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Abstract. This study benchmarks a wide range of snow water equivalent (SWE) models and data products at a catchment 

scale in the Western US, and discusses an experimental protocol to facilitate community-wide intercomparisons. Utilizing 10 

lidar-based ASO (Airborne Snow Observatory) SWE estimates as a ‘ground truth’, this study evaluates the performance of 

multiple SWE products, including SNODAS, SWANN (4km and 800m), the US National Water Model (NWM), UCLA-

SWE, SWEMLv2, NLDAS-2 (VIC, Noah, and Mosaic), ERA5-Land, Daymet and the CONUS404 dataset. We use SWE 

aggregated to hydrologic catchments as the standard spatial basis for assessment, focusing on multiple spatially-variable 

performance metrics. UCLA-SWE, SWANN (both 800 m and 4 km), and SWEMLv2 show the strongest agreement with 15 

ASO SWE, each achieving Kling–Gupta Efficiency (KGE) values above 0.6. SNODAS also performs competitively with 

these higher-performing models. The coarser-resolution products generally perform poorly at the catchment scale. Notably, 

ERA5-Land and the NLDAS-2 Mosaic and VIC models demonstrate strong skill for basin-average SWE (R² > 0.9), while 

the NLDAS-2 Noah model exhibits weak performance across both spatial scales. Noting the lack of a common community 

standard for SWE product and model evaluation, we use the results of the multi-dataset analysis to explore potential 20 

experimental protocols for a standardized SWE evaluation that could support community-wide intercomparison and 

benchmarking of existing and new SWE products. SWE datasets are a critical component in hydrologic prediction practices 

such as water supply forecasting, thus the use of experimental standards proposed herein could facilitate quantitative 

guidance for agency and stakeholder adoption of specific SWE products in decision support applications. 

1 Introduction 25 

Snow is a critical component of freshwater resources, storing water seasonally and releasing it gradually to sustain 

streamflow, groundwater recharge, and water supply for ecosystems, agriculture, and communities. Snowmelt volumes can 

often be predicted with usable accuracy, making snowpack estimates central to water resource management, but its quantity 

and distribution are highly sensitive to climate variability, complicating accurate measurement and forecasting (Natural 

Resources Conservation Service, 2010).  In the western United States (US), snow water equivalent (SWE) has traditionally 30 

https://doi.org/10.5194/egusphere-2025-5514
Preprint. Discussion started: 24 November 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

been measured through ground-based networks, most notably the Snow Telemetry (SNOTEL) system (Serreze et al., 1999), 

which provides automated in situ measurements of mountain snowpack. While valuable, point-based observations do not 

measure spatial variability across complex terrain, motivating the development of areal SWE products derived from remote 

sensing, reanalysis, and modeling approaches.  

SWE estimation methods can be categorized into four main approaches, which differ in temporal and spatial resolution, 35 

underlying assumptions, and data sources: physically-based models, reanalysis products, data-driven models, and SWE 

derived directly from satellite remote sensing imagery. Physically-based models, such as those used in SWE products from 

the Daymet dataset  (Thornton et al., 2021), NLDAS-2 (Xia et al., 2012) land surface models (LSMs), and the US National 

Oceanic and Atmospheric Administration (NOAA) National Water Model (NWM; Cosgrove et al., 2024), simulate snow 

accumulation and melt using representations of land surface energy and water balances, ranging from simple temperature-40 

index formulations to full energy-balance models with data assimilation. Reanalysis products, including Western United 

States UCLA Daily Snow Reanalysis (UCLA-SWE; Margulis et al., 2019), the Snow Data Assimilation System (SNODAS; 

Carroll et al., 2001), and the fifth generation European ReAnalysis land component (ERA5-Land; Munoz-Sabater et al., 

2021), combine observations and model outputs to generate spatially complete, physically consistent hydroclimate variable 

records. Notably, UCLA-SWE assimilates remotely sensed fractional snow-covered area (fSCA) derived from Landsat and 45 

the Moderate Resolution Imaging Spectroradiometer (MODIS; Riggs et al., 2017), enabling improved characterization of 

seasonal snow in regions with sparse in situ data, such as high-elevation catchments. Data-driven models, such as Snow 

Water Artificial Neural Network (SWANN; Broxton et al., 2016) and Snow Water Equivalent Machine Learning (SWEML; 

Liljestrand et al., 2024), leverage historical observations and machine learning, training on observational datasets such as 

SNOTEL and the Parameter-elevation Regressions on Independent Slopes Model (PRISM; Daly et al., 1994), with 50 

performance dependent on input data quality and coverage. Remote sensing-based methods, including high resolution 

Airborne Snow Observatory (ASO) lidar SWE (Painter et al., 2016) and satellite passive microwave products (e.g., SMMR, 

SSM/I, AMSR), provide indirectly derived SWE estimates at high or coarse resolution, respectively.   

Aerial (airplane-based) lidar (Light Detection and Ranging) measurements of snow depth have been collected since 2013 by 

the Airborne Snow Observatory (ASO), a collaboration initially led by NASA’s Jet Propulsion Laboratory, California 55 

Department of Water Resources, and other state and local entities, that has since privatized (ASO Inc.). ASO provides high-

resolution (50 m) SWE estimates derived from lidar-based snow depth and modeled snow density (Painter et al., 2016). It’s 

important to recognize that ASO SWE is not a direct observation (due to its combination of lidar-based depth and model 

density), and it presents temporally discontinuous snapshots of SWE (with typically 1-5 scenes obtained in a basin per year). 

Notwithstanding these limitations, it is among the most detailed spatially distributed quasi-observational SWE datasets 60 

available. Researchers have duly used ASO datasets to assess remotely sensed snow (Behrangi et al., 2018; Broxton et al., 

2024), benchmark new SWE estimation methods and models (Dawson et al., 2018; Margulis et al., 2019; Oaida et al., 2019), 

train data-driven models (Liljestrand et al., 2024), evaluate basin precipitation (Cao et al., 2018; Henn et al., 2016), and 

support other SWE intercomparisons (Yang et al., 2023). In particular, Yang et al. (2023) compared five SWE products over 
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the western US, including two reconstruction products (REC-ParBal; Bair et al., 2016, REC-INT; Guan et al., 2013), a 65 

reanalysis-based product (REC-DA/UCLA-SWE), and two operational products (SNODAS and the National Water Model). 

They found that UCLA-SWE (REC-DA) achieved the highest overall accuracy and best captured the spatial distribution of 

SWE, while SNODAS and NWM exhibited substantially lower accuracy. Retrospective approaches (REC-INT, REC-

ParBal, and REC-DA) generally outperformed real-time SWE estimates, likely due to the additional information available to 

the retrospective models.  70 

Recent global intercomparison efforts highlight the persistent challenges of accurately representing SWE, especially in 

complex terrain. Mudryk et al. (2025) evaluated 23 gridded SWE products using an expanded reference dataset combining 

snow course and airborne gamma observations. Their analysis found that ERA5-Land and the Crocus snow model (Brun et 

al., 2013) versions performed best overall, benefiting from finer spatial and vertical resolution and the absence of surface 

snow assimilation. Most products captured SWE climatology and variability in low-relief regions but performed poorly in 75 

mountainous areas, emphasizing the ongoing need for targeted high-resolution SWE products.  Complementing these global 

and regional efforts, this study focuses on the mountainous western US, emphasizing scales relevant to basin- and 

catchment-level water management. We evaluate both global and regional SWE datasets against catchment-level ASO SWE 

(a high-resolution observational reference), using scenes from over 400 ASO flights across multiple basins. 

