

Reply to comments from Reviewer 3:

Author response for “**Chiral Volatile Organic Compound Fluxes from Soil in the Amazon Rainforest across seasons**”, Schüttler et al.

5 *The reviewer comments are included here in black, author responses are in blue, the original manuscript texts are in purple, while modifications to the manuscript are underlined and in red. Line numbers in our response relate to the original submitted document (preprint).*

General comments

10 The topic of this manuscript is of importance, as soil emissions have been severely neglected in the BVOC field and little is known about the processes affecting the magnitudes and types of emissions. While canopy emission especially in the tropic have been studied extensively, we still know next to nothing about how emissions and uptake from soil will change in the changing climate or due to extreme weather conditions, such as the El Niño. I also find the inclusion of stereoisomers into the
15 larger discussion of terpenes interesting, especially if they can be used to track or estimate changes in biological processes due to environmental stressors.

Response: We thank the reviewer for taking the time reviewing our work, providing comments, and crediting the importance of soil BVOC fluxes.

While the manuscript is in general well written and has merit, I have some critical comments –
20 especially regarding the methodology and research questions. My main concerns are:

25 1. As I understand, authors measured BVOC fluxes from 3 separate locations close by to each other, but all differing; 1 without litter, 1 with litter, 1 near a termite nest. This means that only one true biological replicate per location was measured, which is – in my opinion – not sufficient for an ecological study. Authors have done pseudoreplication within one chamber for seasonal changes, but as the location of two of the chambers were changed between seasons, temporal comparison even within one chamber is difficult. Same applies for blanks, where only one spot was sampled, resulting in pseudo/technical replicates, not representative of the true natural variation. While the authors express that their aim was to “screen” differing extremes by placing the chambers in distinct locations, why not have multiple chambers in those distinct
30 locations instead of one? Why blanks were only measured in one location? As the authors themselves express, the litter density varied significantly even within a few meters – which may also be the case for soil microbiome, roots etc. – all possibly affecting the BVOC fluxes observed. It is also evident from the results (Fig.4) that spots 2 and 3 differ from spots 4 and 5. As such, the lack of replication in this study is my main concern, and authors must be careful
35 when expressing what can be concluded based on their results.

Response: Thank you for raising this important methodological concern. We agree that our study design can be viewed as pseudo-replication due to the stated objective of the study. Faced with high heterogeneity in the soils at the site, we opted to explore which chemical species are emitted and uptaken by soils that differ markedly in respiration rates, organic content and litter. This allowed us to
40 look for soil emission markers and to determine which of the species we have been measuring in ambient air from the ATTO tower may be affected by soil (particularly the chiral species). As soil surveys become available, the sampling strategy will change to what the reviewer has in mind, characterizing the most widespread soil types with a high number of replicates. In order to take this point on-board, and following a comment from Reviewer 1, we therefore changed the statistical model

45 to linear mixed-effect models to account for the pseudo-replication when looking at statistical significance.

We agree, that changing the chamber locations between January 2023 and October 2023 makes it difficult to compare the first measurement season and the three following seasons. However, in October 2023, April-May 2024, and October 2024, the location was not changed, and the chambers remained in
50 the exact same locations throughout the three measurement campaigns. This was done intentionally to compare the same chamber spot locations across seasons and look into possible long-term trends.

To transparently account for the lack of biological replication we make our discussion and conclusion statements more carefully as the reviewer has suggested.

4.6 Limitations of this study and future directions

55 Line 527: The study was conducted at three locations on a Terra Firme rainforest plateau, and the samples exhibited significant variability between soil spots. Having only one biological replicate for each of the three soil spots limits possible conclusions to the overall ecosystem soil BVOC flux.

5. Conclusion

Line 536: The soil-atmosphere exchange of terpenoids and their enantiomers in the Amazon rainforest
60 at the site of the soil chambers from this study is strongly connected to season and environmental conditions like temperature and soil moisture. For the uptake of isoprene, MACR, and MVK, ambient concentrations and temperature seem to be the primary drivers. MT and SQT emissions and uptake were found to be governed by the litter layer and season, as well as showing very local differences from spot to spot in the composition of the total flux.

65

2. Why was ambient air used as carrier gas in the BVOC sampling? As authors state in the introduction, soil fluxes are typically orders of magnitude smaller than canopy/vegetation emissions, so would it not make more sense to use zero air (VOC free air) when investigating soil emissions, rather than ambient air with potentially high levels of BVOCs? I assume authors have aimed to record the background with the other tube measured in parallel to the soil chamber, but this does not address this issue. Furthermore, in Fig.1, it looks like the ambient tube was sampled separately “near” the actual chamber. Why not have a T-piece at the inlet of the chamber with part of the ambient air going into the chamber and part into the ambient tube? This would ensure that the ambient tube captures all possible analytes and contaminants going into the chamber.

75
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
88

Related to this, how were emission rates (Fig.3) for ambient samples calculated (what were C_t and C_0)? What are the mean and standard error for ($N=?$); ambient air taken from the different locations, and the blank from another location? It is evident from emissions/uptakes that variation can be high between locations (e.g., monoterpenes), and for me, it's impossible to say if they actually differ from the blank. Because no true replication for the blanks were conducted, authors cannot show what the natural variation was. Emission of monoterpenes in Jan 2023 and uptake of isoprene in Oct 2023 and 2024 are more evident, but otherwise, they may well be within blank levels.

95 **Response:** For ambient samples, there was no calculation of emission rates. In Figure 3 (a), we report volume mixing ratios (ppbv) measured in the ambient samples and (b) soil fluxes measured with chambers and calculated as described in the method section. To use as blanks for ambient air, cartridges were transported to Brazil along with the normal air samples. They were opened and closed at the site, but no air volume was sampled on them (Zero-volume cartridge blanks). These blank cartridge samples (minimum two per measurement campaign) did not contain any target substances (below LOD) when analyzed in Mainz. We will update Table A1 in the Appendix with the LODs; see the answer to 100 reviewer 2.

105 **Line 103:** In each campaign a minimum of two cartridges were not sampled with a volume of air, but opened and closed at the site and transported along the sampled cartridges. These transport blank cartridges did not contain any of the target compounds (below LOD).

110 For the soil flux calculation C_0 was the ambient air sample and C_t the sample from within a chamber, both as volume mixing ratios in ppbv. We always took two ambient samples at the same time, directly next to two of the chambers (8-12 cm above ground; 2 to a maximum of 10 cm distance to the chamber inlet). We report the number of measurements for ambient samples and flux data in Table A1 in the Appendix.

115 As chamber flux blanks (different from the zero-volume cartridge blanks), we took samples from a soil chamber that was closed at the bottom with Teflon foil isolating the chamber system from soil contact. The blank chamber was placed between the locations of the sample soil chambers and exposed to the rainforest air as for the other chambers. The blank flux was calculated as the difference between an ambient air sample and a sample from this closed-bottom blank chamber. These fluxes are reported in Table A2 and serve to assess possible background VOC fluxes from the chamber materials.

120 However, we don't think the location within the 15m radius of the sample chambers has a big impact on the ambient air concentrations, and therefore, the blank chamber location is not as relevant as long as it is exposed to the same ambient air and environmental variables (i.e., meteorological conditions).

125 Emissions of monoterpenes (MTs) could be within the blank levels when looking at the total monoterpenene flux. In Table A2 it is shown that the blank flux differs for each monoterpenene. So, the blank mean of the flux for Total Monoterpenes is the combination of positive and negative blank values by the individual MTs.

Same is valid for the SQT. The here found most relevant SQT β -caryophyllene had very low flux values in the blank chambers (see Table A2 with 0 ± 0 to $0.21 \pm 1.04 \text{ nmol m}^{-2} \text{ h}^{-1}$ as mean blank values and Table A1 with mean seasonal emission values of up to $1.90 \pm 4.82 \text{ nmol m}^{-2} \text{ h}^{-1}$).

130 3. Manuscript lacks hypothesis and research questions. Why measure enantiomers of terpenes or isoprene oxidation products? As the authors point out, soil BVOC fluxes are poorly understood, so the introduction would benefit from more detail for the reader's benefit. At the moment, the introduction is vague and many important points are only mentioned but not elaborated on.

135 **Response:** We are happy to elaborate further on our research questions. We have developed a means of determining the stress state of an ecosystem by the enantiomeric ratio of (+) and (-)- α -pinene in

ambient air. This is based on measurements made in an enclosed rainforest (BIOSPHERE 2) and at the ATTO site (Byron et al., 2022, 2025). Additionally we saw a height gradient for the chiral ratio α -pinene, possibly indicating distinct sources below the canopy (Zannoni et al., 2020). The enantiomeric signature could potentially be affected by the soil if it were selective to one or the other enantiomer.

140 Specifically, we wanted to know if soil emissions or uptake of the enantiomers are enhanced across seasons. This has not, to our knowledge, been examined before. We now clarify this better in the introduction as requested.

Line 60: In this study, we investigated chirally resolved measured soil BVOC fluxes in the Amazon rainforest to assess the relevance of the soils to the total terpenoid BVOC budget in this ecosystem and 145 see if soils have an influence on enantiomeric ratios. In particular, we are interested in the soil effect on the enantiomers of α -pinene, as these have been shown to be indicators of ecosystem drought stress (Byron et al., 2022, 2025), and a height gradient was observed at the ATTO tower site (Zannoni et al., 2020). We measured across four seasons, including the El Niño drought period in the dry season 2023 to account for and look into seasonal differences.

150 Line 66: The effect of temperature, soil moisture, soil properties, litter content and terpenoid ambient concentrations on soil terpenoid fluxes in terms of local time of day, magnitude, flux direction (emission and/or uptake), and chemical composition, including chiral speciation was investigated.

The section about atmospheric implications should, in my opinion, be omitted. Authors did not measure radical reactions, nor do they know what the in situ OH concentrations are. Furthermore, because of the 155 issues with replication, the emission rates reported in this study should be considered tentative, and consequently, any estimates on atmospheric impact are rough at best and do not provide any usable information e.g., for modeling purposes.

