

- 1 New planktonic foraminifera-derived transfer function for the
- 2 South Atlantic Ocean: Palaeoceanographic implications for the
- 3 Brazil- Malvinas Confluence
- 4 Paula Belén Albarracin^{1,2}, Natalia García Chapori¹ and Cecilia Laprida^{1,2}
- ¹Institute of Andean Studies, University of Buenos Aires-CONICET, Argentina
- 6 ²Faculty of Exact and natural Sciences, University of Buenos Aires, Argentina
- 7 Correspondence to: Paula B. Albarracin (paula.belen.albarracin@gmail.com) (palbarracin@gl.fcen.uba.ar)
- 8 Abstract

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Planktonic foraminiferal assemblages are extensively used for reconstructing sea surface temperature through the application of transfer functions. Nonetheless, it has been observed that several parameters present throughout the water column also influence compositional changes within these assemblages. Selection of driving factors and evaluation of transfer function performances are method-specific processes that require the combination of prior ecological knowledge and objective variable selection approaches. In this study, we compiled a 171 core-top samples dataset of planktonic foraminifera and productivity-related variables to quantify the relationship between the assemblages and modern productivity conditions in the South Atlantic Ocean. Multivariate statistical analyses revealed that planktonic foraminiferal species were related to austral summer nitrate, explaining an independent and significant proportion of variance in the species data. We evaluated different prediction models, and estimated their performances considering spatial autocorrelation. The calibration model Weighted Averaging with tolerance downweighting and inverse deshrinking (WATOL_inv) with h-block cross validation showed a regression coefficient of $r_{cv}^2 = 0.938$, with a root-mean-square error of prediction RMSEP = 1.578 umol 1-1. The resulting transfer function was applied then to sediment core GeoB2806-4 (~37°S - 53°W; 3500 m) in order to reconstruct variations of summer nitrate concentration during the Holocene. Our reconstructed summer nitrate shows a general decreasing trend from early to mid-Holocene associated with increased biological uptake, and a later increase of it towards the late Holocene. We suggest that changes in summer surface nitrate concentration are linked to the latitudinal shifts of the Brazil-Malvinas Confluence. Understanding the displacement of the Confluence, and the associated shifts in the upper layers' nutrient availability, is crucial to evaluate the implications of these changes on the local to regional ecosystem dynamics and trophic structure, particularly when considering future climate projections.

1. Introduction

30 Quantitative climate reconstructions are essential for validating climate models' performance when simulating 31 past climate, and thus their potential to predict future climate conditions (Schmidt et al., 2014). Microfossil 32 assemblages derived from marine archives are among the most widely used proxies, providing valuable 33 information about past ocean conditions and climate conditions. These reconstructions build upon the assumption 34 that compositional changes within biotic communities are primarily driven by changes in climatic conditions 35 (Birks et al., 2010). 36 In this context, transfer functions (Birks, 1995), also known as calibration functions, are one of the most widely 37 applied quantitative approaches. These are multidimensional empirical models that provide a framework for 38 reconstructing past environmental abiotic variables based on the study of fossil biotic components. They have 39 been successfully applied to diverse marine groups, including planktonic foraminifera (e.g., Kucera et al., 2005), 40 diatoms (e.g., Lopes et al., 2018), radiolarians (Hernández-Almeida et al., 2020), and dinoflagellate cysts (e.g., de 41 Vernal et al., 2005). On a more fundamental level, transfer functions approach relies on the assumption that the 42 modern relationship between species abundances and the environmental parameters that define their realized 43 ecological niches is well established and have not changed over time (Birks et al., 2010). By applying multivariate 44 statistical techniques such as multiple regression, ordination, and dimensionality reduction, transfer functions 45 capture and quantify the dominant ecological response patterns expressed in the biological data (Lopes et al., 46 2010). 47 Planktonic Foraminifera (Harosa, Rhizaria), are a highly diverse and cosmopolitan group of marine protists 48 (Hemleben et al., 1989). They secrete a calcareous shell with high preservation potential in the fossil record, and 49 their wide geographic distribution, coupled with their sensitivity to specific environmental conditions, render them 50 advantageous proxies. Several transfer functions have been developed using planktonic foraminifera and they 51 have been applied mainly to reconstruct sea surface temperature (SST) (e.g., Imbrie and Kipp, 1971; Hutson and 52 Prell, 1980; Kucera et al., 2005). Nevertheless, the distribution and abundance of the species are not solely 53 governed by SST: many taxa are eurythermic or inhabit deeper layers of the water column (Bé, 1977), making 54 them less sensitive to SST. Moreover, further studies highlighted that species distribution patterns are influenced 55 by multiple interacting environmental factors, including food availability, nutrients, water column stratification, 56 mixed layer depth, sunlight and chlorophyll-a concentration (Bé and Tolderlund, 1971; Berger, 1971; Bijma et 57 al., 1990; Hemleben et al., 1989; Schiebel et al., 2001; Schiebel and Hemleben, 2017; Lessa et al., 2020). Thus, 58 the composition of planktonic foraminiferal communities reflects a combination of processes acting throughout 59 the water column (Morey et al., 2005; Jonkers and Kucera, 2015). Among these variables, nutrient availability 60 regulates the amount of phytoplankton available for consumption, linking bottom-up controls on primary 61 productivity with the trophic dynamics that sustain planktonic foraminiferal communities, and emerging as a key 62 ecological driver at regional scales (Lessa et al., 2020). Collectively, all these environmental parameters 63 mentioned above exhibit seasonal variability driven by hydrographic changes that alter nutrient cycling and 64 marine productivity across the South Atlantic Ocean (Garzoli and Matano, 2011; Muller-Karger et al., 2017). 65 Such dynamics highlight the potential of using biological proxies to capture productivity signals in the geological 66 record.

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

The South Atlantic Ocean plays a unique role in the global overturning circulation through its equatorward heat transport that modulates climate on decadal time scales (Talley, 2003; Kersalé et al., 2021; Dong et al., 2021). Through the Atlantic Meridional Overturning Circulation, it connects Atlantic water masses with those of others ocean basins (e.g., Garzoli and Matano, 2011). Within this system, two regions of high mesoscale variability in terms of temperature, salinity and primary productivity are developed: the Agulhas Leakage on the eastern boundary, and the Brazil-Malvinas Confluence (BMC) on the western boundary (Jullion et al., 2010; Garzoli and Matano, 2011; Rühs et al., 2019). The former one is shaped by the Benguela Current, which transports a blend of relatively cool, fresh Atlantic water and warmer, saltier Indian Ocean water in a north-westward flow. This current is characterized by recurrent upwelling of cold, nutrient-rich waters along the African coast (Little et al., 1997). In contrast, the western boundary is defined by the BMC, centered near ~38°S (Fig. 1) where warm, salty subtropical waters carried by the Brazil Current converge with cold, nutrient-rich, and relatively fresh subantarctic waters transported by the Malvinas Current (Piola and Matano, 2001). Their confluence forces both currents to turn eastward, flowing offshore in a series of large-scale meanders (Gordon and Greengrove, 1986), and the front itself separates into the Subtropical Front and Subantarctic Front (Fig. 1) (Peterson and Strama, 1991). The BMC is marked by high chlorophyll-a concentrations coinciding with the maximum SST gradient between Malvinas Current and Brazil Current (Saraceno et al., 2004). These highly productive boundary regions interconnect through the South Atlantic Current, the southern limb of the Subtropical Gyre (Stramma and Peterson, 1990). The gyre itself, centered near 30-40°S and 50°W, constitutes a distinct biogeochemical province with notably oligotrophic central waters, hosting some of the lowest chlorophyll-a concentrations observed globally (Longhurst, 2010; Signorini et al., 2015).

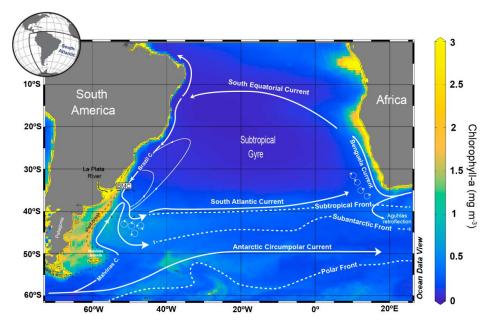


Figure 1: Chlorophyll-a concentration based on data from MODIS Aqua Ocean Color during 2023 (Level-3). Schematic representation of the large-scale surface geostrophic currents and fronts in the South Atlantic Ocean after Peterson and Stramma (1991) are shown. Small loops represent the high concentration of eddies. The mean position of the Subtropical, Subantarctic and Polar fronts is represented with dashed lines. BMC: Brazil-Malvinas Confluence.

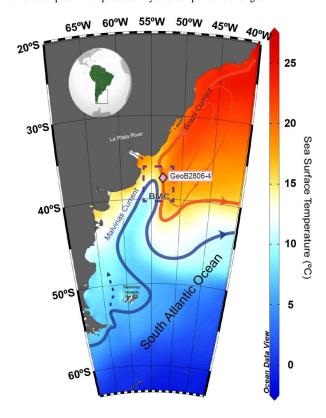
Several transfer functions based on planktonic foraminifera assemblages have been developed for the South Atlantic (e.g., Toledo et al., 2007; Pivel et al., 2013; Portilho-Ramos et al., 2015; García Chapori et al., 2015; García Chapori and Laprida, 2021), however, none was explicitly designed to reconstruct past productivity. To fill this gap, in the present contribution we develop a planktonic foraminifera-based transfer function for the quantitative reconstruction of productivity-related variables. With a rigorous statistical analysis of the relationship between assemblage data and these variables, we identify the primary factors that determine species distributions and abundances within the calibration dataset. To improve the spatial coverage of the BMC region, we incorporated new samples into the calibration dataset. We then calibrate and evaluate several transfer functions models for predicting the selected environmental variables and assess their performances. The obtained transfer function is used to reconstruct past primary productivity changes in the BMC influence zone during the Holocene. The results obtained are compared with regional reconstructions of mixed-layer temperature and inferred BMC shifts from independent proxies in order to contextualize primary productivity changes within a paleoceanographic framework.

2. Materials and methods

- 105 2.1 Calibration dataset
- 106 2.1.1 Surface samples
- Geographic distribution of planktonic foraminiferal species was assessed through the analysis of a bunch of 358 surface sediment samples (core-tops) from the South Atlantic Ocean. These samples spanned the first 5 cm and hence they were assumed to represent present-day conditions. In order to avoid the problem of the lack of analogs, while covering the entire productivity environmental gradients, we consider the Euclidean distance to explore the multivariate structure of the species' abundance data. For the selection process, 335 core-tops from the compilation of Siccha and Kucera (2017), 11 core-tops from the compilation of García Chapori and Kucera (2019) and 12 new core-tops collected from the Argentine and Uruguay margins between 36°S - 39°S (Cruise SO260 "DosProBio"; Kasten et al., 2019) were analyzed.

115 2.1.2 Selected environmental variables

Phosphate, nitrate, silicate, chlorophyll-a and iron were interpolated to the core-tops' locations using Ocean Data View (ODV) software (Schlitzer, 2014). Phosphate, nitrate, and silicate from the upper 10 m of the water column were obtained from the 2013 World Ocean Atlas (WOA13 – García et al., 2014), based on a grid of 1° longitude by 1° latitude. Chlorophyll-a and iron data were obtained from MODIS-aqua (http://oceancolor.gsfc.nasa.gov/l3.) and the NASA Ocean Biogeochemical Model (NOBM) (Gregg et al., 2003) respectively. Iron data were calculated from measurements between 1998 and 2012 with a 0.67 x 1.25° resolution, whereas chlorophyll-a data was structured on a basis of 4 km of spatial resolution and covers measurements between 2002 and 2012. For each variable, we calculated austral seasonal means: summer (DJF); autumn (MAM); winter (JJA) and spring (SON) from 1955 to 2012 resulting in a total of 20 productivity-related variables. The temporal ranges selection was based on the fact that measurements from recent years are influenced by global warming (Forster et al., 2023).



Therefore, we analyzed seasonal averages, considering the complex and highly dynamic regions included in the calibration dataset. These areas are subjected to seasonal cycles in their physical oceanography (SST, vertical stratification, thermal and haline fronts, upwelling systems, and current patterns), which in turn regulate their biological productivity regimes (Dave et al., 2015; Artana et al., 2019; Gallego et al., 2025).

2.2 Sediment core

Sediment core GeoB2806-4 (37°50'S - 53°08.6'W, 3500 m depth; García Chapori et al., 2015) was used for testing the transfer function developed here. The core is located on the northern Argentine continental margin, within the BMC zone (Fig. 2). The selected core is optimally located and guarantees excellent modern analogues in the fossil assemblages (García and Laprida, 2021). The core spans the last 12 kyrs BP, covering the entire Holocene. The radiocarbon-based chronology was previously developed by García Chapori et al. (2015). Here we updated the age model using the original radiocarbon dates and additional benthic δ^{18} O data (Fig.S1 in the Supplement), and applying the Bayesian software package BIGMACS (Lee et al., 2023). We integrated the results obtained here with other reconstructions performed for the region (i.e., García Chapori et al., 2022); particularly the annual mixed-layer temperatures obtained by García Chapori and Laprida (2021) for this same core, and analyzed the existent relationship between productivity and temperature changes.

- 141 Figure 2: Mean annual SST (color, °C) from World Ocean Atlas, 2013 with scheme of major oceanic currents from the
- 142 western South Atlantic. Sediment core GeoB2806-4 location is represented by a pink diamond. BMC: Brazil-Malvinas
- 143 Confluence.
- 144 2.3 Micropaleontological analyses
- 145 Samples were prepared for foraminiferal analyses according to the micropaleontological techniques proposed by 146 Boltovskoy and Wright (1976). Planktonic foraminifera were dry picked from the >150 μm size fraction (Kucera 147 et al., 2005) and quantified in relative abundances from splits containing at least 300 specimens per sample. We 148 harmonized the taxonomic nomenclature following the criteria established by Siccha and Kucera (2017). In cases 149 where the original taxonomy required the grouping of species, and to harmonize the possible taxonomic 150 differences between assemblages, these categories were retained as multispecies categories (groups) (Jonkers et 151 al., 2025). These criteria were applied to the group of menardiforms (Globorotalia menardii + Globorotalia 152 tumida + Globorotalia ungulata), which were included into the "G. menardii complex" group, and to the 153 morphotypes white and pink of Globigerinoides ruber, which were included within the "G. ruber (total)" group. 154 Species with <2% abundance in at least two samples were removed from the dataset prior to further analysis 155 (Fatela and Taborda, 2002). Percentage foraminiferal census data were log-transformed (log (x+1)) in order to
- 157 2.4 Multivariate analyses

standardize their variances.

