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Abstract 19 

Future hydrological droughts in reservoir-regulated regions remain unclear due to the 20 

complex interactions between climate change and reservoir operation. Existing studies usually 21 

make simple empirical assumptions about historical reservoir operation patterns to explore the role 22 

of climate change and reservoir operation on hydrological drought without even considering the 23 

role of optimal reservoir operation policies. Here, we take the upper Hanjiang River basin (UHRB) 24 

in China as a typical example to project its future hydrological drought evolutions using various 25 

standard streamflow indices (i.e., SSI-1, SSI-3, and SSI-12) and to quantify the role of each 26 

relevant factor. A new LSTM+Reservoir that combines a long and short-term memory (LSTM)-27 

based hydrological model with a physics-guided LSTM reservoir model is used to perform future 28 

projections using the meteorological outputs of five bias-corrected global climate models (GCMs) 29 

under three shared socioeconomic CMIP6 pathways (SSP126, SSP370, and SSP585). The results 30 

indicate that future climate change over the UHRB tends to reduce natural streamflow and 31 

exacerbate hydrological droughts, especially in the far-future period (2071-2100) under the 32 

SSP585 scenario. The operation of Ankang reservoir can mitigate drought frequency, duration, 33 

and severity for short-term SSI-1 and SSI-3 but fails for long-term SSI-12. Additionally, optimal 34 

reservoir operating policies that aim to maximize hydropower generation and pow generation 35 

guarantee rate can well reconcile the trade-off between short-term hydrological drought and 36 

hydropower benefits, which underscores the necessity of future reservoir operation improvements. 37 

 38 

1 Introduction 39 

Hydrological droughts, characterized by abnormally low streamflow in rivers, have 40 

significant direct and indirect ramifications on hydrological, agricultural, and social-economic 41 

sectors, such as losses of crops and hydropower generation (Chiang et al., 2021; Ji et al., 2023; 42 
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Van Vliet et al., 2016). In the last decades, hydrological droughts have become more frequent in 43 

the Americas, East Asia, and Africa, and global warming arising from high greenhouse gas 44 

concentrations has been identified as the main driver (Gudmundsson et al., 2021). According to 45 

the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (Ipcc, 46 

2021), the time series of land temperatures is projected to continue to rise, which will inevitably 47 

exacerbate extreme hydrological droughts in a warming future. Hence, it is of great importance to 48 

assess the characteristics of extreme hydrological drought in the context of climate change to 49 

enable effective adaptation strategies. 50 

In the meantime, the rapid expansion of reservoirs, a typical element of human activities, 51 

has created new challenges for the assessment of future hydrological droughts. To date, there are 52 

more than 55,000 reservoirs worldwide registered by the International Commission on Large Dams, 53 

with a total storage capacity of 14,602 km3 (Eriyagama et al., 2020). The large capacity of so many 54 

reservoirs can dramatically alter drought patterns by regulating the spatiotemporal distribution of 55 

river flows (Brunner et al., 2021; Chang et al., 2019). Wanders and Wada (2015) suggest that the 56 

dampening effect of reservoirs on the majority of strongly regulated river basins in Europe and 57 

North America, relative to the natural climate change scenario, would help to reduce drought 58 

severity during low-flow seasons. Wan et al. (2018) reported that irrigation reservoirs would 59 

intensify the duration and intensity of global hydrological droughts by 50% over the period 2070–60 

2099. It can be argued that investigating the impact of reservoir operation on future hydrological 61 

droughts is region-dependent due to the various functions of reservoirs (e.g., hydropower 62 

generation, irrigation, and flood control) as well as the heterogeneity of regional climate change. 63 

Recently, some scholars have begun such drought analysis efforts in some key watersheds 64 

(Sun et al., 2023; Xing et al., 2021; Wu et al., 2023). For example, Yun et al. (2021b) attempted 65 
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to assess the effectiveness of reservoir operation in modifying hydrological extremes in the 66 

Lancang-Mekong River basin using five global climate models (GCMs) from the sixth Coupled 67 

Model Intercomparison Project (CMIP6) and the VIC-Reservoir model. Ji et al. (2023) projected 68 

hydrological drought changes in the upper Yellow River basin under different levels of global 69 

warming by forcing a hybrid Conjunctive Surface-Subsurface Process Version 2 (CSSPV2) and 70 

reservoir model with bias-corrected CMIP6 meteorological forcing data. These drought 71 

experiments demonstrated the availability of coupling hydrological and reservoir modules for such 72 

problems, but they might draw inaccurate conclusions from empirical assumptions about how 73 

reservoirs were operated without considering actual reservoir operation data. In fact, critical 74 

historical operating data contain rich decision-making information reflecting sophisticated 75 

anthropogenic operational behaviors across multiple inflow scenarios (Zheng et al., 2022). A state-76 

of-the-art tool that can scientifically mine massive historical operating data is critical for capturing 77 

reservoir releases associated with hydrological droughts. 78 

In order to overcome these limitations, machine learning (ML) is considered a promising 79 

alternative to reproduce historical reservoir operation processes due to its continuous successful 80 

application in hydrological time series simulation. Artificial neural network (ANN) (Özdoğan-81 

Sarıkoç et al., 2023), nonlinear autoregressive models with exogenous input (NARX) (Yang et al., 82 