Response: There appears to be a misunderstanding here regarding the atmospheric reactivity data given in the paper. In our view, it is important to show which of the soil emissions has the greatest impact on 160 the local atmospheric oxidants. For this assessment, no knowledge of the radical concentrations is required, merely the rate coefficients of the species with the respective oxidant. As these are all available in the literature from previous laboratory measurements, we can present to atmospheric scientists the relative impacts of the emissions on OH and O₃. To be clear, even though a species is at low concentration, its atmospheric impact can be high if the rate coefficients are fast. This information 165 is valuable to atmospheric modelers who may include only one representative SQT in the model, and our assessment allows them to select appropriate rate coefficients to reflect the real emission profile. In summary we would prefer to keep this atmospherically valuable information in the paper as we think it provides the context to understand and assess the effect of soil emissions on the local atmospheric chemistry.

170

Specific comments

Introduction:

Response: The changes in the manuscript for the introduction are summarized in one paragraph below.

38-41: As chirality is highlighted in this manuscript, I would like to know more about possible impacts 175 of specific enantiomers being emitted. Authors should elaborate on what is known about (biogenic) processes and BVOC chirality and why differentiating between emissions of enantiomers is important. How can this information be used when assessing soil processes or atmospheric impacts?

Response: We now elaborate more on the possible impacts of specific enantiomers being emitted (see below).

180 45-47: Authors should elaborate how vegetation, soil properties etc. affect fluxes from soil. It would be beneficial for the reader if authors first describe some of the processes controlling BVOC fluxes from soil in general and then move on to describe what we know about tropical forests.

Response: As suggested we now first describe some of the processes controlling soil BVOC fluxes in general and then refer to what we know about tropical forests (see below).

185 50-52: Authors should elaborate how these factors (water content, nutrient composition, temperature ect.) can affect soil uptake or emissions.

Response: We now elaborate more on these processes (see below).

190 57-69: Again, authors should give more details about how weather conditions can affect (soil) BVOC fluxes in general and then describe what we know about their effects in rainforests. El Niño (and other extreme weather events) causes drought, which has been shown in previous studies to increase BVOC emissions, which again, can exacerbate extreme weather conditions. This cycle is worth elaborating on in the introduction, with relevant references.

Response: We now elaborate more on the effect of El Niño on BVOCs in general (see below).

195 61-64: What were the hypothesis and research questions? Why did you measure isoprene's oxidation products – not otherwise mentioned in the introduction – and how do they link to the larger context or the study?

200 **Response:** This study focused on BVOC compounds like MTs, SQTs, isoprene and two of isoprene's oxidation products. Most of them were designated targets for which we have calibration standards, with the exception of a few additionally found tentatively identified SQTs calibrated to another SQT with the most similar mass spectra and molecular structure of which we had a calibration standard. For species for which we have calibration standards and that we measure in the ambient forest air, we can use this information to assess the role of soil in their concentrations.

205 We measured isoprene's oxidation products because it was part of the calibration gas and this permitted quantification of the signals. It is interesting in this context because it has been shown that MACR and MVK can be directly emitted by plants (Tani et al., 2010; Jardine et al., 2012; Fares et al., 2015), so it is also potentially emitted by soil microbes and/or roots. We have also seen uptake by cryptogamic species (Edtbauer et al., 2021). Also, they are the most dominant oxidation products of isoprene and while it is known that isoprene can be consumed by soil microbes, we were also interested if the oxidation products would be consumed as well.

210 We now include the aforementioned reasons in the text for greater clarity as to the motivation for the measurements and how they fit into the overall context of research at the site.

215 Line 38: Plants and other organisms, like insects, often emit one These enantiomers in excess, reflecting the dominant biosynthetic pathway in a species, a given tissue or a chemotype by using a stereoselective terpene synthase enzyme (Yassaa and Williams, 2007; Song et al., 2014; Staudt et al., 2019; Zannoni et al., 2020). The atmospheric reactivity of enantiomers towards ozone and OH radicals is identical. However, the further reaction and dimer formation might have stereochemical preferences for α-pinene and limonene enantiomers (Bellcross et al., 2021; Gao et al., 2025). Although chirality does not play a role in total atmospheric reactivity, organisms use specific enantiomers in order to communicate via the atmosphere to predators or conspecifics. The (−)-α-pinene enantiomer was found to play a role in plant-insect interactions, attracting beetles to already weaker trees (Norin, 1996). The (+)-α-pinene/(−)-α-pinene ratio can be elevated in response to mechanical stress (Eerdekkens et al., 2009), and in spruce plants, a response to drought stress was found to result in higher emission rates of the (−)-enantiomers

225 of limonene, β -phellandrene, α - and β -pinene (Daber et al., 2025). In a rainforest biome *de novo*
synthesized $(-)\alpha$ -pinene responded differently to increasing drought than $(+)\alpha$ -pinene which is derived
mainly from storage pools (Byron et al., 2022). Recently, it was shown that the enantiomeric ratio can
be used to determine how the ecosystem responds to drought (Byron et al., 2025). Although an
influence from the soil was not yet investigated, can have distinct biological impacts and their emissions
may be linked to different biological processes making enantiomer resolved studies increasingly
important (Williams et al., 2007; Yassaa and Williams, 2007; Song et al., 2014; Staudt et al., 2019;
Zannoni et al., 2020; Byron et al., 2022, 2025; Daber et al., 2025). For instance, abiotic stress by
drought periods has been shown to alter the chiral ratio of the plant emitted monoterpane α -pinene
(Byron et al., 2022, 2025). Yet enantiomer-resolved soil BVOC fluxes have not been reported.

230 Line 43: Soils are recognized as both a source and sink of BVOCs, however, compared to canopy
BVOC, understanding of soil BVOC fluxes seasonal and diurnal dynamic, enantiomeric resolution, and
the environmental thresholds controlling flux direction and speciation remain poorly constrained
(Rinnan and Albers, 2020). Flux magnitudes and speciation are difficult to assess as they are the result
of biotic, soil microbiome emissions and uptake as well as root exudates, and abiotic processes, like
evaporation, diffusion, and sorption processes (Cleveland and Yavitt, 1997; Horváth et al., 2012;
235 Rinnan and Albers, 2020). These processes in turn are sensitive to temperature, soil moisture, and soil
porosity and interconnected with available ambient BVOCs and litter material, and therefore organic
matter and nutrients, which can boost the microbial communities (Peñuelas et al., 2014; Weikl et al.,
2016; Mäki et al., 2017; Kivimäenpää et al., 2018). vary with vegetation, litter, soil properties, and
available ambient VOCs (Gray et al., 2014; Kivimäenpää et al., 2018; Mäki et al., 2019; Tang et al.,
240 2019; Rinnan and Albers, 2020; Ghirardo et al., 2020; Llusia et al., 2022; Mu et al., 2023). Across
ecosystems, soil BVOC fluxes are typically one to two orders of magnitude lower than canopy
emissions, partly due to concurrent microbial uptake (Cleveland and Yavitt, 1997; Owen et al., 2007;
Peñuelas et al., 2014; Dreher et al., 2021). Microbes can consume isoprene using it as an energy source,
and may emit it at low rates (Cleveland and Yavitt, 1997; Gray et al., 2015). The isoprene oxidation
245 product methyl vinyl ketone (MVK) was found as volatile metabolite from a bacteria and active against
fungal spore germination (Herrington et al., 1987). Methacrolein (MACR) and MVK can both be
directly emitted or taken up by plants (Tani et al., 2010; Jardine et al., 2012; Fares et al., 2015). MT and
SQT emissions in contrast were associated with plant roots (Mäki et al., 2017; Tsuruta et al., 2018),
SQT especially also with soil fungi (Horváth et al., 2012), as well as with microbes (Asensio et al.,
250 2008; Weikl et al., 2016). In tropical forests, terpenoids MTs are taken up or emitted depending on the
environmental conditions such as the soil water content, nutrient composition in soil, temperature,
season, and vegetation (Bourtsoukidis et al., 2018; Dreher et al., 2021; Llusia et al., 2022). Amazonian
soils are reported to act as a strong source of SQTs under certain conditions (Bourtsoukidis et al., 2018).
SQT emissions are associated with plant roots (Mäki et al., 2017; Tsuruta et al., 2018), soil fungi, and
255 microbes (Asensio et al., 2008; Horváth et al., 2012; Weikl et al., 2016). Soil BVOC fluxes in an
artificial tropical forest have been reported to alter strongly under drought conditions (Pugliese et al.,
260 2023).

265 Line 56: El Niño climate events, which occur semi-periodically (every 2-7 years), impact the Amazon
rainforest by decreasing rainfall and elevating temperatures. It was shown in a modeling study that the
isoprene emission flux increases as a response of the vegetation to a strong El Niño event (Vella et al.,
2023). MT have also been shown to generally increase with temperature and due to drought stressed
vegetation in tropical forest ecosystems (Byron et al., 2022; Gomes Alves et al., 2022; Werner et al.,
2022). The 2023-24 El Niño event caused a record drought in the Amazon rainforest (Espinoza et al.,
2024). Climate projections indicate that the frequency and intensity of El Niño events are likely to
270 increase under continued greenhouse gas emissions, with potentially profound effects on the Amazon
and its BVOC dynamics (Geng et al., 2024).

Line 60: In this study we investigated chirally resolved measured soil BVOC fluxes in the Amazon

rainforest to assess the relevance of the soils to the total terpenoid BVOC budget in this ecosystem and see if soils have an influence on enantiomeric ratios. We measured across four seasons, including the El Niño drought period in the dry season 2023, to account for seasonal differences. Soil fluxes of isoprene, two of isoprene's oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR), and enantiomer-resolved MTs and SQTs were quantified using thermal desorption-chiral gas chromatography-time of flight mass spectrometry (TD-GC-ToF-MS). The measurements were conducted at the Amazon Tall Tower Observatory (ATTO) research station (Andreae et al., 2015) located 150 km north-east of Manaus (Brazil). The effect of temperature, soil moisture, soil properties, litter content and terpenoid ambient concentrations on soil terpenoid fluxes in terms of local time of day, magnitude, flux direction (emission and/or uptake), and chemical composition, including chiral speciation was investigated.

285 **Methods:**

84: Define “close proximity”.

Response: The chambers were installed within a radius of 15 m to each other.

Line 84 The three PVC collars were installed at three different locations within a radius of 15 m in close proximity to each other

290 86: How much before sampling were the collars installed?

Response: The collars were installed at least 24 hours prior to measurements.

Line 84-85 The three PVC collars were installed at three different locations within a radius of 15 m in close proximity to each other near the 325 m tall tower and at least 24 hours prior to measurements.

Fig.1. This figure would benefit from a schematic showing the different sampling spots (1-5) and which 295 were with/without litter, effected by the El Niño etc.

Response: Thanks for this feedback. We included an index for the effect of El Niño in Table 1 instead.

Table 1 Overview of measurement campaigns with attributed season, Oceanic Niño Index representing 3-month average temperature anomaly in the oceanic surface waters around the respective measurement period (NOAA's Climate Prediction Center, 2026), start date, end date, measured chambers and the number of flux data points

Name in plots	Season	Oceanic Niño Index	Start Date		End Date	Number of flux data points	Chambers Measured
Jan 2023	Dry-to-wet	<u>-0.5</u> <u>(La Niña/Neutral)</u>	2023-01-22	2023-01-26		20	Spot 1, Spot 2, Spot 3 without litter
Oct 2023	Dry	<u>1.8</u> <u>(around El Niño peak)</u>	2023-10-01	2023-10-14		39	Spot 1, Spot 4, Spot 5
Apr-May 2024	Wet	<u>0.8</u> <u>(El Niño influenced)</u>	2024-04-24	2024-05-02		35	Spot 1, Spot 4, Spot 5

Name in plots	Season	Oceanic Niño Index	Start Date	End Date	Number of flux data points	Chambers Measured
Oct 2024	Dry	<u>-0.2</u> <u>(Neutral)</u>	2024-10-11	2024-10-20	<u>37</u>	Spot 1, Spot 4, Spot 5
			<u>2024-10-18</u>	<u>2024-10-20</u>	<u>6</u>	<u>Spot 5 without litter</u>
300						

103-104: Storage for up to 2 months seems excessive, especially because highly volatile compounds, like isoprene, were targeted in this study. How did the authors check that the long storage did not result in loss of analytes? Was an internal standard used?

305 **Response:** Indeed, shorter storage times are always preferred for adsorbent cartridges. However, due to instrument usage and availability, a shorter storage time was not possible for all campaigns. While we did not test storage times ourselves, Helin et al. (2020) tested MTs and SQTs and found the recovery of $97 \pm 4\%$ and $94 \pm 5\%$, respectively, for 2 months of storage at 4°C . There could have been an issue with highly volatile compounds like isoprene, however our found values for ambient concentration are 310 within the expected range from previous measurements at the site with PTR-MS (Andreae et al., 2015; Yáñez-Serrano et al., 2015; Nölscher et al., 2016; Yáñez-Serrano et al., 2018; Gomes Alves et al., 2023).

Still, we would like to mention this constraint:

4.6 Limitations of this study and future directions

315 Line 534 The storage time of up to two months of the adsorbent cartridges could have resulted in some loss of the higher volatile compounds like isoprene, MACR and MVK. For MTs and SQTs these storage times have been tested previously (Helin et al., 2020).

129-130: Liquid standards were injected into the sorbent tubes under a nitrogen/helium flow I assume, not directly? Authors list the composition of the gas mixture, but what about the liquid standards?

320 **Response:** Yes, we used a nitrogen flow after injecting the liquid mixtures to remove the used solvent methanol prior to the GC-MS analysis. We now also list the used compounds in the liquid standard mixture with suppliers.

Line 127: Compounds were quantified using a gas standard calibration mixture and liquid standards injected at 1, 2, 4, 6, 8, and 10 μL in methanol-diluted compound mixtures with a syringe directly onto 325 the sorbent cartridge. Afterwards the cartridge was purged with nitrogen for 10 min to remove the methanol. As liquid standards (-)-limonene (TCI), 3-carene (Merck), (-)- α -cedrene (Sigma-Aldrich), (+)- δ -cadinene (TCI), (+)-cyclosativene (Sigma-Aldrich), (+)-longifolene (PhytoLab), (-)-isolongifolene (Fluka), α -copaene (Biomol), trans- β -ocimene (LGC), (-)- α -phellandrene (Sigma-Aldrich), (-)- α -pinene (thermoscientific), (+)- α -pinene (Acros Organics), (+)- β -pinene (Fluka), sabinene (ChemCruz), β -caryophyllene (Sigma-Aldrich), α -terpinene (Sigma-Aldrich) and γ -terpinene (Sigma-Aldrich) were used in the concentration range between 0.49 to 84.52 nmol L^{-1} . The gas standard mixture contained isoprene, MVK, MACR, tricyclene, (-) and (+)- α -pinene, (-)- β -pinene, (+) and (-)-camphene, sabinene, β -myrcene, (-)- α -phellandrene, (-)-3-carene, α -terpinene, (+)-limonene, γ -terpinene,

335 terpinolene, m- p- and o-cymene, (+) and (-)-linalool, and β -caryophyllene (Apel-Riener International, USA). When a calibration was performed with calibration gas and liquid standard, the calibration with gas standard was used, as it is more similar to the conditions when filling environmental samples than injecting methanol-diluted compound mixture.

140: Identifying enantiomers without authentic standards purely based on spectral library comparison is tentative at best. I would like to see how well compounds were separated in the chromatograms? While 340 PARADISe is able to resolve convoluted peaks, I would be very careful with identification and quantification of compounds without an authentic standard when doing targeted analysis.

Response: We agree that identifying enantiomers without authentic standards is impossible, as mass spectra are practically identical. Even for different MTs, it is challenging due to similar mass spectra. However, we did not base our identification only on spectral library comparisons but used authentic 345 standards. For the enantiomers of α -pinene, limonene, camphene and β -pinene we used enantiomerically pure standards to know the elution order with our column and method. PARADISe was used in the data analysis to improve peak integration of almost coeluting MTs like (-)- α -phellandrene and 3-carene and to integrate unknown SQTs. Unknown SQTs were identified as being a SQT by comparison with mass spectral library, but because of the before mentioned challenges they 350 were not assigned to a specific individual SQT due to lack of an authentic standard for every single SQT. These tentatively as a SQT identified SQTs are still included when Total SQT are reported. The most dominant SQT α -copaene and β -caryophyllene, as well as (-)- α -cedrene, (+)- δ -cadinene, (+)-cyclosativene, (+)-longifolene, and (-)-isolongifolene were identified with authentic standards.

Please see an example chromatogram below, which we now include in the appendix.

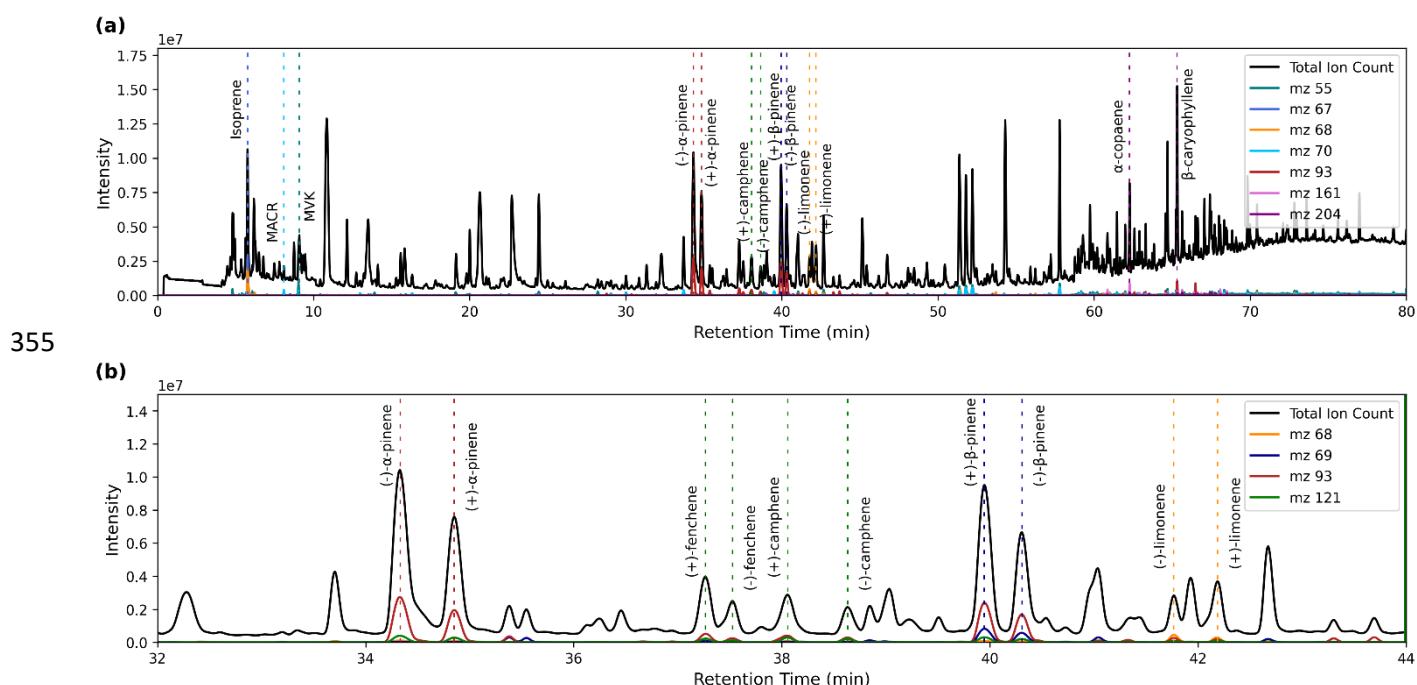


Figure A1 (a) Example Chromatogram of a soil chamber sample from October 2023 with annotation of isoprene, MACR, and MVK peaks, the chiral monoterpenes, and the two most prominent sesquiterpenes (b) Zoomed into the chiral monoterpene resolution.