156

158 A principal component analysis (PCA), with variables scaled to unit environmental variance and centered, was 159 used to explore the main gradients in the environmental data according to their geographical location. The 'broken 160 stick' model was used to assess the significance of the PCA axes (Jackson, 1993). To examine the local 161 relationship between planktonic foraminiferal assemblages and environmental variables, a detrended 162 correspondence analysis (DCA) was performed (Birks, 1995), measuring the gradient length in standard 163 deviation (SD) units along the first DCA axis. Consequently, we determined whether linear ordination 164 techniques (SD<3) or unimodal techniques (SD>4; Lepš and Šmilauer, 2003) should be applied. As the dataset 165 was found to have a SD of 2.6 using log-transformed foraminiferal assemblage, we opted for linear statistical 166 ordination techniques.

167 To explore the relationships between the species variance and the 20 selected environmental variables, we 168 employed a Redundancy Analysis (RDA), a constrained ordination technique suitable for linear datasets 169 (McGarigal et al., 2000). First, a RDA was performed individually for each environmental variable to obtain 170 their eigenvalues, which were then ranked based on their contribution to the dataset variance. Monte 171 Carlo permutation tests were applied to evaluate the statistical significance of these relationships (ter 172 Braak and Smilauer, 2002). Second, we identified the variable with the highest eigenvalue and systematically 173 added the other variables based on their rank. To assess potential collinearity among these variables, we 174 calculated Variance Inflation Factors (VIFs), which indicate how much of the variance explained by one 175 environmental variable is already accounted for another variable in the dataset. To ensure minimal collinearity, a 176 VIF threshold of ≤2 was established for all environmental variables in line with prior research 177 recommendations (e.g., Lopes et al., 2010). This threshold limits collinearity to correlations $r^2 \le 0.5$, ensuring

178 that no more than half of one variable's explained variance can also be attributed to another variable. 179 While using a lower VIF cut-off helps retain critical environmental factors in our model, it may also prevent 180 the inclusion of collinear variables that could negatively impact on the model quality. By adopting this 181 cautious methodology, we aimed to identify as many independent variables as possible while still 182 accounting for significant variance in our dataset. 183 In order to test the significance of each variable, we implemented a manual forward selection process that ranked 184 variables according to their ability to explain data variance (Manly, 1991; ter Braak, 1992; ter Braak and 185 Verdonschot, 1995). During this procedure, any environmental variables with VIFs > 2 were excluded from the 186 analysis. In instances where multiple variables had VIFs above this threshold, we iteratively removed one variable 187 at a time and conducted RDAs on each remaining subset of data. This iterative approach enabled us to quantify 188 how much variation was accounted for by different variables within the dataset and ultimately identify a final set 189 of variables that maximized the overall explained variance. As a result of this process, we established a set of 190 environmental variables appropriate for use in our calibration datasets during subsequent RDAs and additional 191 analyses. We used the ratio between constrained (λ_1) and unconstrained (λ_2) axes as diagnostic tools to assess 192 individual environmental variable strength after excluding the effects of the other variables from the analysis (ter 193 Braak and Juggins, 1993). Values of $\lambda_1/\lambda_2 \ge 1$ were considered an indicator of how well the variable under 194 examination is strongly related to the variation in the modern foraminifera dataset. Ordination analyses and 195 variance partitioning were performed using CANOCO version 5.03 software (ter Braak and Smilauer, 2002). 196 After assessing which environmental variables could theoretically be reconstructed, we examined spatial and 197 environmental autocorrelation following the procedure described by Telford and Birks (2009). We applied the 198 Modern Analog Technique (MAT) with five analogues as part of our reconstruction testing approach. To ensure 199 an accurate transfer function evaluation, we determined the extent of autocorrelation which requires spatial 200 independence among sample sites (Telford and Birks, 2009). For this analysis, we used R packages fields (Nychka 201 et al., 2017), palaeoSig (Telford, 2015) and rioja (Juggins, 2017).

202 2.5 Transfer function

203

204

205

206

207

208

209

210

211

212

213

214215

In order to establish the transfer function, five different calibration models were evaluated: Modern Analogue Technique (weighted average of the five closest analogs) (WMAT) (Prell, 1985), Weighted Averaging (WA) developed by Birks et al. (1990), Weighting-Averaging Partial Least Squares (WA-PLS) (ter Braak & Juggins, 1993) and Maximum Likelihood (ML) as described by Oksanen et al. (1990). The WA model was evaluated concerning tolerance downweighting (referred to as WA-TOL), along with classical (WA- Cla) and inverse deshrinking methods (WA- inv); whereas the WA-PLS model was assessed based on the number of components utilized (ter Braak & Juggins, 1993). The number of components for the WA-PLS model was chosen by the improvement in the RMSEP >5% (Birks, 1998) and the significance derived from randomization t-test conducted on each model. The 'best' performance of each model was determined by the highest r² value and lowest RMSEP, all assessed by cross validation (999 permutation cycles) (Birks, 1995). Additionally, the average and maximum bias for each model was also considered. Potential outliers were identified based on the evaluation of the absolute residuals. Sites with residuals larger than 4 were finally removed as outliers. These analyses were done using C2 software version 1.4.3 (Juggins, 2007).

A common issue when evaluating the selected model using cross-validation is that calibration and validation data selected randomly from proximate locations may exhibit spatial dependency due to autocorrelation. This can result in an underestimation of prediction errors; potentially misleading the model selection (Roberts et al., 2017). To address these spatial dependencies within our dataset, we adopted the h-block method (Burman et al., 1994), which excludes samples situated closer than a specified cut-off distance (h) from contributing to the prediction of that target sample. The cut-off distance was determined by fitting a spherical variogram to detrended residuals of a WA model before conducting h-block cross-validation utilizing R packages gstat (Pebesma, 2004) and sp. (Pebesma and Bivand, 2005), R code developed by Trachsel and Telford (2016).

3. Results

3.1 Geographical distribution of planktonic foraminiferal assemblages in the calibration dataset

The final calibration dataset used in this study comprises 171 core-tops (Fig. 3), encompassing the whole primary productivity gradient across the South Atlantic Ocean. The taxonomic homogenization resulted in a matrix with 29 taxonomic categories. The distribution pattern of the relative abundance of the main planktonic foraminifera taxa (\geq 10%) are shown in Figure 4.

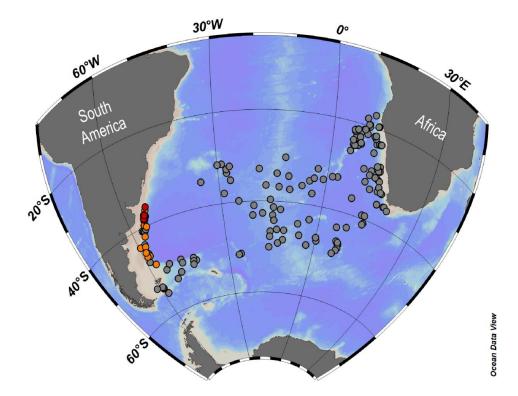


Figure 3. Location of the 171 core-top samples used for the compilation of the calibration dataset after the Euclidean distance analysis. Red circles represent new core tops from this study, orange circles correspond to core tops from the

https://doi.org/10.5194/egusphere-2025-5531 Preprint. Discussion started: 28 November 2025 © Author(s) 2025. CC BY 4.0 License.

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

compilation of García Chapori and Kucera (2019), and grey circles indicate core tops from the compilation of Siccha
and Kucera (2017).

In the calibration dataset, Globigerina bulloides (Fig.4a) is the most common species, constituting up to 60% of the assemblage in the transitional zone between the Subantactic Front and the Subtropical Front, while it has its lowest abundance (1 %) within the South Atlantic Current. In upwelling systems like the Patagonia shelf-break and Benguela (Romero et al., 2006; Petrick et al., 2015), its mean relative abundances is ~35%. Neogloboquadrina pachyderma (Fig.4b) exhibits maximum relative abundances (up to 80%) along the Polar Front (south of 50°S), with abundances below 15% north of 45°S and minima abundance in the South Atlantic Current and Benguela system. Globoconella inflata (Fig. 4c) exhibits high relative abundances (mean 48%) within the BMC region and reaches values of up to 23% along the Patagonian shelf-break. Toward the eastern margin of the calibration dataset, this species achieve abundances close to 50% in some areas of the Benguela region. In contrast, it is not a common species in the Subantactic and Polar fronts, where it shows minimal abundances. Neogloboquadrina incompta (Fig. 4d) reaches its highest relative abundances within the Benguela system and the South Atlantic Current region (up to \sim 42%), and occurs with \sim 25% abundance along the Patagonian shelf break. In contrast, N. incompta is a scarce component of the assemblages in the Subantarctic and Polar Front regions. Neogloboquadrina dutertrei (Fig. 4e) dominates most of the eastern sector of the calibration dataset, reaching abundances up to 40% within the Benguela system. Globigerina falconensis (Fig. 4f) reaches its highest abundances along the South Atlantic Current (up to 35%) and is rare in the western South Atlantic, across the Polar Front, and north of 30°S in the calibration dataset. Globigerinoides ruber (total) (Fig. 4g) shows maximum relative abundances of up to 30% along the South Atlantic Current; however, south of 40°S, its abundance decreases sharply to below 1%. Orbulina universa (Fig. 4h) attains its highest abundances exclusively north of the Benguela system while Globigerinita glutinata (Fig. 4i) displays patchy distribution with high-abundances across Benguela, the Agulhas Retroflection, and the South Atlantic Current. Finally, Globorotalia truncatulinoides (Fig. 4j) achieves its highest abundances (~12%) between 30° and 40°S within the calibration dataset, including the South Atlantic Current region. In contrast, it is much less abundant in the Benguela system and becomes virtually absent south of the Polar Front (>50°S).

259

260

261

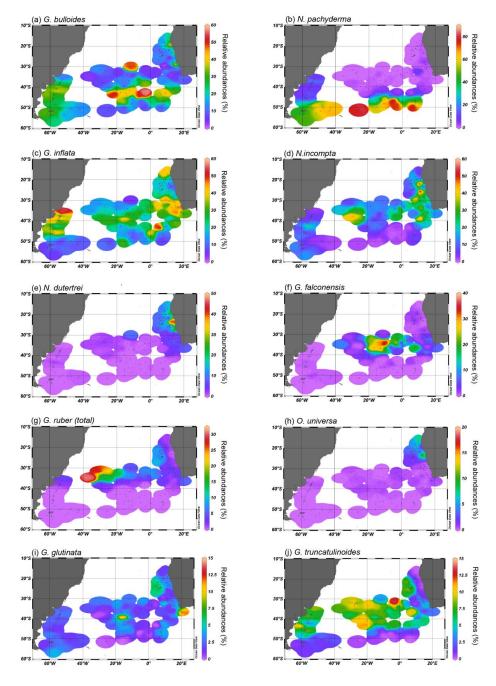


Figure 4: Geographical distribution of the main planktonic foraminifera taxa according to their relative abundance (%), Panel (a) Globigerina bulloides, (b) Neogloboquadrina pachyderma, (c) Globoconella inflata, (d) Neogloboquadrina incompta, (e) Neogloboquadrina dutertrei, (f) Globigerina falconensis, (g) Globigerinoides ruber (total), (h) Orbulina universa, (i) Globigerinita glutinata and (j) Globorotalia truncatulinoides.

262 3.2 Dimensionality of the Environmental Data

263 The 20 candidate environmental variables are highly collinear. The first two PCA axes explain 76.9% of the total 264 variance in the calibration dataset, being both significant according to the broken stick model (Fig. S2 in the 265 Supplement). PCA1 explains 47.2% of the variance, and it is positively correlated with phosphate and nitrate 266 across all seasons, as well as spring and winter silicate. PCA2 explains 29.7% of the variance and it is correlated 267 with chlorophyll-a and iron concentrations (Fig. 5a). 268 The spatial distribution of the samples combined with their PCA scores allowed the identification of three distinct 269 groups in the environmental dataset: the Central South Atlantic (CSA), the Eastern South Atlantic (ESA) and the 270 Western South Atlantic (WSA) (Fig. 5b). Therefore, when analyze the biplot of the first two PCA components, it 271 shows that all samples from the CSA group contribute to the variance in the PCA1 axis. Instead, samples from 272 the ESA group contribute to the variance in the both axes, PCA1 and PCA2, while the WSA group evidences a 273 clear separation between samples (Fig. 5a). At a more detailed level, two distinct subregions can be distinguished 274 along a latitudinal gradient: north WSA (north of 45°S) samples showed a striking correlation with PCA2 axis 275 suggesting that the variance of chlorophyll-a and iron is high in this subregion. Instead, south WSA (south of 276 45°S) samples were positively correlated with PCA1 components, showing a similar sample-environment 277 relationship with the CSA region.

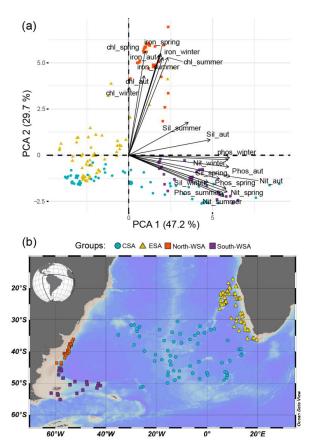


Figure 5: (a) Principal Component Analysis (PCA) biplot of the seasonal (summer, autumn, spring, winter) surface environmental variables. Nit: nitrate; Phos: phosphate; Sil: silicate; chl: chlorophyll-a; iron. Yellow triangles correspond to samples located on the Eastern South Atlantic (ESA); blue circles correspond to samples located on the Central South Atlantic (CSA); red squares to samples located north of 45° S on the Western South Atlantic (North-WSA); and purple squares to samples located south of 45° S on the Western South Atlantic (South-WSA). (b) Geographical distribution of the calibration dataset samples where the ESA (yellow triangles), CSA (blue circles), North-WSA (red squares) and South-WSA (purple squares) are distinguished.