2019) and long short-term memory (LSTM) (Zhang et al., 2018) have been used to implement 83 

historical reservoir operation simulation using large-sample data. LSTM in particular can achieve 84 

favorable results, while embedding physical mechanisms into it can even further enhance its 85 

understanding of operational behaviors under extreme hydrological conditions, allowing for more 86 

accurate high- and low-flow simulations (Zheng et al., 2022). In addition, the original physical 87 

hydrological models (e.g., VIC and CSSPV2) used in future drought analysis can also be replaced 88 
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by powerful LSTMs, which, once interfaced with a LSTM-based reservoir operation module, can 89 

trigger a fully artificial intelligence (AI)-based simulation, providing new insights into the 90 

automated diagnosis of future hydrology droughts. 91 

Beyond exploring the impact of historical operating policies on future hydrological 92 

droughts, it is also crucial to explore how effective optimal operating policies are in the trade-off 93 

between operating benefits and hydrological extremes. As one of the nature-based solutions 94 

(NBSs), optimal reservoir operation is favored to boost water resource benefits without additional 95 

capital investment (He et al., 2022; Zolfagharpour et al., 2021). Most of the existing literature 96 

solely makes a theoretical call to consider hydrological drought when pursuing optimal operating 97 

benefits and vice versa, but without any substantive implementation analysis (Chang et al., 2019; 98 

Ji et al., 2023; Wu et al., 2023). It remains unclear whether incorporating such optimal strategies 99 

into current water management practices will improve or deteriorate basin resilience to 100 

hydrological drought extremes under climate change. 101 

Here, we investigate how much climate change and reservoir operation influence future 102 

hydrological droughts under three CMIP6 shared socioeconomic pathways, using the upper 103 

Hanjiang River basin in China, a heavily reservoir-regulated region, as a typical example. To 104 

explicitly quantify the role of climate-induced and reservoir-induced factors on hydrological 105 

droughts, we first construct a LSTM-based hydrological model and physics-guided LSTM 106 

reservoir model to simulate historical reservoir inflow and outflow, respectively. We then drive 107 

the hybrid LSTM model with the outputs of five bias-corrected CMIP6 GCMs under three future 108 

scenarios to project daily river streamflow for near-future and far-future periods. Subsequently, 109 

different drought characteristics (e.g., duration, frequency, severity) are extracted from the run 110 

theory and analyzed under both past and future climates. Finally, we assess the impact of optimal 111 
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operating policies on future hydrological droughts and compare them against the historical policy 112 

to highlight their advantages in reconciling hydrological droughts with operating benefits. 113 

2 Study Area and Data Description 114 

2.1 Study area 115 

The Hanjiang River basin in central China is the lifeblood of the water economy in the 116 

riparian provinces. As the longest tributary of the Yangtze River, the river has experienced a great 117 

deal of anthropogenic intervention in the construction of hydraulic infrastructure, including a series 118 

of reservoirs and inter-basin water transfer projects. Based on its geographical topography, the 119 

basin is usually divided into upper, middle and lower sections. In this study, the uppermost 120 

Hanjiang River basin (UHRB), which originates in the southern foothills of the Qinling Mountains 121 

and terminates at the Ankang hydrological station (shown in Figure 1), is used as a reference case. 122 

The UHRB is located at 31°-34.5°N latitude and 106°-109.5°E longitude, with a subtropical 123 

monsoon climate. The average annual precipitation, temperature and streamflow are about 124 

850mm, 15 °C, and 500mm, respectively. The flood season (May to October) accounts for 75% of 125 

the total annual precipitation. Runoff has a similar temporal distribution, which makes the UHRB 126 

vulnerable to natural disasters such as floods and droughts (Jin et al., 2023). There is an urgent 127 

need for effective water resource management and disaster preparedness measures in the UHRB. 128 

The Ankang reservoir, with a total capacity of 3.2 billion m3, is one such engineering target, 129 

as it is the largest and last reservoir in the basin. Since its commissioning in 1990, the reservoir 130 

has been used primarily for hydropower generation (installed capacity: 850 MW), supplemented 131 

by flood control, navigation and other functions (Chinese National Committee on Large (Dams, 132 

2011). The reservoir has a natural catchment area of nearly 35,700 km2 and an active storage 133 

capacity of 1.47 billion m3, which is used to regulate the spatially unevenly distributed reservoir 134 
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flows. Flow monitoring devices have been installed at the entrance to the reservoir and nearly 30 135 

km downstream (i.e., at the Ankang Hydrological Station) to measure inflows and outflows, 136 

respectively. 137 

 138 

Figure 1. Location of the upper Hanjiang River Basin (UHRB) and distribution of major 139 

hydrological elements, including hydro-meteorological stations and Ankang reservoir. 140 

 141 

2.2 Data 142 

The research dataset used in this study includes both historical in-situ observations and 143 

future projections. Historical meteorological records of 11 meteorological stations in Figure 1 for 144 

the period 1992–2020 are archived at the China Meteorological Administration Data Sharing 145 

Service Center (CMA, http://data.cma.cn), which include daily precipitation (Pr, mm), wind speed 146 

(Win, m/s), relative humidity (Rh, %), air temperature (maximum, minimum, and average Tem, ℃), 147 
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and so on. Time series of basin-averaged precipitation and temperature are derived using the 148 

Thiessen polygon method. Observed streamflow data for the same historical period are obtained 149 

from the Bureau of Hydrology of the Yangtze Water Resources Commission of China 150 

(https://www.cjh.com.cn), where Ankang reservoir inflow can be regarded as a near-natural flow 151 

without anthropogenic disturbance. 152 

For future climate projections, we used a multi-model ensemble that includes the five 153 

GCMs in Table 1 with three shared socioeconomic pathways (i.e., SSP126, SSP370, and SSP585) 154 

from the latest CMIP6. Numerous studies have found that the raw climate data (e.g., precipitation, 155 

air temperature) in CMIP6 are overestimated in Asia with non-negligible uncertainties (Chai et al., 156 

