

Quantification, spatial distribution and persistence of root-derived carbon for 12 cover crops.

Baptiste Hulin^{1,2}, Florent Massol², Simon Chollet², Francis Dohou², Stéphane Paolillo², and Samuel Abiyen^{1,2}

Correspondence: Baptiste Hulin (baptiste.hulin@yahoo.com)

Abstract. Organic carbon derived from roots is a major input fuelling soil organic carbon stocks, especially in agricultural systems, where aboveground biomass might be harvested. However, root sampling for carbon monitoring excludes net rhizodeposition, i.e. the organic compounds released by the roots that have not been rapidly mineralised, and some of the finest root debris, because this fraction of root-derived carbon cannot be directly quantified in the field. To compensate for this shortfall, we set up a two-month experiment with multi-pulse $^{13}\text{C-CO}_2$ labellings of 12 crops to quantify these carbon pools at harvest, operationally grouped under the term SOC_{new} . We also investigated the spatial distribution of belowground carbon inputs within the soil profile. Lastly, in order to follow the fate of this carbon after the plant death, we performed a 524-day litterbag incubation in the field using the labelled material. We found that SOC_{new} accounted for 27 % of belowground carbon inputs at harvest. It was not correlated to carbon amounts of the shoots, but was positively correlated to root carbon ($R^2 = 0.14$). The vertical distribution of SOC_{new} tended to follow the one of roots. The majority was recovered in the bulk soil, rather than adhering to the roots. We showed that SOC_{new} had a greater persistence time in the soils than roots in the mid-term. However, these findings were marked by high variability because the small quantities of carbon involved make it difficult to assess persistence by isotopic difference. These results suggest that net rhizodeposition and fine root debris should be taken into account in organic carbon management of soils as it refines our estimation of belowground inputs. However, their low predictability, due to the diversity of products and processes, is still a barrier.

1 Introduction

Organic Matter (OM) that originates from roots is a major Carbon (C) pool that fuels Soil Organic Carbon (SOC) stocks (Rasse et al., 2005). In many agricultural systems, this statement is even more valid as a large share of aboveground biomass is exported and therefore does not return to the soil. As a consequence, it is of major importance to quantify accurately root-derived C input, for a monitoring, modelling or even crop selection for additional SOC sequestration purpose. To do so in the field or in mesocosm studies, there is a wide range of methodologies to sample the roots, from using augers to excavating the whole root system or disassembling the mesocosm (Freschet et al., 2021). However, in any case, it is necessary to separate roots from the surrounding soil, generally by hand. This process excludes a large amount of C that also contributes to fuelling

¹Laboratoire de Géologie, CNRS—École Normale supérieure, PSL University, Paris, France

²Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP-Ecotron Ile de France), Ecole Normale Supérieure, CNRS, PSL Research University, Paris, France

the SOC stock. Notably, rhizodeposition, which encompasses the organic compounds released by roots into their surroundings during plant growth (Nguyen, 2009), is not covered whereas this is a pool that can represent up to 20 % of the photosynthetically fixed C (Hütsch et al., 2002). Besides, fine root debris, such as root hairs or very fine roots, might not be taken into account in the definition of rhizodeposition, although they can also be excluded from root sampling, leaving a gap in the C balance of belowground inputs. This C compounds remaining at harvest form an heterogeneous pool whose operational definition may vary across studies. In recent works, it has been designated as SOC_{new} (Henneron et al., 2020a; Huang et al., 2021), although standardised terminology has to our knowledge not yet been adopted.

In the last decades, a wide panel of methodologies has emerged to quantify rhizodeposition. Among them, labelling of plant material via an isotopic enrichment of the ambient CO₂ (13C and 14C) has been widely used, as it allows to trace C down into the soil profile. These methodologies have allowed important advances for C rhizodeposition quantification, and have demonstrated the relevance of considering it in C storage strategies. Nevertheless, this task remains challenging as rhizodeposition is composed of a broad variety of carbon compounds; exudation products like soluble low-molecular-weight organic C compounds; mucilage and border cells; various cell lysates or photosynthates allocated to symbionts (Jones et al., 2009). Their release in the soil, which is maximal during the first 2 months of growth for annual crops (Pausch and Kuzyakov, 2018), is governed by a large range of processes and vary over time. To date, literature reviews have established differences in rhizodeposition quantification between large plant functional groups such as crops, pasture or forest across studies (Li et al., 2024; Pausch and Kuzyakov, 2018). Differentiation between taxa such as families, species or even genotypes has also been achieved (Semchenko et al., 2021; Ndour et al., 2022), but the limited data still prevents generalisation across different studies. For instance, Henneron et al. (2020a) showed for grassland species that legumes yielded more SOC_{new} than forbs or grasses, which was not confirmed by another study of Huang et al. (2021). More studies comparing different plants under the same conditions are therefore needed. Beside, they are valuable as they allow to identify predictors of rhizodeposition across taxas. Whereas C allocation to crop roots can be estimated from a large database on root biomass corrected with informations on the environmental conditions and farming systems (Hu et al., 2018; Mattila and Häkkinen, 2025), or from dynamic allocation parameters supported by balanced-growth ecological hypothesis (Kleemola et al., 1996; Shipley and Meziane, 2002), C allocation to SOC_{new} is still poorly understood and requires further data. Promising recent works comparing several species has led to significant advances that linked plant traits and rhizodeposition. They demonstrated that the latter is embedded in a roots economic spectrum and that aboveground photosynthetic traits are good predictors of rhizodeposition: acquisitive species, that have high growth rates, tend to allocate more C to rhizodeposition than conservative species (Henneron et al., 2020a; Huang et al., 2021; Williams et al., 2022). However, these studies were based on grassland species and it is likely that extrapolation to crops is not straightforward.

Besides the amount of C inputs, their persistence in the soil is also a major factor driving SOC storage. The SOC_{new} C pool, along with root C, are the main contributor to SOC in the mid-term, even when shoot C is not harvested (Austin et al., 2017), such as in the case of cover crops, which is a practice that fosters additional SOC sequestration (Poeplau and Don, 2015; Pellerin et al., 2020). Whether it is well documented that roots tend to be more stabilized than aboveground parts due to their chemical and structural composition and their direct release in the soil (Rasse et al., 2005; Bertrand et al., 2006; Freschet et al.,

70

80

2013; Villarino et al., 2021), there is little literature for rhizodeposition or fine root debris. Reviews suggest that more than half of the rhizodeposition C is lost to respiration within days of his release: around 55 % according to Jones et al. (2009), and around 57 % for crops according to Pausch and Kuzyakov (2018). Nevertheless, the fraction that remains after rapid microbial utilisation, i.e. net rhizodeposition, has been little studied. Some studies assessed the stability of rhizodeposits through size fractionation of organic matter but the results vary greatly from one to another: Islam et al. (2025) and Teixeira et al. (2024) found that more than 70 % of the remaining net rhizodeposition was incorporated into fine fractions, which correlated with its incorporation in microbial biomass. On the other hand, Bicharanloo et al. (2024) and Huang et al. (2021) retrieved more than 70 % in particulate organic matter. Weng et al. (2018) showed more nuanced results with 44 % of the rhizodeposits recovered in particulate organic matter. Fractionation methods are useful to approximate the stability of the remaining litters, but they do not provide information about the amount of rhizodeposits that has been lost since its release in the soil, as would incubations do.

Rhizodeposition is a fresh input of C that can alter the cycling of native SOC, already present in the soil, by accelerating or decelerating its mineralisation (Robinson et al., 1989). This phenomenon is often named rhizosphere priming effect (Dormaar, 1990). Across one soil profile, the sensibility of native SOC to this priming might vary vertically; acceleration of native SOC cycling tends to be more pronounced in deeper soils, where mineralisation is slower (Henneron et al., 2022; Schiedung et al., 2023). Beside quantifying rhizodeposition inputs, assessing its vertical distribution is also relevant to apprehend its repercussion on SOC. This is also valuable to predict the fate of root-derived OM itself as its persistence might likewise depend directly on the horizon into which it is released (Berenstecher et al., 2021; Schiedung et al., 2023). Although rhizosphere priming effect generally enhances SOC mineralisation (Huo et al., 2017), it has been shown that an accumulation of rhizodeposits in the close vicinity of the roots may have the opposite effect by protecting SOC through aggregation (Baumert et al., 2018). This aggregation occurs in the rhizosheath (Teixeira et al., 2023), which is a root-adhering soil layer (Watt et al., 1994). As the rhizosheath mass varies across species or genotypes (Ndour et al., 2022; Teixeira et al., 2023), taking it into account and finding out whether SOC_{new} is mostly retrieved there might also help us to apprehend the trend of rhizosphere priming effect. Here, we propose to establish a thorough C balance of belowground C inputs across 12 crop species from 3 families that exhibit different features relative to nutrient acquisition and root structure. We set up a mesocosm experiment in a climate chamber under a ¹³C-CO₂-enriched atmosphere. We used multi-pulse labelling to be able to trace root-derived products: net rhizodeposition and fine root debris. We grouped these 2 pools under the term SOC_{new} . Plants were chosen so that they could be candidates for intermediate cropping in temperate farming systems. We had 3 main objectives: 1) quantifying SOC_{new} and linking its release to root and shoot C; 2) disentangle its spatial distribution by assessing its vertical distribution and its vicinity to the roots; 3) assessing its persistence in the soil after harvest through a following field incubation experiment.