3.3 Foraminiferal assemblages – environment relationship

The RDA results revealed that, when considered individually, ten of the twenty environmental variables appeared to explain a significant (p≤0.001) amount of variation in the assemblage composition of the dataset (Table 1). However together, these explain 57.7% of the total inertia. Therefore, we evaluated the variables' independence excluding those with VIF>2. The successive forward selection revealed that only surface Nitrate_summer, Silicate_summer and Chl_autumn explained a significant amount of variance within the assemblages. These three environmental variables together explain 44.6% of the total variance, being Nitrate_summer the variable that explained the highest proportion of variance (considering simple and conditional effects) (Table 2). The first RDA axis explains 40.27% of the constrained variance and is positively correlated with Nitrate summer and

295

296

297

298

299

Silicate_summer (Fig. 6a), while the second RDA axis explains 4.33% and is positively correlated with Chl_autumn (Fig. 6a). The individual RDA λ_1/λ_2 (Table 3) showed that surface Nitrate_summer was the most important variable among those found to be significant suggesting it represents an important ecological gradient in the calibration dataset (Juggins, 2013).

Table 1: Explained inertia of the tested environmental variables in the RDA model when all variables are considered.

Enviromental variable	% inertia explained	Contribution %	pseudo-F	p value
Nitrate_summer	39.8	61.4	112	0.001
Nitrate_autumn	3.2	4.9	9.8	0.001
Nitrate_spring	3	4.7	8.9	0.001
Nitrate_winter	2.2	3.4	7.4	0.001
chl_summer	2.2	3.4	8.5	0.001
Silicate_spring	1.8	2.8	6.3	0.001
chl_aut	1.7	2.6	7.3	0.001
iron_summer	1.4	2.1	5.3	0.001
phos_summer	1.2	1.8	3.7	0.001
iron_spring	1.2	1.9	5.1	0.001
chl_winter	1.4	2.2	5.1	0.002
phos_winter	1.3	1.9	4.1	0.002
iron_winter	1.1	1.6	4.3	0.002
phos_spring	0.9	1.4	2.7	0.017
phos_winter	0.9	1.4	2.8	0.019
Silicate_winter	0.6	0.9	2.2	0.047
Silicate_summer	0.5	0.8	1.9	0.096
Silicate_autumn	0.3	0.5	1.3	0.216
iron_autumn	0.2	0.3	0.7	0.593
chl_spring	< 0.1	< 0.1	0.3	0.94

Table 2: Results of Redundancy Analysis (RDA) for planktonic foraminifera species abundance based on coretop samples and variables explaining a significant amount of variance with (a) simple effects and (b) conditional effects.

Statistic	Axis 1	Axis 2	Axis 3	Axis 4
Eigenvalues	0.4027	0.0433	0.0021	0.1596
Explained variation (cumulative)	40.27	44.6	44.82	60.78
Pseudo-canonical correlation	0.9189	0.6113	0.1763	0
Explained fitted variation				
(cumulative)	89.86	99.53	100	

(a) Simple Term Effects:					
	Explains				
Enviromental variable	%	pseudo-F	P	P(adj)	
Nitrate_summer	39.8	112	0.001	0.003	
Silicate_summer	6.3	11.4	0.001	0.003	

304

305

306

307

308

309

310

311

312

313

314 315

316

317

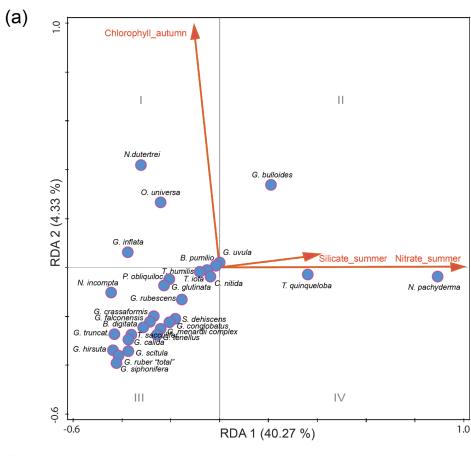
318

319

320

321

chl_autumn	4.6	8.2	0.001	0.003
(b) Conditional Term Effects:				
	Explains			
Enviromental variable	%	pseudo-F	P	P(adj)
Nitrate_summer	39.8	112	0.001	0.003
_	27.0			
chl_autumn	4.3	12.8	0.001	0.003


Table 3: Explained inertia and variance inflation factors (VIF) of the tested environmental variables in the after manual forward selection for variables without redundancy.

Enviromental			
variable	% inertia explained [RDA]	VIF	λ_1/λ_2
Nitrate_summer	39.8	1.13	2.35
Silicate_summer	6.3	1.14	0.10
chl_autumn	4.6	1.05	0.06

Based on RDA axis ordination, four different environmental settings can be characterized (Fig. 6a). Quadrant I represents a biological state characterized by high chlorophyll-a concentrations in autumn (Chl_autumn), indicative of enhanced productivity. Quadrant II corresponds to nutrients/production state associated with summer nutrients (nitrate and silicate) together with Chl_autumn production. Quadrant III represents low-productivity environments, characterized by reduced chlorophyll-a and depleted nutrient levels and quadrant IV represents nutrient-driven conditions with low chlorophyll-a (Fig. 6a). Regarding planktonic foraminifera species distribution, the 'environmental quadrants' revealed that polar species were more associated with high values of summer nitrate and silicate (Fig. 6a). Neogloboquadrina dutertrei, Orbulina universa and Globoconella inflata were associated with quadrant I, while Globigerina bulloides was linked with quadrant II. In quadrant III, species such as Neogloboquadrina incompta, Globorotalia truncatulinoides, Globigerinita glutinata, Globorotalia hirsuta, Globigerinoides tenellus, Globigerinella calida, Globigerinella siphonifera, Trilobatus sacculifer, Globigerinoides conglobatus, "G. menardii complex", and the "G. ruber total" were present, except for Globigerinita uvula and Berggrenia pumilio, which were closer to the axes' origin. Neogloboquadrina pachyderma and Turborotalita. quinqueloba showed their optimal conditions in quadrant IV. Sampleenvironment relationships (Fig. 6b) indicate that samples from the WSA and CSA regions contribute to the variance in surface Nitrate_summer and Silicate_summer, whereas chlorophyll-a variance is mainly explained by samples from both the ESA and WSA.



Figure 6: (a) RDA ordination diagrams illustrating the selected planktonic foraminiferal species, constrained by independent environmental variables from the calibration dataset. The environmental variables (represented by red arrows) indicate their correlation with the axes (the direction of arrows) and their significance in explaining the distribution of planktonic foraminifera (the length of arrows). (b) Sample ordination for RDA, constrained by independent environmental variables for RDA 1 and 2 within the calibration dataset.

3.4 Transfer Function Selection

Surface Nitrate_summer explained the largest amount of variation in the planktonic foraminifera assemblages and was therefore chosen to develop the transfer function. Twenty-one samples were identified as outliers and removed from the calibration dataset. Performance statistics for the twelve evaluated transfer function models are shown in Table 4. The bootstrap cross-validation shows that WATOL_inv performs the best model, achieving the highest cross-validated coefficient of determination, as well as the lowest RMSEP. The other models had slightly worse performances, with lower r² values and higher RMSEP (Table 4).

Table 4: Performance statistics for all transfer function models for Nitrate_summer based on bootstrap cross validation method after removal of outliers.

Model	r ² (boot)	RMSEP	Average bias (boot)	Maximum bias (boot)
MAT	0.929	1.729	-0.071	5.502
WMAT	0.934	1.663	-0.085	5.666
WA-PLS1	0.916	1.775	0.007	2.614
WA-PLS2	0.921	1.737	0.016	2.686
WA-PLS3	0.919	1.771	0.001	2.673
WA-PLS4	0.917	1.821	-0.001	2.576
WA-PLS5	0.916	1.868	-0.013	2.610
WA_Inv	0.916	1.778	0.003	2.608
WA_Cla	0.916	1.846	0.000	3.409
WATOL_Inv	0.942	1.550	0.142	3.341
WATOL_Cla	0.942	1.560	0.146	2.718
ML	0.936	1.610	-0.247	3.509

After assessing which environmental variables could theoretically be reconstructed, we tested for the presence of spatial and environmental autocorrelation. The results indicate that the performance (r^2) of the MAT deteriorates with increasing fraction of sites deleted (Fig. 7). For instance, removing sites within a 500 km neighborhood of each site results in an average decrease of only 10% in the number of available analogues, but the performance of Nitrate_summer reconstruction deteriorates from $r^2 = 0.876$ to 0.781. In contrast, achieving a similar decline in performance through random site deletion requires the removal of 70% of available sites (Fig. 7). This demonstrates that the deletion of nearby sites is not equivalent to the deletion of sites at random, suggesting the presence of spatial autocorrelation. On the other hand, when environmentally similar sites are deleted, we observe that the performance loss is more pronounced with neighborhood deletion compared to environmental deletion (Fig. 7). Due to the observed autocorrelation, we employed the second method suggested by Trachsel and Telford (2016). The estimated range of a circular variogram model fitted to the detrended residuals of the weighted average

model is 868 km. This result indicates that samples within a distance h of 868 km may be considered potentially identical and should be excluded during h-block cross-validation to avoid over- optimistic estimates. Therefore, we repeated the calibration model including a cut-off value for h-block cross validation to obtain unbiased performances. Results from each model with bootstrap and h-block cross validation are shown in Table 5. An inspection of the residual distribution from the cross-validation tests (both bootstrapped and h-block), however, reveals uneven residual patterns for Nitrate_summer (Fig.S3 in the Supplement). For the two models considered, the spatial structure of the residuals is complex and large residual values emerge at different regions. In the case of bootstrapped cross-validation, large over- and underestimations were observed across a substantial portion of the calibration dataset. However, when using h-block cross-validation, the largest overestimations were concentrated south of 45°S and north of 20°S, while residuals remained relatively small along a broad latitudinal band between 20°S and 45°S. Despite presenting slightly lower performance and higher RMSEP, we adopted the h-block approach because it explicitly corrects for spatial autocorrelation, preventing the artificial inflation of the model performance. This outcome highlights that the h-block approach is the most effective for evaluating model performance and further indicates that the transfer function provides its most reliable reconstructions within this latitudinal range.

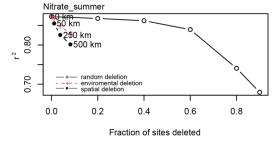
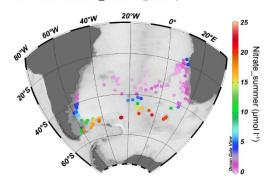
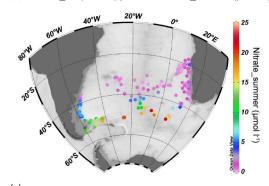


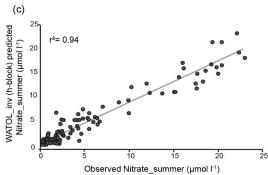
Figure 7: Effect of random site deletion, neighborhood deletion (testing four distances) and environmental deletion on the performance of the Nitrate_summer transfer function, expressed as the r^2 between observed and predicted values.

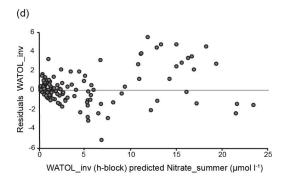
Table 5: Performance statistics for each calibration model. Coefficients of determination (r²) and root mean square error of prediction (RMSEP) assessed with bootstrap and h-block cross validation methods.


Model	Cross validation	R ² (cv)	RMSEP
WATOL_Inv	bootstrapped	0.941	1.561
	h-block	0.938	1.578

The surface Nitrate_summer values in the calibration dataset vary from 0.148 to 21.20 µmol 1⁻¹ (Fig. 8a). WATOL_inv predicted values are shown in Figure 8b. The predicted vs. observed values approach the diagonal of slope one (which indicates perfect predictions) reasonably well (Fig. 8c). The residuals are equally distributed around zero and do not exhibit any apparent trends (Fig. 8d). Based on these results, we suggest that the WATOL_inv model offers the most robust and unbiased reconstruction for surface Nitrate_summer, making it the most reliable calibration tool for paleoproductivity reconstructions in the South Atlantic Ocean.






(a) Observed Nitrate_summer (µmol I-1)

(b) WATOL_inv (h-block) predicted Nitrate_summer (µmol I-1)

- Figure 8: Diagnostic plots of the South Atlantic transfer function. (a) Observed Nitrate_summer values; (b) WATOL_inv-predicted h-block cross-validation Nitrate_summer values (without outliers); (c) Observed vs.
- $374 \qquad WATOL_inv-predicted \ h-block\ cross-validation\ Nitrate_summer\ values\ (without\ outliers)\ (d);\ WATOL_inv-predicted$
- h-block cross-validation Nitrate_summer values vs. residuals (without outliers).

376 4. Discussion

377 The calibration dataset constrained here spans a broad latitudinal gradient that encompasses key oceanographic 378 features such as the subtropical gyre, the confluence of two major western boundary currents, several frontal 379 systems, upwelling regions, and mesoscale eddies. Nutrient-related environmental gradients independently 380 contribute to explain the geographic distribution of planktonic foraminiferal assemblages in the South Atlantic. 381 Lessa et al. (2020) suggested that primary productivity can dominate the assemblage composition within the mixed 382 layer while physical factors such as temperature and salinity become more significant at intermediate and 383 subsurface depths. Some planktonic foraminifera species occupy a narrow ecological niche, and flourishes at 384 places and during times of slightly enhanced nutrient availability following the phytoplankton production 385 (Schiebel and Hemleben, 2017). Many euphotic-zone-dwelling foraminifera almost certainly discriminate in the 386 forms of the N they consume, perhaps preferentially consuming zooplankton as well as larger phytoplankton (Bé 387 and Hutson, 1977; Spindler et al., 1984). In contrast, the deeper-dwelling, non-spinose foraminifera species appear 388 to feed more passively and thus less selectively. The finding that productivity-related variables influence the 389 abundance of planktonic foraminiferal species in surface sediments is not unexpected. What is distinctive and 390 novel is the identification of surface Nitrate_summer as the principal driver in the South Atlantic. However, our 391 knowledge of how nitrate availability affects planktonic foraminiferal distribution remains limited.

4.1 Modern calibration dataset

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

Designing a robust planktonic foraminifera dataset is a critical part of a paleoenvironmental reconstruction process as the reconstructed values strongly depend on the empirical relationships between the modern distribution and abundance of taxa, and the modern environmental measurements (Kucera et al., 2005). The accuracy and reliability of any reconstruction depends on the span (i.e., the width of the environmental gradient covered by the sampled sites), the size (i.e., the number of data points), and the coverage of the environmental gradient (i.e., the distribution of the samples along that gradient) (Juggins and Birks, 2012). The size of our calibration dataset, and the distribution of our samples along the studied productivity gradient accurately capture the regional planktonic foraminifera-environmental relationships in the South Atlantic. Our results highlight three distinctive regions: the WSA, the ESA and the CSA regions (Fig. 5).