2022). To reduce the systematic biases of climate models, we use the bias-corrected daily output 157 

of the Inter-sectoral Impact Model Intercomparison Project 3b (ISIMIP3b, 158 

https://data.isimip.org/search/tree/ISIMIP3b/InputData/), which has been downscaled to a spatial 159 

resolution of 0.5° × 0.5° by using climate observations from 1850 to 2100. In the bias adjustment 160 

process of the ISIMIP3b, Lange (2019) used a trend-preserving parametric quantile mapping 161 

method and took interdependencies between different variables into account, thus providing 162 

significant advantages over its predecessor (i.e., ISIMIP2). This dataset has demonstrated the 163 

robustness of its performance in many regions of China (Kang et al., 2023; Yun et al., 2021a; He 164 

et al., 2023). To assess climate change impacts, three equal 30-year periods were defined as the 165 

reference (1985–2014), near-future (2031–2060), and far-future (2071–2100) periods. 166 

 167 

Table 1. Basic information on the five global climate models (GCMs) from IMISIP3b 168 

ID Model 

Modeling 

Center (or 

Group) 

Institution Name 

Horizontal 

resolution (lon. 

× lat.) 

1 
IPSL-CM6A-

LR 
IPSL 

Institute Pierre Simon Laplace, 

France 
2.50° × 1.27° 
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2 GFDL-ESM4 
NOAA-

GFDL 
Geophysical Fluid Dynamics 

Laboratory, Princeton 
° × 1° 

3 
MPI-ESM1-2-

HR 
MPI-M Max Planck Institute for 

Meteorology, Germany 
0.9° × 0.9° 

4 MRI-ESM2-0 MRI Meteorological Research Institute, 

Japan 
1.125° × 1.125° 

5 UKESM1-0-LL MOHC 

NERC 

Met Office Hadley Centre and 

Natural Environment Research 

Council, UK 

1.25° × 1.875° 

 169 

3 Methodology 170 

This section gives a methodology for exploring future hydrological droughts under the 171 

coupled effects of climate change and reservoir operation, as shown in Figure 2. First, we perform 172 

a LSTM-based reservoir inflow simulation and a physics-based LSTM reservoir operation 173 

simulation. Then, the ISIMIP3b outputs are used to drive the hybrid model to project future 174 

streamflow scenarios and extract hydrological drought characteristics. Finally, several different 175 

experiments are designed to investigate the individual roles of climate change and reservoir 176 

operation in future hydrological droughts. Each of these modules is described in the following 177 

subsections. 178 
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 179 

Figure 2. Schematic diagram of the modules used in this study to explore the role of climate 180 

change and reservoir operation in future hydrological droughts. The meanings of the acronyms in 181 

the experimental description panel are given in Section 3.3 below. 182 

 183 

3.1 Long short-term memory (LSTM) 184 

The LSTM is an variant of recurrent neural network that uses the backpropagation through 185 

time (BPTT) method to get around the issue of vanishing gradients and keep track of information 186 

from earlier time steps (Hochreiter and Schmidhuber, 1997). It is specially structured with a 187 

productive memory block to replace the hidden layer nodes of conventional neural networks 188 

(Hochreiter, 1998; He et al., 2022). The memory block (shown in Figure 3a) consists of a forget 189 

gate, an input gate, an output gate, and a memory cell. The forget gate decides which information 190 

from the previous cell state is to be discarded, whereas the input gate determines what information 191 

is important enough to update the cell state. The output gate uses the cell state to generate the value 192 

of the next hidden state. Mathematically, a typical memory block of LSTM can be described by 193 

the following Equations (1) to (5). 194 

1( )t t f t f ff xW h U b −= + +                                                        (1) 195 
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1( )t t i t i ii xW h U b −= + +                                                          (2) 196 

1( )t t o t o oo xW h U b −= + +                                                        (3) 197 

1 1tanh( )t t t t t c t c cc f c i xW h U b− −=  +  + +                                       (4) 198 

tanh( )t t th o c=                                                                  (5) 199 

where tx , tf , ti , and to are input variables, forget gate, input gate, and output gate at time t, 200 

respectively. 
tc  and th  are the cell state and the hidden state at time t, respectively, while 

1tc −
 and 201 

1th −
 are at the previous time t-1. W, U and b with various subscripts denote input weights, recurrent 202 

weights and bias terms, respectively. ( )   is the sigmoid activation function with a return value 203 

from 0 to 1. tanh( )  is the hyperbolic tangent activation function with a return value from -1 to 1. 204 

  is the element-wise multiplication. 205 
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Figure 3. Model structure of long and short-term memory (LSTM). (a) The internal structure of a 206 

standard LSTM memory block, consisting of a forget gate, an input gate, an output gate, and a 207 

memory cell. (b) A three-layer sequence-to-one LSTM structure modelled by correlated 208 

meteorological inputs to simulate reservoir inflow. (c) A physics-guided LSTM-based sequence-209 

to-sequence model with inputs of antecedent reservoir storage, time of year (toy), precipitation and 210 

simulated reservoir inflow to simulate reservoir outflow, where a red block following the LSTM 211 

block represents a set of operational constraints, including the water balance equation and reservoir 212 

storage and outflow limits. 213 

 214 

3.1.1 LSTM-based reservoir inflow simulation 215 

Some hydrological experiments have shown that a three-layered LSTM with one hidden 216 

depth is robust and high-precision enough to reflect the nonlinear rainfall-runoff relationship, 217 

although its black-box nature makes the interpretation of physical processes more challenging 218 