90

100

105

110

120

2 Materials and methods

2.1 Climate simulation and labelling

12 plant species were grown in mesocosms for 2 months in 3 closed climate simulators in an ecolab system simulation (Verdier et al., 2014). Ecolab systems allow a realistic simulation of climate and ecosystem conditions within a large range of parameters. Here, We simulated a continental temperate summer climate by averaging 6 years of meteorological data from 15 August to 10 October, recorded on the CEREEP Ecotron IdF site (N 48°16′56.5", E 2°40′15.9") (Fig. S1). Temperature and relative humidity were programmed to vary within a 10 minutes resolution. Photosynthetic Photon Flux Density (PPFD) was also simulated on a 10 minutes resolution step and discretized into 10 steps over a day, from 0 % to 100 % of the measured intensity. The maximum (100 %) average PPFD was equal to 1181 μ mol of photons s⁻¹ m⁻² at the top of the mesocosms (soil surface). When light intensity meteorological data were higher than this maximum value, light intensity was set to 100 %. CO₂ was set at 415 ppm during daytime and at 487 ppm during nighttime, corresponding to on-site measurements. Mesocosms were irrigated with osmosis water by drippers and received in total 83 mm of water, which corresponds to the cumulative precipitation data over 56 days. As mesocosms soils generally dried faster than soils in the field, the irrigation frequency was smoothed over time to avoid the soil surface water content to decrease below 0.5 cm³ cm⁻³ to ensure plant survival. At day 16, the plants were fertilised with an ammonium nitrate solution, at a dose equivalent to 40 kg of Nitrogen (N) per hectare to ensure growth and to simulate mineral residual soil N following a crop.

To label plant material, we performed multiple injections of $^{13}\text{C-CO}_2$ (99 %). Whereas to assess the dynamic transfer of recent photoassimilates, a single pulse of enriched CO_2 is well suited, continuous labelling is preferred to ensure that all root-derived products are labelled and the rhizodeposition can be quantified (Studer et al., 2014). Nonetheless, multi-pulse is a robust alternative if pulses are injected very regularly within a short period of time (Warembourg and Estelrich, 2000). To do so, the $\delta^{13}C$ isotopic signature of the air in the chambers was measured on line with a cavity ring-down spectroscopy CO_2 analyser (PICARRO G2201-i) coupled to a multiplexer switching between the different chambers during the whole experiment, in order to control the duration and number of injections (Fig. S2). ^{13}C - CO_2 signature and atmospheric CO_2 concentration were controlled separately.

2.2 Plant and soil material

The 12 plant species, listed in Table 1, are crops from 3 families (*Fabaceae*; *Poaceae and Brassicaceae*). They were selected to cover a wide range of plant traits and for their ability to be grown in the targeted period. Except for *Medicago sativa*, which is perennial, each species could potentially be selected for a short summer intercropping in temperate regions. They were sown in the mesocosms at a different time to target a simultaneous plant emergence. In the two following weeks, some seedlings have been removed to achieve a realistic plant density as in the field.

Polyvinyl chloride mesocosms of 20 cm diameter were filled with 13 litres of sandy soil (6.9 % clay, 19.0 % silt, 74.1 % sand for the upper horizon) (Agapit et al., 2018). This soil was excavated from a semi-open habitat (grassland, shrubs and individual trees) of the research station by distinguishing 2 operational horizons and was sieved at 1 cm. Soil was then packed in the

125

130

135

140

145

150

mesocosms to recreate the 2 horizons, after homogenisation. The upper horizon was 20 cm deep, and the lower one 25 cm deep. Both were packed at a density of 1.2, corresponding to realistic values found on site. C concentrations and δ^{13} C isotopic signatures are 7.2 gC kg⁻¹ and -27.4 ‰ for the upper horizon and 4.3 gC kg⁻¹ and -26.2 ‰ for the lower horizon, respectively. This design of 12 mesocosms was replicated across 3 climate chambers simulating the same atmospheric conditions.

2.3 Sample collection, preparation and analysis

After 56 days, mesocosms were unpacked with a minimal destruction of the structure, by extracting the entire soil core from the pot. Standing aboveground biomass and dead leaves, if any, were collected after cutting the stems at the soil surface. The phenological stage was recorded according to the BBCH scale (Meier, 2003). Root were at first extracted manually. The soil was then sieved at 2 mm with a minimal shaking, so that remaining fine roots could be sampled with tweezers. All roots were then washed with tap water. We distinguished roots from the upper and lower horizon. Soil was collected in both horizons in several places to obtain a composite sample. Out of each planted mesocosm, the root system of one plant was carefully isolated, and the rhizosheath, which is the soil adhering to the roots after root extraction and shaking (Brown et al., 2017), was collected in both horizons when possible with a paintbrush for this specific plant, after a gentle shaking of the root system. The rhizosheath and its corresponding roots were weighted. It allowed us to obtain a Rhizosheath:Root ratio and therefore to estimate the whole rhizosheath soil mass for each mesocosm with Eq. (1).

$$m_{rhizosheath} = m_{roots} \times \frac{isolated.m_{rhizosheath}}{isolated.m_{roots}}$$
 (1)

 m_{roots} is the whole mesocosm root mass and $isolated.m_{rhizosheath}$ and $isolated.m_{roots}$ are the masses of rhizosheath and roots subsamples respectively. More rhizosheath soil was collected on the roots from the other plants of the mesocosm, but without associating it to a root mass. Soil samples of both horizons and of both locations (bulk vs rhizosheath) were dried at 40 °C, sieved at 2 mm, milled and analyzed for total C and isotopic signature $\delta^{13}C$ with cavity ring-down spectroscopy (PICARRO G2201-i / COSTECH). For every soil compartment, a humidity correction was applied after heating a soil subsample at 105 °C, to obtain a soil mass. Rhizosheath soil was analysed only when more than 13 g of sample was collected in one horizon. Plant material was dried at 40 °C, weighted, milled and was analyzed for C and $\delta^{13}C$, as well as for total N (Thermo Fisher Scientific FlashHT).

2.4 Root-derived carbon (SOC_{new}) calculation

We grouped net rhizodeposition and non-collected fine root debris under the term SOC_{new} , which is in our case the labelled soil organic carbon remaining after roots extraction and sieving at 2 mm. We calculated this amount (kg) of root-derived C with Eq. (2) in 4 compartments (2 horizons * 2 localisations: bulk soil vs. rhizosheath soil). We obtained the total SOC_{new} of one mesocosm by summing all the compartments.

$$SOC_{new} = \frac{\delta^{13}C_{soil} - \delta^{13}C_{reference}}{\delta^{13}C_{root} - \delta^{13}C_{reference}} \times OC_{sample}$$
(2)

155

165

170

175

With $\delta^{13}C_{soil}$ and $\delta^{13}C_{root}$ being the $\delta^{13}C$ isotopic signature (%) of the soil sample and of the corresponding labelled roots, respectively. $\delta^{13}C_{reference}$ is the mean $\delta^{13}C$ of the soil before the plants were sown, at the corresponding horizon (n=20). OC_{sample} is the mass of OC contained in the soil compartment (kg), obtained with the OC concentration of the sample. This equation assumes that SOC_{new} has an isotopic signature similar to that of roots. As this is a strong assumption, we also provide a quantification of SOC_{new} calculated with the $\delta^{13}C$ of the shoots instead of $\delta^{13}C_{root}$ for comparison (Fig. S4). We calculated specific SOC_{new} (kg kg⁻¹) by dividing SOC_{new} by root C. We expressed C quantities per hectare (kg ha⁻¹) in Fig. 1, S4 and S5 by doing a cross product with the surface of the mesocosms.

2.5 Incubation experiment

Following the first experiment, we used the labelled material to to perform a litterbag incubation in the field. Out of the 12 species, 6 species (2 per family) were chosen to be incubated: *Vicia sativa*; *Vicia faba*; *Secale cereale*; *Avena sativa*; *Brassica napus* and *Raphanus sativus var. longipinnatus*. Plant and soil material was placed in 100 mm*100 mm nylon bags with a mesh size of 50 microns. This mesh size only enables microfauna to access the fresh material, but limits the diffusion of SOC_{new} particles out of the bags.

The design comprises two general treatments, applied to each of the 6 plants and their corresponding soil: 1) To assess SOC_{new} decomposition, 50 g of labelled soil was directly placed in the bags. 2) To assess root decomposition, 50 mg of dry labelled roots were mixed with around 50 g of sieved unlabelled soil, corresponding to the soil used in the first labelling experiment. This represented from 0.9 % to 10.3 % of the C in the bags B_{roots} at the start of the incubation. The roots were fine roots (\leq 2mm), except for *Raphanus sativus*, where some of the taproot was mixed with fine roots due to a lack of material. In the following, we will use B_{SOCnew} and B_{roots} to refer to the bags of these two treatments. Each combination of treatment and plants was replicated 3 times, using plants and soils coming from different mesocosms. Besides, 3 bags were filled with control soil. This whole design was replicated 4 times, to allow 4 sampling dates.

Incubation started on 20 December 2023. The bags were buried at a 10 cm depth in the soil of a *Poaceae*-dominated grassland of the research station CEREEP-Ecotron IDF and recovered by means of a wire emerging from the soil. For year 2024, the mean annual temperature was 13.1 °C and cumulative rainfall was 844.7 mm. The incubation site was in the direct vicinity from the excavation site of the soil inside the litterbags. We consider that they are similar. 4 sets of bags were recovered after 124, 195, 330 and 524 days. The whole content of each bag was dried at 40°C, milled and analyzed for total C and δ^{13} C. When retrieving the bags, attention was paid to preserve clods of soil and thus vegetation above the bags. After 124 days, plant cover (*Vicia sativa; Sinapis alba; Secale cereale*) was sown to maximise vegetation recovery.

