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Introduction

This supplement contains 18 total additional figures.

Section 1 contains supplemental figures relating to thermal infrared radiative
transfer modeling. This includes isoprene absorption cross sections (Fig. S1); the MERRA-2
temperature and specific humidity profiles used as input for the model (Fig. S2); the instrument
kernel (Fig. S3); and a replication of Figure 5 in the manuscript but with convolved radiance
output rather than the differences between spectra (Fig. S4).

Section 2 contains supplemental figures relating to the isoprene regressions. Fig-
ure S5 reproduces Figure 2 in the manuscript but with vapor pressure deficit (VPD) instead
of surface air temperature, and diffuse PAR instead of direct PAR. Figure S6 shows the anti-
correlation between leaf area index (LAI) anomalies and isoprene column anomalies over the
Maritime Continent. Figure S7-8 show the seasonal cycles of isoprene columns, isoprene emis-
sions, soil NOy, and biomass burning in the three regions of interest. Figure S9 shows cor-
relations between non-anomalized isoprene columns and biomass-burning/soil NOy. Figures
S510-S12 show the spatial heterogeneity of isoprene and NOy sources, as well as the averaged
wind vectors over different seasons. Figure S13 shows the distribution of oil palm plantations
across the tropics relative to isoprene column retrievals.

Section 3 contains supplemental figures pertaining to the GEOS-Chem NOy sen-
sitivity studies. Figure S14 shows the total NOy flux changes in the perturbation runs. Figures
S15-16 show how isoprene and formaldehyde are affected by the decrease in NOy. Figure S17
plots the ISOP:HCHO ratio taken from CrIS and OMI observations as a supplement to Figure
9 in the manuscript. Finally, Figure S18 shows column-averaged Jo(1p) and Jyo, simulated in
GEOS-Chem across the three tropical regions.
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1 Radiative Transfer Modeling
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Figure S1: Isoprene absorption cross sections. (a) Isoprene absorption cross sections (red)
calculated using vSmartMOM’s Absorption module for 278 K and 1 atm. Experimental spectra
(black) are from Brauer et al. (2014), which took measurements at 0.112 ecm™! spectral resolu-
tion. Corresponding absorption cross sections for 298 K and 323 K are shown in (b) and (c),
respectively.
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Figure S2: MERRA-2 profiles. MERRA2 temperature (a) and specific humidity (b) profiles
used in the radiative transfer simulations, characteristic of Sumatra on July 1st, 2019 at 6Z (1
PM local time).
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Unapodized FTS Instrument Operator
(FOV = 16.8 mrads, MOPD = 0.8 cm)
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Figure S3: Instrument kernel. (a) The unapodized Fourier-transform spectrometer instru-
ment kernel used to convolve the simulated spectra, generated using a field-of-view of 16.8 mrads
and a maximum optical path difference of 0.8 cm. (b) A sample simulated spectrum with COq,
Oz, Hy0, and ISOP (x5 profile), generated using 0.01 cm ™! spectral resolution. (c) The corre-
sponding convolved spectra with 0.625 cm ™! spectral resolution.
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Figure S4: Raw convolved radiances. Figure 6 in the manuscript, but with the simulated
radiances rather than the differences between the experimental and control spectra.
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2 Isoprene Regressions
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Figure S5: Additional isoprene regressions. Figure 2 in the manuscript, but with vapor
pressure deficit (VPD) in subplots (b), (e), and (h); and diffuse PAR in subplots (c), (f), and
(i). Both quantities were calculated from MERRA-2 reanalysis. All VPD and diffuse PAR
correlations are statistically significant (p < 0.05) except for Amazonian isoprene and diffuse
PAR in subplot (c).
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Leaf Area Index and Isoprene Column Anomalies
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Figure S6: Leaf area index in the Maritime Continent. Leaf area index (LAI) spatially-
averaged over the Maritime Continent (green), with the anomaly calculated relative to the
2012-2020 LAI mean (solid) or median (dashed). Plotted against LAI is the Maritime Continent
isoprene column anomaly (solid black) relative to the 2012-2020 CrIS isoprene column monthly
average. LAI observations were obtained from the MODIS MCD15A3H 4-day product and
resampled to monthly values.
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Figure S7: Seasonal cycles. Top row (a-c): Seasonal cycles (2012-2020) of soil NOy (in solid
purple, from the offline GEOS-Chem inventory parametrized by BDSNP), GFED4 burned dry
matter (solid red), and CrIS isoprene columns (dashed yellow) across the three tropical regions.
When spatially-averaged, equatorial Africa has the highest biomass burning and the highest soil
NOy fluxes, while the Amazon has the highest isoprene columns. Bottom row (d-f): Seasonal
cycles (2012-2020) of surface air temperature (in red, solid, K), downwelling direct PAR (in dark
blue, solid, W m~2), and soil wetness (light blue, dashed), across the three tropical regions. All
meteorological variables are taken from MERRA-2 reanalysis.
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Figure S8: Seasonal cycles. Figure S7 but with isoprene emissions from offline MEGAN
emissions (dashed green) rather than CrlIS isoprene columns. In the Amazon, MEGAN isoprene
emissions miss a seasonal April peak, and in the Maritime Continent, isoprene emissions are
underpredicted in September/October relative to the CrIS seasonal cycle.
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Figure S9: Seasonal cycles. CrlS isoprene columns versus biomass burning dry matter (top
row) and offline BDSNP soil NOy (bottom row). Months with the highest biomass burning or
soil NOy emissions are colored in red and purple, respectively, while the rest of the year is in
gray. Plotted on top of the data are linear regressions with shaded uncertainties. The strongest
negative correlation between NOy sources and isoprene is in equatorial Africa (biomass burning
and isoprene). This correlation may reflect causality (biomass burning NOy causing changes
in isoprene), or it may reflect isoprene emissions and NOy having opposite seasonal cycles (see
Figure S9).
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Figure S10: Spatial heterogeneity in Equatorial Africa. Same as Figure 7 (subplots d—i)
but with winds at GEOS-Chem’s vertical box 23 (approximately 500 hPa) instead of box 10
(850 hPa). The winds at 500 hPa are largely easterly with small meridional components.
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Figure S11: Spatial heterogeneity in Amazonia. Similar to Figure S10, but for the Amazon
basin and with winds at 850 hPa. The top row shows isoprene columns (a), MEGAN isoprene
emissions (b), GFED4 burned dry matter (c), and soil NOy emissions from BDSNP during the
Amazon’s biomass burning season (June-November), while the bottom row shows the same
quantities but for the rest of the year. Winds at box 10 of the GEOS-Chem vertical grid (850
hPa) from MERRA-2 reanalysis are displayed as vectors.
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Figure S12: Spatial heterogeneity in the Maritime Continent. Similar to Figure S10,
but for the Maritime Continent. The top row shows isoprene columns (a), MEGAN isoprene
emissions (b), GFED4 burned dry matter (c), and soil NOx (d) emissions from BDSNP during
the Maritime Continent’s biomass burning season (August—October), while the bottom row
shows the same quantities but for the rest of the year. Winds at box 10 of the GEOS-Chem
vertical grid ( 850 hPa) are displayed as vectors.
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Figure S13: Global isoprene and oil palm distributions. Map of CrIS isoprene columns,
averaged over 2012-2020, with tropical oil palm detections (100 x 100 km grid boxes) overlaid
in red. Grid boxes were obtained from Sentinel-1 and Sentinel-2 images processed by a con-
volutional neural network from Descals et al. (2021). The Maritime Continent has the highest
concentration of oil palm plantations, with oil palms only covering significant areas of west
Africa (not included in our equatorial Africa bounding box) and the northwest corner of the
Amagzon rainforest.
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3 GEOS-Chem NO, Sensitivity Studies