Nowadays, the WSA is recognized as a key region in the global carbon cycle, functioning as a significant sink for atmospheric CO₂ via both the biological and solubility pumps (Field et al., 1998; Sigman et al., 2010). Our findings indicate that the productivity gradient within the WSA presents a north-south orientation shaped by multiple interacting variables. This pattern led to the characterization of two subregions: the northern WSA and the southern WSA (Fig. 5b). Northern WSA (north of 45°S) is strongly influenced by the BMC itself, where high chlorophyll-a concentrations can be recognized (García et al., 2004; Saraceno et al., 2005; Barré et al., 2006). This high productivity arises from the optimal interplay between the nutrient-rich subantarctic waters advected by the

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

Malvinas Current and the warm subtropical waters of the Brazil Current, a combination that generates ideal conditions for enhanced primary production and efficient photosynthetic carbon uptake. This part of the margin is additionally affected by other sources of nutrients such as the freshwater discharges from the Río de la Plata (~36°S) and Lagoa Dos Patos (~32°S), which provide a substantial input of terrestrial material (Brandhorst and Castello, 1971; Depetris and Paolini, 1991). Combined with wind forcing, these river inputs play an important role in redistributing nutrients across the continental shelf (Piola et al., 2005). Moreover, most of the productivity generated on the continental shelf is transported offshore by BMC-driven cross-shelf exchanges (Berden et al., 2020). This process involves surface export of the Río de la Plata waters and the subsurface advection of Subantarctic Shelf Waters that subduct beneath the subtropical thermocline, allowing the high shelf productivity to reach the locations of our samples (Berden et al., 2020; Manta et al., 2022). These patterns are reflected in our PCA results, where samples from the northern WSA align with the PCA2, primarily driven by chlorophyll-a concentrations and iron (Fig. 5a). Instead, the southern WSA (south of 45°S) is mostly influenced by the nutrientrich waters transported by the Malvinas Current. These cold waters flow along the continental slope extending across the shelf bottom and delivering nutrients beyond the frontal zone (Piola et al., 2010). Our results evidence that samples from the southern-WSA ordinate along the PCA1 (Fig. 5a) suggesting a macronutrient gradient controlled by nitrate, phosphate, and silicate affects their distribution. This confirms the results obtained by Paparazzo et al. (2016), who reported a south to north decreasing trend in nitrate, phosphate, and silicate concentrations along the Patagonian margin. Despite the variability the WSA exhibits, macronutrient levels generally satisfy phytoplankton requirements and do not limit primary productivity along the whole region (Brandini et al., 2000; Signorini et al., 2009). This may explain the persistent and narrow band of high chlorophylla concentrations observed even along the Patagonian shelf-break (Fig. 1), which closely follows the 200 m isobath and displays anomalously high peaks (Romero et al., 2006). The intense chlorophyll-a blooms are indicative of nutrient-rich upwelling and highlight the complex dynamics governing productivity in the WSA region. Most samples from the ESA in the calibration dataset are mainly correlated with high values of chlorophyll-a and iron values (Fig. 5a), consistent with the high-productivity conditions typical of this coastal upwelling system (Barlow et al., 2009). However, a significant group of samples is observed to adjust with lower values. This inconsistency in the spatial distribution of the samples may be attributed to differences in the oceanographic features of the region. The Benguela upwelling system comprises, from north to south, areas that differ from the duration of the upwelling and level of productivity (Lutjeharms and Stockton, 1987; Ufkes et al., 2000; Petrick et al., 2015). North of of 30°S, the region is dominated by persistent upwelling and enhanced primary productivity (Andrews and Hutchings, 1980; Lutjeharms and Stockton, 1987), with upwelled cold and high-nutrient waters extending offshore in filaments (Rosell-Melé et al., 2014). Conversely, the southern area is influenced by seasonal upwelling events and generally lower nutrient availability (Andrews and Hutchings, 1980; Rosell-Melé et al., 2014; Petrick et al., 2015). These differences could be reflected in our PCA results, as the observed patterns may correspond to the regional variability within the ESA. Samples with lower PCA1 and PCA2 loading values might correspond to the southern part of the Benguela system, where productivity is comparatively reduced. The CSA comprises the southern boundary of the South Atlantic Subtropical Gyre (Stramma and Peterson, 1990) where the persistent stratification limits the nutrient inputs to the photic zone, constraining phytoplankton growth (Eppley and Peterson, 1979; Moore et al., 2013). The spatial distribution of the samples of this region is related to lower PCA1 and PCA2 loading values. These results are consistent with the distribution patterns of

phytoplankton recognized in the Atlantic Ocean, which reach their lowest amount in the subtropical gyres (Cermeno et al., 2008). In our results, a group of samples, however, resulted positively correlated with nitrate and phosphate across all seasons, and winter and spring-silicate (Fig. 5a). As biogeochemical processes in oligotrophic regions have the potential to influence global elemental cycles, the higher nutrient content in the CSA could be explained due by different mechanisms such as biological fixation of N₂ gas (Michaels et al., 1996; Gruber and Sarmiento, 1997), lateral transport of dissolved organic nutrients (Rintoul and Wunsch, 1991; Williams and Follows, 1998), and mesoscale eddies-induced upwelling (McGillicuddy and Robinson, 1997; Siegel et al., 1999).

In our calibration dataset, planktonic foraminiferal assemblages reveal large compositional differences between

4.2 Planktonic foraminifera response to productivity-related variables in the South Atlantic

458 the WSA, CSA and ESA regions. This pattern is proven by the pattern abundance of the 10 most common species 459 (Fig. 4). Our RDA results confirm previous studies: whereas in the WSA, G. bulloides, N. pachyderma and G. 460 inflata are the most abundant species (Fig. 4) (Boltovskoy et al., 1996; Chiessi et al., 2007; García Chapori and 461 Laprida, 2021), the ESA assemblages are characterized by high abundance of G. inflata, G. bulloides, N. incompta, 462 N. dutertrei, O. universa and G. glutinata (Giraudeau, 1993; Ufkes and Kroon, 2012, Lessa et al., 2020). The 463 planktonic foraminifera composition of the CSA differs from those found at both South Atlantic margins, where 464 G. bulloides, N. incompta, G. ruber (total), G. falconensis and G. truncatulinoides reveal a patchy pattern of high 465 abundance (Fig. 4). 466 G. bulloides appears as a species mainly related to productive and nutrient-rich waters, being the only one 467 abundant in the three regions (Fig. 6). This non-symbiotic species, typically associated with temperate to subpolar 468 water masses, is commonly found in upwelling regions from lower latitudes (e.g., Thiede, 1975; Bé and Hutson, 469 1977; Kroon and Ganssen, 1988; Naidu and Malmgren, 1996; Conan and Brummer, 2000), as well as in areas of 470 seasonally elevated primary productivity from mid- to high latitudes (e.g., Bé and Tolderlund, 1971; Schiebel and 471 Hemleben, 2000; Mohtadi et al., 2007; Lessa et al., 2014). N. pachyderma, instead, reflects mainly nitrate-472 dominated conditions (Fig. 6a). This species, known for dominating the polar assemblages of both hemispheres 473 (e.g., Bé and Hutson, 1977), is frequently found in upwelling regions (e.g., Conan and Brummer 2000; Darling et 474 al., 2006; André et al., 2018). Due to its extreme habitat conditions and opportunistic strategy (cf. Ivanova et al., 475 1999), it has developed the ability of rapidly feeding and reproducing during the brief productive summer season 476 (cf. Jonkers et al., 2010), feeding from phytoplankton, mainly diatoms (Spindler and Dieckmann, 1986). Its 477 pattern distribution in our calibration dataset it is mainly associated with the nitrate-rich waters of the northward 478 flowing Malvinas Current and Subantarctic Front. On the other hand, in our dataset G. inflata is negatively 479 correlated to Nitrate_summer and Silicate_summer and slightly productive waters (Fig 6a). According to previous 480 contributions, it has often been found to occur in the vicinity of hydrologic fronts and eddies, like the BMC region 481 (Laprida et al., 2011) in the WSA and the ESA. This deep-dweller species, limited to mesotrophic conditions, has 482 been interpreted to display an opportunistic behavior feeding on phytodetritus (cf. Lončarić et al., 2006; Storz et 483 al., 2009; Chapman, 2010). N. incompta shows preferences for nutrient-depleted and low-productivity waters 484 (Fig. 6a). This species is commonly associated with shallow mixed-layer depths, dominating temperate and low-485 productivity waters (Bé and Tolderlund, 1971; Schiebel et al., 2001), like those recorded here within the central 486 CSA and offshore the ESA. N. dutertrei and O. universa show similar spatial distributions and abundances in the

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

calibration dataset. Interestingly, both species, with maximum abundances in the ESA (Fig. 4), have preferences for productive but nutrient-depleted waters (Fig. 6a). There, both species occur at maximum abundance north of 30°S, confirming previous contributions that linked them with the cold and enhanced primary productivity surface coastal waters (Giraudeau, 1993; Little et al., 1997). G. ruber and G. falconensis evidence to have preference for the nutrient-depleted and very low-productivity waters, and as such, they peak within the CSA (Figs. 4 and 6a). Our results confirm previous contributions that suggest that these spinose and photosynthetic symbiont-bearing species are known for being mainly associated with the mixed-layer oligotrophic waters of the Subtropical Gyre (Sierro et al., 2003; Schiebel and Hemleben, 2017; Schiebel et al., 2018; Lessa et al., 2020). G. truncatulinoides also shows preference for the nutrient-depleted and very low-productivity waters of the Subtropical Gyre within the CSA (Fig. 4 and Fig 6a) confirming the observations of Kucera et al. (2005). In contrast to G. ruber and G. falconensis, this is a non-spinose deep-dwelling species that usually reflects the conditions of the permanent thermocline, where photosynthetic activity is constrained by the low light availability (Schiebel and Hemleben, 2017). Finally, G. glutinata prefers environments with slightly low chlorophyll-a and nutrient concentrations associated with the southern limb of the Subtropical Gyre. Its position, together with T. iota, G. humilis, and G. nitida (Fig 6a) aligns with the observations of Lessa et al. (2020), who reported these species as co-occurring within the surface faunas of the Gyre and Agulhas Leakage regions.

4.3 Transfer function selection

The application of transfer functions assumes that the assemblages' structure of the analyzed group responds to environmental forcings, and that the principal driving factors are known (Birks, 1995). This assumption presents significant challenges, as it required both prior ecological knowledge and objective procedures for selecting relevant variables. Regardless of the approach, decision makers must integrate ecological information such as output from ecological models with environmental considerations such as spatial variability or chaotic processes. In a paleoceanographic context, variable selection is often difficult by the high degree of collinearity among candidate oceanographic factors. Previous transfer function studies had aimed to present any model with a decent predictive performance and, if the calibration dataset was spatially autocorrelated or the reconstructed variable was not significant, they recommended caution when the results were interpreted or even considered the model or variable to be useless (e.g., Amesbury et al., 2013; Hernandez-Almeida et al., 2020; Chen et al., 2020; Hohmann et al., 2023). Here we suggest a different perspective, mostly focusing on the purpose of the model (or study): whether it is to be used purely to gain understanding, purely for prediction, or both. The reconstructed variable can be safely interpreted if we are environmentally aware using the different statistical models. Our results confirm that planktonic foraminiferal assemblages respond to other environmental gradients besides temperature (Lessa et al., 2020; García Chapori and Laprida, 2021), and suggest that it is possible to extract information from the same fossil planktonic foraminifera assemblage on past variability for different environmental drivers. However, the presence of several interacting biotic and abiotic processes influencing planktonic foraminifera distribution could manifest complex species-environment relationships. These responses surely exist in the ocean and we often cannot detect them because their signal is weak or they are confused with sampling noise, bias or spatial autocorrelation. As a result, the detected signature of the environmental variables that exhibit spatial dependence in the calibration dataset is likely the result of integrating all information sources

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

reconstructions.

from regions with different environmental drivers, rather than a single, uniform response. A stronger characterization of each gradient would require a local constrained analysis which inevitably leads to a compromise in the analogues of the resulting ecological models and restricts their applicability to past oceanographic scenarios. Moreover, intrinsic biological features such as cryptic diversity, life-cycle dynamics, or seasonal species blooms may further constrain the ability of transfer functions to capture broad aspects of the species-environment relationship. These factors, in theory, should impact the different transfer function methods based on various foundational principles differently (Kucera et al., 2005). Since WA method averages the ecological tolerances (Birks et al., 1990), it appears less sensitive than other methods to the overestimation caused by the spatial autocorrelation. In this context, after evaluating a wide range of statistical approaches, we chose the WATOL_inv model to perform the downcore reconstruction since it effectively reveals and describes the species-environment relationship. The use of h-block cross-validation approach effectively mitigated the influence of spatial autocorrelation and facilitated the identification of the optimal h-value for obtaining unbiased performance estimates. By partitioning the dataset into spatially independent blocks and accounting for the dependence structure, this method reduced the risk of overfitting (Trachsel and Telford, 2016). By selecting WATOL_inv as the final model, we adopted an approach well suited to situations where species show a clear unimodal response to a dominant gradient, in this case, surface Nitrate_summer. The combined strategy of accounting for autocorrelation through h-block cross validation and identifying the most spatially stable and ecologically meaningful variable allowed us to select a model that best captures the underlying species-environment relationship while ensuring more robust paleoceanographic

4.4 Holocene paleoproductivity reconstruction in the BMC (WSA)

Surface Nitrate_summer estimates obtained for core GeoB2806-4 revealed that paleoproductivity in the BMC influence zone has been subject to notable changes along the Holocene. Our reconstruction reveals a marked decrease in Nitrate_summer concentration between ~11.7 - 5 cal kyrs BP (Fig. 9a). This trend coincides with a progressive increase in the annual mixed-layer temperature of ~3°C (Fig. 9b). As the annual mixed-layer temperature increased, stratified conditions of the water column also increased, provoking a progressive depletion of nitrate from the upper layers since phytoplankton communities consume a large amount of nutrients under stratified conditions (Signorini et al., 2009). As nitrate availability declined, the system reflected a scenario of nearly complete nutrient utilization, which is usually associated with enhanced primary productivity (Sverdrup, 1953; Paparazzo et al. 2010). Thus, a progressive biological uptake during the early-mid Holocene within the BMC influence zone can be interpreted. Between ~5 - 2 cal kyrs BP, instead, the increase in surface nitrate levels and decrease in mixed-layer temperatures (Fig. 9a-b) would reflect the opposite pattern, where the lower nutrient utilization would suggest lower biological uptake. Nowadays, the cold subantarctic waters carried by the Malvinas Current are the main source of nitrate content to the WSA, particularly the Argentine continental margin (Carreto et al., 1995). The Malvinas Current flows northward along the margin until it encounters the Brazil Current ~38S°. There, at the BMC, primary productivity varies mostly influenced by changes in the dynamics of both currents, specially the seasonal shifts of the BMC (García et al., 2004; Saraceno et al., 2005; Artana et al., 2019) that occur in response to changes in the intensity/position of the northern portion of the westerlies (Lumpkin and Garzoli, 2011). Additionally, other factors can also enhance the nutrients carried by the Malvinas Current, such as the

https://doi.org/10.5194/egusphere-2025-5531 Preprint. Discussion started: 28 November 2025 © Author(s) 2025. CC BY 4.0 License.

