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Abstract. The Eocene/Oligocene Transition represents a period of profound changes in diatom productivity and
evolutionary history within the Cenozoic era. Unraveling how these changes correlate with climatic shifts during this
transition is crucial for understanding the potential role of diatoms in the cooling trends observed at the Eocene/Oligocene
boundary (~33.9 Ma). Current research predominantly relies on bulk opal accumulation measurements to assess productivity
dynamics, which fails to distinguish the contribution of different biosiliceous (e.g., diatom versus radiolarian) plankton to
total biogenic silica productivity. Furthermore, despite the fundamental role of community composition and diversity in
diatom productivity and carbon sequestration, these factors are often not incorporated in existing studies focusing on the late
Paleogene diatom productivity. The main objective of our work is to explore the potential roles of diatom communities in the
late Eocene climatic changes by focusing on diatom- and radiolarian-specific productivity across multiple Southern Ocean
sites, rather than bulk opal measurements, and by incorporating total diatom abundance into the analysis of diatom diversity
evolution throughout the Eocene/Oligocene transition. By quantifying diatom and radiolarian abundances across four
Southern Ocean sites in the Atlantic and Indian Ocean sectors, and analyzing diatom productivity through recent
reconstructions of diatom diversity from approximately 40-30 Ma interval, our findings reveal a significant increase in
diatom abundance coupled with notable shifts in community diversity. These changes suggest a potential ecological shift,
likely associated with the development of stronger circum-Antarctic currents in the late Eocene. Such shifts could have
influenced the efficiency of the biological carbon pump by enhancing organic carbon export to the deep ocean and thus
potentially contributing to reduced atmospheric CO, levels. While our findings indicate that the expansion of diatoms may
have been a part of the mechanisms underlying the late Eocene cooling, they also highlight the importance of integrating
diatom diversity and community evolution into diatom productivity research. Furthermore, our results offer valuable insights
into the complex relationship between diatom abundance and diversity in the geological record, reflecting the intricate

interplay of environmental and climatic factors.
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1 Introduction

The Eocene/Oligocene boundary (E/O, ~33.9 Ma) marks the end of the Cenozoic Hothouse with high-latitude surface ocean
cooling and an abrupt 1.5 per mil increase in global benthic §'0O values (Shackleton and Kennett, 1975; Zachos et al., 1996,
2001; Coxall et al., 2005; Zachos and Kump, 2005; Coxall and Pearson, 2007; Liu et al., 2009; Westerhold et al., 2020;
Hutchinson et al., 2021). It corresponds to the largest cooling shift of the late Paleogene gradual cooling trend and the abrupt
emplacement/expansion of the Antarctic ice sheet (Lear et al., 2008). Despite the extensive researchlarge—velumeof
research-deseribing the-envirenmental-mosaie of the E/O-transition, the underlying mechanisms are under dispute. The
discussions on the possible mechanismseauses—of-the-abrupt-climatie-state-shift have revolved around threetwe main

domains (1) gradual thermal isolation of Antarctica with the development of the Antarctic Circumpolar Current (ACC)

initiated by the deepening of the Southern Ocean (here and after SO) gateways (Kennett, 1977; Barker, 2001), -and-(2) the

threshold response of the Earth climate to the atmospheric CO, decrease in the late Paleogene (DeConto and Pollard, 2003;

Ladant et al., 2014)-, and (3) the evolution of the west Antarctic rift system, which might have significantly modulated

ice-sheet volume and climate feedbacks (Wilson and Luyendyk, 2009; Wilson et al., 2013).

PropesedThese mechanisms underlying—theE/O—transition—are not—mutually—exelusivepossibly interlinked;; and—beth

oceanographic changes, and-CO, drawdown, and tectonic reorganization of Antarctic topography are supported and

extensively discussed by proxy records and model results as-the-everriding-mechanism-have-suppert (e.g., Scher and
Martin, 2006; Ladant et al., 2014; Elsworth et al., 2017; Paxman et al., 2019; Toumoulin et al., 2020; Hutchinson et al.,

2021; Lauretano et al., 2021; Klages et al., 2024). Within this broader framework, several studies have suggested that

increased SO productivity may have contributed to CO, decline by linking changes in circulation to export

productivity and carbon seguestration_je.g., Diester-Haass and Zahn, 1996: Salamy and Zachos, 1999; Schumacher
and Lazarus, 2004; Egan et al., 2013; Rodrigues de Faria et al., 2024). Although the timing and characteristics of this

productivity shift remain debated (Renaudie, 2016; Wade et al., 2020; Brylka et al., 2024,; Rodrigues De Faria et al.,

2024), it was likely a piece of the broader mechanistic mosaic underlying the E/O transition and Antarctic glaciation.

Diatoms and radiolarians, as major siliceous plankton groups, are pivotal to these discussions, both as contributors to

export production and as proxies for changing nutrient supply and ocean circulation. Their fossil records suggest

significant reorganization across the late Eocene to early Oligocene interval (see Section 1.2)._%&e*isﬁng4ite#atu¥e




70

75

80

85

90

95

1.1 Opal as a paleoproductivity proxy

BiesiliceousBiogenic silica deposition in modern epen-ocean-settingsoceans reflectselosely—eorrelates—with-the—_surface
ocean productivity-dynamies-of the-everbying watereolumn, a pattern observed consistently across diverse regions from the

equatorial to high-latitude Pacific and Atlantic Oceans (Baldauf and Barron. 1990; Barron et al.. 2015). Biogenic silica has
sientficantly higher preservation potential than organic carbon (Tréguer et al., 1995; Ragueneau et al., 2000 and references
therein), signifying the potential of biogenic silica deposition and—its—seeular—trends—in tracking the changing
paleoproductivity trends throughout the Cenozoic. However, using-opal-as-a-paleoproductivity-this proxy is complicated by
spatial-and-temporalvariationsvariability in silica dissolution and preservation, as well as the decoupling of the silica-

carbon relationship from surface waters to sediments (Ragueneau et al., 2000). The factors influencing silica dissolution and
preservation are not fully constrained and are expected to vary significantly under different oceanographic and climatic
conditions throughout the Cenozoic (Ragueneau et al., 2000; Westacott et al., 2021). Although the links between the tempeo
and-mede—ef-opal deposition;—and productivity dynamics are complex, it has been shown that the secular trend of opal
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deposition is closely related with the global oceanographic and climatic changes (Cortese et al., 2004). Additionally, the
evolutionary history of biosiliceous plankton underlying opal deposition during the Cenozoic is a critical but often
overlooked aspect in paleoproductivity interpretations based on opal accumulation. Most available data are based on bulk
opal measurements, which can obscure the contributions of different biosiliceous plankton groups, such as radiolarians
(another extremely important siliceous plankton) and marine diatoms. Assessing the relative contributions of different
biosiliceous plankton groups to opal sedimentation is essential for accurate paleoproductivity reconstructions (Ragueneau et
al., 2000, 2006).