180 2.6 Carbon loss calculation during the litter bag incubation

We first calculated the proportion of C originating from the plant for each bag, F_{plant} , be it SOC_{new} or roots, with Eq. (3). This was done for all collected bags and for the initial labelled soil of $B_{SOC_{new}}$, before the incubation (t₀).

$$F_{plant} = \frac{\delta^{13} C_{bag} - \delta^{13} C_{control}}{\delta^{13} C_{root} - \delta^{13} C_{control}}$$
(3)

 $\delta^{13}C_{bag}$, $\delta^{13}C_{control}$, and $\delta^{13}C_{root}$ are the C isotopic signatures of the labelled and control soil in the bag and the corresponding roots respectively. For bags B_{roots} , $\delta^{13}C_{root}$ was measured independently of the first experiment, to account more precisely for the roots subsample specifically used for the incubation. We used the mean of all controls for $\delta^{13}C_{control}$, irrespective of the collection time, for bags B_{roots} , whereas for bags B_{SOCnew} , we used -27.4 ‰, in accordance with the previous labelling experiment.

We then calculated the concentration of plant-derived products, $[SOC_{plant}]$ (gC kg⁻¹), with Eq. (4).

90
$$[SOC_{plant}] = F_{plant} \times [OC_{sample}]$$
 (4)

 $[OC_{sample}]$ is the OC concentration of the sample (gC kg⁻¹).

To assess SOC_{new} loss, we calculated its remaining proportion, SOC_{new} (%), by dividing $[SOC_{plant}]$ of the bags $B_{SOC_{new}}$ at day t_i by the initial $[SOC_{plant}]$ at harvest (t_0) with Eq. (5).

$$SOCnew_{remaining}t_i = \frac{[SOC_{plant}]t_i}{[SOC_{plant}]t_0} \times 100$$
(5)

195 If $SOCnew_{remaining}$ was above 100 % or below 0 %, we chose to assign it 100 % or 0 % respectively, instead of removing the data point.

To estimate the C loss of roots $Roots_{remaining}t_i$ (%), we devide the root C remaining at the sampling date t_i , estimated with F_{plant} , by the original amount of root C added in the bag, according to Eq. 6.

$$Roots_{remaining}t_i = \frac{mass_{soil}t_0 \times [OC_{sample}] \times F_{plant}}{mass_{roots}t_0 \times [OC_{roots}]} \times 100$$
(6)

200 $mass_{soil}t_0$ and $mass_{roots}t_0$ are the initial masses (kg) of the control soil and the roots mixed in the bags and $[OC_{root}]$ the respective root C concentrations (gC kg⁻¹).

2.7 Statistical analysis

205

We used mesocosms as the statistical unit for our analyses. Consequently, we had 35 data points, corresponding to 12 species replicated three times each, except for mustard, where plant growth failed in one mesocosm. One mesocosm may contain one single plant or several plants, according to the sowing density (Table 1). For the latter case, quantitative values, C amounts or Root:Shoot (R:S) ratios for instance, stand for the entire mesocosm. All statistical analysis were performed with R language (R Core Team, 2021). For p-values of models or models parameters, we set the significance threshold at 0.05. However, in certain cases that are specified in the text, we report a trend when p-values < 0.1.

Comparisons between species (n = 3) were performed using one-way analysis of variance. Posthoc comparisons were per-210 formed with Tukey HSD tests. To compare families (n = 12), we adopted a linear mixed-effects model with the species as a random effect to account for the hierarchical structure, with the package *lme4* (Bates et al., 2015). Only the intercept was allowed to vary. We then performed an anova on the model with the package *car* (Fox and Weisberg, 2019) and a multiple comparison with the package *emmeans* that uses the marginal means (Searle et al., 1980).

220

To test for linear correlations between quantitative variables, we also selected linear mixed-effects model with the species as a random effect to let the intercept vary. For these models, we report the marginal R², that accounts for the variability explained by the fixed effects, calculated according to the recommendations of Nakagawa and Schielzeth (2013) with the package *Performance* (Lüdecke et al., 2021).

For the incubation experiment, we did not fit any decomposition models given the low number of sampling dates. To compare decomposition status of SOC_{new} and roots, we performed paired Student's t-tests for each sampling date. To compare plants, we performed one-way analysis of variance followed by Tukey HSD tests. The list and results of statistical analysis are available at Hulin et al. (2025).

3 Results and discussion

3.1 Quantification of the inputs

3.1.1 Shoot and root C quantification

After 56 days of growth, the spectrum of phenological stages was spanning from the development of harvestable vegetative 225 plant to senescence in certain cases (Table 1). C allocation is dependant on phenology: for annual plants, relative allocation to roots decreases in favour of supporting tissues and reproductive organs with plant age (Hegazy et al., 2005). Therefore, our results on relative C allocation could have evolved with a longer growth period. We observed the highest net C production in shoots and roots for *Poaceae*. They exhibited the highest shoot C values, but also high root C values, except for oat (Fig. 1). R:S ratios varied from 0.2 to 1.5 (Table 1). As expected, the only perennial crop, alfalfa, exhibited the highest value (1.5 \pm 230 0.5). Comparing our results with studies that report C inputs is challenging as the varieties, the duration time, the methods and the pedoclimatic context may greatly influence biomass production. We can nevertheless compare to relative data, such as comparisons between plants or R:S ratios. A field study that shared 3 of our species also found that rye had a higher aboveground and belowground biomass than Fabaceae (Sainju et al., 1998). A comparison to a greenhouse experiment (1 m³ mesocosms) showed similar results: a higher biomass for *Poaceae* than for *Fabaceae*. However, they also observed the 235 highest biomass for Brassicaceae, unlike our study (Hudek et al., 2022). Brassicaceae are commonly sown at a lower density than Fabaceae and Poaceae: we had only one plant per mesocosm in our experiment. We believe that the surface area of our mesocosms (285 cm²) was a limiting factor for low-density crops, and in this way, the biomass of brassicaeae could be underestimated in our study. Regarding the R:S ratio, we noted deviations from the literature with a high ratio for alfalfa 240 (Bolinder et al., 2002) and a low ratio for oat (Bolinder et al., 1997). The other crops exhibited values that were in line with the literature. For instance, Bolinder et al. (1997) compiled several field data in western Canada. They reported R:S ratios from 0.4 to 0.6 for barley, against 0.4 in our case. A review from Ahmadi et al. (2025) reported values from 0.08 to 1 for rapeseed, against 0.3 in our case. We suggest that our root and shoot biomass data, obtained in mesocosms under controlled conditions, are of the same order of magnitude as field data, even though extrapolation is limited in certain cases, such as for Brassicaceae for instance. 245

Table 1. List of plant species, plant traits, plant density and phenological stage. R:S ratio is a ratio calculated with C quantities in roots and shoots. For R:S and Carbon:Nitrogen (C:N) ratios, values are averages for species \pm their standard deviation (n=3 mesocosms). The letters indicate the results of tukey HSD tests. For the number of plants per mesocosm, each value of each mesocosm is directly reported. The shading differentiates the families. Phenological stages were recorded at harvest according to the BBCH scale (Meier, 2003). 4: Development of harvestable vegetative plant parts or vegetatively propagated organs / booting (main shoot); 5: Inflorescence emergence (main shoot) / heading; 6: Flowering (main shoot); 7: Development of fruit; 8: Ripening or maturity of fruit and seed; 9: Senescence, beginning of dormancy.

Plant species	Common name	Family	Root:Sho	oot	Roots C:N	ī	Plants mesocosm ⁻¹	Phenology
Medicago sativa	Alfalfa	Fabaceae	1.5±0.5	a	16.6±2.0	ab	9,8,1	4,6,6
Vicia sativa	Vetch	Fabaceae	0.5±0.2	a	19.3±7.7	ab	4,4,4	4,5,8
Trifolium pratense	Red clover	Fabaceae	0.3±0.0	a	17.2±3.1	ab	4,7,4	6,4,6
Vicia faba	Faba bean	Fabaceae	1.0±0.4	a	14.5±2.9	a	1,1,1	4,6,8
Hordeum vul- gare	Barley	Poaceae	0.4±0.0	a	26.2±6.2	ab	5,5,5	5,7,7
Lolium multiflo- rum	Annual ryegrass	Poaceae	0.4±0.1	a	27.1±1.6	ab	11,17,3	7,7,7
Secale cereale	Rye	Poaceae	0.7±0.1	a	27.1±3.6	ab	5,5,5	4,4,4
Avena sativa	Oat	Poaceae	0.2±0.0	a	28.3±5.1	b	6,6,5	8,7,8
Sinapis alba	White mustard	Brassicaceae	0.2±0.0	a	24.3±0.3	ab	2,1	6,7
Camelina sativa	Camelina	Brassicaceae	0.2±0.0	a	18.5±4.0	ab	3,3,3	8,8,9
Brassica napus	Rapeseed	Brassicaceae	0.3±0.0	a	22.7±1.7	ab	5,4,5	4,4,4
Raphanus sativus	Daïkon radish	Brassicaceae	0.4±0.1	a	23.9±5.8	ab	2,2,2	7,6,8

250

255

260

265

270

3.1.2 SOC_{new} quantification

After 56 days, the bulk soil was significantly enriched in 13 C compared to the beginning of the experiment (p > 8.5 × 10⁻⁹) with a mean δ^{13} C difference of 2.6%, both horizons together, which allowed us to calculate SOC_{new} in every soil compartment. We found that total SOC_{new} represented between 169 (average for clover) and 441 (average for barley) kgC ha⁻¹, with an average of 284 kgC ha⁻¹ all species considered (Fig. 1). However, the labelling heterogeneity resulted in discrepancies between the δ^{13} C of roots and shoots, especially for *Poaceae* and *Brassicaceae* that exhibited a higher root labelling (Fig. S2,S3). As a result, using the δ^{13} C of roots as the plant end-member in Eq. (2) is a strong assumption. Therefore, we also calculated SOC_{new} with δ^{13} C of shoots as the plant end-member and found amounts of C that are lower by 18% across all species and by 26.8; 27.0 and 7.4% for *Brassicaceae*, *Poaceae* and *Fabaceae* respectively (Fig. S4). As belowground allocation of recently fixed C is a fast process (Pausch and Kuzyakov, 2018), some rhizodeposition products depend on shoot growth and therefore, our SOC_{new} estimations might be slightly overestimated.