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

strengthening of the Patagonian shelf-break upwelling (García et al., 2008), and the intensification of the wind that carries continental dust to the ocean (Moore et al., 2001). These high levels of surface nitrate support the high phytoplankton biomass associated with the shelf-break front throughout summer and autumn (Carreto et al., 1995). During the late Quaternary, shifts of the BMC would have been wider than today (see García Chapori et al., 2022 references therein). According to Voigt et al. (2015), between ~11.7 and 5.5 cal kyr BP, the position of the BMC experienced a gradual southward displacement of 1° (Fig. 9c) in response to the poleward migration of the westerlies until it reached its current position. An equatorward position of the BMC during the onset of the Holocene would have led to major advection of the Malvinas Current, intensifying the shelf-break upwelling of Patagonia, and thereby increasing the nitrate supply and cooling the mixed-layer waters at the core site. The intervening colder nutrient-rich subantarctic waters provided the necessary nutrients for biomass growth. Towards the mid-Holocene, the southward displacement of the BMC (Voigt et al., 2015) provoked a temperature increase leading to a decrease of surface nitrate content due to enhanced productivity. Records from the Brazilian slope revealed warmer conditions during early to mid-Holocene transition (Pivel et al., 2013; Chiessi et al., 2014; Pereira et al., 2018), attributed to a more vigorous Brazil Current transport, confirming the southward shift of the BMC. Within the BMC, however, other local factors affect the primary productivity nowadays, in particular the Plata Plume Water (Carreto et al., 1986), which provides ca. 8×10^7 t yr⁻¹ of suspended sediment load to the WSA (Depetris et al., 2003), representing an important source of nutrient input. During the mid-Holocene, drier conditions over southeastern South America, related to a weakening of the southeastward low-level jet moisture transport (Wang et al., 2007), would have reduced rainfall over the Río de la Plata drainage basin leading to a low terrigenous input (de Mahiques et al., 2009). These conditions persisted until the mid- to late Holocene transition. These processes could have implied a decrease in the Plata Plume Water nutrient input, leaving the nutrient supply from the Malvinas Current as the main source sustaining the biological productivity at the BMC. During the early Late Holocene (~4 – 2 cal kyr BP), when the surface Nitrate_summer reached its highest levels (Fig. 9a), the slight cooling (ca. 0.6°C) and the northward displacement of the BMC (Fig. 9b-c) suggest a major influence of the Malvinas Current at the core site. These results confirm the dinoflagellate records from the southern Brazil margin that also evidence a northward displacement of the BMC between ~4 - 2 cal kyr BP (Gu et al., 2018), and are in accordance with paleolimnological records from the Patagonia steppe (Douglass et al., 2005; Siani et al., 2010) and model simulations (Varma et al., 2012; Berman et al., 2016) that suggest an equatorward shift of the westerlies during the late Holocene. However, the higher nitrate concentrations relative to those of the early Holocene would imply more stratified conditions at the core site during the early Late Holocene.

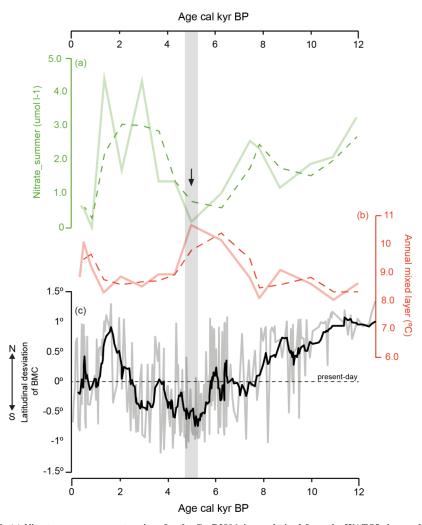


Figure 9: (a) Nitrate_summer reconstructions for the GeoB2806-4 core derived from the WATOL_inv model (dash green line, moving average); (b) Annual mixed-layer temperature modified from Garcia Chapori and Laprida (2022) (dash red line, moving average); (c) Latitudinal deviation of the Brazil-Malvinas Confluence (BMC) from its present-day position, estimated from the $\delta^{18}O_{ivc}$ GeoB13862-1 record (in degrees of latitude), using data from Voigt et al. (2015).

5. Conclusions

In this study we analyze the relationship between planktonic foraminifera distribution present in modern sediment samples and a suite of potential driving productivity-related variables in a calibration dataset that comprises the South Atlantic. Our results indicate that productivity-related variables are relevant drivers of the modern planktonic foraminiferal assemblage structure. The identification of surface summer nitrate concentration as the principal driver represents a novel outcome, suggesting that planktonic foraminifera exhibit a more complex ecological response to the environmental variables than usually expected. Additionally, nutrient-related gradients

- 605 emerge as independent drivers that account for significant aspects of the spatial distribution of planktonic 606 foraminifera. The calibration dataset compiled includes key oceanographic features allowing us to distinguish 607 three different regions: the western South Atlantic, central South Atlantic, and eastern South Atlantic. The chosen 608 regression model for reconstructing surface summer nitrate is WATOL_inv with h-block cross validation (r_{cv}^2) 609 0.938; RMSEP = 1.578 umol 1⁻¹). The reconstructed variations inferred from sediment core GeoB2806-4 suggest 610 that, during the Holocene, surface summer nitrate was linked to the latitudinal displacement of the Brazil-Malvinas 611 Confluence, ultimately driven by shifts of the northern portion of the South Westerly Winds. Equatorward shifts of the winds belt enhanced the advection of the Malvinas Current, increasing the nitrate supply and cooling the 612 613 mixed layer at the core site, while poleward displacements allowed the stratification of the mixed layer 614 intensifying the biological uptake, and therefore reduced the nitrate availability. 615 This study demonstrates that, when applied with ecological awareness and appropriate statistical tools, 616 reconstructions of different environmental variables can yield meaningful results. Therefore, under certain 617 conditions and with careful attention to the proxy ecology, variables selection, and model sensitivity, reliable 618 reconstructions are feasible. However, determining whether such reconstructions can be generalized across 619 broader micropaleontological datasets remains an open question.
- 620 6. Data availability
- The core-top samples data reported in this paper are archived in PANGAEA
- 622 (https://doi.org/10.1594/PANGAEA.949250). Sediment core GeoB2406-4 data was extracted from PANGAEA
- 623 (https://doi.org/10.1594/PANGAEA.845640).
- 624 7. Author contribution
- 625 Paula B. Albarracin: Writing original draft, Methodology, Validation, Visualization, Data curation,
- 626 Investigation, Formal analysis, Conceptualization. Natalia García Chapori: Writing review and editing,
- 627 conceptualization, Formal analysis, Visualization, Supervision. Cecilia Laprida: Writing review and editing,
- 628 conceptualization, Visualization, Formal analysis, project administration, funding acquisition.
- 629 8. Competing interests
- The authors declare that they have no conflict of interest.
- 631 9. Acknowledgements.
- 632 This research was supported by the Argentine National Scientific and Technical Research Council (CONICET;
- project PIP 11220220100103CO) and the University of Buenos Aires (project UBACyT 20020190100204BA).
- 634 10. References
- 635 Amesbury, M. J., Mallon, G., Charman, D. J., Hughes, P. D. M., Booth, R. K., Daley, T. J., and Garneau, M.:
- 636 Statistical testing of a new testate amoeba-based transfer function for water-table depth reconstruction on

- 637 ombrotrophic peatlands in north-eastern Canada and Maine, United States, J. Quaternary Sci., 28, 27-39,
- 638 https://doi.org/10.1002/jqs.25842, 2013.
- 639 André, A., Quillévéré, F., Schiebel, R., Morard, R., Howa, H., Meilland, J., and Douady, C.: Disconnection
- between genetic and morphological diversity in the planktonic foraminifer Neogloboquadrina pachyderma
- from the Indian Sector of the Southern Ocean, Mar. Micropaleontol., 144, 14-24
- https://doi.org/10.1016/j.marmicro.2018.08.001, 2018.
- Andrews, W. R. H. and Hutchings, L.: Upwelling in the southern Benguela Current, Prog. Oceanogr., 9, 1–81,
- 644 https://doi.org/10.1016/0079-6611(80)90015-4, 1980.
- 645 Artana, C., Provost, C., Lellouche, J.M., Rio, M.H., Ferrari, R., and Sennéchael, N.: The Malvinas Current at the
- 646 Confluence with the Brazil Current: Inferences from 25 years of Mercator Ocean reanalysis, J. Geophys. Res.-
- Oceans, 124, 7178–7200, https://doi.org/10.1029/2019JC015289, 2019.
- 648 Barlow, R., Lamont, T., Mitchell-Innes, B., Lucas, M., and Thomalla, S.: Primary production in the Benguela
- 649 ecosystem, 1999–2002, Afr. J. Mar. Sci., 31, 97–101, https://doi.org/10.2989/AJMS.2009.31.1.10.780, 2009.
- 650 Barré, N., Provost, C., and Saraceno, M.: Spatial and temporal scales of the Brazil-Malvinas Current confluence
- documented by simultaneous MODIS Aqua 1.1-km resolution SST and color images, Adv. Space Res., 37,
- 652 770–786, https://doi.org/10.1016/j.asr.2005.07.031, 2006.
- 653 Bé, A. W. H.: An ecological, zoogeographic, and taxonomic review of recent planktonic foraminifera, in: Oceanic
- Micropaleontology, Vol. 1, edited by: Ramsay, A. T. S., Elsevier, New York, 1–100, 1977.
- 655 Bé, A. W. H. and Hutson, W. H.: Ecology of Planktonic Foraminifera and Biogeographic Patterns of Life and
- Fossil Assemblages in the Indian Ocean, Micropaleontology, 23, 369–414, https://doi.org/10.2307/1485406,
- **657** 1977.
- 658 Bé, A. W. H. and Tolderlund, D. S.: Distribution and ecology of planktonic foraminifera in surface waters of the
- Atlantic and Indian Oceans, in: The Micropaleontology of Oceans, edited by: Funnell, B. and Riedel, W.,
- 660 Cambridge Univ. Press, London, 105–150, 1971.
- 661 Berden, G., Charo, M., Möller, O. O. Jr., and Piola, A. R.: Circulation and hydrography in the western South
- Atlantic shelf and export to the deep adjacent ocean: 30°S to 40°S, J. Geophys. Res.-Oceans, 125,
- e2020JC016500, https://doi.org/10.1029/2020JC016500, 2020.
- Berger, W. H.: Sedimentation of planktonic foraminifera, Mar. Geol., 11, 325–358, 1971.
- 665 Berman, A. L., Silvestri, G. E., Rojas, M., and Tonello, M. T.: Accelerated greenhouse gases versus slow
- insolation forcing induced climate changes in southern South America since the Mid-Holocene, Clim. Dynam.,
- https://doi.org/10.1007/s00382-016-3081-z, 2016.
- 668 Bijma, J., Faber, W. W., and Hemleben, C.: Temperature and salinity limits for growth and survival of some
- planktonic foraminifers in laboratory cultures, J. Foraminifer. Res., 20, 95-116,
- 670 https://doi.org/10.2113/gsjfr.20.2.95, 1990.

- 671 Birks, H. J. B.: Quantitative palaeoenvironmental reconstructions, in: Statistical Modelling of Quaternary Science
- Data (Technical Guide 5), edited by: Maddy, D. and Brew, J. S., Quaternary Research Association, Cambridge,
- 673 161–254, 1995.
- 674 Birks, H. J. B.: Numerical tools in palaeolimnology: progress, potentialities and problems, J. Paleolimnol., 20,
- **675** 307–332, 1998.
- 676 Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C., and ter Braak, C. J. F.: Diatoms and pH reconstruction,
- 677 Philos. Trans. R. Soc. B, 327, 263–278, 1990.
- 678 Birks, H. J. B., Heiri, O., Seppä, H., and Bjune, A. E.: Strengths and weaknesses of quantitative climate
- 679 reconstructions based on Late-Quaternary biological proxies, Open Ecol. J., 3, 68–110, 2010.
- Boltovskoy, E. and Wright, R.: Recent Foraminifera, Junk, The Hague, 515 pp., 1976.
- 681 Boltovskoy, E., Boltovskoy, D., Correa, N., and Brandini, F.: Planktic foraminifera from the Southwestern
- 682 Atlantic (30°-60°S): species-specific patterns in the upper 50 m, Mar. Micropaleontol., 28, 53-72,
- 683 https://doi.org/10.1016/0377-8398 (95)00045-3, 1996.
- 684 Brandhorst, W. and Castello, J. P.: Evaluación de los recursos de anchoita (Engraulis anchoita) frente a la
- Argentina y Uruguay. I. Las condiciones oceanográficas, sinopsis del conocimiento actual sobre la anchoita y
- el plan para su evaluación, Proyecto Desarrollo Pesquero, FAO, Publicación nº 29, 63 pp., 1971.
- 687 Brandini, F., Boltovskoy, D., Piola, A., Kocmur, S., Rottgers, R., Abreu, P., and Mendes, D.: Multiannual trends
- in fronts and distribution of nutrients and chlorophyll in the southwestern Atlantic, Deep-Sea Res. Pt. I, 47,
- 689 1015–1033, https://doi.org/10.1016/S0967-0637 (99)00074-X, 2000.
- 690 Burman, P., Bhow, E., and Nonal, D.: A cross-validatory method for dependent data, Biometrika, 81, 351-358,
- 691 https://doi.org/10.1093/biomet/81.2.351, 1994.
- 692 Carreto, J. I., Negri, R. M., and Benavides, H. R.: Algunas características del florecimiento del fitoplancton en el
- Frente del Río de la Plata. Parte 1: Los sistemas nutritivos, Rev. Invest. Des. Pesq., 5, 7–29, 1986.
- 694 Carreto, J. I., Lutz, V. A., Carignan, M. O., Cucchi Colleoni, A. D., and de Marco, S. G.: Hydrography and
- 695 chlorophyll a in a transect from the coast to the shelf-break in the Argentinian Sea, Cont. Shelf Res., 15, 315–
- 696 336, 1995.
- 697 Cermeno, P., Dutkiewicz, S., Harris, R. P., Follows, M., Schofield, O., and Falkowski, P. G.: The role of nutricline
- depth in regulating the ocean carbon cycle, Proc. Natl. Acad. Sci. USA, 105, 20344-20349,
- 699 https://doi.org/10.1073/pnas.0811302106, 2008.
- 700 Chapman, M. R.: Seasonal production patterns of planktonic Foraminifera in the NE Atlantic Ocean: implications
- for paleotemperature and hydrographic reconstructions, Paleoceanography, 25, PA2203,
- 702 https://doi.org/10.1029/2008PA001708, 2010.
- 703 Chen, F., Zhang, J., Liu, J., Cao, X., Hou, J., Zhu, L., Xu, X., Liu, X., Wang, M., Wu, D., Huang, L., Zeng, T.,
- 704 Zhang, S., Huang, W., Zhang, X., and Yang, K.: Climate change, vegetation history, and landscape responses

