]: Lol YD (B2)
(T4~ 8 [Za og ( ) (I+~H™) ; (‘I’Tﬂ)i

where ®. ; is the i*" column of ®. Then the posterior mode estimate of f is then given by

>
I

d

A - 2a;

=S [eT (@rE ) e (B3)
= (e78).

From this, we can see the posterior mode has the form f =Kaé by applying the eigenvector expansion of K. This implies

that, in our situation, &; = 2;1,

the posterior mean in the Laplace approximation of the posterior distribution.

The inverse of the posterior covariance of (3 is given by the Hessian matrix at the posterior mode, given by

O L(Bla) )]y = (A AH ) ¢

Q'=- 9p08T ;(‘Iﬂﬂ)j i P

(B4)
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a2 .
Now letting Z = (cI + 7H_1) and D = diag (ﬁ) we have that Q! = Z + ®D®7 and can apply the Woodbury-Morrison

formula to write that

Q=2"'"-7Z"'2(D ' +372'3)  &7Z"! (B5)

The posterior covariance matrix of f is then given by

>=307Q® (B6)
- N1
:K—K(D—1+K) K (B7)
as desired.

Appendix C: The kernel

Since we wish to retrieve a field whose domain is the surface of the sphere, one option for constructing the eigenvector ex-
pansion of the kernel would be to use spherical harmonics. However, since we are only observing a portion of the sphere this
would mean that the underlying intensity field is assumed to be 0 outside the viewing area and so is not continuous. Thus, using
spherical harmonics, which are nonlocalized analytic functions, to represent the field can lead to nonphysical ringing in the
retrieved fields. Instead, we choose the expansion of the kernel to be given in terms of spherical cap harmonics V;,,, (SCHAs,
Haines (1985)). These functions form an orthonormal basis for the Hilbert space of square integrable functions on the spherical
cap, making them a natural basis for this problem. They have been used extensively in geoscience, for example in determin-
ing electrodynamics of the polar ionosphere (Richmond and Kamide, 1988), statistical analysis of TOPEX/POSEIDON data
(Hwang and Chen, 1997), and mapping of total electron content over China and Iran (Liu et al., 2011; Razin and Voosoghi,
2017).

There are two families of spherical cap harmonics. One is the so-called even harmonics, which are calculated by solving the

eigenvalue problem (Haines, 1985)

AVim(0,¢) = iwm(f),qﬁ)
Mm
Vim(0,0) = Vi (0,6 + 27)
O i (0,0) = L Vi (6,6 -+ 27)
8¢ lm 7¢ _8¢ lm 7¢+ d
%‘/lm(emé)zo
‘/l7rL(O7¢) = O’ m= O
D Vin(0,6) = 0.m #0 ©n
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Exponential, Askey, and Wendland kernels
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Figure C1. Askey (blue), exponential (red) and Wendland (green) kernels. The Askey and exponential kernels give rise to a rough process,

while the Wendland kernel gives rise to a smoother process.

where 6 is the co-latitude of the cap boundary, taken for our purposes to be 64°. The odd harmonics are retrieved when the
boundary condition %Vlm(9m¢) =0 is replaced by V};,,(6p,$) = 0. The even harmonics allow for the reconstruction of an
arbitrary function on the boundary, and the odd harmonics allow reconstruction of a field with an arbitrary derivative at the
boundary. Each of these sets of functions form an orthonormal basis of £2(S), however they are not mutually orthogonal. Since
we are concerned with reconstruction of the temperature field and not its derivatives, we choose to represent the field with the

even harmonics. The solutions to this problem are the eigenvalue/eigenfunction pairs

Vim(aa ¢) = eim¢]3lm(cos(0))
1
M =0 1)

where P, are the associated Legendre functions, and [ need not be an integer, but m € Z and | > |m|. The associated Leg-

(C2)

endre functions are not polynomials, but instead are related to the hypergeometric function (Hwang and Chen, 1997). Due to
the computational difficulty of solving the eigenvalue problem for various [,/ we only calculate the SCHAs up to m = 20,

corresponding to 441 basis functions. Thus, the kernel K is given by Eq. (13), and the equivalent kernel is then given by

- 1
Kij = Zme(9i7¢i)Wm (9j7¢j) (C3)

l,m
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Mean CRPS vs UTC, different kernels
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Figure C2. CRPS vs time for the Askey, exponential, Wendland, and SCHA kernels

As was shown in the body of the paper, the best of the SCHA kernels studied in terms of uncertainty quantification and
retrieval accuracy was the one where v = 1+ 10~%. We will compare this specific kernel with several other popular kernels
that are positive definite on the sphere. A list of some possible kernels is included in Gneiting (2013). We choose to compare

the SCHA kernel to the Askey kernel, given by

(1[4 Jdl<r

K(dir) = (C4)
0 |d| >r
, the exponential kernel, given by
d
K(d;r)=exp|—|- (C5)
T

, and the Wendland kernel given by Eq. (15). These kernels are plotted in Fig. C1. In all cases, the distance measure is the
angular distance. From this figure, we see one feature that separates the Wendland from the other kernels: the number of
derivatives that a kernel function has at d = 0 is related to the number of mean-square derivatives of the field (Stein, 1999), and
the Askey and exponential kernels do not have any derivatives at d = 0, while the Wendland kernel does. This suggests that the
Wendland kernel will generate smoother fields than the other two. Additionally, the Askey and Wendland kernels are compactly
supported, meaning that they give rise to sparse kernel matrices. This property could make them useful in the analysis of large
datasets, where correlations being zero outside a cutoff distance means that the algorithm can take advantage of sparsity in the

resulting matrices. The exponential kernel is the covariance of an AR-1 process, leading to a sparse precision matrix for f.

21



430

435

https://doi.org/10.5194/egusphere-2025-5570
Preprint. Discussion started: 19 December 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Reliability diagram, different kernels

=]
— ¥ L
W y-1+10"" $
B Exponential
g ] B Askey g
B Wendland %
[4¥]
[
g o g
g o 7]
o
(&)
< ;
S <
£ S 7 .
<
S - ]
=
[
I | | ] | |
0.0 0.2 04 0.6 0.8 1.0

Nominal coverage

Figure C3. Reliability diagram for the different kernels, all K, values.

We performed temperature retrievals on the simulated data examined in Sect. 3. In general, we found that the Wendland
kernel had similar retrieval performance in terms of CRPS, with slightly worse uncertainty quantification as the nominal
coverage increases. The other two kernels were not competitive in either metric. These results are shown in Figs. C2 and C3.
We expect that this is due to the implied roughness of the fields from the Askey and exponential kernels. Since the retrieved
field is an integrated quantity, we expect it to be relatively smooth, and from the data we see that in most conditions it is. This
makes the Askey and exponential kernels less appropriate for the retrieval and less accurate in quantifying the uncertainty. The
SCHA kernel with v = 0.5 showed similar levels of overdispersion in the posterior distribution, suggesting that incorrectly
specifying the smoothness of the field is to blame.

While these results show that the SCHA kernel is the best option for our current analysis, we want to stress that any
operational choice of kernel should involve careful cross-validation and other thorough testing before use. This is especially

important because the application of the SCHA kernel to time periods where most of the disk is not illuminated could cause
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problems akin to the ringing issue experienced with spherical harmonics. In a situation like this, a Wendland kernel or another

one not investigated here may be preferable.
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