(Konapala et al., 2020; Liu et al., 2022; Rehana and Rajesh, 2023). This topology is adopted in 219 

this study (Figure 3b), where relevant meteorological variables (mainly Pr and Tem) with certain 220 

lag times are considered inputs and near-natural reservoir inflow at the current time is considered 221 

the output. The lag time is determined by the cross-correlation coefficient method (Cui et al., 222 
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2022). In addition, the number of hidden units and the initial learning rate are significant LSTM 223 

hyper-parameters to be determined. More details of the hyper-parameter tuning process are 224 

provided in Table S1 of Supporting Information, which is implemented by the Keras module in 225 

the backend of Python’s Tensorflow module (Abadi et al., 2016). 226 

Notably, antecedent reservoir inflow is not used as an input variable in this study, although it 227 

is closely related to the model output in reality. This is because it is not possible to accurately 228 

predict antecedent reservoir inflow under future scenarios, which can only be inferred through 229 

model simulation. The inclusion of antecedent reservoir inflow in the input pool may result in a 230 

gradual widening of the model simulation error. For historical simulations, the meteorological data 231 

from 1992 to 2020 were used, with 1992 reserved as the model spin-up period, and the remaining 232 

data split into a calibration period (1993–2014) and a validation period (2015–2020) according to 233 

an 80%–20% rule. For future projections, the period 1985–2100 is used to cover the simulation 234 

span of the three SSP scenarios. Within this range, the period 1985–2014 is designated as the 235 

reference period (following ISIMIP3b protocol) to evaluate future streamflow variations against a 236 

consistent historical baseline. The LSTM model is trained on 1992–2020 due to observational data 237 

availability, while the non-overlapping reference period is used independently for climate impact 238 

assessment. 239 

3.1.2 Derivation of historical operation patterns with a physics-guided LSTM model 240 

For human-intervened reservoir operation modules involving a great deal of expertise, LSTM, 241 

as one of the state-of-the-art data mining techniques, is still more accurate than the traditional 242 

hypothetical empirical equations in extracting operation policies from massive historical records 243 

(Zheng et al., 2022; Longyang and Zeng, 2023; García-Feal et al., 2022). Similar to Figure 3(b), 244 

we constructed a three-layer sequence-to-sequence LSTM model (Figure 3(c)) to simulate the 245 
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reservoir outflow sequence. Following the guidelines from the local reservoir management agency, 246 

we used antecedent reservoir storage state, time of year, precipitation, and reservoir inflow as the 247 

major inputs. It is worth noting that to ensure the robustness of the model for future simulations, 248 

we used the LSTM outputs in Section 3.1.1 instead of actual inflow observations. In addition, a 249 

new hidden state of reservoir storage, initially set to be the flood-limited water level, is designed 250 

in the LSTM structure, as it can be determined by a state transition equation (i.e., the water balance 251 

equation in Equation (6)). In order to avoid anomalies during the simulation (e.g., violation of 252 

realistic reservoir physical properties), other operational constraints (i.e., reservoir storage limits 253 

in Equation (7) and reservoir outflow limits in Equation (8)) are also integrated into the LSTM, 254 

culminating in its physics-guided variant. 255 

1 ( )t t t tV V I O t+ = + −                                                         (6) 256 

min t maxV V V                                                                     (7) 257 

min t maxO O O                                                                   (8) 258 

where tV  and 
1tV +
 are the initial and terminal reservoir storage (m3) at time t, respectively; 

tI  and 259 

tO  are reservoir inflow (m3/s) and outflow (m3/s) at time t, respectively; minV  and maxV  are the 260 

allowable minimum and maximum reservoir storage (m3), respectively; 
minO  and maxO  are the 261 

allowable minimum and maximum reservoir release (m3/s), respectively; and t  is the time step 262 

(s) of the simulation period. 263 

 264 

3.1.3 Evaluation metrics for model performance 265 

To simultaneously ensure the simulation accuracy of near-natural reservoir inflow and 266 

human-regulated outflow, we chose the average of their respective Nash-Sutcliffe efficiency (NSE, 267 

Equations (9)–(10)) as the optimization objective and the adaptive moment estimation (ADAM) 268 

algorithm (Kingma and Ba, 2014) as the optimization method. 269 

   1/ 2 ( )ave inflow outflowmax NSE NSE NSE=  +                                     (9) 270 

, , 2 , , 2

1 1
1 ( ) / ( )

T Ti sim i obs i obs i obs

i t t tt t
NSE Q Q Q Q

= =
= − − −                             (10) 271 
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where ,i sim

tQ  and ,i obs

tQ  denote the simulated and observed streamflow, respectively, for the ith 272 

series (either inflow or outflow) at time t; ,i obsQ  is the mean observed streamflow for the ith series; 273 

and T is the total number of time periods. The NSE is a widely used performance metric for 274 

hydrological modeling, with values ranging from -∞ to 1, where 1 indicates a perfect match 275 

between simulation and observation. 276 

3.2 Standard streamflow index 277 

This study used the standardized streamflow index (SSI) to describe hydrological drought 278 

because it only needs streamflow data and has been shown to work across a range of timescales, 279 

including 1, 3, 12, and 24 months (Vicente-Serrano et al., 2012; Smith et al., 2019; Gu et al., 2020; 280 

Shukla and Wood, 2008). The 1-month (SSI-1) and 3-month (SSI-3) scales of SSI show short-term 281 

wet/dry hydrological conditions. The 12-month (SSI-12) and 24-month (SSI-24) scales describe 282 

cumulative streamflow anomalies over 12 and 24 consecutive months, respectively, which show 283 

long-term drought conditions. Here, SSI-1, SSI-3, and SSI-12 were selected to reflect the monthly, 284 

seasonal, and annual hydrological drought, respectively. 285 

In the calculation of SSI for each calendar month m (m = 1, 2,..., 12) at a specific time 286 

scale, a Pearson type-III distribution with the Kolmogorov-Smirnov test is first used to fit the 287 

corresponding streamflow series (Q) during the reference period. 288 

1 ( )( ) ( )
( )