- 705 on the Tibetan Plateau during the Holocene: a comprehensive review, Quat. Sci. Rev., 243, 1-21,
- 706 https://doi.org/10.1016/j.quascirev.2020.106444, 2020.
- 707 Chiessi, C. M., Ulrich, S., Mulitza, S., Pätzold, J., and Wefer, G.: Signature of the Brazil-Malvinas Confluence
- 708 (Argentine Basin) in the isotopic composition of planktonic foraminifera from surface sediments, Mar.
- 709 Micropaleontol., 64, 52–66, https://doi.org/10.1016/j.marmicro.2007.02.002, 2007.
- 710 Chiessi, C. M., Mulitza, S., Groeneveld, J., Silva, J. B., Campos, M. C., and Gurgel, M. H. C.: Variability of the
- 711 Brazil Current during the late Holocene, Palaeogeogr. Palaeoclimatol. Palaeoecol., 415, 28–36,
- 712 https://doi.org/10.1016/j.palaeo.2013.12.005, 2014.
- 713 Conan, S. M.H. and Brummer, G.-J. A.: Fluxes of planktic foraminifera in response to monsoonal upwelling on
- 714 the Somalia Basin margin, Deep-Sea Res. Pt. II, 47, 2207–2227, https://doi.org/10.1016/S0967-0645
- 715 (00)00019-0, 2000.
- 716 Darling, K. F., Kucera, M., Kroon, D., and Wade, C. M.: A resolution for the coiling direction paradox in
- 717 Neogloboquadrina pachyderma, Paleoceanography, 21, PA2011, https://doi.org/10.1029/2005PA001189,
- 718 2006.
- 719 Dave, A. C., Barton, A. D., Lozier, M. S., and McKinley, G. A.: What drives seasonal change in oligotrophic area
- 720 in the subtropical North Atlantic?, J. Geophys. Res.-Oceans, 120, 3958–3969
- 721 https://doi.org/10.1002/2015JC010787, 2015.
- de Mahiques, M. M., Wainer, I. K. C., Burone, L., Nagai, R., de Mello e Sousa, S. H., Figueira, R. C. L., da
- 723 Silveira, I. C. A., Bícego, M. C., Vicente Alves, D. P., and Hammer, Ø.: A high-resolution Holocene record
- 724 on the Southern Brazilian shelf: paleoenvironmental implications, Quat. Int., 206, 52-61,
- 725 https://doi.org/10.1016/j.quaint.2008.10.008, 2009.
- 726 de Vernal, A., Eynaud, F., Henry, M., Hillaire-Marcel, C., Londeix, L., Mangin, S., Matthiessen, J., Marret, F.,
- 727 Radi, T., Rochon, A., Solignac, S., and Turon, J. L.: Reconstruction of sea-surface conditions at middle to high
- 728 latitudes of the Northern Hemisphere during the Last Glacial Maximum (LGM) based on dinoflagellate cyst
- 729 assemblages, Quat. Sci. Rev., 24, 897–924, https://doi.org/10.1016/j.quascirev.2004.06.014, 2005.
- 730 Depetris, P. J. and Paolini, J. E.: Biogeochemical aspects of South American rivers: The Paraná and the Orinoco,
- in: Biogeochemistry of Major World Rivers, Scope 42, edited by: Degens, E. T., Kempe, S., and Richey, J.
- 732 R., John Wiley and Sons, Chichester, 105–125, 1991.
- 733 Depetris, P. J., Probst, J.L., Pasquini, A. I., and Gaiero, D. M.: The geochemical characteristics of the Paraná
- suspended sediment load: an initial assessment, Hydrol. Process., 17, 1267–1277, 2003.
- 735 Dong, S., Goni, G., Domingues, R., Bringas, F., Goes, M., Christophersen, J., and Baringer, M.: Synergy of in
- 736 situ and satellite ocean observations in determining meridional heat transport in the Atlantic Ocean, J.
- 737 Geophys. Res.-Oceans, 126, e2020JC017073, https://doi.org/10.1029/2020JC017073, 2021.

- 738 Douglass, D. C., Singer, B. S., Kaplan, M. R., Ackert, R. P., Mickelson, D. M., and Caffee, M. W.: Evidence of
- 739 early Holocene glacial advances in southern South America from cosmogenic surface exposure dating,
- 740 Geology, 33, 237–240, https://doi.org/10.1130/G21144.1, 2005.
- 741 Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and planktonic new production in the deep
- 742 ocean, Nature, 282, 677–680, https://doi.org/10.1038/282677a0, 1979.
- 743 Fatela, F. and Taborda, R.: Confidence limits of species proportions in microfossil assemblages, Mar.
- 744 Micropaleontol., 45, 169–174, https://doi.org/10.1016/S0377-8398(02)00021-X, 2002.
- 745 Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P. G.: Primary production of the biosphere:
- 746 integrating terrestrial and oceanic components, Science, 281, 237-240,
- 747 https://doi.org/10.1126/science.281.5374.237, 1998.
- 748 Forster, P. M., Smith, C. J., Walsh, T., Lamb, W. F., Lamboll, R., Hauser, M., Ribes, A., Rosen, D., Gillett, N.,
- 749 Palmer, M. D., Rogelj, J., von Schuckmann, K., Seneviratne, S. I., Trewin, B., Zhang, X., Allen, M., Andrew,
- 750 R., Birt, A., Borger, A., Boyer, T., Broersma, J. A., Cheng, L., Dentener, F., Friedlingstein, P., Gutiérrez, J.
- 751 M., Gütschow, J., Hall, B., Ishii, M., Jenkins, S., Lan, X., Lee, J.-Y., Morice, C., Kadow, C., Kennedy, J.,
- Killick, R., Minx, J. C., Naik, V., Peters, G. P., Pirani, A., Pongratz, J., Schleussner, C.-F., Szopa, S., Thorne,
- 753 P., Rohde, R., Rojas Corradi, M., Schumacher, D., Vose, R., Zickfeld, K., Masson-Delmotte, V., and Zhai, P.:
- 754 Indicators of Global Climate Change 2022: annual update of large-scale indicators of the state of the climate
- 755 system and human influence, Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-
- **756** 2023, 2023.
- 757 Gallego, D., García-Herrera, R., Tomety, F. S., et al.: Historical record of upwelling-favorable winds in Southern
- 758 Benguela 1833–2014, npj Clim. Atmos. Sci., 8, 36, https://doi.org/10.1038/s41612-025-00925-0, 2025.
- 759 García, C. A. E., Sarma, Y. V. B., Mata, M. M., and García, V. M. T.: Chlorophyll variability and eddies in the
- 760 Brazil-Malvinas Confluence region, Deep-Sea Res. Pt. II, 51, 159-172,
- 761 https://doi.org/10.1016/j.dsr2.2003.07.016, 2004.
- 762 García, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., Reagan, J. R., and
- 763 Johnson, D. R.: World Ocean Atlas 2013. Vol. 4: Dissolved Inorganic Nutrients (phosphate, nitrate, silicate),
- 764 NOAA Atlas NESDIS 76, 25 pp., 2013.
- 765 García, V. M. T., García, C. A. E., Mata, M. M., Pollery, R. C., Piola, A. R., Signorini, S. R., McClain, C. R., and
- 766 Iglesias-Rodriguez, M. D.: Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-
- 767 break in spring, Deep-Sea Res., 55, 1150–1166, https://doi.org/10.1016/j.dsr.2008.04.011, 2008.
- 768 García Chapori, N. and Kucera, M.: Planktonic foraminifera census counts from the western South Atlantic,
- 769 PANGAEA, https://doi.org/10.1594/PANGAEA.907931, 2019.
- 770 García Chapori, N. and Laprida, C.: Planktonic foraminifera assemblages from the Brazil-Malvinas Confluence:
- 771 palaeoceanographic implications of sub-surface temperature reconstructions in the western South Atlantic,
- 772 Lethaia, 54, 477–494, https://doi.org/10.1111/let.12416, 2021.

- 773 García Chapori, N., Chiessi, C. M., Bickert, T., and Laprida, C.: Sea-surface temperature reconstruction of the
- 774 western South Atlantic: new planktonic foraminiferal correlation function, Palaeogeogr. Palaeoclimatol.
- 775 Palaeoecol., 425, 67–75, https://doi.org/10.1016/j.palaeo.2015.02.027, 2015.
- 776 García Chapori, N., Laprida, C., Lo Prete, D., Chiessi, C. M., Mayr, C., and Violante, R. A.: Holocene
- 777 palaeoceanographic history of the western South Atlantic, J. S. Am. Earth Sci., 117, 103896,
- 778 https://doi.org/10.1016/j.jsames.2022.103896, 2022.
- 779 Garzoli, S. L. and Matano, R.: The South Atlantic and the Atlantic Meridional Overturning Circulation, Deep-Sea
- 780 Res. Pt. II, 58, 1837–1847, https://doi.org/10.1016/j.dsr2.2010.10.063, 2011.
- 781 Giraudeau, J.: Planktonic foraminiferal assemblages in surface sediments from the southwest African continental
- 782 margin, Mar. Geol., 110, 47–62, https://doi.org/10.1016/0025-3227 (93)90104-4, 1993.
- Gordon, A. L. and Greengrove, C. L.: Geostrophic circulation of the Brazil–Falkland Confluence, Deep-Sea Res.
- 784 Pt. A, 33, 573–585, https://doi.org/10.1016/0198-0149(86)90054-3, 1986.
- 785 Gregg, W. W., Ginoux, P., Schopf, P. S., and Casey, N. W.: Phytoplankton and iron: validation of a global three-
- 786 dimensional ocean biogeochemical model, Deep-Sea Res. Pt. II, 50, 3143-3169,
- 787 https://doi.org/10.1016/j.dsr2.2003.07.013, 2003.
- 788 Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation and denitrification, Global
- 789 Biogeochem. Cy, 11, 235–266, https://doi.org/10.1029/97GB00077, 1997.
- 790 Gu, F., Chiessi, C. M., Zonneveld, K. A. F., and Behling, H.: Late Quaternary environmental dynamics inferred
- 791 from marine sediment core GeoB6211-2 off southern Brazil, Palaeogeogr. Palaeoclimatol. Palaeoecol., 496,
- 792 48–61, https://doi.org/10.1016/j.palaeo.2018.01.016, 2018.
- 793 Hemleben, C., Spindler, M., and Anderson, O. R.: Modern Planktonic Foraminifera, Springer, Berlin, 363 pp.,
- **794** 1989.
- Hernández-Almeida, I., Boltovskoy, D., Kruglikova, S. B., and Cortese, G.: A new radiolarian transfer function
- 796 for the Pacific Ocean and application to fossil records: Assessing potential and limitations for the last glacial—
- 797 interglacial cycle, Global Planet. Change, 190, 103186, https://doi.org/10.1016/j.gloplacha.2020.103186,
- 798 2020.
- 799 Hohmann, S., Kucera, M., and de Vernal, A.: Disentangling environmental drivers of subarctic dinocyst
- assemblage compositional change during the Holocene, Clim. Past, 19, 2027–2051,
- 801 https://doi.org/10.5194/cp-19-2027-2023, 2023.
- 802 Hutson, W. H. and Prell, W. L.: A paleoecological transfer function, FI-2, for Indian Ocean planktonic
- 803 foraminifera, J. Paleontol., 54, 381–399, 1980.
- 804 Imbrie, J. and Kipp, N. G.: A new micropaleontological method for quantitative paleoclimatology: application to
- a late Pleistocene Caribbean core, in: The Late Cenozoic Glacial Ages, edited by: Turekian, K. K., Yale
- University Press, New Haven, 71–181, https://doi.org/10.1016/0033-5894(73)90051-3, 1971.