In terms of relative allocation, SOC_{new} accounted for $9.9 \pm 3.5\%$ of all 3 C pools and $27.8 \pm 10.3\%$ of belowground C pools (roots + SOC_{new}), all species comprised (Fig. 1). *Brassicaceae*, with a mean at $38 \pm 10.6\%$, had the highest relative belowground C allocation to SOC_{new} (p = 1×10^{-3}). For instance, mustard and camelina showed high specific SOC_{new} , along with a low R:S ratio. Our results are in line with single pulse labelling studies on crops reviewed in Pausch and Kuzyakov (2018), that found that SOC_{new} represented in average 23 % of belowground C inputs. On the other side, larger scale studies in which labelling was performed during a whole growing season found that SOC_{new} equalled or even exceeded root C (Davenport and Thomas, 1988; Hirte et al., 2018). One reason for that could be that root senescence and turnover had more time to occur, thus fuelling the SOC_{new} pool.

There was a positive correlation between SOC_{new} and root C amounts ($R^2 = 0.14$) (Fig. S5) and no correlation between SOC_{new} and shoot C amounts. This latter result contradicts to other studies stating that aboveground photosynthetic traits are good predictors of SOC_{new} (Baptist et al., 2015; Henneron et al., 2020a; Huang et al., 2021). It was indeed proposed by Henneron et al. (2020a) that net rhizodeposition is embedded within a root economics space, with fast-growing species producing high amounts of SOC_{new} . Our contradictory results could be partly explained by the fact that phenological stages, that influence rhizodeposition (Pausch and Kuzyakov, 2018), differed amongst our plants at harvest. Besides, it is questionable whether plant traits-based theories are suited for our crop species, that likely have undergone an important shift in plant traits due to varietal selection (Veeken et al., 2022). We also have to highlight that SOC_{new} is likely to represent the least reactive portion of gross rhizodeposition. Indeed, soluble compounds have a mean residence time of the order of the hour (Ryan et al., 2001; Jones et al., 2009) whereas mucilage, border cells, root hairs or even fine roots comprise complex molecules which take longer to decompose. Whereas root economics space theory is well suited to study exudation (Wen et al., 2022; Williams et al., 2022), coarser rhizodeposition leading to SOC_{new} might be more related to root growth dynamics, as observed by Atere et al. (2017) for rice. We also observed that specific SOC_{new} was negatively correlated to root C amounts ($R^2 = 0.20$) (Fig. S5), as observed by Baptist et al. (2015). This is likely due to the fact that rhizodeposition mostly occurs at the root tip (Nguyen, 2003) and less in the differentiated zone, that might account for a large share of root biomass. It is also legitimate to suppose that it

280 might be to a lesser extent explained by the sampling strategy, as a portion of the finest roots may have been incorporated to the SOC_{new} compartment, thus being at the expense of root biomass for species with fragile roots.

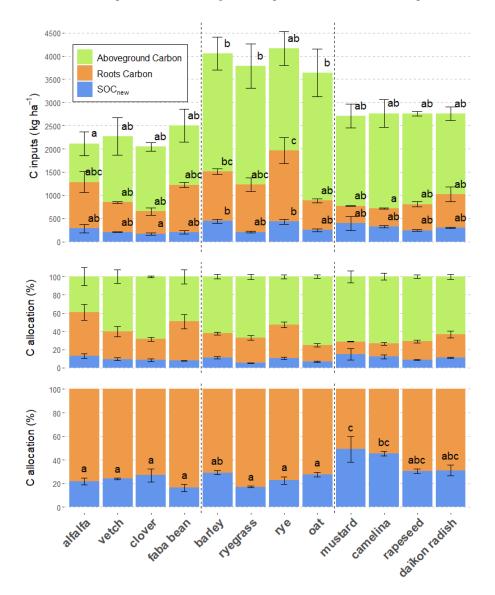


Figure 1. Carbon allocation to different pools for 12 plant species. Values are average values for species (n=3 mesocosms). The upper panel represents net primary production, scaled to the hectare with the mesocosm's surfaces. The 2 lower panels represent relative allocation for the whole plant and for belowground inputs. Lowercase letters represent significant differences (p < 0.05) between species for the total net primary production (upper panel) and for the SOC_{new} :Belowground C inputs ratio (lower panel). Vertical dashed lines separate plant families displayed in the following order from left to right: Fabaceae; Poaceae; Brassicaceae.

290

295

300

3.2 Spatial distribution of belowground inputs

3.2.1 Vertical distribution

At the beginning of the experiment, the $\delta^{13}C$ of the subsoil (0-20 cm) (-26.2 \pm 1.0 %) was significantly higher than for the topsoil (20-45 cm) (-27.4 \pm 0.5 %) (p = 3 \times 10⁻⁷). This ¹³C enrichment with depth is a common observation reflecting an enrichment in microbial-derived products and an increased stability of OM (Schweizer et al., 1999; Boström et al., 2007; Schaub and Alewell, 2009). As the magnitude of priming differs between soil horizons, notably because of such differences in OM stability (Bastida et al., 2019; Schiedung et al., 2023), it therefore makes complete sense to consider the vertical distribution of fresh inputs in our study. We retrieved 38 \pm 13 % of SOC_{new} in the lower horizon in average for all species (Fig. 2). Differences were observed between species. For instance, alfalfa and barley allocated up to 50 and 55 % of SOC_{new} below 20 cm respectively, whereas this value dropped to 19 % for daïkon radish, whose roots were concentrated in the top soil. Indeed, we observed a weak linear correlation between the distribution of root C and SOC_{new} (p = 9×10^{-2}). The distribution of root C follows the same pattern with 36 ± 10 % of the C retrieved in the lower horizon (Fig. 2). We can therefore suggest that deep-rooted crops will also lead to a deep release of SOC_{new} , and vice versa, as expected (Farrar et al., 2003). This alignment implies that both C pools might be subject to the stabilisation mechanisms that are inherent to the horizon. Indeed, a preferential accumulation of root C is often observed below 20 cm (Gill et al., 1999; Dietzel et al., 2017), possibly explained by a higher physico-chemical protection (Rasse et al., 2005). Whether SOC_{new} might be preferentially stabilized in deep horizons, its release may also alleviate the bioenergetics constraint that protects deep native SOC, resulting in accelerated mineralisation (Henneron et al., 2022). Both mechanisms should be taken into consideration if one is to account for rooting depths to foster additional C sequestration.

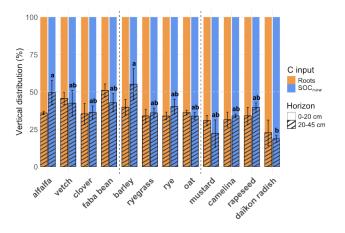


Figure 2. Distribution of root C and SOC_{new} between the 2 soil horizons (0 - 20 cm and 20 - 45 cm). The bar heights are the mean for each species and error bars equal 2 standard errors. The significant letters are only reported for SOC_{new} as no significant differences were observed for roots.

305

315

3.2.2 Bulk soil vs. rhizosheath

Besides vertical distribution, we also investigated whether SOC_{new} was retrieved in the close vicinity of roots or further away from the rhizosphere. We found that only 14 ± 14 % of SOC_{new} was retrieved in the rhizospheath, i.e. in the soil adhering to the roots (Fig. 1). We observed high variations between plants, from 40 % (raygrass) to 2 % (daïkon radish) or even no value as too little rhizosheath soil was available for the analysis (mustard), although the differences were not significant with the limited number of data points. This fraction of SOC_{new} was correlated to the mass of rhizosheath ($R^2 = 0.82$), which differed significantly between plants (Fig. 3) (p = 1.5×10^{-3}). Rhizosheath mass represented in average 2.0 ± 2.3 % of the soil mass in our experiments, all species comprised (when sampling was possible). The highest rhizosheath values were retrieved for Poaceae, which retained the most soil with their arbuscular root system. Whereas the amount of SOC_{new} in the rhizosheath is closely linked to the rhizosheath mass (Fig. 3), the latter is not correlated to the total amount of SOC_{new} retrieved in the mesocosm. As the whole rhizosphere represents the soil under influence of the roots (Hinsinger et al., 2006; York et al., 2016), thus comprising all rhizodeposition compounds, and as the rhizosphere soil is often sampled in an operational way that in fact solely accounts for the soil rhizosheath (Freschet et al., 2021), we consider important to state here that the rhizosheath mass is not a suitable proxy to estimate the quantity of rhizodeposition, or at least net rhizodeposition.