− − −= −
 

Q

m

x

F Q Q e dr


  



                                       (11) 289 

where Fm(Q) is the cumulative distribution function; 𝛼, 𝛽, and 𝜔 are the shape, scale, and location 290 

parameters of the distribution, which can be estimated by the L-moment method (Hosking, 1990). 291 

The SSI values for the reference period can be obtained by a standard normal transforming process 292 

( 1− ). 293 
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1( )mSSI F−=                                                                       (12) 294 

The same distribution parameters derived from the 30-year reference period were applied 295 

to the two 30-year future periods (i.e., the near-future and far-future) to assess future SSI changes, 296 

ensuring consistency in comparing hydrological droughts (either climate-induced or reservoir-297 

induced) between future simulations and historical baselines(Yun et al., 2021b; Wan et al., 2018). 298 

The characteristics (e.g., duration, severity, and intensity) of hydrological drought episodes 299 

were extracted using the run theory (Yevjevich, 1967). A hydrological drought episode starts when 300 

the SSI value falls below a threshold (-0.5), and ends when the SSI value recovers above the 301 

threshold, as in the case of the two drought episodes D0 and D1 in Figure 4. Drought duration is 302 

defined as the length of a drought episode, severity as the cumulative deficit of SSI values below 303 

the drought threshold during the episode, and intensity as the average deficit below the threshold 304 

over the episode, calculated as severity divided by duration. In particular, the pair d0 and d2 can be 305 

merged into a single drought episode (i.e., the third drought episode in Figure 4) when the time 306 

interval d1 between two adjacent drought branches is no longer than the time evaluation criterion 307 

tc (tc = 2 months in this study) and the SSI during d1 remains below the allowable upper threshold 308 

(Zhou et al., 2021; Wu et al., 2017). The corresponding duration for this merged episode is D2 =d0 309 

+d1 +d2 and the severity is S2 =s0 +s2. Since drought intensity is defined as the ratio of severity to 310 

duration, only two drought characteristics, duration (D) and severity (S), are used in this study to 311 

comprehensively characterize each drought episode. 312 
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 313 

Figure 4. Identification of hydrological drought events and characteristics using run theory. Three 314 

types of drought episodes are illustrated in orange: episode D0 with severity S0, episode D1 with 315 

severity S1, and a merged episode D2 with severity S2, where D2 =d0 +d1 +d2 and S2 =s0 +s2. The 316 

pair d0 and d2 is merged into a single drought episode since the interval d1 between these two 317 

adjacent branches no longer than the time evaluation criterion tc and the SSI remains below the 318 

upper threshold during this interval. 319 

 320 

3.3 Experimental Design 321 

To fully explore the role of climate change and reservoir operation in future hydrological 322 

droughts, several numerical experiments are designed in Table 2. OBS/LSTM and 323 

OBS/LSTM+Reservoir denote simulations forced by observed CMA meteorology in the absence 324 

and presence of reservoir operation, respectively. ISIMIP3b_ref/LSTM and 325 

ISIMIP3b_ref+Reservoir are similar but forced by ISIMIP3b forcings during the reference period. 326 

ISIMIP3b_fut/LSTM and ISIMIP3b_fut/LSTM+Reservoir progressively account for the impacts 327 

of climate change and reservoir operation on future projections. Notably, the symbol “Reservoir” 328 

in the experiment refers to the historical reservoir operation policy for the period 1992–2020 329 

derived from the physics-guided LSTM model. 330 

There is little focus on the evolution of trade-offs between operating benefits and 331 

hydrological drought risk, although a large body of literature points out the necessity of optimizing 332 
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reservoir operation policies (Ji et al., 2023; Brunner, 2021; Wu et al., 2022; Firoz et al., 2018). To 333 

this end, a classical multi-objective decision-making optimization is implemented for the Ankang 334 

Reservoir to maximize both hydropower generation and the power generation guarantee rate. The 335 

optimal set of alternative operating policies *

  over the historical climate conditions wH can be 336 

yielded by solving the following problem. 337 

* arg ( , ) | ( , ), ( , ) |H H H

THP PGRmax w f w f w


   


   = = f                           (13) 338 

where f is the objective vector of [ ,THP PGRf f ] (refer to Text S2 for more details). The policies  , 339 

parameterized as Gaussian radial basis functions, a formulation shown to be effective for reservoir 340 

operation optimization (Quinn et al., 2019; Bertoni et al., 2019). Optimization was performed 341 

using Non-dominated Sorting Genetic Algorithm II (NSGA-II; (Deb et al., 2002). The resulting 342 

Pareto-optimal policies, *

 , were then applied in future climate scenarios to explore the potential 343 

co-benefits and trade-offs between hydropower generation and drought risk reduction. This 344 

exploratory analysis is represented by the ISIMIP3b_fut/LSTM+Reservoir_Opt experiment in 345 