- Ivanova, E. M., Conan, S. M.-H., Peeters, F. J. C., and Troelstra, S. R.: Living Neogloboquadrina pachyderma sin
- and its distribution in the sediments from Oman and Somalia upwelling areas, Mar. Micropaleontol., 36, 91-
- 809 107, https://doi.org/10.1016/S0377-8398(98)00027-9, 1999.
- 810 Jackson, D. A.: Stopping rules in principal components analysis: a comparison of heuristical and statistical
- approaches, Ecology, 74, 2204–2214, https://doi.org/10.2307/1939574, 1993.
- 812 Jonkers, L. and Kucera, M.: Global analysis of seasonality in the shell flux of extant planktonic foraminifera,
- 813 Biogeosciences, 12, 2207–2226, https://doi.org/10.5194/bg-12-2207-2015, 2015.
- Jonkers, L., Brummer, G.-J. A., Peeters, F. J. C., van Aken, H. M., and De Jong, M. F.: Seasonal stratification,
- 815 shell flux, and oxygen isotope dynamics of left-coiling N. pachyderma and T. quinqueloba in the western
- 816 subpolar North Atlantic, Paleoceanography, 25, PA2204, https://doi.org/10.1029/2009PA001849, 2010.
- 817 Jonkers, L., Strack, T., Alonso-García, M., D'haenens, S., Huber, R., Kucera, M., Hernández-Almeida, I., Jones,
- 818 C. L. C., Metcalfe, B., Saraswat, R., Silye, L., Verma, S. K., Abd Malek, M. N., Auer, G., Barbosa, C. F.,
- 819 Bárcena, M. A., Baumann, K.-H., Boscolo-Galazzo, F., Calvelo, J. A. S., Capotondi, L., Cardich, J., Carvajal-
- 820 Chitty, H., Chroustová, M., Coxall, H. K., de Mello, R. M., de Vernal, A., Diz, P., Edgar, K. M., Filipsson, H.
- 821 L., Fraguas, Á., Furlong, H. L., Galli, G., García Chapori, N. L., Granger, R., Groeneveld, J., Imam, A.,
- Jackson, R., Lazarus, D., Meilland, J., Molčan Matejová, M., Morard, R., Morigi, C., Nielsen, S. N., Ochoa,
- 823 D., Petrizzo, M. R., Rigual-Hernández, A. S., Rillo, M. C., Staitis, M. L., Tanık, G., Tapia, R., Vats, N., Wade,
- B. S., and Weinmann, A. E.: Community guidelines to increase the reusability of marine microfossil
- 825 assemblage data, J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, 2025.
- 826 Juggins, S.: C2 version 1.5 user guide: software for ecological and palaeoecological data analysis and
- visualisation, Newcastle University, Newcastle upon Tyne, UK, 73 pp., 2007.
- 828 Juggins, S.: Quantitative reconstructions in palaeolimnology: new paradigm or sick science?, Quat. Sci. Rev., 64,
- 829 20–32, https://doi.org/10.1016/j.quascirev.2012.12.014, 2013.
- 830 Juggins, S.: Rioja: Analysis of Quaternary science data, R package, available at: https://cran.r-
- project.org/web/packages/rioja/, 2017.
- 832 Juggins, S. and Birks, H. J. B.: Quantitative environmental reconstructions from biological data, in: Tracking
- environmental change, edited by: Birks, H. J. B., Lotter, A. F., Juggins, S., and Smol, J. P., Springer,
- 834 Dordrecht, 431–494, https://doi.org/10.1007/978-94-007-2745-8_14, 2012.
- 835 Jullion, L., Heywood, K. J., Naveira Garabato, A. C., and Stevens, D. P.: Circulation and water mass modification
- $in the\ Brazil-Malvinas\ Confluence, J.\ Phys.\ Oceanogr., 40, 845-864, https://doi.org/10.1175/2009JPO4174.1, https://doi.org/10.117$
- 837 2010.
- 838 Kasten, S., Schwenk, T., Aromokeye, D. A., Baques, M., Baumann, K. H., Bergenthal, M., Bösche, J., Bozzano,
- 839 G., Brune, R., Bülten, J., Chiessi, C. M., Coffinet, S., Crivellari, S., Dehning, K., Dohrmann, I., Dröllner, M.,
- Düßmann, R., Durica, J. T., Frederichs, T., Garcia Chapori, N., Gonzales, L. N., Hanebuth, T. J. J., Hilgenfeldt,
- 841 C., Hüttich, D., Jones, C. K., Klann, M., Klar, S., Klein, T., Kockisch, B., Köster, M., Lantzsch, H., Linowski,
- 842 E., Long, J. H., Melcher, A. C., Ogunleye, O. J., Pereyra, N., Rehage, R., Riedinger, N., Rosiak, U., Schmidt,

869

870

871

872

873

875

Cambridge, 2003.

844 S., and Zonneveld, K. A.: Dynamics of sedimentation processes and their impact on biogeochemical reactions 845 on the continental slope off Argentina and Uruguay (MARUM), Cruise No. SO260/Leg 1 & Leg 2, Leg 1: 12-846 30 January 2018, Buenos Aires (Argentina)-Montevideo (Uruguay); Leg 2: 2-14 February 2018, Montevideo 847 (Uruguay)-Buenos Aires (Argentina), DosProBio, https://doi.org/10.2312/cr_so260, 2019. 848 Kersalé, M., Meinen, C. S., Perez, R. C., Piola, A. R., Speich, S., Campos, E. J. D., et al.: Multi-year estimates of 849 daily heat transport by the Atlantic meridional overturning circulation at 34.5°S, J. Geophys. Res.-Oceans, 850 126, e2020JC016947, https://doi.org/10.1029/2020JC016947, 2021. 851 Kroon, D. and Ganssen, G.: Northern Indian Ocean upwelling cells and the stable isotope composition of living 852 planktic foraminifers, in: Planktonic Foraminifers as Tracers of Ocean-Climate History, edited by: Brummer, 853 G.J. A. and Kroon, D., Free Univ. Press, Amsterdam, 299-317, https://doi.org/10.1016/0198-0149(89)90102-854 7, 1988. 855 Kucera, M.: Planktonic Foraminifera as tracers of past oceanic environments, in: Proxies in Late Cenozoic 856 Paleoceanography, Developments in Marine Geology, vol. 1, edited by: Hillaire-Marcel, C. and de Vernal, A., 857 213-262, Elsevier, Amsterdam, https://doi.org/10.1016/S1572-5480(07)01011-1, 2007. 858 Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Chen, M.-T., Mix, A. C., Barrows, T. T., Cortijo, 859 E., Duprat, J., Juggins, S., and Waelbroeck, C.: Reconstruction of sea-surface temperatures from assemblages 860 of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets 861 and its application to glacial Atlantic and Pacific Oceans, Quat. Sci. Rev., 24, 951-998, 862 https://doi.org/10.1016/j.quascirev.2004.07.014, 2005. 863 Laprida, C., García Chapori, N., Chiessi, C. M., Violante, R. A., Watanabe, S., and Totah, V.: Middle Pleistocene 864 sea surface temperature in the Brazil-Malvinas Confluence Zone: Paleoceanographic implications based on 865 planktonic foraminifera, Micropaleontology, 57, 183-194, doi:10.47894/mpal.57.2.06, 2011. 866 Lee, T., Rand, D., Lisiecki, L. E., Gebbie, G., and Lawrence, C.: Bayesian age models and stacks: combining age 867 inferences from radiocarbon and benthic δ18O stratigraphic alignment, Clim. Past, 19, 1993–2012, 868 https://doi.org/10.5194/cp-19-1993-2023, 2023.

W., Schnakenberg, A., Spieß, V., Steinmann, L., Thieblemont, A., Volz, J., Warnke, F., Warratz, G., Wenau,

Lessa, D., Morard, R., Jonkers, L., Venancio, I. M., Reuter, R., Baumeister, A., Albuquerque, A. L., and Kucera,

Lepš, J. and Šmilauer, P.: Multivariate Analysis of Ecological Data using CANOCO, Cambridge University Press,

Lessa, D. V. O., Portilho-Ramos, R. P., Barbosa, C. F., and Toledo, F. A. L.: Planktonic foraminifera in the

sediment of a western boundary upwelling system off Cabo Frio, Brazil, Mar. Micropaleontol., 106, 55-68,

M.: Distribution of planktonic foraminifera in the subtropical South Atlantic: depth hierarchy of controlling

876 factors, Biogeosciences, 17, 4313–4342, https://doi.org/10.5194/bg-17-4313-2020, 2020.

https://doi.org/10.1016/j.marmicro.2013.12.002, 2014.

- Little, M., Schneider, R., Kroon, D., Price, B., Bickert, T., and Wefer, G.: Rapid palaeoceanographic changes in
- the Benguela Upwelling System for the last 160,000 years as indicated by abundances of planktonic
- 879 foraminifera, Palaeogeogr. Palaeocl., 130, 135–161, https://doi.org/10.1016/S0031-0182(96)00136-8, 1997.
- 880 Lončarić, N., Peeters, F. J. C., Kroon, D., and Brummer, G.-J. A.: Oxygen isotope ecology of recent planktic
- 881 Foraminifera at the central Walvis Ridge (SE Atlantic), Paleoceanography, 21, PA3009,
- https://doi.org/10.1029/2005PA001207, 2006.
- Longhurst, A. R.: Ecological Geography of the Sea, Academic Press, London, 560 pp., 2010.
- 884 Lopes, C. and Mix, A. C.: North Pacific paleotemperature and paleoproductivity reconstructions based on diatom
- 885 species, Paleoceanogr. Paleoclimatol., 33, 703–715, https://doi.org/10.1029/2018PA003352, 2018.
- 886 Lopes, C., Mix, A. C., and Abrantes, F.: Environmental controls of diatom species in northeast Pacific sediments,
- Palaeogeogr. Palaeoclimatol. Palaeoecol., 297, 188–200, https://doi.org/10.1016/j.palaeo.2010.07.029, 2010.
- Lumpkin, R. and Garzoli, S.: Interannual to decadal changes in the western South Atlantic's surface circulation,
- J. Geophys. Res.-Oceans, 116, C01014, https://doi.org/10.1029/2010JC00628, 2011.
- 890 Lutjeharms, J. R. E. and Stockton, P. L.: Kinematics of the upwelling front off southern Africa, in: The Benguela
- and Comparable Ecosystems, edited by: Payne, A. I. L., Gulland, J. A., and Brink, K. H., S. Afr. J. Mar. Sci.,
- 892 5, 25–49, doi: 10.2989/025776187784522612, 1987.
- Manly, B. F. J.: Randomization and Monte Carlo Methods in Biology, Chapman & Hall, New York, 281 pp.,
- 894 1991.
- 895 Manta, G., Speich, S., Barreiro, M., Trinchin, R., de Mello, C., Laxenaire, R., et al.: Shelf water export at the
- 896 Brazil-Malvinas Confluence evidenced from combined in situ and satellite observations, Front. Mar. Sci., 9,
- 897 857594, https://doi.org/10.3389/fmars.2022.857594, 2022.
- 898 McGarigal, K., Stafford, S., and Cushman, S.: Discriminant analysis, in: Multivariate Statistics for Wildlife and
- 899 Ecology Research, Springer, New York, NY, 129–187, https://doi.org/10.1007/978-1-4612-1288-1_4, 2000.
- 900 McGillicuddy, D. J. and Robinson, A. R.: Eddy-induced nutrient supply and new production in the Sargasso Sea,
- 901 Deep-Sea Res. Pt. I, 44, 1427–1450, https://doi.org/10.1016/S0967-0637(97)00024-1, 1997.
- 902 Michaels, A. F., Olson, D., Sarmiento, J. L., Ammerman, J. W., Fanning, K., Jahnke, R., Knap, A. H., Lipschultz,
- F., and Prospero, J. M.: Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North
- 904 Atlantic Ocean, Biogeochemistry, 35, 181–226, https://doi.org/10.1007/BF02179827, 1996.
- 905 Mohtadi, M., Max, L., Hebbeln, D., Baumgart, A., Krück, N., and Jennerjahn, T.: Modern environmental
- 906 conditions recorded in surface sediment samples off W and SW Indonesia: Planktonic foraminifera and
- 907 biogenic compounds analyses, Mar. Micropaleontol., 65, 96–112,
- 908 https://doi.org/10.1016/j.marmicro.2007.06.004, 2007.

- 909 Moore, J. K., Doney, S. C., Glover, D. M., and Fung, I. Y.: Iron cycling and nutrient-limitation patterns in surface
- 910 waters of the world ocean, Deep-Sea Res. Pt. II, 49, 463–507, https://doi.org/10.1016/S0967-0645(01)00109-
- 911 6, 2001.
- 912 Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R.
- 913 J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
- 914 Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., and Ulloa,
- 915 O.: Processes and patterns of oceanic nutrient limitation, Nat. Geosci., 6, 701-710,
- 916 https://doi.org/10.1038/ngeo1765, 2013.
- 917 Morey, A. E., Mix, A. C., and Pisias, N. G.: Planktonic foraminiferal assemblages preserved in surface sediments
- 918 correspond to multiple environment variables, Quat. Sci. Rev., 24, 925–950
- 919 https://doi.org/10.1016/j.quascirev.2003.09.011, 2005.
- 920 Muller-Karger, F. E., Varela, R., Thunell, R., Luerssen, R., Hu, C., and Walsh, J. J.: The importance of continental
- 921 margins in the global carbon cycle, Geophys. Res. Lett., 32, L01602, https://doi.org/10.1029/2004GL021346,
- 922 2005.
- 923 Naidu, P. D. and Malmgren, B. A.: A high-resolution record of Late Quaternary upwelling along the Oman
- 924 Margin, Arabian Sea based on planktonic foraminifera, Paleoceanography, 11, 129–140,
- 925 https://doi.org/10.1029/95PA03198, 1996.
- 926 Nychka, D., Furrer, R., and Sain, S.: fields: Tools for spatial data, R package version 9, available at: https://cran.r-
- 927 project.org/web/packages/fields/ (last access: 25 October 2023), 2017.
- 928 Oksanen, J., Läärä, E., Huttunen, P., and Meriläinen, J.: Maximum likelihood prediction of lake acidity based on
- 929 sedimented diatoms, J. Veg. Sci., 1, 49–56, https://doi.org/10.2307/3236052, 1990.
- 930 Paparazzo, F. E., Bianucci, L., Schloss, I. R., Almandoz, G. O., Solís, M., and Esteves, J. L.: Cross-frontal
- 931 distribution of inorganic nutrients and chlorophyll-a on the Patagonian continental shelf of Argentina during
- 932 summer and fall, Rev. Biol. Mar. Oceanogr., 45, 107-119, https://doi.org/10.4067/S0718-
- 933 19572010000100011, 2010.
- 934 Paparazzo, F. E., Alder, V. A., Schloss, I. R., Bianchi, A., and Esteves, J. L.: Spatial and temporal trends in the
- distribution of macronutrients in surface waters of the Drake Passage, Ecol. Austral, 26, 27-39,
- 936 DOI:10.25260/EA.16.26.2.0.142, 2016.
- 937 Pebesma, E. J.: Multivariable geostatistics in S: the gstat package, Comput. Geosci., 30, 683-691,
- 938 https://doi.org/10.1016/j.cageo.2004.03.012, 2004.
- 939 Pebesma, E. J. and Bivand, R. S.: S classes and methods for spatial data: the sp package, R News, 5, 9-13, 2005.
- 940 Pereira, L. S., Arz, H. W., Pätzold, J., and Portilho-Ramos, R. C.: Productivity evolution in the South Brazilian
- 941 Bight during the last 40,000 years, Paleoceanogr. Paleoclimatol., 33, 1339–1356,
- 942 https://doi.org/10.1029/2018PA003406, 2018.