Besides, our result highlight that the enhancement of native SOC cycling associated to rhizodeposition release (Huo et al., 2017) is not constrained to the vicinity of the roots. Rather, this invites us to consider most of the planted soil as the rhizosphere with most of the native SOC being subject to positive priming. On the other side, the deceleration through SOC protection in aggregates (Andrade et al., 1998; Baumert et al., 2018; Li et al., 2020), which is restricted to C accumulation zones near the roots, concerns a lower amount of native SOC and might differ between species as they retain different amounts of soil around their roots.

330

335

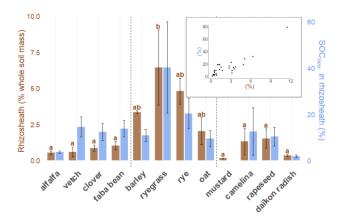


Figure 3. Mass fraction of the soil comprised in the rhizosheath (brown bars), calculated with Eq. 1, and mass fraction of SOC_{new} comprised in the rhizosheath (blue bars). The y axis both indicate the fraction (%), but their scale is different. The bar heights are the mean for each species and error bars equal 2 standard errors. The significant letters are only reported for the rhizosheath mass fraction as no significant differences were observed for SOC_{new} mass fraction. The inset shows the linear correlation linking both fractions, by plotting the value of each mesocosm.

3.3 Persistence of belowground inputs

The root incubation revealed a fast carbon loss, with $32.7 \pm 23.2\%$ of the roots C remaining after 124 days, all plants combined (Fig. 4, Table 2). This tended to reach a plateau as we observed similar values for the other dates of harvest, with $23.7 \pm 13.8\%$ remaining after 524 days. We compared our results with data from literature reviews on root decomposition (Silver and Miya, 2001; Zhang and Wang, 2015; See et al., 2019) from which we recalculated a percentage of dry mass presumed to be remaining at day 524 (Table S1). Our decomposition rates for graminoids are in line with literature values reporting 12 to 17% of the C remaining at day 524 against 17% in our case (Rye and Oat). However, for forbs, we observed a slower decomposition rate compared to data from See et al. (2019) that report a mean of 1%, against 27% in our case (faba bean, vetch, rapeseed and radish). We observed significant differences in mineralisation status between plant species at days 124 and 524 only ($p = 4 \times 10^{-3}$ and 3×10^{-3} respectively). These differences were mostly driven by Faba bean that exhibited a slower decomposition that non-legumes species and to a lesser extent by vetch at day 524. This was unexpected as legumes have the lowest C:N ratios (Table 1). Even though C:N is explaining less than 5% of the variance of decomposition for fine roots at a global scale, the expected trend is in the opposite direction (Zhang and Wang, 2015). However, no pattern was detected for other species and sampling dates, which assigns a limited role to litter quality as a driver of SOC storage, compared to the quantity of the inputs, in accordance with findings from Pellerin et al. (2020).

A first important result for SOC_{new} decomposition is that we did not see any significant difference between species. However, a high uncertainty is associated with the results, and the decomposition curves do not show a clear decreasing exponential pattern, as often seen in such experiments (Fig 4). Indeed, its calculation yielded 9 incoherent values ($\leq 0\%$ or $\geq 100\%$) out of 65 bags recovered, due to a δ^{13} C lower than the control or to an increase of the δ^{13} C compared to t_0 . We attributed this to the

350

355

fact that fresh SOC_{new} is a very small fraction of SOC (between 0.34 % and 1.71 % at the start of the incubation), resulting in a small δ^{13} C difference with the control, exacerbating errors due to analysis and handling. Indeed, initial δ^{13} C of the bags containing SOC_{new} vary from -21.929 % to -25.9%, whereas the mean value of native SOC is -27.4%.

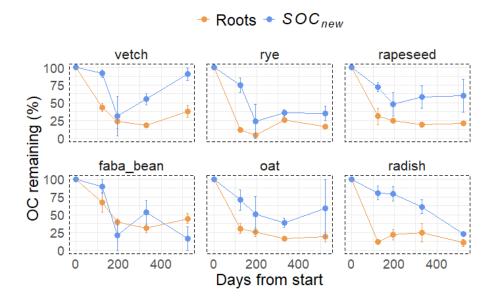


Figure 4. Proportion of OC remaining at the 4 sampling times, for the 6 species that were incubated. Day 0 is the incubation start. Values are the averages for plants and error bars equal 2 standard errors (n = 3).

Nevertheless, we were able to observe that SOC_{new} tended to have a significantly slower decomposition than roots, at least for three sampling dates (Fig. 4, Table 2). After 524 days, $48.6 \pm 35.2 \%$ of the fresh OC was remaining. Two hypotheses could explain this result. First, the fraction of SOC_{new} that remains at harvest may have already been depleted of labile compounds. As a result, we compared the decomposition of roots, that have not undergone any transformation and therefore contain easily decomposable products, and of SOC_{new} which has undergone a first decomposition during the growth of the plants. Secondly, another hypothesis is proposed by the Microbial Efficiency-Matrix Stabilization framework (Cotrufo et al., 2013): SOC_{new} would have decomposed more slowly precisely because gross rhizodeposition may contain in proportion more labile compounds than roots. These compounds would have been preferentially incorporated in the microbial loop and would thus have had a greater likelihood of forming associations with mineral. At the start of the incubation, SOC_{new} would then already contain a portion of relatively stable OM. Results of studies tracing labelled C in stable OM fractions support this assumption (Villarino et al., 2021). These 2 hypotheses rely on 2 different concepts: recalcitrance versus C use efficiency associated to stabilization mechanisms. Nevertheless, they are not contradictory, but complementary. There is little incubation data available in the literature for comparison. Van der Krift et al. (2001) found that after 69 days of incubation, 80 to 57 % of net rhizodeposition from perennial grasses was remaining (against 74 to 89 % for the roots). For rice, Lu et al. (2003) found that 54 % was remaining after 240 days (against 58.1 % for the roots). These 2 studies, together with our results show that net

365

370

375

rhizodeposition is a sub compartment of gross rhizodeposition which stands out for its longer decomposition time. Whereas more than the half of gross rhizodeposition is respired within 15 days (Jones et al., 2009; Pausch and Kuzyakov, 2018; Weng et al., 2018), about half of the fraction remaining at harvest, here embedded in SOC_{new} , is not mineralised after 524 days (Table 2).

Table 2. Proportion of the fraction of OC remaining at the 4 sampling times \pm standard deviation (n = 18). The p-value indicate the results of the bilateral paired t-tests comparing SOC_{new} and roots.

Days After Incubation Start	Remaining SOC_{new} (%)	Remaining Roots	p-value (bilateral paired t-test, $H_0 = \text{true}$)
124	79.8 ± 16.5	32.7 ± 23.2	1.3×10^{-7}
195	42.5 ± 35.0	26.7 ± 12.5	ns (5.3×10^{-2})
330	49.9 ± 17.9	25.5 ± 15.4	1.6×10^{-5}
524	48.6 ± 35.2	23.7 ± 13.8	8.2×10^{-3}

3.4 Implications for SOC storage strategies

We propose that SOC_{new} , as defined in our study and in other continuous labelling studies (Henneron et al., 2020a; Huang et al., 2021) is not a C pool that derives from a physiological process, as it encompasses a broad variety of compounds (Jones et al., 2009) and it depends on root sampling, which is soil and operator dependant (Freschet et al., 2021). But rather, it is an operational parameter which is valuable to refine estimations of C inputs for annual crops as it allows an assessment of all the inputs that are not mineralized at the harvest of the crop. Our results showed that it is a significant input of C, with a mid-term persistence in soils comparable to that of roots. This makes it a relevant and a necessary pool to consider when reasoning SOC sequestration. For instance, our observation of inter-species differences in specific SOC_{new} reveals that a fixed allocation coefficient is not suitable for SOC_{new} quantification from root C. In our case, the belowground C inputs of Brassicaceae, that exhibited high specific SOC_{new} would be relatively underestimated with such an approach.

However, considering SOC_{new} in C assessments requires to be able to estimate it from the crops traits or other C pools as its quantification is costly. We highlighted here that the task remains challenging for annual crops, and it this is likely to be exacerbated if we try to extrapolate our results to a complex cultivation system. Nevertheless the positive correlation with root C allows to have a first guidance. Crop selection favouring high root inputs to the soil has already proven to be efficient to sequester additional C, without being at the expense of the yield (Heinemann et al., 2023). Considering that there is more knowledge on root selection than on SOC_{new} and considering that there is a coupling between the two pools, in terms of quantity and vertical distribution, adjusting the reasoning of additional SOC sequestration on root inputs is likely not to be contradictory with a reasoning based on SOC_{new} . Moreover, we highlighted that root inputs are the main contributors of the

fresh root-derived C pool which persists in the soil in the medium term (Fig. 5): even though SOC_{new} tends to remain longer in the soil based on our result, its low net production compared to that of roots (27.8 % of net belowground C production) restrains its relevance as a lever to sequester additional SOC.

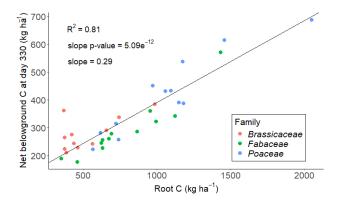


Figure 5. Relationship between belowground C inputs (SOC_{new} and root C) remaining after 330 days of incubation and root C inputs. The remaining C at day 330 was obtained by multiplying the belowground inputs and their respective average fraction remaining at day 330: 0.499 for SOC_{new} and 0.255 for root C (Table 2). The slope was obtained with a mixed-effects model with species as a random effect, to let the intercept vary. The \mathbb{R}^2 is the marginal \mathbb{R}^2 .