The creation of a standardized protocol for evaluating SWE products (e.g., with a common spatial/temporal basis, reference 80 

observation, and evaluation metric convention) can be valuable for both research and operational communities, providing 

evidence-driven insights into the performance of new and existing methods. The potential utility of such standardized 

intercomparison has been strongly demonstrated previously for streamflow, notably with the widespread adoption of the 

Catchment Attributes and Meteorology for Large-Sample Studies (CAMELS; Addor et al., 2017; Newman et al., 2015) 

datasets. CAMELS defined a collection of 671 watersheds in the US and provided the associated hydrometeorological 85 

timeseries, geophysical attributes, and benchmark model simulation results. Since its introduction as a benchmarking 

reference for streamflow simulation (Newman et al., 2017), CAMELS has become the basis for assessment in many 

streamflow modeling papers (e.g., Frame et al., 2022; Klotz et al., 2022; Kratzert et al., 2019; Rakovec et al., 2019; Xie et 

al., 2021), the focus of entire ‘large-sample hydrology’ conference sessions, and has also spawned efforts to extend the 

original contiguous US (CONUS) CAMELS datasets globally (Kratzert et al., 2023). Such datasets enable direct 90 

comparisons between diverse modeling results (from process based and machine learning techniques) that have previously 

been difficult to reconstruct from individual studies due to a lack of standard experimental conventions (such as testing 

periods, metrics and locations). 

This study aims to expand on the success of the CAMELS community benchmarking activities in developing a similar focal 

point for SWE estimation, given that there are now over a dozen spatial SWE products that cover (at least) the extent of the 95 

CONUS. In particular, we (1) evaluate the performance of multiple SWE estimation methods with respect to ASO SWE 

observational estimates (referred to as ‘observations’ or brevity); and (2) discuss and propose potential common 

experimental protocols for evaluating SWE that can be used to assess existing and new products. Because a CAMELS-like 
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convention for evaluating SWE models and estimation methods does not currently exist in the snow research and practice 

community, the core motivation for the work and the associated datasets is to provide a starting point in this direction, which 100 

would ideally yield CAMELS-like community benefits and impacts. The following sections present the approach and 

evaluation methods, describe the SWE datasets and results, and discuss the findings and offer conclusions and 

recommendations. 

2 Approach 

The overall objective of this paper is to propose and illustrate the use of a standard protocol for SWE product evaluation, 105 

using ASO SWE as a benchmark to evaluate the performance of the multiple SWE products. Supporting this goal, we obtain 

and process an extensive suite of distributed SWE product datasets, as well as the ASO SWE (reference dataset).  These are 

spatially aggregated to a catchment scale (using the NOAA NextGen hydrofabric catchments dataset (median area ~7 km²; 

describe further below) to enable a spatially consistent inter-comparison. This section describes the datasets evaluated in this 

study, the processing methods, the evaluation metrics, and experimental protocol concept. 110 

2.1 Study area 

The evaluation was conducted across basins in the western United States (US) that have been surveyed by the Airborne 

Snow Observatory (ASO) from 2013–2024. These basins span much of the western US, including the Sierra Nevada (e.g., 

Tuolumne, Merced, San Joaquin, Kings), headwater basins in Colorado (e.g., Gunnison, Rio Grande, Conejos), as well as 

select basins in Utah, Oregon, Washington, and Wyoming. ASO has flown over 40 different unique basins covering more 115 

than 80,000 km². The basins range from maritime snow climates of California and the Pacific Northwest to more continental 

conditions in the Rockies, capturing a wide variety of snow accumulation and melt regimes. Flight frequency varies across 

basins, with the Tuolumne River Basin having the longest record (>60 flights over 12 years) and most other basins sampled 

1–5 times per water year during accumulation and melt periods. ASO coverage is not continuous, as flight frequency 

depends on funding and client purchase. As a result, most basins have only a handful of years of record. Despite the limited 120 

temporal coverage, the diversity of basins with ASO data provides a robust basis for benchmarking SWE products. A 

summary of the ASO scenes (i.e., a single flight) used in this study by year and basin is given in Table A.1.  

Upon evaluation of the ASO data, a small number of scenes were excluded from analysis due to incomplete coverage or 

known data quality issues. Specifically, three flights in the Kaweah River Basin during the 2019 season, one 2016 flight in 

the Rio Grande River Basin, and one 2014 flight in the Uncompahgre River Basin were removed — the latter due to 125 

erroneous geolocation metadata (latitude/longitude variables) that incorrectly positioned the scene in California rather than 

Colorado. The Kaweah and Rio Grande flights were excluded due to incomplete or missing SWE data within the basin. In 

addition, the January 29, 2017 flight covering the combined Cherry Eleanor and Tuolumne region (USCATE) was omitted 

due to missing data in the Cherry Eleanor Basin; separate January 29, 2017 flights for the individual Cherry Eleanor and 
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Tuolumne basins were retained instead. The two 2016 Olympic Peninsula flights were also excluded due to high vegetation-130 

induced errors in this region (Cao et al., 2018). After removal of these flights, a total of 405 ASO flights remained for 

evaluation. 

2.2 SWE products 

The SWE datasets used in this procedure have varying designs and resolutions, as summarized in Table 1.  These products 

collectively span three of the four categories of SWE estimates defined in the introduction (i.e., not including direct satellite 135 

imagery methods). Each category of SWE product has several product entries, which may yield insights into the strengths or 

weaknesses of a type of approach, as well as the individual products. Each of the datasets is described in more detail in the 

sub-sections following the table. 

 

SWE Dataset Citation 

Spatial 

Resolution 

Temporal 

Coverage Type Methodology 

ASO SWE Painter et al. 

(2016) 

50 m 04/03/2013 – 

present 

– SWE derived from 3m SD and 

modeled snow density. 

SNODAS NOHRSC. 2004. 1 km 9/30/2003 – 

present 

R Real-time, physics-based model with 

observational data assimilation. 

SWANN-4km Broxton et al. 

(2019) 

4 km 10/1/1981 – 

present 

D Assimilates in-situ SWE/SD + 4km 

PRISM temp/precip. 

SWANN-800m Broxton et al. 

(2024) 

800 m 10/1/1981 - 

present 

D Assimilates in-situ SWE/SD + 800m 

PRISM temp/precip. 

NWM SWE Cosgrove et al. 

(2024) 

1 km 2/1/1979 - 

1/31/2023 

M 

NWM v3.0 forced with AORC v1.1 

CONUS404 Rasmussen et al. 

(2023) 

4 km 10/1/1981 - 

9/30/2021 

M WRF v3.9.1 with packages such as 

Noah-MP LSM. 

UCLA SWE Margulis et al. 

(2019) 

16 arc-sec 

(~500m) 

10/1/1984 - 

9/30/2021 

R SWE reanalysis assimilating 

Landsat/MODIS fSCA. 

ERA5-Land Munoz-Sabater et 

al. (2021) 

9 km 10/1/1950 - 

present 

R Land reanalysis forced by ERA5 

atmospheric fields. 
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SWEMLv2 Johnson et al. 

(2024) 

1 km 1/1/2014 – 

9/30/2023 

D Assimilates SNOTEL and CDEC with 

lidar terrain features. 

NLDAS2-Noah 

LSM 

Xia et al. (2012) 1/8th degree 1/2/1979 - 

present 

M Noah LSM forced by NLDAS2 forcing 

data (53 fields). 

NLDAS2 – 

Mosaic LSM 

Xia et al. (2012) 1/8th degree 1/2/1979 - 

present 

M Noah LSM forced by NLDAS2 forcing 

data (38 fields). 

NLDAS2 – VIC 

LSM 

Xia et al. (2012) 1/8th degree 1/2/1979 - 

present 

M VIC LSM forced by NLDAS2 forcing 

data (44 fields). 

Daymet Thornton et al. 

(2021) 

1 km 1/1/1980 – 

12/31/2023 

M Temp-based snow model using daily 

Tmin, Tmax, and Prcp. 

Table 1: Summary of SWE product datasets used in this study (including the ASO reference observational estimates). Dataset type 140 
abbreviations: model (M), reanalysis/analysis (R), data-driven (D). 

2.2.1 Airborne Snow Observatory SWE 

Since 2013, ASO has provided high-resolution (50 m) gridded estimates of snow water equivalent (SWE) based on lidar-

derived snow depth combined with modeled snow density from the iSnobal energy balance snow model (Marks et al., 1999; 

Trujillo et al., 2025). Snow depth is measured from repeated airborne lidar scans of snow-on conditions, which are 145 

differenced against the snow-off (i.e., bare ground) conditions. The resulting SWE product has been shown to provide 

accurate spatially distributed SWE information (Painter et al., 2016) for discrete snapshots in time and individual 

watersheds. ASO SWE does contain uncertainties that arise both from errors in depth measurements and in density 

estimates. The ASO snow depth mean absolute error is reported to be <8 cm at 3 m resolution and <2 cm at 50 m resolution 

in a comparison with observed data in Tuolumne Meadows, Yosemite, and the modeled density produces results within 5-150 

8% of measured values (Painter et al. 2016). Despite these uncertainties, ASO currently provides the most spatially detailed 

SWE datasets available for selected watersheds and can serve as a quasi-observational reference for evaluating other SWE 

products. 

2.2.2 SNODAS 

SNODAS (SNOw Data Assimilation System) is an operational modeling and data assimilation system developed by 155 

NOAA’s National Operational Hydrologic Remote Sensing Center (NOHRSC) to provide estimates of snow cover. 

SNODAS provides daily-updating analyses of multiple snow variables (including SWE) based on the operational simulation 

of a real-time physically based, spatially distributed energy-and-mass-balance snow model (Carroll et al., 2001). It is similar 

to a reanalysis in that it merges observations and model estimates. The model uses hourly, 1 km meteorological forcings 
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from a numerical weather prediction (NWP) model, Rapid Update Cycle (RUC2). The model is updated (through data 160 

assimilation) by ground-based point data – Natural Resources Conservation Service (NRCS) SNOTEL SWE, California 

Department of Water Resources (CADWR) & BC Hydro SWE, and Cooperative Observer (COOP) SWE and depth – 

airborne (NOHRSC Airborne Gamma SWE), and satellite (NOHRSC Geostationary Operational Environmental Satellite 

[GOES] / Advanced Very High Resolution Radiometer [AVHRR] snow cover) data (Carroll et al., 2001). SNODAS 

provides additional snowpack variables such as snow depth and snow cover; however, only SWE was used in this study. The 165 

1-km gridded product covers the continental US and extends from September 30, 2003, to the present. 

2.2.3 UA/SWANN SWE 

The Snow Water Artificial Neural Network (SWANN; Broxton et al., 2016; 2024) SWE dataset was developed at the 

University of Arizona. SWANN assimilates in-situ SWE and snow depth measurements from SNOTEL and National 

Weather Service’s (NWS) COOP network stations as well as modeled, 4 km gridded temperature and precipitation data from 170 

PRISM. The SWE and snow depth were assimilated using a snow density model described in Dawson et al. (2017). SWE is 

normalized by accumulated snow (measured at SNOTEL stations) and modeled snow ablation, then interpolated between the 

station locations. The interpolated results are then used to correct gridded estimates of SWE generated from PRISM 

precipitation and temperature data.  The 800 m SWANN SWE dataset uses 800 m PRISM precipitation and temperature 

data, whereas the daily 4 km PRISM data is downscaled to 800 m using the relationship between the 800 m and 4 km month 175 

PRISM climatologies (Daly et al., 2008). In addition to this assimilation framework, SWANN incorporates a machine 

learning component: artificial neural networks are trained to predict terrain‐ and vegetation‐dependent adjustment factors, 

which scale the baseline SWE estimates to account for variations across different landscape positions (Broxton et al., 2024). 

This hybrid approach combines a physically based snow model, station assimilation, and ANN corrections. The 800 m and 4 

km SWANN products are generated using the same process, and in general, the 800 m SWE dataset is similar to the 4 km 180 

dataset with minor differences at local scales (Broxton et al. 2024). Both datasets have a daily temporal resolution from 

October 1st, 1981, to September 30th, 2023. 

2.2.4 UCLA-SWE 

This dataset is a snow reanalysis over the western US that assimilates fractional snow-covered area (fSCA) observations 

derived from the satellite-based Landsat and MODIS missions. It uses a Bayesian data assimilation framework, in which an 185 

ensemble snow energy balance model first produces estimates of a SWE prior distribution driven solely by meteorological 

forcings. These prior estimates are then updated by assimilating full-season (applied at the end of the snow period) fSCA 

observations to produce posterior estimates of SWE (Margulis et al., 2019). The resulting dataset contains SWE, fSCA, and 

snow depth. It has five ensemble statistics (mean, standard deviation, median, 25th and 75th percentiles) from fifty replicates 

(samples from the posterior distribution) for each snow estimate. The spatial coverage of the dataset is 31 N to 49 N and 125 190 

W to 102 W. The dataset has also been successfully applied in the Andes and High Mountain Asia (Fang et al., 2022). 
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Verification of this dataset using ASO SWE over the Tuolumne River Basin has been conducted previously (Margulis et al., 

2019), finding that spatial correlation was greater than 0.8 for WYs 2015-2017. The spatial resolution is 16 arc-seconds 

(~500 m), and a daily temporal resolution. The evaluation was done for WYs 2015 (dry), 2016 (average), and 2017 (wet) 

(Margulis et al., 2019). A more extensive evaluation of the UCLA-SWE product is conducted in this presented 195 

intercomparison. 

2.2.5 NWM SWE 

The NOAA National Water Model (NWM) retrospective dataset is produced by an operational US-wide hydrological 

modeling system that is based on the WRF-Hydro model (Gochis et al., 2020). SWE is simulated by the column land surface 

model component, the Noah Multi-Parameterization land surface model (Noah-MP; Cosgrove et al., 2024). The NWM has a 200 

multilayered, energy-balance-based snowpack formulation which tracks the snowpack condition across the entire NWM 

extent on a 1 km grid. NWM  version 3.0 was used for this research, with a 44-year retrospective simulation (1979-2023). 

Previous evaluations of the NWM and the Noah-MP snow simulation have been conducted across a variety of sites in the 

Western United States (Garousi-Nejad & Tarboton, 2022; von Kaenel & Margulis, 2024). 

2.2.6 CONUS404 205 

CONUS404 (Rasmussen et al., 2023) is a coupled land-atmosphere simulation of the Weather Research and Forecasting 

(WRF; version 3.9.1) that was run by NSF National Center for Atmospheric Research (NCAR) in collaboration with the 

USGS. Boundary atmospheric conditions are derived from the European Centre for Medium-Range Weather Forecasting 

(ECMWF) atmospheric reanalysis of the global climate dataset (ERA5; Hersbach et al., 2020), which are provided on a 30 

km grid. CONUS404  covers the contiguous US (CONUS) and parts of southern Canada and Northern Mexico for 40 years 210 

(water years 1980-2020) at a 4 km resolution. The WRF physics packages used were Thompson and Eidhammer (2014) 

microphysics, Yonsei University planetary boundary layer scheme, the Rapid Radiative Transfer Model (RRTMG) radiation 

scheme, and Noah-MP land surface model. 

2.2.7 ERA5-Land 

ERA5-Land is an operational global land reanalysis produced by ECMWF. It is based on the Carbon Hydrology-Tiled 215 

ECMWF Scheme for Surface Exchanges over Land (CHTESSEL) land surface model and is driven by atmospheric forcings 

from ERA5 meteorology. While ERA5-Land does not assimilate snow observations, ERA5 incorporates a comprehensive 

data assimilation system that influences its atmospheric variables. ERA5-Land provides over 50 land-surface variables, 

including snow depth and SWE, at hourly intervals and 9 km resolution (downscaled from ERA5’s 31 km using 

interpolation). This resolution allows for improved representation of surface processes compared to earlier products such as 220 

ERA-Interim (~80 km). Evaluation studies show mixed results: ERA5-Land generally performs similarly  for SWE to ERA5 

overall, and with improved skill in snow-dominated regions above 1500 m, particularly in the Rockies (Muñoz-Sabater et al., 
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2021). Given its global availability, relatively fine resolution for a reanalysis product, and frequent use in hydrologic studies, 

ERA5-Land provides a useful representative of global SWE products in this intercomparison. 

2.2.8 SWEML 225 

The Snow Water Equivalent Machine Learning version 2.0 (SWEMLv2.0) model is an open-source machine learning model 

trained to predict spatially continuous SWE in ASO basins throughout the Western U.S. (Johnson et al., 2024). Model 

training data include: static inputs of lidar-derived terrain attributes from the Copernicus GLO-90 DEM and Sturm regional 

snow classification; observational inputs including fractional snow-covered area derived from Visible Infrared Imaging 

Radiometry Suite (VIIRS; Riggs et al., 2017) normalized snow difference index (NSDI), neighbouring in-situ SWE 230 

observations from the SNOTEL station network, and gridded water-year-to-date precipitation from the North American 

Land Data Assimilation System (NLDAS). The model training target is ASO 50m resolution SWE. A user-selected spatial 

resolution (here, 1km) defines the spatial aggregation of gridded training data and model predictions. SWEMLv2.0 is an 

ML-based approach flexible in the ML algorithm selected, and in this case uses an extreme gradient-boosted decision tree 

method (XGBoost). A temporally independent model is trained for each year of record (2013–2023) by holding out all data 235 

from the prediction year from training and reserving 30% of the remaining data for hyperparameter optimization. For each 

held-out year of record, the respective trained model predicts gridded SWE over the study area. 

2.2.9 NLDAS-2 

NLDAS-2 is an operational data assimilation system featuring uncoupled land surface models which are driven by 

observation-based atmospheric forcing. NLDAS-2 uses three LSMs; Noah LSM (Ek et al., 2003), Mosaic (Koster & Suarez, 240 

1996) and VIC (Variable Infiltration Capacity; Liang et al., 1994). Each LSM is operated at an hourly time step with a ⅛ 

degree spatial resolution (~12 km). The atmospheric forcings are derived from the North American Regional Reanalysis 

(NARR), precipitation from PRISM, and a ratio-based correction using GOES solar radiation data to bias-correct the NARR 

downward shortwave radiation. The Noah and Mosaic LSMs built on a surface-vegetation-atmosphere transfer (SVAT) 

framework focusing on water and energy exchanges between the land and atmosphere. The VIC LSM was developed within 245 

the hydrological community and, while accounting for a SVAT energy balance, is often used in research focusing on 

streamflow simulation.  A notable feature of the VIC model implementation related to snow simulation is the inclusion of 

sub-grid elevation bands. 

2.2.10 

Daymet is a gridded surface meteorological dataset that provides daily estimates of key atmospheric variables across North 250 

America at a 1 km spatial resolution. The primary variables in Daymet include daily minimum temperature (Tmin), 

maximum temperature (Tmax), and precipitation (Prcp), which are estimated using interpolation and extrapolation from 

nearby weather stations. At each gridcell, weights are assigned for all surrounding stations within a search radius (Thornton 
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et al., 2021). Additionally, Daymet includes several secondary variables, including a simple estimate of SWE. This estimate 

of SWE is derived from the primary variables (Tmin, Tmax, Prcp) based on a simple temperature driven model of snow 255 

accumulation and melt (Thornton et al., 2000). Though Daymet SWE is simplified compared to physically based snow 

models, its high spatial resolution and national coverage make it a useful dataset for large-scale hydrological and snow 

studies. 

2.3 Product standardization in the NextGen Hydrofabric 

Because each of these SWE products differ in spatial resolution and extent, we must first implement a common spatial basis 260 

for comparison. Standardization was achieved using the NOAA NextGen Hydrofabric, a national geospatial dataset of 

connected rivers, lakes, and catchments designed for hydrologic modeling (Johnson, 2022). The hydrofabric is a refinement 

of the USGS NHDPlusV2 network, with short stream segments and small catchments removed to ensure hydrologically 

meaningful units, with catchments typically measuring 3–10 km² in area. This study uses Hydrofabric v2.2 (released October 

2024), which provides catchments delineated by stream flowlines and topography, along with associated attributes such as 265 

elevation, slope, aspect, and land cover. 

For each ASO basin, a subset of the hydrofabric was selected that excluded catchments not fully contained within the flight 

domain, ensuring that spatial aggregation was not biased by partially filled catchments. Gridded SWE datasets were spatially 

aggregated to the catchment resolution of each ASO hydrofabric by computing area-weighted overlaps between raster grid 

cells and hydrofabric polygons. For large-domain datasets, areally-conservative remapping was performed with the Python-270 

based grid2poly tool and associated application scripts developed at NCAR, enabling computationally efficient processing. 

For small-domain, single-date analyses (e.g., ASO, SWEMLv2), the Python package xESMF was used to implement 

weighted averaging. Together, these approaches ensured consistent and reproducible aggregation of SWE across 

datasets.  Figure 1 shows the remapping of ASO SWE in the Merced River Basin to the catchment resolution. 

 275 

 

Figure 1: Illustration of the remapping of full-resolution ASO SWE in the Merced River Basin using the xESMF SpatialAverager 

tool. (left) Source gridded dataset; (middle) overlaid hydrofabric catchments (target polygons); (right) remapped hydrofabric 

catchment-average SWE. 
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2.4 SWE product evaluation metrics  280 

Once remapped to the hydrofabric, SWE products were evaluated using relative mean absolute error (rMAE), percent bias 

(pbias), Kling-Gupta Efficiency (Gupta et al., 2009), and R² (Equations 4.1 – 4.7). Metrics were calculated  across all 

catchments in a scene, yielding one value per metric per scene. R² was calculated as the square of the Pearson correlation 

coefficient between observed and predicted values. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦|𝑛

𝑖=1  ,            (1)  285 

𝑟𝑀𝐴𝐸 =
𝑀𝐴𝐸

𝑚𝑒𝑎𝑛(|𝑦|)
× 100 ,           (2) 

𝑃𝐵𝐼𝐴𝑆 = 100 ×
∑ (𝑌𝑠𝑖𝑚−𝑌𝑜𝑏𝑠)𝑛

𝑖=1

∑ 𝑌𝑜𝑏𝑠
𝑛
𝑖=1 

 ,          (3) 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝑎 − 1)2 + (𝛽 − 1)2, 𝑎 =
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
, 𝛽 =

𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
 ,       (4 – 6) 

𝑅2 = (
𝐶𝑜𝑣(𝑂,𝑃)

𝜎𝑂𝜎𝑃
)

2

,            (7) 

2.5 Experimental protocol concept 290 

This study follows a testbed framework that is being developed within the NOAA Cooperative Institute for Research to 

Operations in Hydrology (CIROH), termed the CIROH Hydrologic Prediction Testbed (CHPT). The term ‘Testbed’ has 

various formal and informal interpretations and implementations (e.g., Ralph et al., 2013). The CHPT comprises a collection 

of experimental protocols to facilitate quantitative community-wide benchmarking of different elements of the hydrologic 

prediction endeavor, including datasets, models and methods that are being developed in myriad research projects both 295 

within CIROH and more generally in the US and beyond. The CAMELS usage described in the Introduction is an example 

of an organic community protocol that emerged after the rapid adoption of CAMELS by the machine learning hydrology 

community (notably, Kratzert et al., 2019). The CHPT protocols include a number of defined elements, including the 

experiments to be conducted and/or datasets to be generated (e.g., basins, time periods), the verifying observations, the 

reference capability datasets, and the metrics for use in evaluating new innovations (Table 2).   300 

Here, we focus on defining a protocol for catchment-based SWE spatial averages and discuss potential and challenges in 

specifying a common community SWE experiment.  Ideally, an experimental protocol would: (1) use a subset of ASO SWE 

data for testing products in both “seen” (out of sample temporally) and “unseen” catchments (out of sample spatially); (2) 

harmonize temporal and spatial domains across diverse datasets, and (3) support future extension as new SWE products and 

ASO campaigns become available. We return to this objective in the Discussion section, after presenting the dataset analysis 305 

results.  
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Protocol Element Description 

Objective The focus of the experiment, such as a particular capability for which the protocol seeks to 

benchmark alternatives 

Observation(s) Datasets that can be used for validation and verification 

Reference capabilities 

(baselines) 

An existing dataset, model version, system version, or method against which to assess the 

marginal benefits of new innovations. 

Experimental design The period, catchments, lead times if applicable, and other relevant details to ensure consistency 

in evaluating candidate innovations 

Metrics of performance A range of common absolute and relative measures to evaluate performance across all 

alternatives.  Metrics may be split between ‘core’ and ‘recommended’ to prioritize focus on a 

manageable metric set.  

Required innovation 

metadata 

Information to identify significant elements used in each innovation (alternative) tested in a 

protocol, including details such as model, method or dataset version, generation date, author, 

among others. 

Other considerations Qualitative considerations for capability evaluation (e.g., computational expense, portability, 

complexity, dependencies, generalizability, potential operational latency). 

References and related 

activities 

Key studies and relevant external activities. 

Lead(s)/Contact(s) Active contributors or contact points, helping connect new participants and ensuring testbed 

results are up-to-date. 

Table 2: Elements of an experimental protocol for community benchmarking of geoscience results.  310 

3 Results 

This section shows intercomparison results across the large collection of ASO scenes at the catchment level defined by the 

NextGen hydrofabric, along with a regional perspective and conditioned on elevation.  Because some products are at a 

coarser spatial resolution than the catchments, we also show analyses for basin-average SWE, which is relevant to 

applications such as predicting water supply (snowmelt runoff).  Sample results for one of the proposed protocols are also 315 

presented. We note that the study’s datasets and associated results provide several insights presented here, but these analyses 

are a subset of those potentially enabled through the standardization of analysis on a common SWE estimation protocol. 

4.1 Catchment-level analyses 

An initial overview of product performance at the catchment level (i.e., with one data point per catchment) across all basins 

and all ASO scenes is shown in Fig. 2. We find that UCLA-SWE and SWANN 800m performed similarly well with the 320 
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lowest rMAE values (29.8% and 31.8% respectively), high R2 values (0.88 and 0.84 respectively) and KGE values (0.88 and 

0.89 respectively), and the lowest percent bias (each 7.4%) other than ERA5-Land. Similarly, SNODAS and SWANN 4km 

performed comparably to each other and marginally worse than UCLA-SWE.  Overall, this protocol found that the UCLA-

SWE product consistently outperformed other SWE estimation methods, despite not assimilating common in-situ datasets 

(e.g. SNOTEL). 325 

 

Figure 2: Product estimated SWE versus ASO SWE across all scenes from 2013 – 2024. NWM, UCLA-SWE, CONUS404, 

SWEMLv2, and Daymet do not include all ASO SWE data due to temporal limitations. 
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As shown in the inset statistics in Fig. 2, we calculated R², percent bias, rMAE, and KGE for all ASO scenes (n > 400), with 

one value of each statistic for each scene. Figure 3 summarizes these results as boxplots, highlighting both central tendency 330 

and variability in performance across basins. UCLA-SWE achieved the best median performance for rMAE, KGE, and R², 

with a notably small spread, indicating consistent skill across regions. SWEMLv2 has a similarly small spread for KGE, 

rMAE, and R2. Performance for percent bias was more comparable across products, with SWANN (800 m, 4 km), UCLA-

SWE, and SNODAS performing similarly, while ERA5-Land and the NWM had lower median biases, but a larger spread 

across the study basins. Other datasets involving versions of the Noah LSM model (in NLDAS2 and CONUS404) had a 335 

notable bias toward underestimation. 

 

Figure 3: Boxplots of metric values for each SWE estimation product. Metrics values are calculated using all ASO and matching 

SWE product scenes across all regions. The boxes represent the interquartile range with a median line, while the whiskers 

represent the 10th and 90th percentiles. 340 

Complementing the boxplots, Fig. 4 presents the cumulative distribution of KGE, providing a probability-based view of 

model skill. This form of CDF-based statistical summary has become a core, widely-used analysis convention in the context 

of benchmarking streamflow simulation modeling approaches, as exemplified by use in summarizing results over the 
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CAMELS large-sample watershed dataset (Newman et al., 2017; Tang et al., 2025; Kratzert et al, 2024). UCLA-SWE, 

SWEMLv2 and SWANN products showed relatively higher performance, yielding median KGE values of 0.6 or above, with 345 

SNODAS also ranked competitively but slightly lower (0.57). The ERA5-Land and products involving NLDAS-NOAHLSM 

datasets exhibited the worst performance in this analysis, which may be due in part to their coarse spatial resolution. 

SWEMLv2 is unique amongst the products in having been trained on ASO scenes (notwithstanding temporal cross-

validation). 

 350 

Figure 4: Cumulative Distribution Function (CDF) of the Kling-Gupta Efficiency (KGE) of each SWE estimation product across 

all ASO study scenes (one KGE score per scene). 

An attribute of SWE datasets that is of interest for both scientific research and societal applications is their ability to 

represent SWE across a range of elevations, which can be linked to the potential for predicting the elevation-dependent 

timing of snowmelt in river basins that are important for water supply, as well as to resilience or vulnerability to climate 355 

trends such as warming. Figure 5 illustrates the performance of SWE products with elevation. We find that ERA5-Land 

generally overestimates SWE at low elevations and underestimates at high elevations, reflecting limitations of its coarse 

resolution. The NLDAS-2 LSMs consistently underpredict SWE, with a low bias increasing at higher elevations. Daymet 

underpredicts SWE at low–mid elevations and shows overestimation at high elevations in some California basins, a pattern 

absent in Colorado. In contrast, UCLA-SWE, SWEMLv2 and the SWANN products (4 km and 800 m) exhibit the lowest 360 

errors across all elevation bands, with SNODAS performing slightly worse than these products at higher elevations. This 

analysis across all of the study basins may obscure important regionally specific patterns. For example, focusing only on the 

Conejos River basin in Colorado, where elevations are generally higher, the same analysis shows that the products represent 

SWE well at low–mid elevations (<3400 m) but all products share a bias toward underpredicting at high elevations (>3400; 

Figure A.1), with the lowest biases emerging in the UCLA-SWE dataset. 365 
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Figure 5: Differences in predicted SWE relative to ASO SWE (modeled - ASO) across elevation bands for all ASO SWE scenes. 

The plot shows the density of points in SWE difference vs. elevation space, with color intensity indicating density of points (purple 

= high frequency, light blue = low frequency). Elevation bands are 0-2000m (low), 2000 – 2600m (low-mid), 2600 – 3200m (mid-

high), >3200m (high). A locally weighted scatterplot smoothing regression (orange) highlights trends. MAE is reported for each 370 
elevation band (mm). 
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4.3 Regional analysis 

Regional variability in product performance, as quantified by metrics that are sensitive to the climatological mean and spread 

of a variable (such as MAE and bias), can reflect differences that arise from differences in this snowpack climatology – e.g., 

contrasts between locations with deep, persistent snow versus shallower, intermittent snow. Figure 6 repeats the analysis of 375 

Fig. 2, but separates Colorado from California scenes, which had the greatest number of scenes by region. Across the 

California basins, higher overall SWE leads to larger errors, whereas Colorado basins, with generally lower SWE, exhibit 

lower MAE but modestly reduced correlation (KGE) for most products. NLDAS-2 Noah LSM. SWEMLv2, and Daymet 

show better performance in Colorado. The reduced correlation and KGE in Colorado may be due to a range of factors, 

including lower quality of meteorological analyses (due to lower meteorological station density) to drive estimation methods 380 

and a greater variety of synoptic weather conditions driving snow accumulation, though this analysis is beyond the scope of 

this paper. 
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4.4 Basin-average SWE analyses 

Because several of the SWE products are at a coarser spatial resolution on average than the hydrofabric catchments (e.g., 

NLDAS-2, ERA5-Land), they would not be expected to perform well in matching the spatial patterns of the hydrofabric-

resolved scenes. We therefore also assess the performance of the products for basin-mean SWE, which would indicate the 390 

value of the SWE information at coarser scales, and one that is useful for applications such as basin-level snowmelt runoff 

prediction, e.g., water supply forecasting (e.g., Pagano et al., 2014). We compared basin-averaged SWE estimation 

performance using R², p-bias and rMAE across six basins with ≥20 ASO scenes. NLDAS-2 Noah LSM, a coarse-resolution 

product (1/8th degree), generally underperformed relative to other datasets, whereas the other coarse-resolution products 

such as ERA5-Land, NLDAS-2 Mosaic, and NLDAS-2 VIC LSM performed comparably to finer-resolution products at the 395 

basin scale (Fig. 7). Despite a small overestimation bias, SNODAS was also competitive (among the most skillful) in all of 

the basins evaluated in terms of R² and rMAE, an outcome that underscores its value for operational applications.  
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Figure 7: Basin-averaged SWE performance of different products compared to ASO SWE across six basins with ≥20 ASO scenes 

during 2013-2024, shown for (a) R², (b) percent bias, and (c) relative mean absolute error (rMAE). Each point represents a 400 
product’s mean performance across all available scenes in a basin. The Tuolumne 2014–2021 subset (43 scenes) includes all 

products and is used for consistent intercomparison since not all products are available from 2013-2024. 
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In a final example of the potential application of this standardized approach for benchmarking a range of products, we 

evaluate the timing and magnitude of SWE among products, focusing on basin‐averaged SWE in the Tuolumne River Basin 

(TRB), which had the greatest number of ASO scenes. Water years 2014 to 2016 were selected as a representative case 405 

(more for illustration than quantitative evaluation, due to the sample size) because all products were available and 27 ASO 

flights were conducted in the basin. Figure 8 shows the basin-mean time series for each SWE product during that span. 

Across all SWE products, the NLDAS-2 Noah LSM exhibited notably early meltout compared to other datasets, while 

ERA5-Land tracked ASO most closely. SNODAS and SWANN produced the highest peak SWE, whereas Daymet showed 

the lowest peak but the most prolonged melt period. These patterns were consistent with broader multi-year comparisons 410 

(2011–2025, not shown), which generally indicated earlier melt in Noah LSM and higher peak SWE in SNODAS and 

SWANN. 

 

Figure 8: Mean snow water equivalent in the Tuolumne River Basin for each dataset for water years 2014 - 2016. SWEMLv2 not 

included as it is not a timeseries. 415 

5 Discussion 

5.1 SWE dataset intercomparison 

The broad intercomparison of different SWE products yielded a number of interesting insights. Notably, while the best 

performing datasets were the UCLA-SWE reanalysis product and the SWEMLv2 machine learning product, each of these 

had unique advantages over the others.  UCLA-SWE benefited from advance knowledge of some inputs (such as seasonal 420 

melt-out date) while SWEMLv2 was the only product directly trained on the ASO scenes. Beyond these two, the best 

performing datasets according to different metrics included both process-based and data-driven techniques. The SWANN 
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and SWEML products represent the  data-driven approach, and as they share methods, they represent the data-driven 

category narrowly.  Notably, and perhaps surprisingly given its operational nature, the SNODAS product, a process 

modeling system that assimilates observations, rivaled the SWANN product in performance and outperformed the other 425 

purely physically-based modeling systems (such as the NWM or CONUS404 or NLDAS models) that do not assimilate 

observations. SNODAS is the closest product to a typical reanalysis that uses contemporaneous rather than future 

observational datasets to adjust its physical model states. While SWANN products tended to have lower bias, which is often 

expected for statistical products that are trained in a way that minimizes error, the SNODAS product had higher correlation 

skill, which can lead to lower overall squared error if the biases are not too large.    430 

The UCLA-SWE product was the best performing product of those included in the framework, which shows that harnessing 

information retrospectively in a Bayesian statistical framework can prove beneficial for SWE estimation. As previously 

mentioned, the UCLA-SWE product includes adjustments based on Landsat and MODIS fractional snow covered area, 

though it does not assimilate in situ snow data (e.g., SNOTEL) like some of the other products. Due to its dependence on 

future information, it is infeasible as an operational product that can be used in prediction systems, but its overall quality 435 

gives it value as a benchmark dataset for evaluating other continuous space-time snow products or models in historical or 

retrospective evaluations. 

We find that operational products are not notably worse than non-operational products, given that non-operational products 

such as CONUS404, UCLA-SWE, and ERA5-Land exhibited mixed or inferior performance to SNODAS. As noted earlier, 

the NLDAS products likely suffered in this evaluation due to their coarser scale, while the NWM’s inclusion of the Noah-440 

MP snow model, which has exhibited low snow biases in prior studies (e.g., Cho et al., 2022), may have also played a role. 

Of the three NLDAS-2 models, VIC had the highest correlation, perhaps a result of its sub-grid elevation representation, 

which enables higher snow accumulations and delayed melt at higher elevations, compared to a  mean grid-cell elevation 

model. While performance varies across operational and non-operational products, strong results from UCLA-SWE and 

SNODAS show that operational products can approach retrospective reanalyses in quality.  445 

A regional perspective separating California and Colorado indicated that California basins generally (across all products) 

exhibited higher correlation and efficiency metrics than Colorado basins, while Colorado basins had lower absolute errors, in 

part due to smaller SWE magnitudes. These differences likely reflect both hydroclimatic contrasts—such as higher SWE and 

more spatially coherent (frontal) storm systems in California versus lower SWE and more varied snow event generation 

patterns in Colorado—and the higher density of meteorological observations in California and associated quality of 450 

meteorological forcings for modeling. We speculate that these regional skill differences appear more tied to climatic and 

observational context than to fundamental model limitations.  One feature of performance that appeared across nearly all 

products was a tendency for underestimation at high elevations (as illustrated in Fig. 5 and Fig. A.1), which could result from 

a number of factors, including a low bias at elevation in precipitation, lack of consideration of other atmospheric conditions 

such as wind speed and sublimation or snow redistribution, radiation exposure, or even biases in temperature lapse rates.   455 
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The comparison between the 4-km and 800-m SWANN products showed little difference in performance, suggesting that 

resolution improvements below the typical hydrofabric catchment scale (~7 km²) may not always benefit SWE estimation 

accuracy at that scale. Both products produced nearly identical skill metrics, with only marginal gains for the 800-m version. 

In contrast, products with coarser resolution (ERA5-Land, NLDAS-2 LSMs at ~10-12 km resolution) showed systematic 

biases, possibly linked to topographic smoothing. Their coarse grids often represented multiple subcatchments with a single 460 

value, leading to overestimation at low elevations and underestimation at high elevations. Nevertheless, some of these 

products (ERA5-Land, NLDAS-2 Mosaic and VIC) still reproduced basin-average SWE reasonably well (Fig. 7), as 

compensating catchment-scale errors tended to balance in aggregate. 

We highlight again that ASO SWE is not a direct observation but rather a modeled estimate based on lidar-derived snow 

depth and modeled snow density (Painter et al., 2016). While ASO provides an invaluable reference for intercomparison, its 465 

uncertainties and limited spatial coverage mean that strong performance in ASO basins may not directly generalize to other 

regions.   

5.2 Establishing community experimental protocols for SWE product evaluation and benchmarking 

This paper has presented a suite of analyses for a range of available SWE products at a watershed scale that is relevant for 

hydrological modeling and applications.  The broader objective of this paper, however, is to highlight the value of creating 470 

standardized experimental protocols for benchmarking SWE estimation capabilities. Such protocols reduce inconsistencies 

across research studies of basin selection, time period coverage, and validation strategies, creating a framework for direct 

comparison across datasets developed by different groups. Multiple challenges are present in defining a protocol that would 

be accepted widely across a community—such as discriminating products that incorporate ASO in training, aligning records 

with differing temporal spans, and balancing geographic diversity with sampling depth. Addressing these issues through 475 

community consensus can bring rigor and structure to benchmarking efforts, and lead to solid quantitative foundations for 

tracking progress in advancing our SWE estimation capabilities. We present an example of such a protocol and associated 

results, focusing on a geographic hydrofabric used as the spatial basis for the NOAA NextGen modeling system. The 

specification of the example protocol is also detailed in Table A.2. 

5.2.1 Example of a protocol using NextGen Hydrofabric catchments 480 

Choosing a testing suite requires balancing considerations of level of effort for researchers, adequate and representative 

sample sizes, and feasibility of holding out information for testing.  A protocol could have a subset of 50 ASO SWE scenes 

from prominent basins (Tuolumne, Merced, Kings Canyon, Cherry Eleanor, and selected Colorado basins) over 3 years 

(2019–2021) that would be withheld from method training or development for testing. This set captures a representative 

range of snowpack conditions while leaving other scenes available for model training and assimilation. Figure 9 shows the 485 

basins included. Certainly, alternative protocol/holdout strategies are possible, and we encourage the community to converge 

on one or more.  It is likely to be difficult to strike a balance that allows all datasets contributed by researchers for evaluation 
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in the protocol to adhere completely to the protocol, but caveats to the comparisons can be noted along with their analysis 

results. 

 490 

Figure 9: Example protocol set of prominent ASO basins across Colorado and California that could be held out for testing and 

standard evaluation. 

5.3 Illustration of outcomes for the example protocol 

To evaluate product performance within the proposed protocol, this analysis used ASO SWE data from prominent basins 

during WY2019–21. This protocol excludes extreme drought years (e.g., 2015 in the Sierras), which may bias evaluations 495 

toward wetter snow regimes, but it links to basins well represented in past literature (e.g., Tuolumne; Yang et al., 2023) and 

aligns with priority areas for future ASO campaigns (McCrindle, 2023). The protocol uses roughly 10% of all currently 

available ASO SWE data (Table 3), leaving most data available for assimilation or training of data-driven models. 
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State Basin Scenes Subcatchments Area (km2) 

California Tuolumne 5 145 1173 

Tuolumne Full 5 358 2778 

Kings Canyon - Southeast 10 174 1225 

Merced 4 111 827 

Merced Full 4 221 1710 

San Joaquin - Main Fork 10 172 1358 

Kaweah 2 196 1438 

Colorado Blue River 4 100 866 

Gunnison East 2 95 749 

Gunnison - Taylor 2 89 658 

Conejos 2 91 697 

Totals 11 50 1752 13479 
Table 3: List of ASO scenes and basin characteristics that are included in the WY2019 – WY2021 proposed protocol. 500 

Boxplots of performance metric values (Fig. 10) show results consistent with the earlier all-scenes evaluation. UCLA-SWE 

maintained the highest R² and KGE and the lowest MAE, with percent bias closest to zero. Among data-driven models, 

SWANN 4km had the smallest median percent bias. Median KGE values largely mirrored the full dataset trends: Figure 11 

presents the CDF of KGE values, which is coarser than the all-scenes plot due to fewer observations. UCLA-SWE KGE 

(0.73) slightly increased, SWANN 4km decreased to 0.44, and NWM and CONUS404 improved by 0.14–0.16. Overall, 505 

UCLA-SWE remains the best benchmark product, while SNODAS is the strongest operational product for catchment SWE. 

SWEMLv2 is also highly competitive, with the caveat being its training on the basins in question (even though the testing 

years are out of sample).  
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Figure 10: Boxplots of metric values for each SWE estimation product. Metrics values are calculated for proposed basins between 510 
2019 - 2021. The boxes represent the interquartile range with a median line, while the whiskers represent the 10th and 90th 

percentiles.  

Figure 11: Cumulative Distribution Function (CDF) of the Kling-Gupta Efficiency (KGE) of each SWE estimation product and 

each according median KGE based on 2019 to 2021 ASO SWE in protocol basins. 515 
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6. Conclusions 

Estimating SWE at catchment scales represents a fundamental challenge in hydrology, and the growing diversity of SWE 

products being developed to address this challenge highlights the need for consistent evaluation frameworks. This study 

applied a standard approach for catchment-scale SWE evaluation across a wide range of available datasets covering the 

western US, using ASO as the reference observational dataset, and further outlined and demonstrated an example of an 520 

community evaluation experimental protocol drawing from the datasets used in this study. 

Applying this framework to 12 SWE products revealed several useful insights, including: (1) snow reanalyses such as 

UCLA-SWE are currently the most accurate estimates of those reviewed; (2) some operational model-based products such as 

SNODAS remain competitive with newer machine learning approaches, while others (e.g., NWM) lag in quality; (3) data-

driven methods tended to exhibit lower bias than physics-based models; (4) most of the products studied underestimated 525 

SWE at mid-to-high elevations; (5) products utilizing the Noah LSM and Noah-MP (e.g. NWM, CONUS404, NLDAS-2 

Noah) tended to have undersimulation bias and relatively low performance; and (6) coarse resolution products (e.g., ERA5-

Land, NLDAS-2 Mosaic, and NLDAS-2 VIC) showed skill at estimating SWE on a basin-wide scale despite struggling to 

validate as well at a catchment scale. Related prior studies such as Yang et al. (2023) similarly found that UCLA-SWE 

outperformed other products, though their evaluation was limited to fewer products and fewer ASO scenes. The present 530 

study expands on this work by including a wider array of datasets—spanning operational, reanalysis, and data-driven 

methods—and by leveraging a much larger reference dataset of ASO scenes. Within this broader benchmarking study, 

SNODAS emerged as more competitive than previously reported, even rivaling non-operational approaches, when viewed 

overall, though it performed less well in the example protocol. 

These results yielded insights into the comparative accuracy of a wide range of current SWE products while illustrating the 535 

potential value of a standardized evaluation protocol. We described an example of an experimental protocol strategy that we 

hope may motivate further development and implementation of this concept by the snow science and applications 

community, including operational centers. Future protocol and study extensions could include grid- and point-based 

protocols, regional analyses as additional ASO data become available, and targeted assessments of model skill under 

different snow regimes, or protocols for other variables such as fSCA. With additional protocols, other snow observation 540 

sources (such as the SNOTEL network or satellite imagery) would be  appropriate observational references. The example 

presented here focused on a hydrofabric catchment definition that is tailored to support the NOAA NextGen modeling effort, 

but a gridded spatial analysis basis (e.g., at 500m to 1km) may be of broader interest to the national and global community.   

We recognize that motivating a community comprising non-coordinated research and development efforts to coalesce around 

shared experimentation faces hurdles, not the least of which is the need for any individual researcher to adopt external 545 

constraints and standards as outlined by a community protocol. Such shared experimental and analysis conventions have 

proven widely beneficial in galvanizing collaboration and progress in streamflow simulation, however, as is clearly evident 

in the widespread adoption and extension of the CAMELS dataset for model benchmarking.  Such outcomes argue strongly 
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that the potential to obtain and track powerful, cross-community insights about a particular capability – in this case, 

catchment-level SWE estimation – makes pursuing such synergistic efforts worthwhile, both for individual researchers and 550 

community as a whole.  

Appendices 

 

Figure A.1: SWE difference (modeled - ASO) versus elevation across all scenes in the Gunnison – Taylor River basin with a 

LOWESS regression (orange) to show trends. MAE calculated for each elevation level (0-3000m, 3000 – 3400m, +3400m 555 
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State Basin Scenes Subcatchments Area (km2) Temporal Coverage 

California 

Tuolumne 65 145 1173 20130403 - 20240506 

Tuolumne Full 20 358 2778 20200413 - 20240506 

Cherry Eleanor 36 64 450 20160401 - 20240506 

San Joaquin - South Fork 35 134 982 20170718 - 20240521 

Merced Full 20 221 1710 20200413 - 20240523 

Merced 33 111 827 20200413 - 20240523 

Kings Canyon - South East 27 174 1225 20150403 - 20240427 

Kings Canyon - Middle 26 109 824 20150404 - 20240427 

San Joaquin - Main Fork 25 172 1358 20170719 - 20240521 

SanJoaquin - Jose Willows 26 263 1869 20180423 - 20240521 

Kings Canyon - North 23 98 648 20180426 - 20240427 

Lakes Basin 19 3 20 20150428 - 20190715 

Kings Canyon - South 19 52 410 20200411 - 20240427 

Kaweah 15 196 1438 20210423 - 20240520 

Yuba 13 282 2133 20220325 - 20240527 

Feather 12 1100 8245 20220207 - 20240513 

Carson 11 187 1366 20220311 - 20240516 

Truckee 10 385 2789 20220310 - 20240517 

Rush Creek 8 23 121 20150326 - 20230702 

American 7 432 3118 20230131 - 20240430 

Kern 7 537 4054 20230204 - 20240508 

Lee Vining 4 17 100 20170717 - 20230702 

Upper Pit 3 469 3750 20230208-20230513 

Lower Pit 3 324 4417 20230212 - 20230511 

Middle Pit 3 413 3633 202301 - 20230510 

Sacramento McCloud 3 444 3745 20230209 - 20230515 

Upper Owens 3 38 290 20230527 - 20230702 

Mono 3 64 421 20230527 - 20230702 

Trinity 1 247 1861 20240628 

Colorado 

Blue River 11 100 866 20190419 - 20240605 

Conejos 10 91 697 20150406 - 20240508 

Gunnison - Taylor 10 89 658 20180330 - 20240520 

Gunnison - East 10 95 749 20180331 - 20240520 

Dolores 8 165 1292 20210420 - 20240430 

Windy Gap 7 261 2042 20220418 - 20240530 

Roaring Fork 4 182 1722 20230411 - 20240522 

South Platte 4 155 1439 20230416 - 20240605 

Rio Grande River 2 361 3369 20150407 - 20150602 

Crested Butte 2 15 151 20160404 - 20180330 

Castle-Maroon 2 29 317 20190407 - 20190610 

Animas 2 187 1814 20210419 - 20210515 

Big Thompson 2 121 986 20230521 - 20240421 

Boulder Creek 2 75 590 20230509 - 20240502 

Clear Creek 2 122 1017 20230509 - 20240502 

Poudre 2 144 1026 20230522 - 20240415 

St Vrain Lefthand 2 78 684 20230521 - 20240421 

Yampa River 2 367 2708 20240411 - 20240527 

Oregon Sprague 2 182 1469 20230514 - 20240314 

Utah Uinta 3 240 1854 20240319 - 20240516 

Wyoming 
Green River 1 128 1038 20220611 

Wind River 1 109 1052 20220611 

Totals 51 405 9951 80136   
Table A.1: ASO scenes used by Basin 

 

 

 

 560 
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Protocol Element Description 

Focus / Objective Daily mean areal SWE estimation at the NextGen HydroFabric catchment scale 

Observation(s) • Airborne Snow Observatory SWE zonally averaged to the Hydrofabric 

catchment scale 

Reference capabilities 

(baselines) 

• NWM 3.0 SWE 

• SNODAS 

Experimental design • Spatial Domain: Subset of ASO basins, e.g., a selection of watersheds across 

the western U.S., overlapping ASO flight lines and data availability.  

• Spatial Resolution: Products are standardized in the NextGen hydrofabric. 

• Study Period:  11 years of ASO data, temporally variable 2013-2024 

• Timestep(s):  daily SWE snapshots (according to ASO dates) 

Metrics of performance • Percent bias for quantifying over/underestimation of products 

• KGE for assessing correlation and bias  

• MAE to quantify the magnitude in error of SWE estimation 

• NSE to evaluate products skill with respect to the observed mean 

Scores will also be expressed with respect to reference capability  

Other factors • computational demand of innovation 

• stability of dependencies (method, dataset) 

• extent of existing documentation and published research 

• dependency on proprietary resources or methods  

Key protocol references and 

related activities (links) 

• Painter et al., 2016 

• Yang et al., 2023 

Innovation Metadata • product label 

• model or dataset version 

• generation date 

• author 

• institution 

• product reference and/or link 

Current Contact(s) • Ethan Ritchie, Andy Wood 

Table A.2: Illustration of an example SWE experimental protocol for community benchmarking of catchment-level SWE product 

results. 

 

https://doi.org/10.5194/egusphere-2025-5514
Preprint. Discussion started: 24 November 2025
c© Author(s) 2025. CC BY 4.0 License.



31 

 

SWE Dataset Data Source Date Accessed 

ASO 

SWE 

NASA 

ASO https://nsidc.org/data/aso_50m_swe/versions/1  Nov 19, 2024 

ASO 

Inc. https://data.airbornesnowobservatories.com/  July 2, 2025 

SNODAS https://nsidc.org/data/g02158/versions/1 July 3, 2025 

UA/SWANN https://climate.arizona.edu/data/UA_SWE/DailyData_800m/  May 15, 2025 

UA/SWANN 

https://climate.arizona.edu/data/UA_SWE/DailyData_4km/  

 

May 15, 2025 

NWM SWE https://registry.opendata.aws/nwm-archive/ Jan 22, 2025 

UCLA SWE https://nsidc.org/data/wus_ucla_sr/versions/1  Jan 23, 2025 

ERA5-Land 

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=download  July 3, 2025 

CONUS404 https://www.sciencebase.gov/catalog/item/6372cd09d34ed907bf6c6ab1  Jan 2025 

NLDAS2-

Noah LSM 

https://disc.gsfc.nasa.gov/datasets/NLDAS_NOAH0125_H_2.0/summary?keywords=N

LDAS  July 3, 2025 

NLDAS2 – 

Mosaic LSM 

https://disc.gsfc.nasa.gov/datasets/NLDAS_MOS0125_H_2.0/summary?keywords=NL

DAS  July 3, 2025, 

NLDAS2 – 

VIC LSM 

https://disc.gsfc.nasa.gov/datasets/NLDAS_VIC0125_H_2.0/summary?keywords=NLD

AS  July 3, 2025 

Daymet 

https://www.earthdata.nasa.gov/data/catalog/ornl-cloud-daymet-daily-v4r1-2129-4.1 Aug 3, 2025 

SWEMLv2 

Johnson et al., 2024 

Provided by the 

Author 

Table A.3: SWE Product sources and access dates 

SNODAS data is available at the NSIDC at https://nsidc.org/data/g02158/versions/1 as of February 23, 2025.   565 

 

Data availability 

Processed datasets will be made available at the hydrofabric resolution for each basin in an online resource with a DOI, once 

the paper is accepted for publication. This statement will be updated accordingly.  
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NASA/JPL-era ASO data (2013–2019) are publicly available via NSIDC at https://nsidc.org/data/aso_50m_swe/versions/1, 570 

while more recent (2020 - present) ASO datasets and flight reports are accessible through ASO Inc. at 

https://www.airbornesnowobservatories.com/ as of August 15th, 2025. 

Other SWE product sources are listed in Table A.3. 
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