360 Line 136: Compounds in the sample chromatogram were identified by matching retention times with those of the standards, and the enantiomers elution order of α -pinene, limonene, camphene and β -pinene were confirmed by spiking with enantiomerically pure standards (see Fig. A1 for enantiomer resolution in a chromatogram).

155: Define “near”.

365 Line 152: Soil samples were collected in June 2023 approximately 0.5-1.5 m near spots 1, 2, and 3, where VOCs had been measured in January 2023.

164-168: As authors have sampled VOCs from chambers with and without litter, the litter composition should not be ignored. Did authors conduct any additional analysis of the litter or only the dry weight?

370 **Response:** Unfortunately, we did not do that. From visual inspection, the litter composition was mixed from various plants and in different stages of decomposition. We agree that is would be beneficial for future studies to better assess the litter and plant composition at the measurement site.

188: Why was soil moisture/temperature measured so far away from the BVOC sampling site? Was any replication conducted?

375 **Response:** We had soil sensors for moisture and temperature closer to the sampling site, however the instrumentation broke during measurement campaigns. For this reason, we chose to use the consistent moisture and temperature measurements from the site that was further away. This ensured consistent values when looking at the impact of these environmental parameters on the flux.

380 199: Statistical analysis needs to be explained more thoroughly, especially because pseudoreplication was used and the sampling sites changed in between samplings. Was the flux data normalized? Did you use repeated measurements ANOVA for dry-wet seasons and before-after litter removal? Authors need to specify which test was used for which parts of the data.

385 **Response:** Thank you for raising this concern about the statistical analysis. Following the feedback of Reviewer 1, we changed our statistical model and now use linear mixed-effect models instead of ANOVA tests, because of different sample size and pseudo-replication. We describe the now used statistical model in the methods, changed the corresponding results for soil spot, seasonal, and chiral ratio differences and adjusted Figure 6 and 8. While some p-values changed slightly under the new statistical model, the overall trends and conclusions were not affected when comparing fluxes and chiral ratios per seasons and soil spots.

2.6 Statistical analysis

390 Statistical analyses were performed using Python (version 3.12.4) with the following packages: numpy (v.2.0.0), pandas (v.2.2.2), matplotlib (v.3.9.1), seaborn (v.0.13.2), statsmodel (v.0.14.5-2), and scipy (v 1.16.0). Data visualization was conducted using matplotlib and seaborn.

395 Statistical differences were assessed using linear mixed-effect models, because the dataset contains repeated measurements over time from the same soil chambers and ambient sampling points, which violates assumptions of independence of simpler tests. Local time (hour-of-day as a categorical factor), was included as a fixed effect in all models, because we expected a diurnal pattern for the measured VOC fluxes and mixing ratios. between soil fluxes measured in different seasons and from different soil plots were determined using the Tukey HSD (Honestly significant difference) test following a significant result from ANOVA To assess seasonal differences in fluxes, a linear mixed-effects model was implemented with season, chamber spot location and local time as fixed effects and the sampling date spot as random effects. Differences between soil spots within a single season were assessed with chamber spot location and local time as fixed effect and the sampling date as random effect. Using the Holm–Bonferroni method, p-values were adjusted for multiple comparisons afterwards in both cases. For comparisons of enantiomeric ratios between atmospheric and soil chambers and between seasons, a linear mixed-effect model with fixed effect for local time and a random effect for the sampling date and chamber spot or ambient air sampling location was used. Ratios in both cases were log-transformed prior to analysis to stabilize variance and improve residual normality.

400 405 410 We fitted linear mixed-effects models with fixed effects for environmental predictors and local time, and random intercepts for measurement date and chamber spot location, to quantify the association of predictors with fluxes. Regression slopes (β) represent the change in flux per unit increase in the

~~predictor, the non-parametric Mann-Whitney U test was used due to non-normality of the data. For correlations between the fluxes and environmental parameter Pearson coefficients were calculated. Statistical significance was accepted for $p < 0.05$.~~

415 **Results**

Fig.2. Mean and standard deviation of what (N=?)?

Line 245: Figure 2 Meteorological data during the measured seasons with (a) temperature (red) and (c) relative humidity (blue) measured at 26 m at the Instant tower, (b) soil temperature (orange) and (d) soil water-content (green) measured at 10 cm depth and (e) photosynthetically active radiation (PAR) incoming at 81 m at the Instant tower across the four measurement periods in the different seasons. The line represents the mean and shaded area is the standard deviation from the dates of the measurement campaigns specified in Table 1 (number of dates N=5 for Jan 2023; N= 14 for Oct 2023; N= 9 for Apr-May 2024, N= 9 for Oct 2024).

264: Authors should list which signals have been summed as total MT and SQT.

Line 260: Figure 3 summarizes the mean measured mixing ratios for terpenoids (isoprene, total monoterpenes, and total sesquiterpenes), methacrolein (MACR) and methyl vinyl ketone (MVK), total monoterpenes (sabinene, β -myrcene, tricyclene, both enantiomers of α -pinene, 3-carene, both enantiomers of α -fenchene, both enantiomers of camphene, both enantiomers of β -pinene, β -ocimene, both enantiomers of limonene, γ -terpinene, α -terpinene, terpinolene), and total sesquiterpenes (β -caryophyllene, α -copaene, (+)-cyclosativene, (+)-longifolene, (-)-isolongifolene, (-)- α -cedrene and a per campaign differing number of unknown SQTs (good confidence with NIST that they are SQTs, but with no authentic standard to confirm which exact SQT) at the soil level (outside of the chambers) over the four seasons sampled.

280-282: How was emission highly seasonal, time-of-day dependent, and specific to soil conditions? Did you test this and their interaction with ANOVA? SQTs were significantly different in dry seasons 2023, did you test this and what was the p value?

Response: As we changed the statistical model used, we now perform linear mixed-effect models. The p-values are summarized in two tables in the appendix now (see below). We agree that we should phrase this sentence more carefully.

Line 277: The emission or uptake was highly seasonal, time-of-day dependent and mostly specific to the individual soil spot conditions (see Table A6 and A7 for statistical tests). Interestingly, the SQT emission was significantly higher in the dry season 2023 compared to the dry-to-wet season 2023 ($p < 0.001$) and the dry season 2024 ($p < 0.01$) other measured seasons.

Fig.3. See my general comment 2.

445 **Response:** See above.

Fig.4. If these are mean fluxes, why not show standard deviation? Could you indicate in the figure which differences were statistically different.

Response: We decided against showing the standard deviation in this figure to keep readability. Instead, we now report standard deviations for each season in Table A1. We agree that in this way, we do not report standard deviation of hourly values per season. We can add another long table in the appendix, but we are not sure if this is beneficial to the reader. The total dataset can be accessed online.

Fig.5. Same comments as for Fig.4. Also, I would again be careful how the different spots are compared. Spot 2 and 3 are different, so authors cannot include them in their statistical analysis before and after litter removal the same way they would the same spot 5. As statistical methods were only briefly described by the authors, it's also difficult to say what tests were used and how (e.g., repeated measures ANOVA or something else).

Response: We changed our statistical methods to mixed-effect models which now accounts for these constraints. Please see the changes to the statistical method section as reported above and for clarification this part of the answer to reviewer 1:

460 "We acknowledge that our data is not independent due to repeated measurement over time from the same soil spots when we compare seasons or soil spots. To address this, we have re-analyzed the data using linear mixed-effects models, which accounts for the structure of our time-series data by including random intercepts for each measurement date. We describe the now used statistical model in the methods, changed the corresponding results for soil spot, seasonal, and chiral ratio differences and 465 adjusted Figures 6 and 8. While some p-values changed slightly under the new statistical model, the overall trends and conclusions were not affected when comparing fluxes and chiral ratios per seasons and soil spots."

Discussion

470 I would combine the discussion about the emission rates with section 4.1 and consider very carefully what can be concluded from the results done with pseudoreplicates. While the discussion about the different drivers behind the observed levels and blends of BVOCs is valid, the discussion about the measured emission rates (which do not reflect the natural variation in the environment) could be significantly reduced. Authors can discuss overall trends, but comparing hard numbers for emissions 475 rates measured with pseudoreplicates is not valid and could be partly behind differences found between this study and others. As such, I would also omit the comparison with canopy emissions and the atmospheric impacts, and instead, expand on the discussion e.g., about the chirality which is a novel topic.

Response: On reflection, a discussion of the fluxes and a comparison with values found by other studies 480 should not be omitted. As described in the answers above, the potential of the soil to influence chiral ratios is of interest. However, the limitations of our studies should be emphasized as we did in section 4.6. and also expanded as mentioned above.

485 407-12: Could authors elaborate on how and how quickly soil microbiome can shift during extreme weather events? As no microbial analysis was done for this manuscript, it would be beneficial if authors demonstrate with relevant references if the time-scale of shifting microbiome is enough to explain the observed variations.

Response: Thank you for making us think more about the velocity with which soil microbiomes can shift. By taking into account the literature about the microbiome in tropical forest soils (Kivlin and Hawkes, 2016; Buscardo et al., 2018, 2022), we think it is reasonable to expect the microbiome to 490 change to some degree between seasons.