A missing link of our analysis is the priming effect. This process can greatly restrict C sequestration (Guenet et al., 2018) and should therefore be taken into account. We can nonetheless note that priming effect is mostly driven by aboveground biomass or by rhizodeposition and less by roots (Huo et al., 2017; Henneron et al., 2020a). This further reinforces the previous statement that belowground inputs, roots like SOC_{new} , are decisive to increase SOC stocks. Moreover, the rhizosphere priming effect is closely linked to nutrient acquisition (Henneron et al., 2020b) and may, therefore, be more of a return on investment associated with biomass production rather than a net C loss.

4 Conclusions

385

390

395

In this study, we attempted to establish a thorough carbon balance of belowground C inputs by quantifying net rhizodeposition and root debris that are not taken into account in traditional root sampling. We found that this C pool represents 27 % of belowground C inputs, making it an essential input to consider. Although the rhisoheath is a hotspot of root-derived C accumulation, most of it was retrieved in the bulk soil, which invites us to consider most of the planted soil as the rhizosphere. We also highlighted through an incubation experiment that its residence time is comparable, or even greater in our case to that of roots. Nevertheless, results were highly variable as SOC_{new} represents less than 1.5 % of the SOC, which exacerbated the errors. Although differences in terms of quantity emerge between species, the complexity of this group of compounds makes it difficult to predict for annual crops. The positive correlation with root C is nonetheless a valuable first step to account for SOC_{new} in SOC storage strategies.

Code and data availability. Raw data, metadata, calculations and their results have been made open access (Hulin et al., 2025). A list of the statistical tests is also provided. Any additional data or metadata is available upon reasonable request.

Author contributions. BH conducted the experiment and the data analysis, and wrote the original draft. SA leaded the project and the fundraising, and supervised the writing. FM, SC, FD and SP participated in conducting the experiments and helped finalise the draft.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We would like to thank the whole team at CEREEP-Ecotron IDF who provided techninal assistance for the experiments.

405 We also thank Audrey Niboyet, Johanne Lebrun-Thauront and Pierre Barré for their feedback on our work.

Financial support. This research has been supported by the CNRS, notably via the MITI mission. It also received government funding managed by the French National Research Agency under the 'France 2030' programme (reference ANR-24-INBS-0001 AnaEE-France).

References

- Agapit, C., Gigon, A., and Blouin, M.: Earthworm Effect on Root Morphology in a Split Root System, Plant Biosystems An International

 Journal Dealing with all Aspects of Plant Biology, 152, 780–786, https://doi.org/10.1080/11263504.2017.1338627, 2018.
 - Ahmadi, S. H., Seidel, S. J., Lopez, G., Kamali, B., Gaiser, T., Hadir, S., Demie, D. T., Andersen, M. N., Ewert, F., and Ochoa, I. H.: Root:Shoot Ratio of Field Crops under Conventional and Conservation Tillage: A Meta Analysis, Soil Use and Management, 41, e70 026, https://doi.org/10.1111/sum.70026, 2025.
- Andrade, G., Mihara, K., Linderman, R., and Bethlenfalvay, G.: Soil Aggregation Status and Rhizobacteria in the Mycorrhizosphere, Plant and Soil, 202, 89–96, https://doi.org/10.1023/A:1004301423150, 1998.
 - Atere, C. T., Ge, T., Zhu, Z., Tong, C., Jones, D. L., Shibistova, O., Guggenberger, G., and Wu, J.: Rice Rhizodeposition and Carbon Stabilisation in Paddy Soil Are Regulated via Drying-Rewetting Cycles and Nitrogen Fertilisation, Biology and Fertility of Soils, 53, 407–417, https://doi.org/10.1007/s00374-017-1190-4, 2017.
- Austin, E. E., Wickings, K., McDaniel, M. D., Robertson, G. P., and Grandy, A. S.: Cover Crop Root Contributions to Soil Carbon in a No-till Corn Bioenergy Cropping System, GCB Bioenergy, 9, 1252–1263, https://doi.org/10.1111/gcbb.12428, 2017.
 - Baptist, F., Aranjuelo, I., Legay, N., Lopez-Sangil, L., Molero, G., Rovira, P., and Nogués, S.: Rhizodeposition of Organic Carbon by Plants with Contrasting Traits for Resource Acquisition: Responses to Different Fertility Regimes, Plant and Soil, 394, 391–406, https://doi.org/10.1007/s11104-015-2531-4, 2015.
- Bastida, F., García, C., Fierer, N., Eldridge, D. J., Bowker, M. A., Abades, S., Alfaro, F. D., Asefaw Berhe, A., Cutler, N. A., Gallardo,
 A., García-Velázquez, L., Hart, S. C., Hayes, P. E., Hernández, T., Hseu, Z.-Y., Jehmlich, N., Kirchmair, M., Lambers, H., Neuhauser,
 S., Peña-Ramírez, V. M., Pérez, C. A., Reed, S. C., Santos, F., Siebe, C., Sullivan, B. W., Trivedi, P., Vera, A., Williams, M. A.,
 Luis Moreno, J., and Delgado-Baquerizo, M.: Global Ecological Predictors of the Soil Priming Effect, Nature Communications, 10,
 3481, https://doi.org/10.1038/s41467-019-11472-7, 2019.
- Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using Lme4, Journal of Statistical Software, 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
 - Baumert, V. L., Vasilyeva, N. A., Vladimirov, A. A., Meier, I. C., Kögel-Knabner, I., and Mueller, C. W.: Root Exudates Induce Soil Macroaggregation Facilitated by Fungi in Subsoil, Frontiers in Environmental Science, 6, 140, https://doi.org/10.3389/fenvs.2018.00140, 2018.
- Berenstecher, P., Araujo, P. I., and Austin, A. T.: Worlds Apart: Location above- or below-Ground Determines Plant Litter Decomposition in a Semi-Arid Patagonian Steppe, Journal of Ecology, 109, 2885–2896, https://doi.org/10.1111/1365-2745.13688, 2021.
 - Bertrand, I., Chabbert, B., Kurek, B., and Recous, S.: Can the Biochemical Features and Histology of Wheat Residues Explain Their Decomposition in Soil?, Plant and Soil, 281, 291–307, https://doi.org/10.1007/s11104-005-4628-7, 2006.
 - Bicharanloo, B., Bagheri Shirvan, M., Cavagnaro, T. R., Keitel, C., and Dijkstra, F. A.: Nitrogen Fertilisation Reduces the Contribution of Root-Derived Carbon to Mineral-Associated Organic Matter Formation at Low and High Defoliation Frequencies in a Grassland Soil, Plant and Soil, https://doi.org/10.1007/s11104-024-06835-z, 2024.
 - Bolinder, M., Angers, D., and Dubuc, J.: Estimating Shoot to Root Ratios and Annual Carbon Inputs in Soils for Cereal Crops, Agriculture, Ecosystems & Environment, 63, 61–66, https://doi.org/10.1016/S0167-8809(96)01121-8, 1997.
 - Bolinder, M., Angers, D. A., Bélanger, G., Michaud, R., and Laverdière, M. R.: Root Biomass and Shoot to Root Ratios of Perennial Forage Crops in Eastern Canada, Canadian Journal of Plant Science, 82, 731–737, https://doi.org/10.4141/P01-139, 2002.

- Boström, B., Comstedt, D., and Ekblad, A.: Isotope Fractionation and 13C Enrichment in Soil Profiles during the Decomposition of Soil Organic Matter, Oecologia, 153, 89–98, https://doi.org/10.1007/s00442-007-0700-8, 2007.
 - Brown, L. K., George, T. S., Neugebauer, K., and White, P. J.: The Rhizosheath a Potential Trait for Future Agricultural Sustainability Occurs in Orders throughout the Angiosperms, Plant and Soil, 418, 115–128, https://doi.org/10.1007/s11104-017-3220-2, 2017.
- Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.: The Microbial Efficiency-Matrix Stabilization (MEMS) Framework

 Integrates Plant Litter Decomposition with Soil Organic Matter Stabilization: Do Labile Plant Inputs Form Stable Soil Organic Matter?,