1.2 Prior opal records and the role of diatom diversity in Southern Ocean productivityPrier-epalrecords—fromthe
Seutl O Pal L their imitati

EC€ensiderable—evidence from thehasbeen—aceumulated—showing—that SO_suggests that productivity in the region
increased across-theduring the late Eocene, with the first notable shifts occurring around 38-37 Ma (Diester-Haass and

Zahn, 1996; Schumacher and Lazarus, 2004; Villa et al., 2014; Rodrigues de Faria et al., 2024). The rise in opal deposition

during the late Eocene and at the E/O (Salamy and Zachos, 1999; Diekmann et al., 2004; Anderson and Delaney,

2005; Brylka et al., 2024), has been linked to the growing dominance of diatoms in open ocean settings. Given the

central role of modern diatoms in carbon export through the biological carbon pump (e.g., Tréguer et al., 2018), these

observations have drawn attention to a possible link between increased diatom productivity and atmospheric CO,

decline at the E/O (Salamy and Zachos, 1999; Scher and Martin, 2006; Rabosky and Sorhannus, 2009; Egan et al.,

2013; Renaudie, 2016). However, utilizing the opal deposition history to elucidate the diatom productivity across the

end-Eocene remains challenging because the data so far is based on bulk opal measurements which do not allow to

assess the relative contribution of diatoms and other siliceous plankton, especially radiolarians. Although diatoms

dominate opal sedimentation in modern oceans, radiolarians were more common in the early Paleogene, and the shift

to diatom dominance occurred during a poorly constrained interval in the mid to late Paleogene (Renaudie, 2016).
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The role of diatom diversity in driving productivity is also poorly constrained and often overlooked in

paleoproductivity studies. Most reconstructions addressing late Paleogene opal deposition do not distinguish among

siliceous groups and remain agnostic to the species diversity underlying the opal signal (Salamy and Zachos, 1999;

Diekmann et al., 2004; Anderson and Delaney, 2005; Plancq et al., 2014). Yet in modern ecosystems, diverse plankton

communities are associated with higher biomass production, carbon export, and greater ecological stabilit

et al., 2018; Virta et al., 2019; Hatton et al., 2024). A positive, often unimodal, relationship between diversity and

productivity has been documented across many taxa, particularly groups of plants on global scales (Mittelbach et al.,

2001). However, in paleoceanography, the link between diatom diversity and abundance/productivity is not well

understood. Diatom diversity has at times been used as a proxy for abundance (LLazarus et al., 2014), tough molecular

data complicate this assumption by showing comparable diversity values in both eutrophic and oligotrophic settings

5
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(Malviva et al., 2016). These findings point to the need to re-evaluate the diversity-productivity relationship in fossil

plankton communities using direct, paired observations.

Ceonstraining-the-In_this study, we aim to improve constraints on SO diatom productivity across the late Eocene—early

Oligocene interval by distinguishing the relative contributions of diatoms and radiolarians to total biogenic silica

deposition. We present newly generated mass accumulation rate (MAR) data for both groups, based on the same

sediment samples used in recent biological barium (bio-Ba) reconstructions (Rodrigues de Faria et al., 2024). By

comparing these group-specific accumulation records with bulk opal and bio-Ba productivity estimates, we provide

an independent assessment of siliceous plankton dynamics across the transition. Finally, we explore the relationship

between diatom abundance and diversity to discuss the long-presumed link between diatom diversity and abundance.

. £ | b il ldressine il hami lerlvings the_E/O I i .

2 Methods
2.1 Material

We analyzed diatom and radiolarian abundance data from samples collected from the following SO sites: Deep Sea Drilling
Project (DSDP) Site 511 (Falkland Plateau, 51°00.28'S; 46°58.30'W) (sampled interval ~27-—180 meter below sea floor
(mbsf)), Ocean Drilling Project (ODP) Site 1090B (Agulhas Ridge, 42°54.8'S 8°53.9'E) (~188-335 mbsf), ODP Site 748B
(Kerguelen Plateau, 58°26.45'S; 78°58.89'E) (~96—171 mbsf), and ODP Site 689D (Maud Rise, 64°31'S 3°6'E) (~104--132

mbsf) (Fig. 1). Our study examines 53 samples spanning the temporal interval from the late Eocene to the early Oligocene,
approximately between 39 and 30 Ma, with site-specific coverage varying due to differences in sedimentation history at each

site.

195 DSDP Site 511 (Falkland Plateau) and ODP Site 1090 (Agulhas Ridge) contain hiatuses in the earliest Oligocene, limiting

the temporal coverage of these sites. At DSDP 511, our samples temporal coverage is ~37.5—32.5 Ma. Similarly, at Site
6
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1090, the sampled interval spans ~38—33 Ma, with a hiatus restricting samples from extending well into the Oligocene. In
contrast, at ODP Site 689 (Maud Rise) and ODP Site 748 (Kerguelen Plateau), sedimentation is relatively continuous,
providing a more complete record of the EOT (~36.5—30 Ma at Site 689; ~40—29 Ma at Site 748). All analyzed samples
and corresponding measurements, including diatom and radiolarian abundance data, are detailed in the Supplementary

Materials.
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Figure 1: Map-showing-thelLocations of the studied-sites-in-the- Southern Ocean sites, shown on a late Eocene (paleogeographyic
and paleobathymetricry reconstruction (adapted from Straume et al. 2024). Estimated paleodepths at the E/O boundary: 2436
mbsl at DSDP Site 511; 2036 mbsl at ODP Hole 689D; 1270 mbsl at ODP Hole 748b and 3358 mbsl at ODP Hole 1090B (see

Methods)

In the southern high latitudes, DSDP Site 511 and ODP Site 1090 are notable for being a major locus of biogenic silica
deposition across the Eocene/Oligocene transition (e.g., Dieckmann et al., 2004; Anderson and Delaney, 2005; Renaudie,
2016; Wade et al., 2020). While ODP Site 689D and 748B, in general, do not exhibit the same level of opal productivity,
significant productivity changes have been documented at these sites across the E/O transition (e.g., Salamy and Zachos,
1999; Brylka et al., 2024). These findings signify that these sites provide invaluable insights into the SO productivity in the
areas proximal to the Antarctic continent. They provide essential insights into how opal productivity varies under different

regional settings, offering a broader perspective on productivity changes across the SO.