Line 235: So, the roots, as well as the microbiome, could have contributed to the different MT species fluxes. In a study from similar Amazon rainforest terra firme soil, bacterial communities were observed to shift between dry and wet seasons due to seasonality-related changes in soil nutrient and moisture regimes (Buscardo et al., 2018). In tropical forest soils in Costa Rica bacterial biomass, richness, and enzyme activity peaked at wetter conditions (Kivlin and Hawkes, 2016). Fungal groups in Amazonian soil were observed to shift within 2 months following a nitrogen pulse and come back to their original community microbiome within 5 months

(Buscardo et al., 2022).

Soil microorganisms, particularly fungi, are known to be significant sources of SQTs (Horváth et al., 2012; Ditengou et al., 2015; Gfeller et al., 2019). A study by Bourtsoukidis et al. (2018a) has shown that Amazonian soils can emit SQTs at rates comparable to the plant canopy during dry season conditions. In contrast, our study did not observe consistent SQT emissions during the two dry seasons of 2023 and 2024. Only in the El Niño-influenced dry season 2023 was an emission pattern of SQT evident. In the subsequent dry season 2024, SQTs were even partly uptaken by the same soil spots.

Appendix

Could authors provide the results from their statistical tests (p and F values, degrees of freedom) e.g., as table.

Response: Following suggestions from Reviewer 1, we changed our statistical methods because of pseudo replications from ANOVA to linear mixed-effect models. Here we provide a table of the effect size as β -coefficients, the 95% confidence interval, and Holm-Bonferroni adjusted p-values.

The linear mixed-effects model was generated using the smf.mixedlm function which is based on the python package statsmodel (v.0.14.5) which is based on the lmer function from the R package lme471. We used season, local time, and soil spot ID as fixed factors and date as random effect.

The use of linear mixed-effects models analysis is necessary to account for repeated measures, since failure to do so would violate the assumption of independent observations.

2.6 Statistical analysis

Statistical analyses were performed using Python (version 3.12.4) with the following packages: numpy (v.2.0.0), pandas (v.2.2.2), matplotlib (v.3.9.1), seaborn (v.0.13.2), statsmodel (v.0.14.5-2), and scipy (v.1.16.0). Data visualization was conducted using matplotlib and seaborn.

Statistical differences were assessed using linear mixed-effect models, because the dataset contains repeated measurements over time from the same soil chambers and ambient sampling points, which violates assumptions of independence of simpler tests. Local time was included as a fixed effect in all models, because we expected a diurnal pattern for the measured VOC fluxes and mixing ratios. between soil fluxes measured in different seasons and from different soil plots were determined using the Tukey HSD (Honestly significant difference) test following a significant result from ANOVA To assess seasonal differences in fluxes, a linear mixed-effects model was implemented with season, chamber spot location and local time as fixed effects and the sampling date spot as random effects. Differences between soil spots within a single season were assessed with chamber spot location and local time as fixed effect and the sampling date as random effect. Using the Holm–Bonferroni method, p-values were adjusted for multiple comparisons afterwards in both cases.

For comparisons of enantiomeric ratios between atmospheric and soil chambers and between seasons, a linear mixed-effect model with fixed effect for local time and a random effect for the sampling date and chamber spot or ambient air sampling location was used. Ratios in both cases were log-transformed prior to analysis to stabilize variance and improve residual normality. To assess the effect size (β coefficient) of environmental parameters on fluxes, mixed-effects models were fitted with fixed effect of local time and adjusting for random effects of measurement date and chamber spot location. the non-parametric Mann–Whitney U test was used due to non-normality of the data.

We fitted linear mixed-effects models with fixed effects for environmental predictors and local time, and random intercepts for measurement date and chamber spot location, to quantify the association of predictors with fluxes. Regression slopes (β) represent the change in flux per unit increase in the predictor. For correlations between the fluxes and environmental parameter Pearson coefficients were calculated. Statistical significance was accepted for $p < 0.05$.

Table A6 Overview of seasonal differences of the fluxes of isoprene, MACR, MVK, total monoterpenes, and total sesquiterpenes by linear mixed-effect models with the formula "Flux ~ C(Season_renamed) + C(Hour) + C(Chamber_spots)" and Date as the random

545 effect; β -coefficients are the estimated change between the baseline season to the compared season (Compared-Baseline) in $\text{nmol m}^{-2} \text{h}^{-1}$; 95% CI is the confidence interval; p-value (adj) is the adjusted p-value after Holm-Bonferroni correction for multiple comparisons. Significance: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Substance	Baseline Season Compared Season	Jan 2023 Oct 2023	Jan 2023 Apr–May 2024	Jan 2023 Oct 2024	Oct 2023 Apr–May 2024	Oct 2023 Oct 2024	Apr–May 2024 Oct 2024
isoprene	β -coefficient	-29.029	-4.994	-47.96	20.385	-14.165	-31.634
	95% CI	-44.6 – 13.458	-10.862 – 0.873	-67.105 – 28.814	11.632 – 29.139	-28.297 – 0.032	-44.452 – 18.816
	p-value (adj)	7.75e-04 ***	0.099	5.47e-06 ***	2.00e-05 ***	0.099	6.59e-06 ***
MACR	β -coefficient	-14.602	0.19	-14.325	10.098	-0.212	-9.586
	95% CI	-21.059 – 8.145	-0.752 – 1.132	-21.246 – 7.403	7.113 – 13.083	-4.651 – 4.227	-13.348 – 5.824
	p-value (adj)	3.72e-05 ***	1.000	1.49e-04 ***	2.01e-10 ***	1.000	2.96e-06 ***
MVK	β -coefficient	-8.565	4.524	-10.144	10.802	-2.163	-12.113
	95% CI	-16.229 – 0.9	2.039 – 7.01	-21.799 – 1.511	8.353 – 13.251	-7.893 – 3.567	-17.341 – 6.886
	p-value (adj)	0.086	0.001 **	0.176	3.25e-17 ***	0.459	2.79e-05 ***
Total MTs	β -coefficient	-72.842	-77.208	-93.614	-12.864	-19.672	-4.739
	95% CI	-96.934 – 48.751	-107.677 – 46.738	-125.306 – 61.923	-32.544 – 6.817	-36.833 – 2.512	-29.031 – 19.553
	p-value (adj)	1.86e-08 ***	2.73e-06 ***	3.53e-08 ***	0.400	0.074	0.702
Total SQTs	β -coefficient	11.828	15.698	-1.261	-2.072	-7.71	-4.039
	95% CI	5.678 – 17.978	5.988 – 25.408	-5.912 – 3.389	-6.445 – 2.301	-10.996 – 4.424	-8.98 – 0.902
	p-value (adj)	8.17e-04 ***	0.006 **	0.706	0.706	2.55e-05 ***	0.327

3.3 Diurnal and seasonal dynamics of soil terpenoid exchanges

Line 272: The fluxes of isoprene showed strong seasonal variation, with higher uptake fluxes in the dry seasons compared to the dry-to-wet and wet seasons (Tukey test Holm–Bonferroni adjusted $p < 0.001$; see Table A6).

Line 272: Interestingly, the SQT emission was significantly higher in the dry season 2023 compared to the other measured dry seasons 2024.

555 Table A7 Overview of differences per spot within each season of the fluxes of isoprene, MACR, MVK, total monoterpenes, and total sesquiterpenes by linear mixed-effect models with the formula "Flux ~ C(Chamber_spots) + C(Hour)" and Date as random effect; β -coefficients are the estimated change between the baseline spot to the compared spot (Compared-Baseline) in $\text{nmol m}^{-2} \text{h}^{-1}$; 95% CI is the confidence interval; p-value (adj) is the adjusted p-value after Holm-Bonferroni correction for multiple comparisons. Significance: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

Substance	Season	Baseline Spot	Compared Spot	β -coefficient	95% CI	P-value (Adj)
isoprene	Jan 2023	Spot 1 (N=6)	Spot 2 (N=14)	0.963	-2.633 – 4.558	1.000
		Spot 1 (N=6)	Spot 3 without litter (N=7)	1.782	-1.558 – 5.122	1.000
		Spot 2 (N=14)	Spot 3 without litter (N=7)	0.819	-3.307 – 4.946	1.000
	Oct 2023	Spot 1 (N=52)	Spot 4 (N=24)	0.102	-9.952 – 10.157	1.000
		Spot 1 (N=52)	Spot 5 (N=25)	18.133	8.017 – 28.249	0.012 *
		Spot 4 (N=24)	Spot 5 (N=25)	18.031	4.106 – 31.957	0.223