 Global Change Biology, 19, 988–995, https://doi.org/10.1111/gcb.12113, 2013.
 - Davenport, J. R. and Thomas, R. L.: How roots control the flux of carbon to the rhizosphere, Canadian Journal of Soil Science, 68, 693–701, https://doi.org/10.4141/cjss88-067, 1988.
- Dietzel, R., Liebman, M., and Archontoulis, S.: A Deeper Look at the Relationship between Root Carbon Pools and the Vertical Distribution of the Soil Carbon Pool, SOIL, 3, 139–152, https://doi.org/10.5194/soil-3-139-2017, 2017.
 - Dormaar, J. F.: Effect of Active Roots on the Decomposition of Soil Organic Materials, Biology and Fertility of Soils, 10, 121–126, https://doi.org/10.1007/BF00336247, 1990.
 - Farrar, J., Hawes, M., Jones, D., and Lindow, S.: How roots control the flux of carbon to the rhizosphere, Ecology, 84, 827–837, https://doi.org/10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2, 2003.
- 460 Fox, J. and Weisberg, S.: An R Companion to Applied Regression, Sage, Thousand Oaks CA, third edn., https://www.john-fox.ca/Companion/, 2019.
 - Freschet, G. T., Cornwell, W. K., Wardle, D. A., Elumeeva, T. G., Liu, W., Jackson, B. G., Onipchenko, V. G., Soudzilovskaia, N. A., Tao, J., and Cornelissen, J. H.: Linking Litter Decomposition of Above- and below-Ground Organs to Plant–Soil Feedbacks Worldwide, Journal of Ecology, 101, 943–952, https://doi.org/10.1111/1365-2745.12092, 2013.
- Freschet, G. T., Pagès, L., Iversen, C. M., Comas, L. H., Rewald, B., Roumet, C., Klimešová, J., Zadworny, M., Poorter, H., Postma, J. A., Adams, T. S., Bagniewska-Zadworna, A., Bengough, A. G., Blancaflor, E. B., Brunner, I., Cornelissen, J. H. C., Garnier, E., Gessler, A., Hobbie, S. E., Meier, I. C., Mommer, L., Picon-Cochard, C., Rose, L., Ryser, P., Scherer-Lorenzen, M., Soudzilovskaia, N. A., Stokes, A., Sun, T., Valverde-Barrantes, O. J., Weemstra, M., Weigelt, A., Wurzburger, N., York, L. M., Batterman, S. A., Gomes De Moraes, M., Janeček, Š., Lambers, H., Salmon, V., Tharayil, N., and McCormack, M. L.: A Starting Guide to Root Ecology: Strengthening
- Ecological Concepts and Standardising Root Classification, Sampling, Processing and Trait Measurements, New Phytologist, 232, 973–1122, https://doi.org/10.1111/nph.17572, 2021.
 - Gill, R., Burke, I. C., Milchunas, D. G., and Lauenroth, W. K.: Relationship Between Root Biomass and Soil Organic Matter Pools in the Shortgrass Steppe of Eastern Colorado, Ecosystems, 2, 226–236, https://doi.org/10.1007/s100219900070, 1999.
- Guenet, B., Camino-Serrano, M., Ciais, P., Tifafi, M., Maignan, F., Soong, J. L., and Janssens, I. A.: Impact of Priming on Global Soil Carbon

 Stocks, Global Change Biology, 24, 1873–1883, https://doi.org/10.1111/gcb.14069, 2018.
 - Hegazy, A. K., Fahmy, G. M., Ali, M. I., and Gomaa, N. H.: Growth and Phenology of Eight Common Weed Species, Journal of Arid Environments, 61, 171–183, https://doi.org/10.1016/j.jaridenv.2004.07.005, 2005.
 - Heinemann, H., Hirte, J., Seidel, F., and Don, A.: Increasing Root Biomass Derived Carbon Input to Agricultural Soils by Genotype Selection a Review, Plant and Soil, 490, 19–30, https://doi.org/10.1007/s11104-023-06068-6, 2023.
- Henneron, L., Cros, C., Picon-Cochard, C., Rahimian, V., and Fontaine, S.: Plant Economic Strategies of Grassland Species Control Soil Carbon Dynamics through Rhizodeposition, Journal of Ecology, 108, 528–545, https://doi.org/10.1111/1365-2745.13276, 2020a.

- Henneron, L., Kardol, P., Wardle, D. A., Cros, C., and Fontaine, S.: Rhizosphere Control of Soil Nitrogen Cycling: A Key Component of Plant Economic Strategies, New Phytologist, 228, 1269–1282, https://doi.org/10.1111/nph.16760, 2020b.
- Henneron, L., Balesdent, J., Alvarez, G., Barré, P., Baudin, F., Basile-Doelsch, I., Cécillon, L., Fernandez-Martinez, A., Hatté,
 C., and Fontaine, S.: Bioenergetic Control of Soil Carbon Dynamics across Depth, Nature Communications, 13, 7676,
 https://doi.org/10.1038/s41467-022-34951-w, 2022.
 - Hinsinger, P., Plassard, C., and Jaillard, B.: Rhizosphere: A New Frontier for Soil Biogeochemistry, Journal of Geochemical Exploration, 88, 210–213, https://doi.org/10.1016/j.gexplo.2005.08.041, 2006.
 - Hirte, J., Leifeld, J., Abiven, S., Oberholzer, H.-R., and Mayer, J.: Below Ground Carbon Inputs to Soil via Root Biomass and Rhizodeposition of Field-Grown Maize and Wheat at Harvest Are Independent of Net Primary Productivity, Agriculture, Ecosystems & Environment, 265, 556–566, https://doi.org/10.1016/j.agee.2018.07.010, 2018.
 - Hu, T., Sørensen, P., Wahlström, E. M., Chirinda, N., Sharif, B., Li, X., and Olesen, J. E.: Root Biomass in Cereals, Catch Crops and Weeds Can Be Reliably Estimated without Considering Aboveground Biomass, Agriculture, Ecosystems & Environment, 251, 141–148, https://doi.org/10.1016/j.agee.2017.09.024, 2018.
- 495 Huang, J., Liu, W., Pan, S., Wang, Z., Yang, S., Jia, Z., Wang, Z., Deng, M., Yang, L., Liu, C., Chang, P., and Liu, L.: Divergent Contributions of Living Roots to Turnover of Different Soil Organic Carbon Pools and Their Links to Plant Traits, Functional Ecology, 35, 2821–2830, https://doi.org/10.1111/1365-2435.13934, 2021.
 - Hudek, C., Putinica, C., Otten, W., and De Baets, S.: Functional Root Trait-Based Classification of Cover Crops to Improve Soil Physical Properties, European Journal of Soil Science, 73, e13 147, https://doi.org/10.1111/ejss.13147, 2022.
- Hulin, B., Chollet, S., Massol, F., and Abiven, S.: Dataset of a Multi-Pulse Labelling Experiment with 13C CO2 to Trace Root-Derived Carbon in the Soil., https://doi.org/10.5281/zenodo.17482237, 2025.
 - Huo, C., Luo, Y., and Cheng, W.: Rhizosphere Priming Effect: A Meta-Analysis, Soil Biology and Biochemistry, 111, 78–84, https://doi.org/10.1016/j.soilbio.2017.04.003, 2017.
- Hütsch, B. W., Augustin, J., and Merbach, W.: Plant Rhizodeposition an Important Source for Carbon Turnover in Soils, Journal of Plant Nutrition and Soil Science, 165, 397, https://doi.org/10.1002/1522-2624(200208)165:4<397::AID-JPLN397>3.0.CO;2-C, 2002.
 - Islam, M. R., Bicharanloo, B., Yu, X., Singh, B., and Dijkstra, F. A.: Rhizodeposition Stimulates Soil Carbon Decomposition and Promotes Formation of Mineral-Associated Carbon with Increased Clay Content, Geoderma, 454, 117180, https://doi.org/10.1016/j.geoderma.2025.117180, 2025.
- Jones, D. L., Nguyen, C., and Finlay, R. D.: Carbon Flow in the Rhizosphere: Carbon Trading at the Soil–Root Interface, Plant and Soil, 321, 5–33, https://doi.org/10.1007/s11104-009-9925-0, 2009.
 - Kleemola, J., Teittinen, M., and Karvonen, T.: Modelling Crop Growth and Biomass Partitioning to Shoots and Roots in Relation to Nitrogen and Water Availability, Using a Maximization Principle, Plant and Soil, 185, 99–111, https://doi.org/10.1007/BF02257567, 1996.
 - Li, H., Chang, L., Liu, H., and Li, Y.: Diverse Factors Influence the Amounts of Carbon Input to Soils via Rhizodeposition in Plants: A Review, Science of The Total Environment, 948, 174 858, https://doi.org/10.1016/j.scitotenv.2024.174858, 2024.
- 515 Li, J., Yuan, X., Ge, L., Li, Q., Li, Z., Wang, L., and Liu, Y.: Rhizosphere Effects Promote Soil Aggregate Stability and Associated Organic Carbon Sequestration in Rocky Areas of Desertification, Agriculture, Ecosystems & Environment, 304, 107126, https://doi.org/10.1016/j.agee.2020.107126, 2020.
 - Lu, Y., Watanabe, A., and Kimura, M.: Carbon Dynamics of Rhizodeposits, Root- and Shoot-Residues in a Rice Soil, Soil Biology and Biochemistry, 35, 1223–1230, https://doi.org/10.1016/S0038-0717(03)00184-6, 2003.

- Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P., and Makowski, D.: Performance: An R Package for Assessment, Comparison and Testing of Statistical Models, Journal of Open Source Software, 6, 3139, https://doi.org/10.21105/joss.03139, 2021.
 - Mattila, T. J. and Häkkinen, L.: Exploring the Effects of Soil Structure, Nutrients, and Farm Management on Crop Root Biomass and Depth Distribution, Field Crops Research, 327, 109 909, https://doi.org/10.1016/j.fcr.2025.109909, 2025.
- Meier, U.: Phenological Growth Stages, in: Phenology: An Integrative Environmental Science, edited by Kratochwil, A., Lieth, H., and Schwartz, M. D., vol. 39, pp. 269–283, Springer Netherlands, Dordrecht, ISBN 978-1-4020-1580-9 978-94-007-0632-3, https://doi.org/10.1007/978-94-007-0632-3_17, 2003.
 - Nakagawa, S. and Schielzeth, H.: A General and Simple Method for Obtaining R2 from Generalized Linear Mixed-Effects Models, Methods in Ecology and Evolution, 4, 133–142, https://doi.org/10.1111/j.2041-210x.2012.00261.x, 2013.
- Ndour, P. M. S., Hatté, C., Achouak, W., Heulin, T., and Cournac, L.: Rhizodeposition Efficiency of Pearl Millet Genotypes Assessed on a Short Growing Period by Carbon Isotopes (Δ¹³ C and F¹⁴ C), SOIL, 8, 49–57, https://doi.org/10.5194/soil-8-49-2022, 2022.
 - Nguyen, C.: Rhizodeposition of Organic C by Plants: Mechanisms and Controls, Agronomie, 23, 375–396, https://doi.org/10.1051/agro:2003011, 2003.
 - Nguyen, C.: Rhizodeposition of Organic C by Plant: Mechanisms and Controls, in: Sustainable Agriculture, edited by Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., and Alberola, C., pp. 97–123, Springer Netherlands, Dordrecht, ISBN 978-90-481-2666-8, https://doi.org/10.1007/978-90-481-2666-8, 9, 2009.
 - Pausch, J. and Kuzyakov, Y.: Carbon Input by Roots into the Soil: Quantification of Rhizodeposition from Root to Ecosystem Scale, Global Change Biology, 24, 1–12, https://doi.org/10.1111/gcb.13850, 2018.
 - Pellerin, S., Bamière, L., Launay, C., Martin, R., Schiavo, M., Angers, D., Augusto, L., Balesdent, J., Basile-Doelsch, I., Bellassen, V., Cardinael, R., Cécillon, L., Ceschia, E., Chenu, C., Constantin, J., Daroussin, J., Delacote, P., Delame, N., Gastal, F., Gilbert, D., Graux,
- A.-I., Guenet, B., Houot, S., Klumpp, K., Letort, E., Litrico, I., Martin, M., Menasseri-Aubry, S., Meziere, D., Morvan, T., Mosnier, C., Roger-Estrade, J., Saint-André, L., Sierra, J., Therond, O., Viaud, V., Grateau, R., Le Perchec, S., Savini, I., and Rechauchère, O.: Stocker Du Carbone Dans Les Sols Français. Quel Potentiel Au Regard de l'objectif 4 Pour 1000 et à Quel Coût ?, Other, INRA, https://doi.org/10.15454/nhxt-gn38, 2020.
- Poeplau, C. and Don, A.: Carbon Sequestration in Agricultural Soils via Cultivation of Cover Crops A Meta-Analysis, Agriculture, Ecosystems & Environment, 200, 33–41, https://doi.org/10.1016/j.agee.2014.10.024, 2015.
 - R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, 2021.
 - Rasse, D. P., Rumpel, C., and Dignac, M.-F.: Is Soil Carbon Mostly Root Carbon? Mechanisms for a Specific Stabilisation, Plant and Soil, 269, 341–356, https://doi.org/10.1007/s11104-004-0907-y, 2005.
- Robinson, D., Griffiths, B., Ritz, K., and Wheatley, R.: Root-Induced Nitrogen Mineralisation: A Theoretical Analysis, Plant and Soil, 117, 185–193, https://doi.org/10.1007/BF02220711, 1989.
 - Ryan, P., Delhaize, E., and Jones, D.: Function and mechanism of organic anion exudation from plant roots, Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527–560, https://doi.org/10.1146/annurev.arplant.52.1.527, 2001.
- Sainju, U. M., Singh, B. P., and Whitehead, W. F.: Cover Crop Root Distribution and Its Effects on Soil Nitrogen Cycling, Agronomy Journal, 90, 511–518, https://doi.org/10.2134/agronj1998.00021962009000040012x, 1998.
 - Schaub, M. and Alewell, C.: Stable Carbon Isotopes as an Indicator for Soil Degradation in an Alpine Environment (Urseren Valley, Switzerland), Rapid Communications in Mass Spectrometry, 23, 1499–1507, https://doi.org/10.1002/rcm.4030, 2009.

- Schiedung, M., Don, A., Beare, M. H., and Abiven, S.: Soil Carbon Losses Due to Priming Moderated by Adaptation and Legacy Effects, Nature Geoscience, 16, 909–914, https://doi.org/10.1038/s41561-023-01275-3, 2023.
- Schweizer, M., Fear, J., and Cadisch, G.: Isotopic (13C) Fractionation during Plant Residue Decomposition and Its Implications for Soil Organic Matter Studies, Rapid Communications in Mass Spectrometry, 13, 1284–1290, https://doi.org/10.1002/(SICI)1097-0231(19990715)13:13<1284::AID-RCM578>3.0.CO;2-0, 1999.
 - Searle, S. R., Speed, F. M., and Milliken, G. A.: Population Marginal Means in the Linear Model: An Alternative to Least Squares Means, The American Statistician, 34, 216–221, https://doi.org/10.1080/00031305.1980.10483031, 1980.
- See, C. R., Luke McCormack, M., Hobbie, S. E., Flores-Moreno, H., Silver, W. L., and Kennedy, P. G.: Global Patterns in Fine Root Decomposition: Climate, Chemistry, Mycorrhizal Association and Woodiness, Ecology Letters, 22, 946–953, https://doi.org/10.1111/ele.13248, 2019.
 - Semchenko, M., Xue, P., and Leigh, T.: Functional Diversity and Identity of Plant Genotypes Regulate Rhizodeposition and Soil Microbial Activity, New Phytologist, 232, 776–787, https://doi.org/10.1111/nph.17604, 2021.
- 570 Shipley, B. and Meziane, D.: The Balanced-Growth Hypothesis and the Allometry of Leaf and Root Biomass Allocation, Functional Ecology, 16, 326–331, https://doi.org/10.1046/j.1365-2435.2002.00626.x, 2002.
 - Silver, W. L. and Miya, R. K.: Global Patterns in Root Decomposition: Comparisons of Climate and Litter Quality Effects, Oecologia, 129, 407–419, https://doi.org/10.1007/s004420100740, 2001.
- Studer, M. S., Siegwolf, R. T. W., and Abiven, S.: Carbon Transfer, Partitioning and Residence Time in the Plant-Soil System: A

 Comparison of Two <Sup>13</Sup>CO<Sub>2</Sub> Labelling Techniques, Biogeosciences, 11, 1637–1648,

 https://doi.org/10.5194/bg-11-1637-2014, 2014.
 - Teixeira, P. P., Vidal, A., Teixeira, A. P., Souza, I. F., Hurtarte, L. C., Silva, D. H., Almeida, L. F., Buegger, F., Hammer, E. C., Jansa, J., Mueller, C. W., and Silva, I. R.: Decoding the Rhizodeposit-Derived Carbon's Journey into Soil Organic Matter, Geoderma, 443, 116811, https://doi.org/10.1016/j.geoderma.2024.116811, 2024.
- Teixeira, P. P. C., Trautmann, S., Buegger, F., Felde, V. J. M. N. L., Pausch, J., Müller, C. W., and Kögel-Knabner, I.: Role of Root Hair Elongation in Rhizosheath Aggregation and in the Carbon Flow into the Soil, Biology and Fertility of Soils, 59, 351–361, https://doi.org/10.1007/s00374-023-01708-6, 2023.
 - Van der Krift, T. A., Kuikman, P. J., Möller, F., and Berendse, F.: Plant Species and Nutritional-Mediated Control over Rhizodeposition and Root Decomposition, Plant and Soil, 228, 191–200, https://doi.org/10.1023/A:1004834128220, 2001.
- Veeken, A., Santos, M. J., McGowan, S., Davies, A. L., and Schrodt, F.: Pollen-Based Reconstruction Reveals the Impact of the Onset of Agriculture on Plant Functional Trait Composition, Ecology Letters, 25, 1937–1951, https://doi.org/10.1111/ele.14063, 2022.
 - Villarino, S. H., Pinto, P., Jackson, R. B., and Piñeiro, G.: Plant Rhizodeposition: A Key Factor for Soil Organic Matter Formation in Stable Fractions, Science Advances, 7, eabd3176, https://doi.org/10.1126/sciadv.abd3176, 2021.
- Warembourg, F. R. and Estelrich, H. D.: Towards a Better Understanding of Carbon Flow in the Rhizosphere: A Time-Dependent Approach
 Using Carbon-14, Biology and Fertility of Soils, 30, 528–534, https://doi.org/10.1007/s003740050032, 2000.
 - Watt, M., McCully, M. E., and Canny, M. J.: Formation and Stabilization of Rhizosheaths of Zea Mays L. (Effect of Soil Water Content), Plant Physiology, 106, 179–186, https://doi.org/10.1104/pp.106.1.179, 1994.
 - Wen, Z., White, P. J., Shen, J., and Lambers, H.: Linking Root Exudation to Belowground Economic Traits for Resource Acquisition, New Phytologist, 233, 1620–1635, https://doi.org/10.1111/nph.17854, 2022.

- Weng, Z. H., Van Zwieten, L., Singh, B. P., Tavakkoli, E., Kimber, S., Morris, S., Macdonald, L. M., and Cowie, A.: The Accumulation of Rhizodeposits in Organo-Mineral Fractions Promoted Biochar-Induced Negative Priming of Native Soil Organic Carbon in Ferralsol, Soil Biology and Biochemistry, 118, 91–96, https://doi.org/10.1016/j.soilbio.2017.12.008, 2018.
 - Williams, A., Langridge, H., Straathof, A. L., Muhamadali, H., Hollywood, K. A., Goodacre, R., and De Vries, F. T.: Root Functional Traits Explain Root Exudation Rate and Composition across a Range of Grassland Species, Journal of Ecology, 110, 21–33, https://doi.org/10.1111/1365-2745.13630, 2022.
 - York, L. M., Carminati, A., Mooney, S. J., Ritz, K., and Bennett, M. J.: The Holistic Rhizosphere: Integrating Zones, Processes, and Semantics in the Soil Influenced by Roots, Journal of Experimental Botany, 67, 3629–3643, https://doi.org/10.1093/jxb/erw108, 2016.
 - Zhang, X. and Wang, W.: The Decomposition of Fine and Coarse Roots: Their Global Patterns and Controlling Factors, Scientific Reports, 5, 9940, https://doi.org/10.1038/srep09940, 2015.