Change in Summed NOy in Sensitivity Simulations
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Figure S14: ANO Emission Fluxes. Changes in NOy emission fluxes for each run, summed
over the GEOS-Chem column. These flux changes correspond to a 10% decrease in NOy emis-
sions for each of the following sources: GFED4 biomass burning (solid red), offline BDSNP soil
NO (purple), lightning NO (orange), and QFED2 biomass burning (dashed red).

12



YOON ET AL. (2025) INFERRING DRIVERS OF TROPICAL ISOPRENE

Change in Summed ISOP & HCHO with 10% Less NOy
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Figure S15: AIlsoprene and AHCHO in response to ANOy over the Maritime Conti-
nent. (a) The change in isoprene columns, summed over the entire Maritime Continent bound-
ing box, with a 10% decrease in the listed NOy source. (b) The change in the formaldehyde
column for the same NOy perturbation. In general, a decrease in NOy decreases formaldehyde

but increases isoprene.
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Sensitivity of HCHO to NOy Sources
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Figure S16: AHCHO in response to ANOy. Analogous plot to Figure 8 in the manuscript,
but depicting the sensitivity of HCHO to perturbations in NOy sources for the Maritime Conti-
nent (a), Amazonia (b), and equatorial Africa (c). In this plot, we show the absolute value, since
a decrease in NOy always decreases formaldehyde. Thus, the direction of the NOy response is
opposite for isoprene and formaldehyde.
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Figure S17: Implications for the ISOP:HCHO ratio. Figure 9 in the manuscript, but with
the deseasonalized, spatially-averaged ISOP:HCHO over the three regions in the bottom row
(d, e, f) for the Amazon, equatorial Africa, and the Maritime Continent, respectively.
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Figure S18: Differences in photolysis rates. (a) The column-averaged Os photolysis rate
over the three tropical regions: Amazonia (purple), equatorial Africa (orange), and the Maritime
Continent (green). (b) Same as (a) but with the NOg photolysis rate.
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