MACR	Apr–May 2024	Spot 1 (N=31)	Spot 4 (N=27)	2.472	-0.207 – 5.151	1.000
		Spot 1 (N=31)	Spot 5 (N=31)	3.336	0.807 – 5.865	0.214
		Spot 4 (N=27)	Spot 5 (N=31)	0.864	-1.714 – 3.441	1.000
	Oct 2024	Spot 1 (N=17)	Spot 4 (N=24)	-0.26	-10.637 – 10.116	1.000
		Spot 1 (N=17)	Spot 5 (N=25)	33.689	21.938 – 45.44	0.000 ***
		Spot 4 (N=24)	Spot 5 (N=25)	33.949	20.988 – 46.91	0.000 ***
		Spot 5 (N=25)	Spot 5 without litter (N=12)	-25.058	-41.86 – -8.256	0.083
	Jan 2023	Spot 1 (N=6)	Spot 2 (N=14)	-1.746	-3.235 – -0.256	0.475
		Spot 1 (N=6)	Spot 3 without litter (N=7)	0.46	-0.944 – 1.863	1.000
		Spot 2 (N=14)	Spot 3 without litter (N=7)	2.205	0.831 – 3.58	0.043 *
	Oct 2023	Spot 1 (N=52)	Spot 4 (N=24)	2.746	-0.247 – 5.739	1.000
		Spot 1 (N=52)	Spot 5 (N=25)	5.209	2.207 – 8.211	0.019 *
		Spot 4 (N=24)	Spot 5 (N=25)	2.463	-1.603 – 6.529	1.000
	Apr–May 2024	Spot 1 (N=31)	Spot 4 (N=27)	0.127	-0.334 – 0.589	1.000
		Spot 1 (N=31)	Spot 5 (N=31)	-0.293	-0.735 – 0.149	1.000
		Spot 4 (N=27)	Spot 5 (N=31)	-0.42	-0.894 – 0.053	1.000
	Oct 2024	Spot 1 (N=17)	Spot 4 (N=24)	2.034	-0.465 – 4.532	1.000
		Spot 1 (N=17)	Spot 5 (N=25)	5.12	2.465 – 7.774	0.005 **
		Spot 4 (N=24)	Spot 5 (N=25)	3.086	0.501 – 5.67	0.463
		Spot 5 (N=25)	Spot 5 without litter (N=12)	-2.074	-5.698 – 1.55	1.000
MVK	Jan 2023	Spot 1 (N=6)	Spot 2 (N=14)	-1.005	-4.237 – 2.226	1.000
		Spot 1 (N=6)	Spot 3 without litter (N=7)	0.777	-1.827 – 3.381	1.000
		Spot 2 (N=14)	Spot 3 without litter (N=7)	1.782	-0.872 – 4.436	1.000
	Oct 2023	Spot 1 (N=52)	Spot 4 (N=24)	3.458	-0.054 – 6.971	1.000
		Spot 1 (N=52)	Spot 5 (N=25)	5.544	2.017 – 9.07	0.058
		Spot 4 (N=24)	Spot 5 (N=25)	2.085	-2.549 – 6.72	1.000
	Apr–May 2024	Spot 1 (N=31)	Spot 4 (N=27)	0.148	-0.407 – 0.703	1.000
		Spot 1 (N=31)	Spot 5 (N=31)	0.364	-0.289 – 1.017	1.000
		Spot 4 (N=27)	Spot 5 (N=31)	0.215	-0.417 – 0.848	1.000
	Oct 2024	Spot 1 (N=17)	Spot 4 (N=24)	1.826	-0.851 – 4.502	1.000
		Spot 1 (N=17)	Spot 5 (N=25)	5.003	1.703 – 8.304	0.077
		Spot 4 (N=24)	Spot 5 (N=25)	3.178	-0.075 – 6.431	1.000
		Spot 5 (N=25)	Spot 5 without litter (N=12)	-7.969	-12.97 – -2.969	0.054
Total MTs	Jan 2023	Spot 1 (N=6)	Spot 2 (N=14)	-104.079	-125.254 – -82.904	0.000 ***
		Spot 1 (N=6)	Spot 3 without litter (N=7)	-76.622	-98.679 – -54.565	0.000 ***
		Spot 2 (N=14)	Spot 3 without litter (N=7)	27.457	0.767 – 54.147	0.963
	Oct 2023	Spot 1 (N=52)	Spot 4 (N=24)	-6.642	-22.658 – 9.374	1.000
		Spot 1 (N=52)	Spot 5 (N=25)	-12.25	-27.813 – 3.313	1.000
		Spot 4 (N=24)	Spot 5 (N=25)	-5.608	-27.575 – 16.36	1.000
	Apr–May 2024	Spot 1 (N=31)	Spot 4 (N=27)	-21.177	-40.488 – -1.866	0.758
		Spot 1 (N=31)	Spot 5 (N=31)	-26.435	-45.807 – -7.063	0.195
		Spot 4 (N=27)	Spot 5 (N=31)	-5.258	-24.104 – 13.588	1.000

Oct 2024	Spot 1 (N=17)	Spot 4 (N=24)	-13.325	-29.115 – 2.465	1.000
	Spot 1 (N=17)	Spot 5 (N=25)	-2.222	-22.226 – 17.781	1.000
	Spot 4 (N=24)	Spot 5 (N=25)	11.102	-8.798 – 31.003	1.000
	Spot 5 (N=25)	Spot 5 without litter (N=12)	-6.272	-37.851 – 25.308	1.000
Total SQTs	Jan 2023	Spot 1 (N=6)	Spot 2 (N=14)	-0.849	-6.357 – 4.659
		Spot 1 (N=6)	Spot 3 without litter (N=7)	1.137	-3.524 – 5.798
		Spot 2 (N=14)	Spot 3 without litter (N=7)	1.986	-3.301 – 7.274
	Oct 2023	Spot 1 (N=52)	Spot 4 (N=24)	-2.627	-6.901 – 1.647
		Spot 1 (N=52)	Spot 5 (N=25)	-5.737	-10.125 – -1.349
		Spot 4 (N=24)	Spot 5 (N=25)	-3.11	-8.475 – 2.255
	Apr–May 2024	Spot 1 (N=31)	Spot 4 (N=27)	-12.758	-20.51 – -5.007
		Spot 1 (N=31)	Spot 5 (N=31)	-12.775	-20.404 – -5.146
		Spot 4 (N=27)	Spot 5 (N=31)	-0.016	-7.481 – 7.448
	Oct 2024	Spot 1 (N=17)	Spot 4 (N=24)	4.034	1.024 – 7.043
		Spot 1 (N=17)	Spot 5 (N=25)	5.974	2.789 – 9.16
		Spot 4 (N=24)	Spot 5 (N=25)	1.941	-1.362 – 5.244
		Spot 5 (N=25)	Spot 5 without litter (N=12)	-3.442	-7.927 – 1.043

560

Line 289: For isoprene, in the dry-to-wet season 2023 and wet season 2024 no significant differences in fluxes were found ($p > 0.05$) (Fig. 4a) between the measured soil chambers. However, in the other three two dry seasons there was a significantly higher isoprene uptake by spot 1 than spot 5 (Holm–Bonferroni adjusted $p < 0.05$ for dry season 2023 and $p < 0.001$ for dry season 2024 all) and in the dry season 2024 also in spot 5 than spot 4 (Holm–Bonferroni adjusted $p < 0.001$).

565

Comparing fluxes of MTs from different soil spots, we note clear monoterpene speciation differences (Fig. 4b). The highest emission rates were observed for soil spot 1 in the dry-to-wet transition season 2023. Here, the flux was significantly higher compared to the other two spots (Holm–Bonferroni adjusted $p < 0.0001$).

570

3.4.1 Effect of litter removal

Line 289: When litter was removed from the soil plot, in the two seasons dry-to-wet season 2023 and dry season 2024, no significant difference was found in the fluxes for isoprene and total MTs ($p > 0.05$).

575

Could authors provide some example chromatograms to show the separation of enantiomers and corresponding identification for chiral compounds.

Response: Indeed, good idea, this can also be informative for some readers to see the chiral identification for chiral compounds. Please see above Figure A1 that we will include in the Appendix.

Technical corrections

580

In chemical formulas, numbers should be subscripts

Response: Thanks. We noticed that we missed this in a chemical formula in Table 2 and appreciate the chance to improve that.

Line 235: CaCl₂ CaCl₂

In discussion, the verb tense should be consistent throughout, e.g. past tense.

585 **Response:** Thanks, we will revise the verb tense throughout the discussion when we resubmit the reviewed manuscript.

Figure texts overall are too small.

Response: Thank you for pointing that out. We will increase all figure text font size to the same as the manuscript text.

590 43-45: Sentence is really long and hard to understand.

Response: We improved readability:

~~Soils are recognized as both a source and sink of BVOCs, however, compared to canopy BVOC, understanding on soil BVOC fluxes seasonal and diurnal dynamic, enantiomeric resolution, and the environmental thresholds controlling flux direction and speciation remain poorly constrained.~~

595 ~~While soils are increasingly recognized as sources and sinks of BVOCs, compared to canopy BVOC they remain poorly constrained. Understanding seasonal and diurnal patterns, as well as their enantiomeric resolution and environmental thresholds that control those fluxes is important for better assessing the impact of soil on ecology and atmospheric chemistry.~~

71: You already define the abbreviation (ATTO) in the introduction.

600 **Response:** Thank you for pointing that out. We will refer to ATTO instead here.

98-104: You could combine the information about the sorbent tubes and their preconditioning/storage to it's on paragraph – separate from the description of sampling.

Response: We will move this paragraph to section 2.2 BVOC analysis

140: Define NIST and the version used.

605 Line 140: Compounds lacking standards were identified by comparing their mass spectra with those in the NIST library ([NIST 14 Mass Spectral Library](#))

199: Define ANOVA.

Response: As we changed the statistical model, we do not use ANOVA anymore. We define the now used linear mixed-effect model as above.

610 215: I think the sentence is missing something.

Response: Thanks for noticing this.

Line 215: [CO₂ respiration](#) was more than three times higher in the chambers with litter content than in the chamber without litter in the dry-to-wet season 2023.

395: play only a minor role

615 **Response:**

Line 394: MACR and MVK are the dominant first-generation oxidation products of isoprene (Pierotti et al., 1990), but they can also be directly emitted by plants (Jardine et al., 2012). MACR and MVK have been reported to have a bidirectional flux in and from trees (Fares et al., 2015) and can be absorbed by tree saplings (Tani et al., 2010). [However, MACR and MVK play only a minor role in plant' emissions.](#)

620 **References:**

Andreae, M. O., Acevedo, O. C., Araújo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., da Silva, N. F., Dias, N. L., Dias-Júnior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T., Kesselmeier, J., Könemann, T., Krüger, M. L., Lavric, J. V., Manzi, A. O., Lopes, A. P., Martins, D. L., Mikhailov, E. F., Moran-Zuloaga, D.,
625 Nelson, B. W., Nölscher, A. C., Santos Nogueira, D., Piedade, M. T. F., Pöhlker, C., Pöschl, U., Quesada, C. A., Rizzo, L. V., Ro, C.-U., Ruckteschler, N., Sá, L. D. A., de Oliveira Sá, M., Sales, C. B., dos Santos, R. M. N., Saturno, J., Schöngart, J., Sörgel, M., de Souza, C. M., de Souza, R. a. F., Su, H., Targhetta, N., Tóta, J., Trebs, I., Trumbore, S., van Eijck, A., Walter, D., Wang, Z., Weber, B., Williams, J., Winderlich, J., Wittmann, F., Wolff, S., and Yáñez-Serrano, A. M.: The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols, *Atmospheric Chemistry and Physics*, 15, 10723–10776, <https://doi.org/10.5194/acp-15-10723-2015>, 2015.

Asensio, D., Owen, S. M., Llusià, J., and Peñuelas, J.: The distribution of volatile isoprenoids in the soil horizons around *Pinus halepensis* trees, *Soil Biology and Biochemistry*, 40, 2937–2947,
635 <https://doi.org/10.1016/j.soilbio.2008.08.008>, 2008.

Bellcross, A., Bé, A. G., Geiger, F. M., and Thomson, R. J.: Molecular Chirality and Cloud Activation Potentials of Dimeric α -Pinene Oxidation Products, *J. Am. Chem. Soc.*, 143, 16653–16662, <https://doi.org/10.1021/jacs.1c07509>, 2021.

Bourtsoukidis, E., Behrendt, T., Yáñez-Serrano, A. M., Hellén, H., Diamantopoulos, E., Catão, E.,
640 Ashworth, K., Pozzer, A., Quesada, C. A., Martins, D. L., Sá, M., Araujo, A., Brito, J., Artaxo, P., Kesselmeier, J., Lelieveld, J., and Williams, J.: Strong sesquiterpene emissions from Amazonian soils, *Nat Commun*, 9, 2226, <https://doi.org/10.1038/s41467-018-04658-y>, 2018.

Buscardo, E., Geml, J., Schmidt, S. K., Freitas, H., da Cunha, H. B., and Nagy, L.: Spatio-temporal dynamics of soil bacterial communities as a function of Amazon forest phenology, *Sci Rep*, 8, 4382,
645 <https://doi.org/10.1038/s41598-018-22380-z>, 2018.

Buscardo, E., Geml, J., Schmidt, S. K., Freitas, H., Souza, A. P., Cunha, H. B., and Nagy, L.: Nitrogen pulses increase fungal pathogens in Amazonian lowland tropical rain forests, *Journal of Ecology*, 110, 1775–1789, <https://doi.org/10.1111/1365-2745.13904>, 2022.

Byron, J., Kreuzwieser, J., Purser, G., van Haren, J., Ladd, S. N., Meredith, L. K., Werner, C., and
650 Williams, J.: Chiral monoterpenes reveal forest emission mechanisms and drought responses, *Nature*, 609, 307–312, <https://doi.org/10.1038/s41586-022-05020-5>, 2022.

Byron, J., Pugliese, G., A. Monteiro, C. de, Robin, M., Gomes Alves, E., Schuettler, J., Hartmann, S. C., Edtbauer, A., Krumm, B. E., Zannoni, N., Tsokankunku, A., Dias-Junior, C. Q., Quesada, C. A., Harder, H., Bourtsoukidis, E., Lelieveld, J., and Williams, J.: Mirror image molecules expose state of
655 rainforest stress, *Commun Earth Environ*, 6, 703, <https://doi.org/10.1038/s43247-025-02709-z>, 2025.

NOAA's Climate Prediction Center:
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php, last access: 7 January 2026.

Cleveland, C. C. and Yavitt, J. B.: Consumption of atmospheric isoprene in soil, *Geophysical Research Letters*, 24, 2379–2382, <https://doi.org/10.1029/97GL02451>, 1997.

Daber, L. E., Nolte, P., Kreuzwieser, J., Meischner, M., Williams, J., and Werner, C.: Position-specific isotope labelling gives new insights into chiral monoterpene synthesis of Norway spruce (*Picea abies* L.), *Environmental and Experimental Botany*, 238, 106238,
660 <https://doi.org/10.1016/j.envexpbot.2025.106238>, 2025.

665 Drewer, J., Leduning, M. M., Purser, G., Cash, J. M., Sentian, J., and Skiba, U. M.: Monoterpenes from tropical forest and oil palm plantation floor in Malaysian Borneo/Sabah: emission and composition, *Environ Sci Pollut Res*, 28, 31792–31802, <https://doi.org/10.1007/s11356-021-13052-z>, 2021.

670 Edtbauer, A., Pfannerstill, E. Y., Pires Florentino, A. P., Barbosa, C. G. G., Rodriguez-Caballero, E., Zannoni, N., Alves, R. P., Wolff, S., Tsokankunku, A., Aptroot, A., de Oliveira Sá, M., de Araújo, A. C., Sörgel, M., de Oliveira, S. M., Weber, B., and Williams, J.: Cryptogamic organisms are a substantial source and sink for volatile organic compounds in the Amazon region, *Commun Earth Environ*, 2, 1–14, <https://doi.org/10.1038/s43247-021-00328-y>, 2021.

675 Eerdekers, G., Yassaa, N., Sinha, V., Aalto, P. P., Aufmhoff, H., Arnold, F., Fiedler, V., Kulmala, M., and Williams, J.: VOC measurements within a boreal forest during spring 2005: on the occurrence of elevated monoterpane concentrations during night time intense particle concentration events, *Atmospheric Chemistry and Physics*, 9, 8331–8350, <https://doi.org/10.5194/acp-9-8331-2009>, 2009.

Espinoza, J.-C., Jimenez, J. C., Marengo, J. A., Schongart, J., Ronchail, J., Lavado-Casimiro, W., and Ribeiro, J. V. M.: The new record of drought and warmth in the Amazon in 2023 related to regional and global climatic features, *Sci Rep*, 14, 8107, <https://doi.org/10.1038/s41598-024-58782-5>, 2024.

680 Fares, S., Paoletti, E., Loreto, F., and Brilli, F.: Bidirectional Flux of Methyl Vinyl Ketone and Methacrolein in Trees with Different Isoprenoid Emission under Realistic Ambient Concentrations, *Environ. Sci. Technol.*, 49, 7735–7742, <https://doi.org/10.1021/acs.est.5b00673>, 2015.

685 Gao, L., Perrier, S., Iyer, S., Vanoye, L., Fache, F., Claflin, M. S., Kurten, T., and Riva, M.: Unveiling the Role of Chirality in the Oxidation of Monoterpenes, *J. Am. Chem. Soc.*, 147, 28842–28850, <https://doi.org/10.1021/jacs.5c06118>, 2025.

Geng, T., Cai, W., Jia, F., and Wu, L.: Decreased ENSO post-2100 in response to formation of a permanent El Niño-like state under greenhouse warming, *Nat Commun*, 15, 5810, <https://doi.org/10.1038/s41467-024-50156-9>, 2024.

690 Ghirardo, A., Lindstein, F., Koch, K., Buegger, F., Schloter, M., Albert, A., Michelsen, A., Winkler, J. B., Schnitzler, J.-P., and Rinnan, R.: Origin of volatile organic compound emissions from subarctic tundra under global warming, *Global Change Biology*, 26, 1908–1925, <https://doi.org/10.1111/gcb.14935>, 2020.

695 Gomes Alves, E., Taylor, T., Robin, M., Pinheiro Oliveira, D., Schietti, J., Duvoisin Júnior, S., Zannoni, N., Williams, J., Hartmann, C., Gonçalves, J. F. C., Schöngart, J., Wittmann, F., and Piedade, M. T. F.: Seasonal shifts in isoprenoid emission composition from three hyperdominant tree species in central Amazonia, *Plant Biology*, 24, 721–733, <https://doi.org/10.1111/plb.13419>, 2022.

700 Gomes Alves, E., Aquino Santana, R., Quaresma Dias-Júnior, C., Botía, S., Taylor, T., Yáñez-Serrano, A. M., Kesselmeier, J., Bourtsoukidis, E., Williams, J., Lembo Silveira de Assis, P. I., Martins, G., de Souza, R., Duvoisin Júnior, S., Guenther, A., Gu, D., Tsokankunku, A., Sörgel, M., Nelson, B., Pinto, D., Komiya, S., Martins Rosa, D., Weber, B., Barbosa, C., Robin, M., Feeley, K. J., Duque, A., Londoño Lemos, V., Contreras, M. P., Idarraga, A., López, N., Husby, C., Jestrow, B., and Cely Toro, I. M.: Intra- and interannual changes in isoprene emission from central Amazonia, *Atmospheric Chemistry and Physics*, 23, 8149–8168, <https://doi.org/10.5194/acp-23-8149-2023>, 2023.

705 Gray, C. M., Monson, R. K., and Fierer, N.: Biotic and abiotic controls on biogenic volatile organic compound fluxes from a subalpine forest floor, *Journal of Geophysical Research: Biogeosciences*, 119, 547–556, <https://doi.org/10.1002/2013JG002575>, 2014.

Gray, C. M., Helmig, D., and Fierer, N.: Bacteria and fungi associated with isoprene consumption in soil, *Elementa: Science of the Anthropocene*, 3, 000053, <https://doi.org/10.12952/journal.elementa.000053>, 2015.

710 Helin, A., Hakola, H., and Hellén, H.: Optimisation of a thermal desorption–gas chromatography–mass spectrometry method for the analysis of monoterpenes, sesquiterpenes and diterpenes, *Atmos. Meas. Tech.*, 13, 3543–3560, <https://doi.org/10.5194/amt-13-3543-2020>, 2020.

Herrington, P. R., Craig, J. T., and Sheridan, J. E.: Methyl vinyl ketone: A volatile fungistatic inhibitor from *Streptomyces griseoruber*, *Soil Biology and Biochemistry*, 19, 509–512, [https://doi.org/10.1016/0038-0717\(87\)90092-7](https://doi.org/10.1016/0038-0717(87)90092-7), 1987.

715 Horváth, E., Hoffer, A., Sebők, F., Dobolyi, C., Szoboszlay, S., Kriszt, B., and Gelencsér, A.: Experimental evidence for direct sesquiterpene emission from soils, *Journal of Geophysical Research: Atmospheres*, 117, <https://doi.org/10.1029/2012JD017781>, 2012.

Jardine, K. J., Monson, R. K., Abrell, L., Saleska, S. R., Arneth, A., Jardine, A., Ishida, F. Y., Serrano, 720 A. M. Y., Artaxo, P., Karl, T., Fares, S., Goldstein, A., Loreto, F., and Huxman, T.: Within-plant isoprene oxidation confirmed by direct emissions of oxidation products methyl vinyl ketone and methacrolein, *Global Change Biology*, 18, 973–984, <https://doi.org/10.1111/j.1365-2486.2011.02610.x>, 2012.

Kivimäenpää, M., Markkanen, J.-M., Ghimire, R. P., Holopainen, T., Vuorinen, M., and Holopainen, J. 725 K.: Scots pine provenance affects the emission rate and chemical composition of volatile organic compounds of forest floor, *Can. J. For. Res.*, 48, 1373–1381, <https://doi.org/10.1139/cjfr-2018-0049>, 2018.

Kivlin, S. N. and Hawkes, C. V.: Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest, *PLOS ONE*, 11, e0159131, 730 <https://doi.org/10.1371/journal.pone.0159131>, 2016.

Llusià, J., Asensio, D., Sardans, J., Filella, I., Peguero, G., Grau, O., Ogaya, R., Gargallo-Garriga, A., Verryckt, L. T., Van Langenhove, L., Brechet, L. M., Courtois, E., Stahl, C., Janssens, I. A., and Peñuelas, J.: Contrasting nitrogen and phosphorus fertilization effects on soil terpene exchanges in a tropical forest, *Sci Total Environ*, 802, 149769, <https://doi.org/10.1016/j.scitotenv.2021.149769>, 2022.

735 Mäki, M., Heinonsalo, J., Hellén, H., and Bäck, J.: Contribution of understorey vegetation and soil processes to boreal forest isoprenoid exchange, *Biogeosciences*, 14, 1055–1073, <https://doi.org/10.5194/bg-14-1055-2017>, 2017.

Mäki, M., Krasnov, D., Hellén, H., Noe, S. M., and Bäck, J.: Stand type affects fluxes of volatile organic compounds from the forest floor in hemiboreal and boreal climates, *Plant Soil*, 441, 363–381, 740 <https://doi.org/10.1007/s11104-019-04129-3>, 2019.

Mu, Z., Zeng, J., Zhang, Y., Song, W., Pang, W., Yi, Z., Asensio, D., Llusià, J., Peñuelas, J., and Wang, X.: Soil uptake of isoprenoids in a *Eucalyptus urophylla* plantation forest in subtropical China, *Front. For. Glob. Change*, 6, <https://doi.org/10.3389/ffgc.2023.1260327>, 2023.

Nölscher, A. C., Yañez-Serrano, A. M., Wolff, S., de Araujo, A. C., Lavrič, J. V., Kesselmeier, J., and Williams, J.: Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity, *Nat Commun*, 7, 10383, <https://doi.org/10.1038/ncomms10383>, 2016.

Norin, T.: Chiral chemodiversity and its role for biological activity. Some observations from studies on insect/insect and insect/plant relationships, *Pure and Applied Chemistry*, 68, 2043–2049, <https://doi.org/10.1351/pac199668112043>, 1996.

750 Ortega, J., Helmig, D., Daly, R. W., Tanner, D. M., Guenther, A. B., and Herrick, J. D.: Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques - part B: applications, *Chemosphere*, 72, 365–380, <https://doi.org/10.1016/j.chemosphere.2008.02.054>, 2008.

755 Owen, S. M., Clark, S., Pompe, M., and Semple, K. T.: Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of *Populus tremula*, *FEMS Microbiology Letters*, 268, 34–39, <https://doi.org/10.1111/j.1574-6968.2006.00602.x>, 2007.

Peñuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz, M., Piechulla, B., and Schnitzler, J. p.: Biogenic volatile emissions from the soil, *Plant, Cell & Environment*, 37, 1866–1891, <https://doi.org/10.1111/pce.12340>, 2014.

760 Pugliese, G., Ingrisch, J., Meredith, L. K., Pfannerstill, E. Y., Klüpfel, T., Meeran, K., Byron, J., Purser, G., Gil-Loaiza, J., van Haren, J., Dontsova, K., Kreuzwieser, J., Ladd, S. N., Werner, C., and Williams, J.: Effects of drought and recovery on soil volatile organic compound fluxes in an experimental rainforest, *Nat Commun*, 14, 5064, <https://doi.org/10.1038/s41467-023-40661-8>, 2023.

765 Rinnan, R. and Albers, C. N.: Soil Uptake of Volatile Organic Compounds: Ubiquitous and Underestimated?, *Journal of Geophysical Research: Biogeosciences*, 125, e2020JG005773, <https://doi.org/10.1029/2020JG005773>, 2020.

Song, W., Staudt, M., Bourgeois, I., and Williams, J.: Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature, *Biogeosciences*, 11, 1435–1447, <https://doi.org/10.5194/bg-11-1435-2014>, 2014.

770 Staudt, M., Byron, J., Piquemal, K., and Williams, J.: Compartment specific chiral pinene emissions identified in a Maritime pine forest, *Science of The Total Environment*, 654, 1158–1166, <https://doi.org/10.1016/j.scitotenv.2018.11.146>, 2019.

775 Tang, J., Schurges, G., and Rinnan, R.: Process Understanding of Soil BVOC Fluxes in Natural Ecosystems: A Review, *Reviews of Geophysics*, 57, 966–986, <https://doi.org/10.1029/2018RG000634>, 2019.

Tani, A., Tobe, S., and Shimizu, S.: Uptake of Methacrolein and Methyl Vinyl Ketone by Tree Saplings and Implications for Forest Atmosphere, *Environ. Sci. Technol.*, 44, 7096–7101, <https://doi.org/10.1021/es1017569>, 2010.

780 Tsuruta, J., Okumura, M., Makita, N., Kosugi, Y., Miyama, T., Kume, T., and Tohno, S.: A comparison of the biogenic volatile organic compound emissions from the fine roots of 15 tree species in Japan and Taiwan, *Journal of Forest Research*, 23, 242–251, <https://doi.org/10.1080/13416979.2018.1483129>, 2018.

Vella, R., Pozzer, A., Forrest, M., Lelieveld, J., Hickler, T., and Tost, H.: Changes in biogenic volatile organic compound emissions in response to the El Niño–Southern Oscillation, *Biogeosciences*, 20, 4391–4412, <https://doi.org/10.5194/bg-20-4391-2023>, 2023.

785 Veres, P. R., Behrendt, T., Klapthor, A., Meixner, F. X., and Williams, J.: Volatile Organic Compound emissions from soil: using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS) for the real time observation of microbial processes, *Biogeosciences Discussions*, 11, 12009–12038, <https://doi.org/10.5194/bgd-11-12009-2014>, 2014.

790 Weikl, F., Ghirardo, A., Schnitzler, J.-P., and Pritsch, K.: Sesquiterpene emissions from *Alternaria alternata* and *Fusarium oxysporum*: Effects of age, nutrient availability and co-cultivation, *Sci Rep*, 6, 22152, <https://doi.org/10.1038/srep22152>, 2016.

795 Werner, C., Meredith, L. K., and Ladd, S. N.: Ecosystem BVOC fluxes during drought and recovery
trace ecohydrological responses of the vegetation and soil microbial interactions - insights from an
ecosystem-scale isotope labelling experiment, Copernicus Meetings, <https://doi.org/10.5194/egusphere-egu22-11637>, 2022.

Williams, J., Yassaa, N., Bartenbach, S., and Lelieveld, J.: Mirror image hydrocarbons from Tropical
and Boreal forests, *Atmospheric Chemistry and Physics*, 7, 973–980, 2007.

800 Yáñez-Serrano, A. M., Nölscher, A. C., Williams, J., Wolff, S., Alves, E., Martins, G. A.,
Bourtsoukidis, E., Brito, J., Jardine, K., Artaxo, P., and Kesselmeier, J.: Diel and seasonal changes of
biogenic volatile organic compounds within and above an Amazonian rainforest, *Atmos. Chem. Phys.*,
15, 3359–3378, <https://doi.org/10.5194/acp-15-3359-2015>, 2015.

805 Yáñez-Serrano, A. M., Nölscher, A. C., Bourtsoukidis, E., Gomes Alves, E., Ganzeveld, L., Bonn, B.,
Wolff, S., Sa, M., Yamasoe, M., Williams, J., Andreae, M. O., and Kesselmeier, J.: Monoterpene
chemical speciation in a tropical rainforest: variation with season, height, and time of day at the Amazon
Tall Tower Observatory (ATTO), *Atmospheric Chemistry and Physics*, 18, 3403–3418,
<https://doi.org/10.5194/acp-18-3403-2018>, 2018.

810 Yassaa, N. and Williams, J.: Enantiomeric monoterpene emissions from natural and damaged Scots pine
in a boreal coniferous forest measured using solid-phase microextraction and gas chromatography/mass
spectrometry, *J Chromatogr A*, 1141, 138–144, <https://doi.org/10.1016/j.chroma.2006.12.006>, 2007.

Zannoni, N., Leppla, D., Lembo Silveira de Assis, P. I., Hoffmann, T., Sá, M., Araújo, A., and
Williams, J.: Surprising chiral composition changes over the Amazon rainforest with height, time and
season, *Commun Earth Environ*, 1, 1–11, <https://doi.org/10.1038/s43247-020-0007-9>, 2020.

815 Zeng, J., Zhang, Y., Zhang, H., Song, W., Wu, Z., and Wang, X.: Design and characterization of a semi-
open dynamic chamber for measuring biogenic volatile organic compound (BVOC) emissions from
plants, *Atmos. Meas. Tech.*, 15, 79–93, <https://doi.org/10.5194/amt-15-79-2022>, 2022.