- 943 Petrick, B. F., McClymont, E. L., Marret, F., and van der Meer, M. T. J.: Changing surface water conditions for
- 944 the last 500 ka in the Southeast Atlantic: Implications for variable influences of Agulhas leakage and Benguela
- 945 upwelling, Paleoceanography, 30, 1153–1167, https://doi.org/10.1002/2015PA002787, 2015.
- 946 Piola, A. R., and Matano, R. P.: Brazil and Falklands (Malvinas) Currents, in: Encyclopedia of Ocean Sciences,
- 947 Vol. 1, edited by: Steele, J. H., Thorpe, S. A., and Turekian, K. K., Academic Press, London, 340-349,
- 948 https://doi.org/10.1006/rwos.2001.0358, 2001.
- 949 Piola, A. R., Matano, R. P., Palma, E. D., Möller, O. O. Jr., and Campos, E. J. D.: The influence of the Plata River
- 950 discharge on the western South Atlantic shelf, Geophys. Res. Lett., 32, L01603,
- 951 https://doi.org/10.1029/2004GL021638, 2005.
- 952 Piola, A. R., Martínez Avellaneda, N., Guerrero, R. A., Jardón, F. P., Palma, E. D., and Romero, S. I.: Malvinas-
- 953 slope water intrusions on the northern Patagonia continental shelf, Ocean Sci., 6, 345-359,
- 954 https://doi.org/10.5194/os-6-345-2010, 2010.
- 955 Pivel, M. A. G., Santarosa, A. C. A., Toledo, F. A. L., and Costa, K. B.: The Holocene onset in the southwestern
- 956 South Atlantic, Palaeogeogr. Palaeoclimatol. Palaeoecol., 374, 164–172,
- 957 https://doi.org/10.1016/j.palaeo.2013.01.014, 2013.
- 958 Portilho-Ramos, R. da C., Ferreira, F., Calado, L., Frontalini, F., and de Toledo, M. B.: Variability of the upwelling
- 959 system in the southeastern Brazilian margin for the last 110,000 years, Global Planet. Change, 135, 179–189,
- 960 https://doi.org/10.1016/j.gloplacha.2015.11.003, 2015.
- 961 Prell, W. L.: The stability of low-latitude sea-surface temperatures: an evaluation of the CLIMAP reconstruction
- 962 with emphasis on the positive SST anomalies, Rep. TR025, U.S. Department of Energy, Washington, D.C.,
- 963 60 pp., 1985.
- 964 Rintoul, S. R. and Wunsch, C.: Mass, heat, oxygen and nutrient fluxes and budgets in the North Atlantic Ocean,
- Deep-Sea Res., 38, S355–S377, https://doi.org/10.1016/S0198-0149(12)80017-3, 1991.
- 966 Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., et al.: Cross-validation strategies
- 967 for data with temporal, spatial, hierarchical, or phylogenetic structure, Ecography, 40, 913-929,
- 968 https://doi.org/10.1111/ecog.02881, 2017.
- Romero, S. I., Piola, A. R., Charo, M., and Eiras García, C. A. E.: Chlorophyll-a variability off Patagonia based
- 970 on SeaWiFS data, J. Geophys. Res.-Oceans, 111, C05021, https://doi.org/10.1029/2005JC003244, 2006.
- 971 Rosell-Melé, A., Martínez-García, A., and McClymont, E. L.: Persistent warmth across the Benguela upwelling
- 972 system during the Pliocene epoch, Earth Planet. Sci. Lett., 386, 10-20,
- 973 https://doi.org/10.1016/j.epsl.2013.10.041, 2014.
- 974 Rühs, S., Schwarzkopf, F. U., Speich, S., and Biastoch, A.: Cold vs. warm water route sources for the upper
- 975 limb of the Atlantic Meridional Overturning Circulation revisited in a high-resolution ocean model, Ocean
- 976 Sci., 15, 489–512, https://doi.org/10.5194/os-15-489-2019, 2019.

- 977 Saraceno, M., Provost, C., Piola, A. R., Bava, J., and Gagliardini, A.: Brazil-Malvinas frontal system as seen from
- 978 9 years of AVHRR data, J. Geophys. Res.-Oceans, 109, C05027, https://doi.org/10.1029/2003JC002127,
- 979 2004.
- 980 Saraceno, M., Provost, C., and Piola, A. R.: On the relationship between satellite-retrieved surface temperature
- 981 fronts and chlorophyll a in the western South Atlantic, J. Geophys. Res.-Oceans, 110, C11016,
- 982 https://doi.org/10.1029/2004JC002736, 2005.
- 983 Schiebel, R. and Hemleben, C.: Interannual variability of planktic foraminiferal populations and test flux in the
- 984 eastern North Atlantic Ocean (JGOFS), Deep-Sea Res. Pt. II, 47, 1809–1852, https://doi.org/10.1016/S0967-
- 985 0645 (00)00008-6, 2000.
- 986 Schiebel, R. and Hemleben, C.: Planktic foraminifers in the modern ocean, Springer, Cham, 1-358,
- 987 https://doi.org/10.1007/978-3-662-50297-6, 2017.
- 988 Schiebel, R., Waniek, J., Bork, M., and Hemleben, C.: Planktic foraminiferal production stimulated by chlorophyll
- 989 redistribution and entrainment of nutrients, Deep-Sea Res. Pt. I, 48, 721–740, https://doi.org/10.1016/S0967-
- 990 0637(00)00065-0, 2001.
- 991 Schiebel, R., Smart, S. M., Jentzen, A., Jonkers, L., Morard, R., Meilland, J., Michel, E., Coxall, H. K., Hull, P.
- 992 M., de Garidel-Thoron, T., Aze, T., Quillévéré, F., Ren, H., Sigman, D. M., Vonhof, H. B., Martínez-García,
- 993 A., Kucera, M., Bijma, J., Spero, H. J., and Haug, G. H.: Advances in planktonic foraminifer research: new
- 994 perspectives for paleoceanography, Rev. Micropaléontol., 61, 113–138,
- 995 https://doi.org/10.1016/j.revmic.2018.10.001, 2018.
- 996 Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de (last access: 25 October 2023), 2014.
- 997 Schmidt, G. A., Annan, J. D., Bartlein, P. J., Cook, B. I., Guilyardi, E., Hargreaves, J. C., Harrison, S. P.,
- 998 Kageyama, M., LeGrande, A. N., Konecky, B., Lovejoy, S., Mann, M. E., Masson-Delmotte, V., Risi, C.,
- 999 Thompson, D., Timmermann, A., Tremblay, L.-B., and Yiou, P.: Using palaeo-climate comparisons to
- 1000 constrain future projections in CMIP5, Clim. Past, 10, 221-250, https://doi.org/10.5194/cp-10-221-2014,
- 1001 2014.
- 1002 Siani, G., Colin, C., Michel, E., Carel, M., Richter, T., Kissel, C., and Dewilde, F.: Late Glacial to Holocene
- 1003 terrigenous sediment record in the Northern Patagonian margin: Palaeoclimate implications, Palaeogeogr.
- Palaeoclimatol. Palaeoecol., 297, 26–36, https://doi.org/10.1016/j.palaeo.2010.07.018, 2010.
- 1005 Siccha, M. and Kucera, M.: ForCenS, a curated database of planktonic foraminifera census counts in marine
- 1006 surface sediment samples, Sci. Data, 4, 170109, https://doi.org/10.1038/sdata.2017.109, 2017.
- 1007 Siegel, D. A., McGillicuddy, D. J., and Fields, E. A.: Mesoscale eddies, satellite altimetry, and new production in
- the Sargasso Sea, J. Geophys. Res.-Oceans, 104, 13359–13379, https://doi.org/10.1029/1999JC900051, 1999.
- 1009 Sierro, F., Flores, J., Francés, G., Vázquez, A., Utrilla, R., Zamarreño, I., Erlenkeuser, H., and Bárcena, M.:
- 1010 Orbitally-controlled oscillations in planktic communities and cyclic changes in western Mediterranean

- hydrography during the Messinian, Palaeogeogr. Palaeocl, 190, 289-316, https://doi.org/10.1016/S0031-
- 1012 0182(02)00611-9, 2003.
- 1013 Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial cycles in atmospheric CO₂
- 1014 concentration, Nature, 466, 47–55, https://doi.org/10.1038/nature09149, 2010.
- 1015 Signorini, S. R., García, V. M. T., Piola, A. R., Evangelista, H., McClain, C. R., García, C. A. E., and Mata, M.
- 1016 M.: Further studies on the physical and biogeochemical causes for large interannual changes in the Patagonian
- 1017 shelf spring-summer phytoplankton bloom biomass, NASA Tech. Memo., NASA/TM-2009-214176, NASA
- 1018 Goddard Space Flight Center, Greenbelt, MD, USA, 2009.
- 1019 Signorini, S. R., Franz, B. A., and McClain, C. R.: Chlorophyll variability in the oligotrophic gyres: mechanisms,
- seasonality and trends, Front. Mar. Sci., 2, 1, https://doi.org/10.3389/fmars.2015.00001, 2015.
- 1021 Spindler, M. and Dieckmann, G. S.: Distribution and abundance of the planktic foraminifer Neogloboquadrina
- pachyderma in sea ice of the Weddell Sea (Antarctica), Polar Biol., 5, 185–191, 1986.
- 1023 Spindler, M., Hemleben, C., Salomons, J. B., and Smit, L. P.: Feeding behavior of some planktonic foraminifers
- 1024 in laboratory cultures, J. Foraminifer. Res., 14, 237–249, doi:10.2113/gsjfr.14.4.237, 1984.
- 1025 Storz, D., Schulz, H., Waniek, J. J., Schulz-Bull, D. E., and Kucera, M.: Seasonal and interannual variability of
- the planktic foraminiferal flux in the vicinity of the Azores Current, Deep-Sea Res. Pt. I, 56, 107-124,
- 1027 https://doi.org/10.1016/j.dsr.2008.07.011, 2009.
- 1028 Stramma, L. and Peterson, R. G.: The South Atlantic Current, J. Phys. Oceanogr., 20, 846-859,
- 1029 https://doi.org/10.1175/1520-0485(1990)020<0846:TSAC>2.0.CO;2, 1990.
- 1030 Sverdrup, H. U.: On conditions for the vernal blooming of phytoplankton, Rapp. P.-v. Réun. Cons. Int. Explor.
- 1031 Mer, 18, 287–295, https://doi.org/10.1093/icesjms/18.3.287, 1953.
- 1032 Talley, L. D.: Shallow, intermediate, and deep overturning components of the global heat budget, J. Phys.
- 1033 Oceanogr., 33, 530–560, https://doi.org/10.1175/1520-0485(2003)033<0530:S IADOC>2.0.CO;2, 2003.
- 1034 Telford, R. J.: palaeoSig: Significance tests of quantitative palaeoenvironmental reconstructions, R package,
- available at: https://cran.r-project.org/web/packages/palaeoSig/, 2015.
- 1036 Telford, R. J. and Birks, H. J. B.: Evaluation of transfer functions in spatially structured environments, Quat. Sci.
- 1037 Rev., 28, 1309–1316, https://doi.org/10.1016/j.quascirev.2008.12.020, 2009.
- 1038 ter Braak, C. J. F.: Permutation versus bootstrap significance tests in multiple regression and ANOVA, in:
- 1039 Bootstrapping and Related Techniques, edited by: Jöckel, K.-H., Rothe, G., and Sendler, W., Springer, Berlin,
- 1040 Heidelberg, 79–85, doi:10.1007/978-3-642-48850-4_10, 1992.
- ter Braak, C. J. F. and Juggins, S.: Weighted averaging partial least squares regression (WA-PLS): an improved
- method for reconstructing environmental variables from species assemblages, Hydrobiologia, 269/270, 485-
- 1043 502, doi:10.1007/BF00028046,1993.

1045 Software for Canonical Community Ordination (Version 4.5), Microcomputer Power, Ithaca, NY, 2002. 1046 ter Braak, C. J. F. and Verdonschot, P. F. M.: Canonical correspondence analysis and related multivariate methods 1047 in aquatic ecology, Aquat. Sci., 57, 255–289, https://doi.org/10.1007/BF00877430, 1995. 1048 Thiede, J.: Distribution of foraminifera in surface waters of a coastal upwelling area, Nature, 253, 712-714, 1049 https://doi.org/10.1038/253712a0, 1975. 1050 Toledo, F. A. L., Costa, K. B., and Pivel, M. A. G.: Salinity changes in the western tropical South Atlantic during 1051 the last 30 kyr, Glob. Planet. Change, 57, 383–395, https://doi.org/10.1016/j.gloplacha.2007.01.001, 2007. 1052 Trachsel, M. and Telford, R. J.: Technical note: Estimating unbiased transfer-function performances in spatially 1053 structured environments, Clim. Past, 12, 1215-1223, https://doi.org/10.5194/cp-12-1215-2016, 2016. 1054 Ufkes, E. and Kroon, D.: Sensitivity of south-east Atlantic planktonic foraminifera to mid-Pleistocene climate 1055 change, Palaeontology, 55, 183-204, https://doi.org/10.1111/j.1475-4983.2011.01119.x, 2012. 1056 Ufkes, E., Jansen, J. H. F., and Schneider, R. R.: Anomalous occurrences of Neogloboquadrina pachyderma (left) 1057 in a 420-ky upwelling record from Walvis Ridge (SE Atlantic), Mar. Micropaleontol., 40, 23-42, 1058 https://doi.org/10.1016/S0377-8398 (00)00033-4, 2000. 1059 Varma, V., Prange, M., Merkel, U., Kleinen, T., Lohmann, G., Pfeiffer, M., Renssen, H., Wagner, A., Wagner, 1060 S., and Schulz, M.: Holocene evolution of the Southern Hemisphere westerly winds in transient simulations 1061 with global climate models, Clim. Past, 8, 391–402, https://doi.org/10.5194/cp-8-391-2012, 2012. 1062 Voigt, I., Chiessi, C. M., Prange, M., Mulitza, S., Groeneveld, J., Varma, V., and Henrich, R.: Holocene shifts of 1063 southern westerlies across the South Atlantic, Paleoceanography, 39-51, 1064 https://doi.org/10.1002/2014PA002677, 2015. 1065 Wang, X., Auler, A. S., Edwards, R. L., Cheng, H., Ito, E., Wang, Y., Kong, X., and Solheid, M.: Millennial-scale 1066 precipitation changes in southern Brazil over the past 90,000 years, Geophys. Res. Lett., 34, L23701, 1067 https://doi.org/10.1029/2007GL031149, 2007. 1068 Williams, R. G. and Follows, M. J.: The Ekman transfer of nutrients and maintenance of new production over the 1069 North Atlantic, Deep-Sea Res. Pt. I, 45, 461-489, https://doi.org/10.1016/S0967-0637(97)00094-0, 1998.

ter Braak, C. J. F. and Šmilauer, P.: CANOCO Reference Manual and User's Guide to Canoco for Windows: