
We thank the reviewers and the editor for their thorough and constructive review. In this 
reply, we have copied the comments in black. Our responses are entered in red. 

Reviewer 1 

Major comments 

Section 2.2.3: 

In this section, the authors explain the different models used in their study. In general, 
the output from the GR4J model, and several additional variables, are used as input of 
different machine learning algorithms, that act as postprocessors (Figure 3). However, 
the performance comparison of the different models has errors. 

As a benchmark, the authors are using the GR4J, which is a rainfall runoff model that 
receives meteorological input and predicts discharge. However, models 2c, 3, 4, 5 and 
6, besides the predictions made by the GR4J, also use observed discharges as input to 
the ML algorithm. One cannot compare a model that receives observed discharge as an 
input with a model that does not, it is expected that the former one will be better. 
Discharge is a highly temporally correlated variable, so the discharge from time t-1 is an 
extremely good predictor for the discharge at time t.  This is why in the results, they 
report that “Model 2c demonstrates improvement with respect to GR4J, which 
emphasises the importance of taking into account short-term streamflow memory.”  This 
is not a surprising finding and makes the model comparison invalid between models that 
receive discharges and models that do not. 

 

We thank the reviewer for their insightful comment regarding the comparison of models 
that include observed discharge as input versus those that do not. 

Indeed, Models 2c, 3, 4, 5, and 6 incorporate observed streamflow data as predictors in 
the machine learning (ML) post-processing step, whereas the baseline GR4J model 
does not. As the reviewer correctly points out, this means that these ML models 
leverage short-term streamflow memory, which is a strong predictor due to the high 
temporal autocorrelation in discharge data. The significant improvement observed in 
models such as 2c is therefore expected and consistent with established hydrological 
understanding. 

Our intention in structuring the study this way was to explore how incorporating various 
hydrological memory components, both short-term (recent streamflow) and long-term 
(runoff coefficients), could address the known limitations of the GR4J model, particularly 
under changing climatic conditions like droughts. The ML models are applied as 



post-processors precisely to diagnose and quantify these potential improvements, and 
to help identify specific structural weaknesses in the GR4J model. 

We acknowledge that direct comparison of model predictive skill between the baseline 
GR4J and ML models that use observed discharge input should be interpreted with 
caution. The key contribution of this work is not to claim superiority of the ML models as 
standalone predictive tools, but rather to demonstrate: 

1.​ The extent to which GR4J predictions can be improved by augmenting them with 
hydrologically meaningful predictors, including short-term discharge memory.​
 
2.​ The insights gained from ML models about the importance of such predictors, 
which suggest directions for future model development and refinement of physically 
based rainfall-runoff models.​
 

Regarding short-term prediction, it is well recognised in hydrology that recent 
streamflow (e.g., discharge at time t-1) provides valuable information for forecasting at 
time t due to strong temporal correlation. Our results confirm this, as models 
incorporating short-term discharge memory achieve substantial gains in prediction 
accuracy. This outcome validates the use of short-term streamflow as a critical 
component in improving model responsiveness to recent hydrological conditions, 
especially in dynamic drought and post-drought periods. 

To emphasise this, we will clarify in the revised manuscript that the performance gains 
of models using observed discharge input are indicative of the potential to incorporate 
these memory effects within GR4J or similar models to improve robustness across 
varied hydrological conditions. 

 

We appreciate the reviewer’s comment, which has helped us improve the clarity and 
framing of our analysis. 

 
Section 3. 

In line 333, the authors indicate that “None of the models 1, 2a, and 2b show any 
improvement over the GR4J predictions”.  This is contrary to what has been shown in 
literature, where using ML models as postprocessors of process-based models 
improves performance (Frame et al, 2021) because of the enhanced flexibility of the 



resulting hybrid model. Nevertheless, the results shown by the authors are contrary to 
that.  Further explanation of why this is the case is required. 

Moreover, in the case reported by the authors, the models are performing badly. Based 
on Figure 7b and 7c, models 1, 2a and 2b reported a negative NSE for 60% (or more) of 
the basins. This indicates that just taking the average flow is better than the model, and 
consequently, the models are not working at all. Why is this the case?    

We thank the reviewer for raising this important point about the unexpectedly poor 
performance of Models 1, 2a, and 2b compared to the GR4J baseline, which contrasts 
with findings in the literature (e.g., Frame et al., 2021) where ML post-processing 
typically improves hydrological model performance. 

There are several factors that likely contribute to the observed results in our study: 

1.​ Predictor Selection and Model Structure:​
 Models 1, 2a, and 2b rely on a limited set of predictors that do not include observed 
streamflow (discharge) data as inputs, unlike other models in our study. Their predictors 
mainly consist of meteorological variables and GR4J simulated discharge without 
additional memory terms. This limits their ability to capture important temporal 
dependencies and hydrological memory effects that are crucial for accurate daily 
streamflow predictions, especially under highly variable climatic conditions such as 
drought.​
 
2.​ Hydrological Complexity and Variable Climate Conditions:​
 The catchments studied exhibit complex rainfall-runoff dynamics, strongly influenced by 
drought and post-drought periods where streamflow patterns deviate markedly from 
pre-drought conditions used for model training. Models 1, 2a, and 2b are less flexible in 
capturing such non-stationarities because they lack critical hydrological memory 
predictors (e.g., recent discharge), resulting in models that are not robust to these 
changes. This leads to poor generalisation and, consequently, negative NSE values in 
many sub-catchments.​
 
3.​ Inadequate Representation of Nonlinearities:​
 The combination of predictor variables and model formulations in Models 1, 2a, and 2b 
may not sufficiently address the non-linear relationships inherent in rainfall-runoff 
processes under drought conditions. Without streamflow memory and long-term runoff 
coefficient terms, these models effectively perform worse than even a naïve average 
flow predictor in some basins.​
 



4.​ Training Data and Period Differences:​
 Our models were trained exclusively on pre-drought data, which is wetter and 
hydrologically different from the drought and post-drought periods used for evaluation. 
This temporal mismatch exacerbates the poor performance of simpler models, 
particularly those lacking additional hydrological memory inputs. 

 
In lines 370-372, the authors indicate that GR4J model lacks the capacity to represent 
low flow context, because the other ML algorithms performed better. However, this is 
again an unfair comparison because all the ML algorithms that you are using in this 
comparison receive discharge as input, which will be an extremely informative predictor 
of the discharge in the next time step, especially during low flow periods. Therefore, this 
is not a valid comparison. 

We appreciate the reviewer’s insightful observation regarding the comparison of 
low-flow predictions between the GR4J model and the ML algorithms. 

Indeed, the ML models in our study incorporate observed discharge as an input 
predictor, which provides a strong temporal correlation and valuable information for 
predicting streamflow at the next time step, particularly during low-flow conditions. This 
inherently gives the ML models an advantage over the GR4J model, which does not use 
observed discharge as input. 

We acknowledge that this difference in input data means the comparison is not fully 
“apples-to-apples.” However, the intent of our study was to evaluate the potential for 
machine learning to act as a post-processor that can correct and improve GR4J 
predictions by leveraging additional hydrological memory effects (including short-term 
streamflow memory), which are difficult for conceptual models like GR4J to represent. 

The improved performance of the ML algorithms during low-flow periods highlights the 
value of incorporating such short-term memory terms and more flexible, data-driven 
approaches for capturing dynamics that are challenging for traditional rainfall-runoff 
models under drought conditions. 

We will revise the manuscript to explicitly clarify this point, emphasising that the ML 
models serve as post-processing tools that exploit additional input information (including 
lagged discharge) to enhance predictions, and that direct performance comparisons 
with GR4J should be interpreted within this context. 

 
General comment: 



Even though the authors present an interesting study, the ML methods used are far 
from current state-of-the-art. It has been shown in multiple studies that LSTMs perform 
well as purely ML methods (Kratzert2019b, Kratzert2021 and Feng2020 for CAMELS 
US, Less2021 for CAMELS GB, Loritz2024 for CAMELS DE) and as postprocessors of 
process-based models (Frame et al, 2021). The overall poor performance of the hybrid 
models presented in this study (when they did not receive discharge as input) indicates 
that the general pipeline could be improved, as the ML postprocessor is not doing its 
job. 

Moreover, it should be noted that other strategies for constructing hybrid models, like 
using ML methods to parameterize a process-based model (Kraft2022, Feng2022, 
AcuñaEspinoza2024) or using ML methods to replace process-based model parts 
(Höge2022, Li2023, Li2024) have shown improved performance with respect to the 
stand-alone conceptual model, which would be worth considering given that in this 
case, the hybrid models that did not receive discharge as input are not able to 
outperform the stand-alone GR4J model. 

Therefore, I believe the models presented in the paper are not up to standard with 
current state-of-the-art, and further improvement is necessary. 

We thank the reviewer for the constructive feedback and for highlighting recent 
advances in hydrological modeling using advanced ML techniques such as LSTMs and 
novel hybrid modeling strategies. 

We acknowledge that state-of-the-art ML methods, including LSTM-based architectures 
and hybrid approaches that integrate ML within process-based model components, 
have demonstrated promising improvements in streamflow prediction across multiple 
recent studies. 

However, the primary aim of our study was not to develop the most advanced or 
optimised ML model for streamflow forecasting, but rather to investigate the potential of 
specific hydrological predictors, such as long-term runoff coefficient and short-term 
streamflow memory, in improving daily streamflow predictions during drought conditions. 
To achieve this, we deliberately chose simpler and widely-used ML algorithms (e.g., 
MLP, Random Forest, Gradient Boosting) which offer interpretability and robustness, 
facilitating clearer analysis of predictor importance and behavior. 

By focusing on simpler ML algorithms as postprocessors, we were able to isolate and 
highlight key predictor contributions and understand structural weaknesses in the GR4J 
model’s representation of rainfall-runoff processes, especially under variable climatic 
conditions. 



We will clarify this rationale in the revised manuscript to better position our work within 
the broader field and to acknowledge opportunities for advancement using more 
sophisticated ML techniques. 

Minor comments: 

Line 34: Use proper citation format. 

Will be modified in the final version. 

Line 43: This sentence does not read well. Please improve the phrasing. 

Will be modified in the final version. 

Line 47:  Should be:  hydrologic non-stationarity, use the noun and not the adjective. 

Will be modified in the final version. 

 

Line 60: What are you referring to here as validation data? Is it the data that you use to 
evaluate your model after calibration (but this will also include the forcings)? or the 
target variable that you are predicting? It just seems that the word validation here is out 
of context because errors can be found in other types of data too. 

Thank you for pointing this out. To clarify, in Line 60, the term “validation data” refers 
specifically to the observed streamflow data used to evaluate the model’s predictive 
performance after calibration, rather than the input forcing data. We recognise that the 
phrasing may cause confusion and agree that “validation data” is not always the best 
descriptor in this context. 

To improve clarity, we will revise the manuscript to explicitly state that the validation 
refers to the observed target variable (streamflow) against which model predictions are 
compared, rather than the input forcing data or other datasets. This distinction helps 
avoid ambiguity regarding the source of errors discussed. 

 

Line 62: Are you using conceptual hydrological models as a synonym of process-based 
models, as a subcategory or as a different category?  The connection with the previous 
idea could be improved. 

Thank you for this insightful question. In our manuscript, we use conceptual hydrological 
models as a subcategory within the broader class of process-based models. Conceptual 



models represent hydrological processes through simplified storage components and 
flux relationships, rather than detailed physical equations, but still aim to capture the key 
processes driving streamflow. 

We agree that the connection between these terms could be better clarified. To improve 
readability and conceptual flow, we will revise the manuscript to explicitly state this 
hierarchical relationship and clarify the terminology when these models are introduced. 

 

Line 95: I do not agree this phrase. There is code development by the user, because 
you are still using a model. Machine learning methods are models, and they need to be 
coded. It would be better to indicate that during the training, the model learns to map the 
input-output relationships using less prior constrains on how this mapping should be 
done. 

Thank you for this insightful comment. We agree that machine learning methods involve 
code development and that ML models require training to learn input-output 
relationships. We will revise the sentence to better reflect this by emphasising that 
during training, the ML model learns to map inputs to outputs. 

Lines 98-101: It would be good to cite the studies that use these types of models. 

Will be modified in the next version. 

Line 124: “or with data containing irrelevant or redundant information.”  Do you have a 
source or examples that justify this? Because in principle, if data is not relevant for a ML 
model, the model could just ignore it. 

Lima, A. R., Cannon, A. J., and Hsieh, W. W.: Forecasting daily streamflow using online 
sequential extreme learning machines, J Hydrol (Amst), 537, 
https://doi.org/10.1016/j.jhydrol.2016.03.017, 598 2016. 

“ML algorithms may produce less accurate and less understandable results if the data 
are inadequate or contain irrelevant or redundant information (Hall and Smith, 1996).” 

 

Line 128: Which published studies? 

Studies will be added. 

 



Line 130:  I disagree that there is a “literature gap on how machine learning can be used 
to improve hydrological models”. There are a lot of studies published in this area. Of 
course, there are things that can be improved, but what you mentioned here is too 
general. 

We agree that there is a substantial body of literature exploring the integration of 
machine learning with hydrological models. To clarify, our intention was to highlight 
specific gaps related to the identification and use of key predictors, such as long-term 
runoff coefficients and short-term streamflow memory, in hybrid modeling frameworks, 
especially under drought conditions. We will revise the manuscript to better reflect it. 

 

Line 205-207: You should only mention the models that you will present the results for. 
You are saying that multiple algorithms were assessed in the study, you are naming 
them, and then saying that some of them are not going to be discussed. So why 
mention them at all? To make the study cleaner, I suggest you should talk only about 
the results you are presenting.  Also, why is Less et al 2021 cited in this part? He used 
an LSTM model, which you are not using. Moreover, please clarify what the other 
citations are referring to. 

Thank you for your insightful suggestion. We agree that focusing the discussion on the 
machine learning algorithms for which results are presented will make the manuscript 
clearer and more concise. Accordingly, we will revise manuscript to mention only the 
algorithms included in the results and remove references to models not discussed 
further. 

Regarding the citation of Less et al. (2021), we acknowledge that this study uses LSTM 
models, which are not included in our analysis. We will relocate this citation to the 
introduction or discussion sections where it better fits the context of state-of-the-art 
methods. Additionally, we will clarify the purpose of each cited work to ensure their 
relevance and connection to the content. 

 

Line 214: I would suggest avoiding this kind of phrase. Saying that random forest is one 
of the most powerful statistical learning methods is subjective. This would depend on 
the application you have, the metric you are using, and many other factors. 

We will revise the phrasing to present Random Forest more objectively, highlighting its 
widespread use and robustness in various applications without making a generalised 
claim about its overall power. 



Line 227: Same here, avoid saying that gradient boosting is widely recognised as one of 
the most powerful algorithms. This is again subjective, case-dependent and not related 
to the main point you are trying to make. 

We will revise the phrasing to present gradient boosting more objectively, highlighting its 
widespread use and robustness in various applications without making a generalised 
claim about its overall power. 

Line 238: This is not true. MLP is not the most popular type of neural network in 
hydrology. The current state-of-the-art has been achieved with LSTMs (Kratzert2019b, 
Kratzert2021 and Feng2020 for CAMELS US, Less2021 for CAMELS GB, Loritz2024 
for CAMELS DE). Transformers have also shown good results in CAMELS US. Both of 
these methods considerably outperform MLP. 

It will be corrected to: MLP is one of the most popular type of neural network … 

 

Line 252: What do you mean by calibration and optimisation were conducted for the 
training and test period only? You should not calibrate for the test period. The test 
period is used to evaluate the model that was calibrated during the training period. I 
think there is a misunderstanding on the names you are using. 

Will be rephrased in the next version. 

 

Line 266: Improve phrasing of “an intentional effort”. 

Will be rephrased in the next version. 

Line 272: Are you referring to mean-squared error or sum-squared error? 

We are referring to the mean squared error (MSE) as the loss function used for training 
the models. We will clarify this in the manuscript to avoid any confusion. However, in the 
SKlearn description it is written squared error. 

 

Line 270-277:  What you are referring to here as a testing period is what it is normally 
referred to as validation. 

Will be modified in the next version. 