A comprehensive overview of the updated age models used in this study for each Hole/Site is available in Rodrigues

de Faria et al. (2024); see also Supplementary Text 1. The models can also be accessed via the Neptune Database

(Renaudie et al., 2020, 2023). Paleobathymetry at each site at the E/O boundary was computed using those age models

and each hole lithological decriptions from their corresponding Initial Reports (Shipboard Scientific Party 1983,
1988, 1989, 1999) using PyBacktrack (Miiller et al. 2018). The files used as input for PyBackTrack can be found in the

SOM, as well as its output.
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2.1.1 Sample Preparation

Microscope slides for counting diatom and radiolarian abundances were prepared following a modified version of the
methods described by Moore (1973) and Lazarus (1994) and sieved using a 10 pm sieve. About 0.5-1 gram sediment was
treated with hydrogen peroxide (H,O,) and pentasodium triphosphate (NasP;O;0) over heat, followed by treatment with
hydrochloric acid (HCI). The resulting solution was then sieved through a 10 um sieve. A controlled amount of the residues
was then gently settled over three coverslips at the bottom of a beaker. This approach ensures the material settles randomly

across the coverslips, minimizing potential biases might arise during the enumeration phase (for details, see Lazarus, 1994).

2.2 Diatom and radiolarian absolute abundance and accumulation rates

Absolute abundances for diatoms and radiolarians were calculated by counting specimens on a known area of slides,

following the equation below:

ab =N x (Ab/Am) x (Vp/Vu) x I/'w (1

with N is being the number of specimens counted, Ab the area of used beaker (6079 mm2), Am the area measured in mm?,

Vp the volume of residue prepared in mL, Vu the volume used in mL and w the weight of the dry sediment in gram.

Accumulation rates of diatoms and radiolarians were calculated by multiplying abundance values with the shipboard
measured dry bulk densities and the linear sedimentation rates (LSR). The LSR values applied are based on updated age

models for the targeted sites.

2.3 Diatom abundance and diversity

Our study also examines the relationship between diatom diversity and total diatom abundance, which is essential for
understanding the influence of diversity on overall community productivity in diatoms. Rather than relying on bulk opal
accumulation rates, which do not distinguish the relative contribution of different siliceous groups like radiolarians, we
focused on diatom-specific abundance values. This approach provides a clearer understanding of the relationship between

diversity and abundance within diatom communities.

To explore these interactions, we compared recent diatom diversity reconstructions (Ozen et al., subm.) with diatom
abundance data obtained in this study across the E/O transition. Tthis approach allowed us to directly examine how
variations in diatom diversity correspond to changes in abundance and to explore the potential implications of these

interactions for overall diatom productivity. In our comparisons, by focusing on diatom abundances per gram of sediment,
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we aimed to minimize potential biases associated with accumulation rates, which can be affected by uncertainties in age
models. This approach ensures a more accurate representation of the abundance-diversity relationship, offering valuable

insights into the ecological and environmental factors that influenced diatom productivity during the E/O transition.

3 Results

Our diatom MARSs reveal a prominentclear latitudinal organization in the late Eocene SO.—whichThis is expected, as

diatoms are a major contributor of biogenic sedimentation at sub-Antarctic sites, the-DSDP Site 511 (Falkland Plateau)

and ODP site 1090 (Agulhas Ridge)-sediments, where biogenic silica is the main sedimentary component across the study
interval (Renaudie, 2016; Wade et al., 2020: see Fig. S1).

In the sub-Antarctic Atlantic,-diatomMARs-at-ODP Site 1090 diatom MAR increased shew-an-inereasingtrend-from ~38
Ma onward, peaking at—around 36.8 Ma, in-seod-agreement-withclosely matching previously published bulk opal MARs
(Diekmann et al., 2004; Anderson and Delaney, 2005, see Fig. 2d and 2e¢). Site 1090 had an average diatom MAR of 1.26

x 107 frustules/cm*kyr (with standard deviation (std dev.) 9.48 x 10% ranging from 5.88 x 10° to 3.26 x 10". The total

number of samples (N) = 15). At DSDP Site 511, diatom MARs gradually rose throughout the late Eocene, peaking

near 33.4 Ma (1.76 x 10%, see Fig. 2e¢), with notably higher accumulation rates (mean = 5.73 x 10" + 4.97 x 10’; range:

1.65 x 107 — 1.77 x 10%, N = 9). The overall diatom MAR trends at this site alicn well with recent bulk opal

accumulation rates (Brylka et al., 2024, Fig. 2d). Fig. 3a shows the distributional characteristics of diatom MARs at

both sites. Me
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Figure 2. (a) Global composite benthic foraminiferal *C and (b) 6‘80 records (from Westerhold et al 2020) (c) COz compllatlon
(from Zhang et al 2013 Anagnostou et al., 2020). (d) Biate : eed ; ;
; udy)-and-Bbulk opal accumulation rates (gr cm’ kyr , solld lmes) from DSDP 511 (yellow, Brylka et al.,
2024), ODP 1090 (blue, Diekmann et al., 2004; Anderson and Delaney 2005), Kerguelen Plateau ODP Sites (light green, 744 and
280 | 738; dark green 748) (compiled from Ehrmann, 1991; Ehrmann and Mackensen, 1992; Salamy and Zachos, 1999, Brylka et al.,
2024), and ODP 689 (Faul and Delaney, 2010). (¢) Diatom mass accumulation rates (MARs) (diatom cm kyr™'; scatter points with
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solid lines; this study) and (ef) Bbiogenic barium (bioBa) accumulation rates (umol cm? kyr") from ODP Sites 1090, 689, and 748
(from Rodrigues de Faria et al., 2024).

In-the-Antarctic sites; showed lower and more variable diatom MARs (Fig. 2e and 3a). Adiatem-MARs-at ODP Site 689
(Maud Rise), diatom MAR exhibited prominent peaks (within the temporal precision of our data) fluctuate-across
the-E/O—transition,—with-distinetive-peaks-at ~35.5 Ma, 33.6 Ma, and 32.3 Ma, with_an_average value of 7.92 x 10°
frustules/cm?/kyr (std dev. is 1.16 x 10°, range: 4.92 x 103 — 3.94 x 10°, N = 16; see Fig. 2¢). At-—In-the Indian-Ocean
seetor;-at- ODP Site 748 (Kerguelen Plateau), diatom and bulk opal MARs are in agreement after ~37.5 Ma, suggesting

increasing diatom contribution to the total opal productivity towards the E/O boundary. Mean diatom MAR at this site is

3.74 x 10°, with minimum and maximum values of 2.86 x 10° and 3.63 x 10°, respectively (N = 18). At this site, it has

been shown that across the middle Eocene, other siliceous groups, ebridians and radiolarians, dominate the record
(Witkowski et al., 2012). Combined with our results, this suggest that diatom dominance in the Kerguelen Plateau region
started in towards 37 Ma, which is consistent with our sample surveys that there is a strong presence of ebridians in our

samples preceding ~38 Ma_(See Supplementary Data 1). Moreover, our results show that, compared to the other sites,

diatom MAR at ODP Site 748B changed substantially between Eocene and Oligocene (Fig. 3a), with a mean of 4.8 X

10* frustules/cm?*kyr in the Eocene and 1.03 in the Oligocene.
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Figure 3. Distribution of MARs (specimen cm kyr'; in log scale) for (a) diatoms and (b) radiolarians at each studied site (x-axis).
Eocene and Oligocene samples are shown separately (see legend). Lines within each distribution indicate the quartiles, marking
the median, the 25" and 75" percentiles.

Our diatom MARs, combined with published bulk opal MAR records, reveal two distinct intervals during the EOT, 36.5—
35.5 Ma and 34—33 Ma, when opal productivity at Antarctic sites (ODP 689 and 748) sharply increased, surged-to-levels
approaching these-ofthe-sub-Antarctic Atlantic levels (Fig. 2d and 2e). Although sub-Antarctic sites (DSDP 511 and ODP
1090) maintained consistently higher opal productivity throughout the EOT, the-Antarctic sites experienced transient but

significant increase in diatom MARs during these intervals-These-Antarctic productivity peakstemporally-, bringing opal
flux levels closer to those observed at sub-Antarctic sitesharrowed-the-gap-between-the-two-regions.

Crueially,—tThese intervals, of Antarctic and sub-Antarctic diatom MAR convergences, unfolded under distinct climatic
conditions. The first (~36.5-35.5 Ma) interval broadly aligns eeineided with the late Eocene warming event, which has
been documented at multiple high-latitude SOeuthern-Ocean sites (ODP Site 689 (Maud Rise); ODP Sites 738, 744, 748
(Kerguelen Plateau); DSDP Site 277: (Diester-Haass and Zahn, 1996; Bohaty and Zachos, 2003; Villa et al., 2008, 2014;
Pascher et al., 2015). In contrast, the later interval (~34-—33 Ma) broadly concomitanteerresponds with a sharp increase in

global foraminiferal 3'*O in the earliest Oligocene, signalling substantial cooling and the onset of permanent Antarctic

glaciation (Fig. 2b and 2d)._Although diatom MAR at Antarctic sites temporarily approached sub-Antarctic levels

during both intervals, the associated environmental conditions differed markedly.

Radiolarian MAR patterns are broadly in agreement with diatom MARs acro_ss the E/O transition, derived from the same

samples (Fig 4c). Ourresults-are summarized—in-Fie-3—-At ODP Site 1090, —eurradiolarian MARs revealshowed two

prominent peaks at ~37 and 34.5 Ma. The mean accumulation rate at this site is 7.43 x 10° radiolaria/cm?/kyr (£4.56 x

105, range: 3.29 x 10*-1.60 x 10°. -At DSDP Site 511, diatoms MAR values remained relatively stable throughout the

late Eocene, exhibiting significant increases towards and after the E/O boundary, at approximately 34 Ma and 33.5

Ma (mean = 6.34 x 10° & 4.53 x 10°, range: 1.79 x 10°-1.56 x 10°). do-notshow-any-substantial-change-across-the-Eocene

ndar diolarian- MARc reve nes at -2/ nd
ary a arta v vea W H a a a a =3

At ODP Site 748, the-majorradiolarian MAR peaked eceurs-notably at ~36.5 Ma, followed by a significant-dropsubstantial
decline, and recovered to pre-E/O levels only around 30.5 Ma (mean = 1.01 x 105 £7.61 x 10%, range: 1.73 x 10*-3.06 x

12
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Ma-—Valuesfor ODP sSite 689 indicated two prominent peaks, between 36-—35 Ma, and at ~31.5 Ma,- with a lower average
335 | MAR of 6.49 x 10* (£6.20 x 10*, range: 3.89 x 10°-1.85 x 10°).-Interestingly,—our—resultsreveal-that-the-difference

an- NAR

Ma-enwards: From ~35 Ma onward, radiolarian MAR differences between sub-Antarctic Atlantic (sites 1090 and

511) and Antarctic (sites 689 and 748) sites became more pronounced, reflecting an increasing contrast in

accumulation rates during the latest Eocene — early Oligocene (Fig. 4¢; see also Fig. S2).
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Figure 34. MWMH%(Wﬂ%W*MHmMMMMComDMiSOH of (a) bulk opal, (b)
diatom, and (c) radiolarian accumulation rates (specimen cm? kyr™!) at SO sites. Site colors are consistent across figures. Diatom
and radiolarian data are from this study, while bulk opal accumulation rates (a; g cm? kyr™, solid lines) are compiled from the
following sources: DSDP 511 (vellow; Brylka et al., 2024), ODP 1090 (blue; Diekmann et al., 2004; Anderson and Delaney, 2005),
Kerguelen Plateau sites ODP 744 and 738 (light green) and ODP 748 (dark green) (Ehrmann, 1991; Ehrmann and Mackensen,
1992; Salamy and Zachos, 1999; Brylka et al., 2024), and ODP 689 (Faul and Delaney, 2010).

3.21 Correlations between diatom diversity and abundance

Diatom abundance and diversity showed varied correlations among sites across the late Eocene — early Oligocene

interval (Fig. S3). At DSDP Site 511, exhibiting the highest species diversity, diatom abundance and diversity were in great

agreement across the E/O transition (Fig. 4c; see also Fig. S3). At ODP Site 1090, diatom abundance and diversity were
generally synchronous-in-trends, except a-cleardiversence-between approximately 37 and 34.5 Ma, during which diversity

values stayed relatively low and constant while abundance values showed the highest values. Moreover, the pronounced
peaks in diatom abundance around 36.8 and 34.5 Ma did not correspond with similar increase or trend shift in diatom
diversity (Fig. 45d). In contrast, at ODP Sites 689 and 748, diatom diversity and abundance values were in agreement (Fig.
45b and 45¢; Fig. S3). At ODP Site 748, there was a substantial increase in both bulk opal (Bryltka et al., 2024, Fig. 45a) and

14



375 diatom abundance, reaching values similar to those seen at sun-Antarctic Atlantic sites ODP 1090 and DSDP 511. However,

diversity values remained significantly lower compared to those documented at the sub-Antarctic Atlantic sites (Fig. 45¢).
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Salamy and Zachos, 1999:; Brylka et al., 2024), and ODP 689 (brown, Faul and Delaney, 2010) (b-e) Diatom diversity (scatter
points) with Chaol diversity estimates (solid line, 95% confidence envelope) (Ozen et al., subm.) and diatom abundance per gram
sediment (scatter points, dashed lines).

4 Discussion
4.1 Diatom _and radiolarian productivity and opal record across the middle-to-late Eocene transition (~36-38 Ma)

Although the-exaet timing and mode of opal productivity (that is, the relative contribution of diatoms and radiolarians,

the underlying diatom diversity, and whether the flux is pulsed or gradual)patterns differ across-the-amongstudied

sites, our results suggest a substantial reorganization of that-SO diatom and radiolarian productivity experienced
substantialreorganization-between ~36-38 and 36 Ma. In the sub-Antarctic Atlantic, bulk opal recerds-at ODP Site 1090
shows a gradual- increase 38 Ma onwards, intensifying by ~37 Ma (Dieckmann et al., 2004; Anderson and Delaney, 2005).
Our diatom MARs frem—this—site—greatly—agree—with—closely follow this trend, suggesting inereasinggrowing diatom

dominance in the region.

This shift in-SO-productivity-was not confined to a single site or proxy but occurredreflects—a-broader reorganization

across multiple eeceanie—sectors: —during—the—middle-to-lateEocene—transition—In—theSeouthern—Pacifie;—radiolarian
communities in the South Pacific vnderwentrestructuringreorganized (Pascher et al., 2015)-, -In-the Indian Oceanseetor;

and in the Indian Ocean sector both bulk opal and diatom MARSs rise between ~38-36 Ma (Fig. 2d-e, ODP 748 and

744), in parallel with evidence for increasing eutrophic conditions from calcareous nannofossil assemblages-alse-show

MM%M%%%WWW(VHM et al., 2014, see Fig. S4),

confirming that the diatom signal reflects a real productivity shift.

In the Atlantic sector.s benthic foraminiferal accumulation rates (Diester-Haass and Zahn, 1996, see Fig. S5) and

radiolarian communities (Funakawa and Nishi, 2008) record this shift in productivity and environmental conditions.
Bio-Ba records from ODP Sites 1090, 689, and 748 (Rodrigues de Faria et al., 2024) document a ~37 Ma export
productivity peak that is synchronous with the diatom MAR rise at ODP Site 1090 but leads peaks at Antarctic-
adjacent sites (ODP 689, 748) by ~0.5-1 Myr (Fig. 2e). This offset does not reflect differences in age models, as

identical samples and age models were used in both datasets, and likely reflects regional environmental controls

during middle-to-late Eocene, including latitudinal differences in sea-surface temperature (e.g., Douglas et al., 2014;

Sauermilch et al., 2021), variations in nutrient distribution, and circulation patterns influenced by still-shallow SO

gateways (e.g, Sauermilch et al., 2021; Rodrigues de Faria et al., 2024). Similar productivity reorganizations—are
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What does this productivity reorganization across the middle-to-late Eocene transition (~38-36 Ma) signify? It

encompasses a suspected ephemeral East Antarctic glaciation, namely Priabonian Oxygen Maximum (PrOM, ~37

Ma; Scher et al., 2014). This event is marked by a sharp negative Neodymium (Nd) excursion within a broader late

Eocene positive trend (Scher and Martin, 2006; Scher et al., 2014; Wright et al., 2018). Previous studies link PrOM

cooling to productivity shifts across SO sectors (e.g., Villa et al., 2014; Pascher et al., 2015; Rodrigues de Faria et al.,

2024) through mechanisms involving transient intensification and organization of a proto-ACC that enhanced frontal

upwelling and nutrient delivery (e.g., Rodrigues de Faria et al., 2024). This interpretation is consistent with modellin:

results suggesting that even a shallow opening of the Drake Passage, which likely during the late middle-Eocene

(Scher and Martin, 2004; 2006), could have reorganized ocean flow and promoted proto-ACC formation (Toumoulin

et al., 2020). A comparable mechanism operates in the modern SO, where the strength of the latitudinal temperature

gradient controls westerly wind intensity, which governs ACC transport and the intensity of wind-driven upwelling

(R. Rintoul et al., 2001). In parallel, PrOM cooling, in line with southern high-latitude SST compilations (O’Brian et

al., 2020), would have steepened the temperature gradient, intensified the westerlies that drive proto-ACC, and

increased Ekman divergence, delivering nutrient-rich waters to the surface ocean. Silicon isotope data further

support this scenario, indicating increased diatom silicic acid utilization during this interval and pointing to enhanced

silicic acid supply to surface ocean via intensified upwelling (Egan et al., 2013). Consistent with this, although site

level responses vary, diatom and radiolarian accumulation rates between 38 and 36 Ma show positive covariation at

Agulhas Ridge and the Kerguelen Plateau. This pattern is more consistent with a shared physical driver, enhanced

upwelling and nutrient supply, than with competitive replacement under constant nutrient conditions.

17



450

455

460

465

470

475

480

We note that, in addition to diatoms and radiolarians, other sources of biogenic silica, such as sponge spicules,

silicoflagellates and ebridians, can also contribute to bulk opal, which may complicate direct comparisons with

oroup-specific records. In our samples, these groups are not a significant component. Qur focus therefore remains on

diatoms and radiolarians to assess how their contributions changed through time within the broader biogenic silica

pool, rather than attempting a one-to-one correspondence with bulk opal records.

Viewed in bBroader context, these productivity changes in planktendiatom and radiolarian recordpreduetivity—_(as
summarized-above)-and community composition—{e-gPaseheret-al—2015: Ozen ot-al_subm) across the middle-to-late

Eocene transition (~36-38 Ma) (e.g., Pascher et al., 2015; Ozen et al., subm.) are interpreted here as a response to

increasing SO circulation and associated enhancements in nutrient distribution and upwelling. At the same time, this

transition marks the onset of global rise in diatom abundance and diversity (Renaudie et al., 2016), and in our

records diatom MARs show a net increase at all sites except ODP 689 during the subsequent interval, pointing to a

basin-wide reorganization of diatom export. Indeed, comparable opal productivity surges during ~38-36 Ma are

recorded in the equatorial Atlantic (Nilsen et al., 2003: Fig. S6) and northern Atlantic (Witkowski et al., 2021),

suggesting that reorganization had a broad geographic reach and may reflect the strengthening of a cross-latitudinal

circulation system e
eireulation-system;-akin to the modern Atlantic Meridional Ocean Circulation (AMOC). Indeed, it has been proposed that ~

38 Ma onwards this circulation started to strengthen under the effect of increasing circum-Antarctic circulation, eften-termed

as-the proto-ACC, which is an integral part of the cross-latitudinal circulation across the Atlantic (Borrelli et al., 2014). This
aligns with our diatom accumulation rates, which show a substantial reorganization 38 Ma onwards, aligning with
carlierand-as—well-as—with-the previeus paleoproductivity reconstructions suggesting a substantial productivity increase
across the SO sites between 36-—38 Ma (e.g., Diester-Haass and Zahn, 1996; Pascher et al., 2015; Rodrigues de Faria et al..
2024). Although the precise timing and sequence of SO gateway opening Hewever;-there-are-numerous-controversies
on-evolution-and steps-of-the development of- circum-AntarcticAtlantie circulation patterns remain debated (Diester-
Haass and Zahn, 1996; Mackensen, 2004; Stickley et al., 2004; Scher and Martin, 2006; Livermore et al., 2007; Barker et al.,
2007; Hodel et al., 2021; Evangelinos et al., 2024), i i i i

cateways;-the balance of evidence suggests— a-system—of-cireulation—which-got-started-te late Focene strengthening of
circum-Antarctic circulation-in-the late Eocene, possibly during the middle-to-late-Eocene transition, that set the stage

for a large-scale reorganization of SO productivity and the growing dominance of diatoms.:
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4.2 Opal pulse across at the E/O boundary

Two overarching patterns characterize SO productivity across the E/O boundary (~35.5-32 Ma): (1) strong regional

heterogeneity (see Brylka et al., 2024; Rodrigues De Faria et al., 2024), and (2) distinct latitudinal responses. During

the latest Eocene, diatom and radiolarian MARs diverge between sub-Antarctic (DSDP 511; ODP 1090) and
Antarctic sites (ODP 689; ODP 748). At the Antarctic sites, both groups decline (Fig 4b-c), consistent with low bulk-

opal values on the Kerguelen Plateau and bio-Ba signals (Fig. 2d and 2f). In contrast, sub-Antarctic records show

high latest-Eocene productivity: bulk opal, diatom MARs, and bio-Ba peak near ~34.5 Ma, especially at Agulhas
Ridge (ODP 1090), while the Falkland Plateau (DSDP 511) maintains high diatom productivity (see Fig 2d-e).
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Latitudinal divergence between sub-Antarctic and Antarctic sites strengthens from ~35.5 Ma onward (Fig. 4a-c; Fig.

S2). This divergence is also evident in radiolarian productivity: before ~35.5 Ma, radiolarian MARSs co-vary between

the two regions, but from 35.5 Ma onward they diverge, signalling a change in biogeography and productivity.

Indeed, radiolarian endemism in the southern high latitudes rises from ~35.5 Ma (Lazarus et al., 2008), consistent

with greater regional isolation or reorganization of water masses. Tectonic reconstructions point to further

Tasmanian Gateway (TG) deepening at about the same time (Stickley et al., 2004), although Nd-isotope data imply

that fully developed deep throughflow likely did not establish until the Neogene (Evangelinos et al., 2022). A step-like

increase in the negative Ce anomaly at ~35.5 Ma indicates increased oxygenation of thermocline and bottom waters in

the SW Pacific (Hodel et al., 2022), and the authors link this change to TG tectonic evolution and enhanced vertical

mixing. Against this background circulation change, the Kerguelen Plateau region records a gradual ecological

transition from a radiolarian-dominated to a diatom-dominated phase (Fig S7). This shift occurs while overall opal

flux remains low in the Antarctic-adjacent sites, pointing to altered competitive balance between siliceous plankton

rather than a simple increase in nutrient supply. Broader confirmation of circulation reorganization comes from

dinocyst biogeography and sedimentological evidence, which record stronger SO circulation and surface cooling from

~35.7 Ma (Houben et al., 2019).

Taken together, these lines of evidence indicate that circum-Antarctic circulation, which had already begun to

strengthen across the middle-to-late Eocene transition, underwent further intensification from ~35.5 Ma. We

interpret this reinforcement of circulation and vertical mixing as the main driver of the growing divergence between

sub-Antarctic and Antarctic sites. Model simulations are consistent with this view: experiments with late-Eocene

boundary conditions show that progressive gateway deepening enhanced eastward circumpolar flow, reorganized

upper-ocean circulation, and shifted deep-convection zones northward toward ~40 °S, encapsulated the Agulhas

Ridge region (Toumoulin et al., 2020). This circulation shift has indeed been linked to substantial export productivity

at ODP Site 1090 in the latest Eocene (Rodrigues De Faria et al., 2024; Fig. 2f), which possibly also underlies the opal

roductivity burst and overall high diatom productivity we observe at this site (Fig. 2d-e). At the same time, this

northward shift of deep-convection would have reduced circulation strength in Antarctic-proximal sectors,

particularly the Weddel region (see Toumoulin et al., 2020), which in turn would have reduced upwelling, nutrient

supply, and export production (Rodrigues De Faria et al., 2024). The combined effect of a further strengthenin

proto-ACC and a weakened Antarctic circulation system offers a plausible mechanism for the sustained decline in

diatom and radiolarian productivity at Antarctic sites from ~35.5 Ma to the E/O boundary.
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In Antarctic-adjacent sites, the latest Eocene low-productivity regime shifts at the E/O boundary. Diatom MARS rise

sharply, closely matching bulk-opal accumulation (Fig 2d) and coinciding with the largest increase in_global §'*0

values (Fig. 2b), suggesting a link between the East Antarctic glaciation, cooling, and enhanced diatom productivity.

Clay-assemblage studies suggest stronger physical weathering in the earliest Oligocene at Maud Rise (ODP 689) and

the Kerguelen Plateau (ODP 748) (Robert et al., 2002). Such weathering likely increased silica input and fueled

higher productivity in these regions. Consistently, the earliest-Oligocene Nd-isotope excursion in the Kerguelen

Plateau, tied to glaciation and weathering (Scher et al., 2011), strongly correlates with opal flux (see Fig. S8),

reinforcing the link between continental discharge and silica supply. In contrast, radiolarian productivity does not

return to early late-Eocene levels (Fig. 4¢). Instead, it remains low while diatoms increase strongly, suggesting that

diatoms progressively gained dominance, likely reflecting their competitive advantage in utilizing the available silicic

acid.

We note that geographically variable diatom flux across SO sites may not necessarily imply regionally inconsistent

forcing. Sub-Antarctic sites supported diverse diatom communities (see Section 4.3) and already sustained high fluxes

in the late Eocene, likely operating close to ecological carrying capacity, which may have muted the magnitude of

their response. The biological basis for such a ceiling is well captured by the relationship between abundance and

silicic acid in coastal upwelling zones: sedimentary diatom abundance increases as silicic acid concentrations rise

until a threshold is reached, beyond which further silicic acid input yields little additional diatom accumulation

(Abrantes et al., 2016). This diminishing return complicates efforts to trace a coherent sequence of diatom

productivity and oceanographic reorganization across the SO, because increased silica supply via upwelling in

already productivity sub-Antarctic regions, such as DSDP 511 and ODP 1090, may have altered community

composition or frustule silicification rather than producing a proportional increase in diatom productivity and thus

opal flux.
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\ 4.53 Diatom diversity and productivity: A cause/effect relation?

One of the most-eritical-defining features of SO opal productivity across the E/O transitions is that-it-is—concurrentits

parallel with the—substantialmajor changes—in—community —compositions— _in both diatom and radiolarian
communitiescommunity composition (Funakawa and Nishi, 2008; Lazarus et al., 2008; Pascher et al., 2015; Ozen et al.,

subm.). Under the influence of the dynamic climatic and oceanographic features of the SO, and within the precisionlimits of

the fossil data resolutionprevides, it is a complex task tracking the exact ecological response dynamics of the biosiliceous
plankton. The changing diatom community composition and increasing diversity (Ozen et al., subm.), is however expected to

be positively associated with the range of functional traits within the community (Tréguer et al., 2018), and this to increasing
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efficiency in the nutrient utilization which is one of the operating terms for the biological carbon pump efficiency (Farmer et

al., 2021).

Hewever,—tThe close relationship between observed diversity and diatom MARs and abundance, however, does not

necessarily reflect a simple cause-effect link. Observed diversity could increase as a function of abundance through

ecological interactions, or it could be an artefact of higher opal flux, better frustle preservation, and thus more

morphologies recorded. m

—Our findings suggest that while there is a

notable correlation between diversity and abundance (see Fig. 45b-e), the directionalityeftheirintluencerelationship is not
straightforward, reflecting a more intricate interplay between these two metrics. AFer-instanece—at ODP Site 748, for

instance, diatom abundance rise sharply induring the earliest Oligocene (Fig. Se), diatom-abundance-shows-asignificant
inerease{Fig—4e); yet diversity remains relatively low, barely reaching 30 species. This contrasts with observations at ODP

Site 1090, where similar abundance values are associated with much higher diversity, suggesting that abundance alone does
not drive diversity (Fig. 5d). Furthermore, at ODP 1090, a period of consistently high diatom abundance between 36.5 and
34.5 Ma corresponds to relatively low and stable diversity—values, indicating community stability rather than a direct
abundance-diversity relationshipcoupling. Notably, this interval at ODP Site 1090 is marked by the dominance of a specific
diatom genus, Pyxilla, (Ozen et al., subm.) which is likely contributed to the observed stability in diversity despite high
overall abundance. Interestingly, in the second opal pulse at ODP 1090, diversity declines even-aswhile abundance remains

high, further illustrating thatquestioning the-assumption-that-these-two-metries;-diversity and abundance need not covary,

are—chrecthtinked—orthatobrerreddiversibisprimarib—eontrolled-bypresepvation nor can diversity be reduced to a

function of preservation alone.

On the other hand, data from DSDP Site 511 —fer-example-reveal a strong alignment between diatom abundance and

diversity (Fig. 45¢). This can be interpreted in an ecologic context, suggesting that the strength of the diversity-abundance

relationship between-diversity-and-abundanee-can vary considerably depending on the site-specific conditions, community

composition, and the associated functional groups. Comparable patterns are seen in the modern ocean: metabarcoding

surveys indicate that diatom diversity is not uniformly coupled to abundance but instead reflects the balance between

a few dominant species and many rare ones, structured by regional circulation and ecological filtering (Malviya et al.,

2016). This perspective reinforces the importance of incorporating biological and ecological dimensions into

palaoproductivity studies on diatoms, in line with previous work emphasizing the role of community composition in

maintaining ecosystem function and the efficiency of carbon export through diatomaceous pathways This—variability

e-g(Tréguer et al.,
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ies—Taken together, oOur results suggest
that the interplay between diatom diversity and abundance is not merely additive.- }tis-more-like-a-complexbut a feedback

loop modulated by external environmental conditions.

4.64 Diatom productivity and its possible role in the E/O cooling

Studies to date indicate that, across the EOT, SO regions experienced substantial shifts in productivity Studies-to-date

iy-(e.g.,
Diester-Haass and Zahn, 1996; Diekmann et al., 2004; Anderson and Delaney, 2005; Egan et al., 2013; Villa et al., 2014;
Plancq et al., 2014; Pascher et al., 2015; Rodrigues de Faria et al., 2024). These shifts provideform athe basis for the
hypothesis that increasing productivity may-have-contributed to declining-CO, drawdown levels-at-the-end-of the Eocene
through the biological carbon pump (Salamy and Zachos, 1999; Scher and Martin, 2006; Egan et al., 2013). Our

findingsresults add weight to this view: records across the EOT show rising diatom accumulation together with

increasing community diversity ind

eemmumﬂe&(Ozen et al., subm. ) consistent w1thﬁ%n9%&bl%f%&&&%eﬁﬂ%%$@q@méu€ﬁw%w%%mﬁmmgﬂ%¥&%%%%ﬂ%

Si isotope proxyevidence for pulses of silica utilization and associated

changes in _carbon_export (eg Egan et al., 2013)%%%&6%@%&%%&%%%%%&49%&&%

drawdown—across—the—E/O—transition- We emphasize, however, that diatom productivity was not an overriding

mechanisms in itself but one element within a broader climatic and oceanographic mosaic that together shaped CO,

drawdown across the E/O boundary.

A frequent cCriticism of a diatom-driven increase in productivity and its potential role in E/O cooling is that opal-rich

sediments are restricted to a few regions—e

component-outside, for-instance, such as the Agulhas Ridge and Falkland Plateau regions (e.g., Wade et al.. 2020).
However, this arsumentview is-largely shaped-byreflects sediment classification systems that emphasize the most abundant

component and have historically favored carbonate-rich deposits. Several biases contribute to the underrepresentation of
biogenic silica in the deep-sea sediment record: (1) a bias towards carbonate pelagic sedimentation due to substantial
carbonate rock weathering on land, (2) pelagic primary sediment names based on the most abundant single sedimentary
component, and (3) a historical preference in deep-sea drilling for well-preserved carbonate sections, often chosen for
geochemical studies. As a result, compilations which rely only on primary-dominant sediment typesnames, mostly reflect
pelagic carbonates while underestimating the presence of biogenic silica. In contrast, studies usingthat-make use—of
quantitative estimates of biogenic silica-in-sediments-(e.g., smear slide analyses, Renaudie, 2016) are-in-principle-aprovide a
more accurate, though still incomplete, picture ofrepresentation—of-the history-eof biegenie silica accumulation. Given
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these limitations, the absence of opal-dominated sediments in broad sediment classifications does not contradict the evidence
for increased biogenic opal deposition. Indeed, our results-consistentl: show a clear rise in biogenic opal across all targeted

sites, providing & robust line-ofevidence for enhanced diatom productivity across the EOT.

However, the mode and magnitude of the opal deposition/preservation vary between the-sites, reflecting local depositional
settings and preservation conditionsas—a—natural-consequence—of-the fact-that-depositionprocesses—in—each-siteis
controlled by geologically differentsettings. Despite these differential geological filters, intervals of productivity

reorganization identified in earlier studies are also evident in our records. Importantly, these productivity events

coincide with taxonomic shifts in e

reorganizations within diatom communities (Ozen et al., subm.), whichchanges that may have might tuned the efficiency

of the biological carbon pump (Tréguer et al., 2018).

DOver-and-abeve-these;-diatoms are particularly efficienteffective-at-the-earboen—_exporters into-the-deep-oceanof organic
carbon (Ragueneau et al.. 2000; Tréguer et al., 2018). }tisknewn-that-dDiatom--dominated export buffers particulate

organic carbon (POM) much—better—than—e.g—coceolithephere sourced—expert—against microbial decomposition in the

mesopelagic zone far more effectively than coccolithophore-dominated fluxes (e.g., Cabrera-Brufau et al.. 2021). -Theus, the

late Eocene increasinge in diatom abundance and diversity in-diatoms-would-thus have improved the efficiency of the
biological carbon pump, and-thus-enhancinged drawdewn-ofCO, drawdown even without an_marked riseinerease in total
SO productivity. This effect gains further weight considering thatEastly; the Eocene CO, levels values-proposed-for-the
late Eocene-were already close tovery near-the these propesed-as—_threshold values (~750 ppm) thought necessary for
initiating-Antarctic ice_sheet initiations (DeConto and Pollard, 2003), though we note that such thresholds are model-

dependent and vary with boundary conditions (Gasson et al., 2014). Thus, increasing oceanic productivity; and the
greater efficiency ofenhaneed; diatom-mediated efficieney—ef-carbon export mayight have played-arole-asprovided the
final touch that in-pusheding-the- CO, levels below the boundary conditions, and-thus-contributinged to the E/O climate
shift.

5 Conclusion

This study focuses on the complex-dynamics of diatom productivity and community diversity duringacross the late Eocene,

a-periodin-which-the-final-decline-ofas the Cenozoic Hothouse teok-placecame to an end and particularhymarked-in-the SO
underwent _a major productivity reorganization by-an—epal-pulse—aroundform ~3837- Ma onward. Our findings

revealshow that-thisperiod-saw a proneunecedmarked increase in diatom abundance_alongside;—eeineiding—with-a major
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reorganizations in both diatom (Ozen et al., subm.) and radiolarian (Lazarus et al., 2008; Pascher et al., 2015) communities,
as-well-as-anconsistent with an overall rise in preductivity-aeross-the-SO_productivity (e.g., Diester-Haass and Zahn, 1996;
Anderson and Delaney, 2005; Villa et al., 2014; Rodrigues de Faria et al., 2024). These changes point to a broad
evolutionary and productivity shift, Fhissuggests—a-widespread-evelutionary-and-produetivity-shift-likely driven by

major changes in ocean circulation, including the early development of the Atlantic Meridional-Overturning Cireulation
tAMOC) (e.g., Borrelli et al., 2014) and the strengthening of the circum-Antarctic currents (e.g., Houben et al., 2019:

Sarkar et al., 2019; Rodrigues de Faria et al., 2024).

Bulk opal recordseentent-and-its—accumulationrates are not fully informative-metries for te—understanding diatom
productivity dynamies-and its impact on the biological carbon pump and thus atmospheric CO,. #This is because (+)-bulk
opal aceumulationratesmeasurements (1) fail to differentiate between contributions from diatoms and other biosiliceous

plankton, Hkesuch as radiolarians;te-the-tetal-biogenie silicaproduction and (2) overlook the biological background of
productivity, particularly diversity and community composition, which diatem—diversity—is a_criticaln—impeortant

eontributer-to_component of diatom-mediated carbon sequestration (Tréguer et al., 2018). Our study integrates both the
diversity and abundance dynamics of diatoms across the EOT during the late Eocene, revealing that increases in both the

inereased-abundanee-and-diversity-of diatoms-likely enhanced the efficiency of the biological carbon pump from aeress
thelate Focene,-38 Ma onwards. This enhancement reflects not only higher diatom abundance but also more effective

nutrient utilization linked to diversity, i

nutrient-utilization-with-inereasing diversity;-which together may have facilitatedsupported a stronger carbon flux to the
ocean interior for a sustained period of time. We therefore highlight SO diatom expansion,

Our—observations—through both en—thesynthesis—ef-diatem—abundance and inereasing—diversity, as an important

arecomponent of the late Eocene carbon cycling. While the precise strength of the link between diatoms and global

cooling across the EOT remains uncertain, our results support the view that diatoms contributed to the efficiency of

the biological carbon pump during this critical interval, and that their role deserves continued attention in

underestimating the mechanisms behind Cenozoic climate dynamics. particularhysignificant-given-the role-diatomsplay
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