Table 2, where detailed in-depth analysis is provided. 346 

Table 2. Experimental design and scenario configurations used in this study. 347 

Experiment 
Meteorological 

forcing 

Simulation 

period 

Climate 

change 

Traditional 

reservoir 

operation 

Optimal 

reservoir 

operation 

OBS/LSTM Observations 1992–2020 – – – 

OBS/LSTM + Reservoir Observations  1992–2020 – ✓ – 

ISIMIP3b_ref/LSTM 
ISIMIP3b 

reference 
1985–2014 – – – 

ISIMIP3b_ref/LSTM+Reservoir 
ISIMIP3b 

reference 
1985–2014 – ✓ – 

ISIMIP3b_fut/LSTM 
ISIMIP3b 

future 

2031–2060, 

2071–2100 
✓ – – 

ISIMIP3b_fut/LSTM+Reservoir 
ISIMIP3b 

future 

2031–2060, 

2071–2100 
✓ ✓ – 
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ISIMIP3b_fut/LSTM+Reservoir_Opt 
ISIMIP3b 

future 

2031–2060, 

2071–2100 
✓ – ✓ 

 348 

4 Results and Discussion 349 

4.1 Model calibration and validation 350 

Figure 5 presents the calibration and validation results for both reservoir inflow and 351 

outflow using the LSTM-based modeling framework. As shown in Figure 5(a), the LSTM model 352 

can accurately simulate near-natural reservoir inflow, particularly at the monthly scale. The NSE 353 

values for the calibration and validation periods reach 0.95 and 0.93, respectively, exceeding the 354 

widely accepted performance threshold (NSE > 0.5) for hydrological modeling (Moriasi et al., 355 

2007). Figure 5(b) illustrates the comparison between observed and simulated reservoir outflows 356 

at the Ankang hydrological station. The seasonal shift between observed inflow and outflow curves 357 

(black lines in Figure 5(a) and 5(b)) suggests that reservoir operations have reshaped streamflow 358 

seasonality, with an estimated 5–21% of downstream flow withheld by the Ankang reservoir 359 

during June–October and released later in the year. This operational pattern is well captured by the 360 

LSTM+Reservoir model driven by observed meteorological forcings, yielding NSE values of 0.91 361 

and 0.89 for the calibration and validation periods, respectively. While slightly lower than those 362 

for inflow, these values reflect satisfactory performance given the complexity of human-influenced 363 

reservoir operation. 364 

Figure 5 also shows the ensemble-averaged hydrographs from the ISIMIP3b_ref/LSTM 365 

and ISIMIP3b_ref/LSTM+Reservoir experiments, driven by ISIMIP3b meteorological forcings 366 

instead of historical meteorological observations. The model performance under these forcings is 367 

noticeably weaker than that of the OBS/LSTM and OBS/LSTM+Reservoir configurations, likely 368 

due to the limited ability of ISIMIP3b in characterizing regional-scale meteorological regimes 369 
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(Kang et al., 2023). Nevertheless, the simulated low-flow conditions of ISIMIP3b_ref align closely 370 

with observations in both magnitude and duration, providing a reliable basis for the subsequent 371 

hydrological drought analysis. 372 

 373 

 374 

Figure 5. Hydrographs of (a) near-natural reservoir inflow (without reservoir operation) and (b) 375 

reservoir outflow. Simulations driven by meteorological observations (i.e., OBS/LSTM and 376 

OBS/LSTM+Reservoir experiments) are marked as blue lines. The ensemble mean and ±1 377 

standard deviation of simulations driven by ISIMIP3b GCM meteorological data (i.e., 378 

ISIMIP3b/LSTM and ISIMIP3b/LSTM+Reservoir experiments) are marked as orange lines and 379 

shaded bands, respectively. 380 

 381 

Changes in reservoir storage (∆𝑆) represent another key variable in our operation simulations 382 

(used in the hydropower performance assessment presented in Section 4.4). Figure 6 illustrates the 383 

observed and simulated monthly mean storage variations over the available period 2001–2010. 384 
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Both the OBS/LSTM+Reservoir and ISIMIP3b_ref/LSTM+Reservoir simulations reproduce the 385 

observed dynamics well, particularly the storage accumulation from July to November. With the 386 

correlation coefficients between simulated and observed storage series ranging from 0.70 to 0.73, 387 

the model provides a reasonable approximation of reservoir operations and is suitable for 388 

subsequent analysis. 389 

 390 

Figure 6. Change in average monthly storage (∆𝑆) in the Ankang reservoir during 2001-2010. The 391 

black dotted line represents multi-year observations. The blue line shows simulation results from 392 

the OBS/LSTM+Reservoir simulation. The orange boxplots represent the 393 

ISIMIP3b/LSTM+Reservoir ensemble simulations driven by five GCMs from ISIMIP3b. 394 

 395 

4.2 Streamflow variation under the impacts of climate change and reservoir operation 396 

Climate change scenarios in ISIMIP3b project a consistent upward trend in both 397 

precipitation and temperature over the UHRB during the future periods, relative to the reference 398 

period (at a significance level of p<0.05 based on the Mann-Kendall test). Among the three SSP 399 

scenarios, SSP126 presents an increase in precipitation (+7.3% to +13.3%) and a modest 400 

temperature rise (+1.7°C to +1.9°C). SSP370 shows a similar increase in precipitation (+7.3% to 401 
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+11.2%) but a more pronounced warming (+1.8°C to +4.0°C). SSP585 is projected to experience 402 

the largest increases in both precipitation (+8.0% to +15.8%) and temperature rise (+2.3°C to 403 

+5.3°C). As a result of the combined effects of these two major climatic drivers, the multi-year 404 

average reservoir inflow is expected to increase from +0.3% (near-future, 2031–2060) to +5.5% 405 

(far-future, 2071–2100) under the SSP126 scenario. Under SSP370 and SSP585, it is expected to 406 

shift from +0.2% (near-future) to −7.0% (far-future), and from −2.6% (near-future) to −8.4% (far-407 

future), respectively, suggesting a potential long-term decline despite short-term gains. This 408 

implies that warming-induced evaporation losses may outweigh the stimulatory effects of 409 

increased precipitation, especially under higher-emission scenarios (Satoh et al., 2022). 410 

Figure 7 further illustrates the projected relative change in monthly average streamflow 411 

under different future periods and SSP scenarios, explicitly highlighting the seasonal influence of 412 

both climate change and reservoir operation. Substantial inter-model uncertainty is evident, 413 

particularly under SSP585 during the far-future flood season, where streamflow changes range 414 

from −45% to +43%. Despite this variability, the ensemble mean reveals a consistent signal: 415 

positive deviations are largely concentrated in the flood season, while most other months are 416 

expected to experience declining streamflow. This asymmetric seasonal response suggests a likely 417 

intensification of hydrological seasonality, with wetter periods becoming more prone to floods and 418 

drier periods experiencing heightened water stress. Human-regulated reservoir operation has the 419 

potential to moderate the magnitude of future monthly streamflow changes. However, across all 420 

scenarios, we find that the extent to which the Ankang Reservoir alters streamflow patterns 421 

remains rather limited. This may be attributable to the reservoir’s primary operational objective of 422 

hydropower generation, with relatively little emphasis placed on shaping the flow regime itself. 423 

Therefore, further investigation into effective reservoir management is warranted. 424 
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 425 

Figure 7. Relative changes in projected monthly streamflow for two future periods and three SSP 426 

scenarios under the impacts of climate change and reservoir operation relative to the reference 427 

period (1985–2014). Lines are the ensemble mean of the five GCMs, and areas represent the 428 

uncertainty of the five GCMs. 429 

 430 

4.3 Changes in hydrological drought events 431 

To comprehensively evaluate future hydrological droughts, we analyzed both the 432 

continuous SSI-based drought characteristics and the annual drought event frequency and severity 433 

under different climate and reservoir operation scenarios. The time series of SSI-3 associated with 434 

reservoir inflow and outflow, along with their ensemble spreads under three emission scenarios, 435 

are shown in Figure 8, with SSI-1 and SSI-12 counterparts in Figures S1 and S2, respectively. SSI-436 

1 and SSI-3 exhibit substantial intra-annual fluctuations within [−3, 3], whereas SSI-12 displays 437 

smoother variability reflecting more stable dynamics. Consistent with projected reductions in 438 

streamflow, all three indices (SSI-1, SSI-3, and SSI-12) show a slight worsening trend over time, 439 

particularly under SSP370 and SSP585, indicating an increased likelihood of drought occurrence 440 

in the future (Figures 8(b), 8(d) and 8(f)). We therefore counted the number of drought events for 441 

the three different periods estimated by the GCMs and visualized them on the right side of Figures 442 
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8, S1 and S2. These subplots show that the number of drought events in the future period is higher 443 

than that in the reference period, despite the large discrepancy in the estimates from different 444 

GCMs. The number of drought events in the near-future period is slightly higher than that in the 445 

far-future period, with more small, frequent droughts. In addition, as shown in Figure 8 (b), (d), 446 

and (f), reservoir operation can mitigate the frequency of drought in the reference period but does 447 

not completely remove the risk of hydrological drought under future climate change. Reservoir 448 

operation is better at preventing short-term droughts, as the drop in the number of droughts 449 

associated with reservoir release versus inflow is significant for SSI-1 in Figure S1 but not for SSI-450 

12 in Figure S2. It may be due to the inadequate annual regulation capacity of the Ankang 451 

reservoir. 452 

A comprehensive assessment of SSI-3 drought characteristics, including duration and 453 

severity, is further given in Figure 9 (see Figure S3 and Figure S4 for SSI-1 and SSI-12, 454 

respectively). Drought duration and severity in this basin are expected to deteriorate due to climate 455 

change. The extreme hydrological drought associated with SSI-3 is projected to occur in the far-456 

future period under the SSP585 scenario, with a maximum duration of 33 months and a maximum 457 

severity of 47.8. It will then be followed by the scenario SSP370, with an 18-month duration and 458 

a severity of 22.9, and finally the SSP126 scenario, with a 12-month duration and a severity of 459 

12.4. The drought duration and severity associated with SSI-1 and SSI-12 share a similar pattern. 460 

All indications are that SSP585 has the most profound impact on hydrological drought in the region. 461 

Notably, reservoir operation can provide significant relief from extreme hydrological drought 462 

pressure because it can divide more short-term drought events through reservoir impoundment and 463 

release regulation. For the far-future period under SS`P585, the maximum duration associated with 464 

SSI-3 is reduced by 72.73% and the maximum severity is reduced by 63.81% by reservoir 465 
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operation. The original extreme hydrological drought associated with SSI-1 can likewise be 466 

regulated to a modest level, as Figure S3 shows. It is yet invalid for SSI-12, which requires more 467 

human activities to improve. 468 
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 476 

Figure 9. Heat map representation of (a) drought duration and (b) drought severity for the GCM-477 

averaged SSI-3 series. The symbols R1, R2 and R3 indicate the minimum, maximum, and mean 478 

values during the reference period (1985–2014). N1, N2 and N3 are the same, but for the near-479 

future period (2031–2060). F1, F2, and F3 are for the far-future period (2071–2100). Additionally, 480 

SSP126-I and SSP126-R are associated with reservoir inflow and release in the SSP126 scenario, 481 

SSP370-I and SSP370-R with the SSP370 scenario, and SSP585-I and SSP585-R with the SSP585 482 

scenario. 483 

 484 

4.4 Adaptability of optimal operating policies to future hydrological droughts 485 

Optimal reservoir operating policies can be explored as a potential means for human 486 

adaptation to future climate change. Previous studies have highlighted the promise of such policies 487 

in mitigating the adverse impacts of severe hydrological events (Wu et al., 2023; Sun et al., 2023; 488 

Yun et al., 2021b; Levey and Sankarasubramanian, 2025). However, this promising approach has 489 

largely remained conceptual, with limited practical validation to date. In this section, the NSGA-490 

II algorithm was applied to derive 100 Pareto-optimal solutions based on historical inflow 491 

observations (Figure S5), and the implications of these solutions for future hydropower generation 492 

and drought characteristics under climate change were systematically examined. 493 

The simulation results of these 100 optimal operating policies for hydropower and SSI-3 494 

drought characteristics under future climate change conditions are then reported in Figure 10 using 495 

parallel-axis plots. The historically derived operating policy is outlined in black for comparison. 496 

These plots label each operating policy as a shaded line that intersects each vertical axis at the 497 
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achievable performance value, and the axes are oriented with the optimal direction upwards. The 498 

ideal policy in Figure 10 is, therefore, a horizontal line across the top of each axis. Nevertheless, 499 

these lines usually intersect between pairs of vertical axes because superior performance in one 500 

indicator comes at the cost of poorer performance in another. For instance, poor power generation 501 

guarantee rates inevitably have an impact on the goal of maximizing annual average hydropower 502 

generation. All optimal policies have similar future annual average hydropower generation, except 503 

for the far-future period under SSP126. They have a wide-spanning range of guarantee rates, such 504 

as 76.69%–84.32% for the near-future period under SSP126 and 61.07%–72.05% for the far-future 505 

period under SSP585. Additionally, as can be seen in all subplots of Figure 10, all the optimal 506 

operating policies result in more hydropower benefits but also a higher drought frequency than the 507 

historically derived policy. The SSI-3 series associated with optimal reservoir release is broken 508 

into more drought events where the average duration and severity of droughts don't change much. 509 

The most challenging drought management task remains in the future-period under SSP585, during 510 

which the historically derived policy has the relatively slightest drought severity. On the whole, a 511 

small number of optimal policies can achieve robust and satisfying levels of all considered 512 

indicators across plausible future scenarios, further revealing the potential for the application of 513 

optimal operating policies to short-term hydrological droughts. 514 
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Figure 10. Trade-offs among hydropower generation, guarantee rate, and SSI-3 drought 515 

characteristics under optimal and historical reservoir operating policies using parallel coordinates 516 

plots. Panels (a–b) correspond to the near-future (nf) and far-future (ff) under SSP126, (c–d) under 517 

SSP370, and (e–f) under SSP585. The grey lines represent Pareto-optimal policies, while the red 518 

and blue lines indicate the solutions with the highest guarantee rate and maximum hydropower 519 

generation, respectively, and the black line indicates the historical operating pattern. Each axis 520 

represents an objective, with the optimal direction oriented upwards. 521 

 522 

Future development of drought-focused reservoir operation policies could incorporate a 523 

range of drought characteristics as direct optimization objectives. In the game of hydropower 524 

generation and drought resilience, there is still some room for improvement in drought mitigation 525 

in this study. It is also possible to use optimal operating policies along with other human actions, 526 

like inter-basin water transfers and urbanization, to prepare for potential future droughts (Wu et 527 

al., 2023; Firoz et al., 2018). 528 
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5 Conclusions 529 

By performing a simultaneous simulation of a LSTM-based reservoir inflow model and a 530 

physics-guided reservoir operation model, this study achieved a fully automated ML projection of 531 

river streamflow changes over the UHRB under different future scenarios and used it to project 532 

the associated hydrological drought. Climate change and reservoir operation were successively 533 

considered in the projections to reveal their different roles. Additionally, the trade-off between 534 

future hydrological droughts and operating benefits (i.e., hydropower generation and power 535 

generation guarantee rate) was investigated by optimizing the reservoir operating policies. The 536 

main findings are summarized as follows: 537 

1. A reasonable LSTM-based model architecture is recommended for hydrological 538 

simulation in the reservoir-regulated region. If the historical meteorological simulation of 539 

ISIMIP3b is used instead of hydrological observations, it can still reflect the inflow and outflow 540 

of Ankang Reservoir as well as changes in reservoir storage. This demonstrates the feasibility of 541 

projecting future streamflow and associated hydrological droughts using ML approaches. 542 

2. Future climate change over the UHRB tends to reduce natural streamflow and exacerbate 543 

hydrological droughts, especially in the far-future period (2071-2100) under the SSP585 scenario. 544 

While the operation of the Ankang Reservoir can mitigate the frequency, duration, and severity of 545 

short-term hydrological droughts (SSI-1 and SSI-3), it shows limited effectiveness in alleviating 546 

long-term droughts (SSI-12). 547 

3. Optimal reservoir operating policies at Ankang Reservoir, designed to maximize 548 

hydropower generation and power generation guarantee rates, can effectively reconcile the trade-549 

offs between hydrological drought and hydropower benefits, especially in the near-future period 550 

(2031-2060). Compared to the historically derived policy, these optimal strategies yield higher 551 

https://doi.org/10.5194/egusphere-2025-5548
Preprint. Discussion started: 24 November 2025
c© Author(s) 2025. CC BY 4.0 License.



31 

hydropower benefits but may also lead to increased drought frequency. The finding that a small 552 

subset of optimal policies can consistently achieve robust and satisfactory performance across all 553 

evaluated indicators under plausible climate scenarios underscores their potential in enhancing 554 

regional water resource management under climate change. 555 
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