

Teleconnections to the Baltic Sea Region: Controls, Predictability and Consequences

Florian Börgel ¹, Itzel Ruvalcaba Baroni ⁸, Leonie Barghorn ¹, Leonard Borchert ², Bronwyn Cahill ¹, Cyril Dutheil ³, Leonie Esters ⁴, Małgorzata Falarz ⁵, Helena L. Filipsson ⁶, Matthias Gröger ¹, Jari Hänninen ⁷, Magnus Hieronymus ⁸, Erko Jakobson ⁹, Mehdi Pasha Karami ⁸, Karol Kuliński ¹⁰, Taavi Liblik ¹¹, H.E. Markus Meier ¹, Gabriele Messori ^{12,13,14}, Lev Naumov ¹, Thomas Neumann ¹, Piia Post ¹⁵, Gregor Rehder ¹, Anna Rutgersson ¹², and Georg Sebastian Voelker ¹

Correspondence: Florian Börgel, florian.boergel@io-warnemuende.de;

Itzel Ruvalcaba Baroni, itzel.ruvalcababaroni@smhi.se

Abstract. Teleconnections between the North Atlantic and the Baltic Sea region are shaped by the polar jet stream and are critical drivers of weather and climate in the region, thereby impacting the physical and biogeochemical properties of the Baltic Sea ecosystem. This review synthesizes how key circulation features and modes of climate variability, including the North Atlantic Oscillation, atmospheric blocking and the Atlantic Multidecadal Variability, influence the Baltic Sea region. By examining existing literature data and observational and climate model data, we summarize links to temperature, precipitation, storms and other key indicators from synoptic to multidecadal time scales. We then assess how these climate controls cascade into ecosystem relevant processes, namely oxygen dynamics, primary productivity and ocean acidification. Although physical links are already established, the pathways connecting large-scale atmospheric patterns to biogeochemistry are still poorly constrained, partly because dedicated field studies and targeted model experiments are limited. We outline priority research needs to enhance near-term predictability and reduce uncertainty in future projections for the Baltic Sea.

¹Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany

²Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany

³MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Sète, France

⁴Institute of Geosciences, University of Bonn, Bonn, Germany

⁵Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland

⁶Department of Geology, Lund University, Lund, Sweden

⁷Archipelago Research Institute, Biodiversity Unit, University of Turku, FI20014, Finland

⁸Department of Research and Development, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

⁹Tartu Observatory, University of Tartu, Töravere, Estonia

¹⁰Institute of Oceanology Polish Academy of Sciences, Sopot, Poland

¹¹Department of Marine Systems, Tallinn University of Technology, Tallinn, Estonia

¹²Department of Earth Sciences, Uppsala University, Uppsala, Sweden

¹³Swedish Centre for Impact of Climate Extremes (climes), Uppsala University, Uppsala, Sweden

¹⁴Department of Meteorology, Stockholm University, Stockholm, Sweden

¹⁵Institute of Physics, University of Tartu, Tartu, Estonia

35

1 Introduction

Home to more than 85 million people in its catchment area and bordered by nine countries, the Baltic Sea (Figure 1) faces intense anthropogenic pressures and ranks among the most socio-economically exploited and polluted marine systems in the world (Inácio et al., 2020). It is the second-largest brackish water body in the world with an average salinity of approximately 7.4 g/kg (Meier and Kauker, 2003). Many resident species live close to their salinity tolerance and are additionally exposed to multiple human stressors, making them highly sensitive to environmental change (e.g., HELCOM, 2023). Small changes in physical or biogeochemical conditions can therefore alter their abundance or growth. Climate variability is superimposed onto these pressures across multiple timescales, further modulating the Baltic Sea's ecosystem.

The Baltic Sea is shallow with a mean depth of 53 m and a maximum depth of 459 m (e.g., Jakobsson et al., 2019). It comprises several sub-basins and is connected to the North Sea only via the narrow and shallow Danish straits, which severely restrict water exchange between the two seas (e.g., Meier et al., 2022). Its circulation and stratification are largely controlled by its unique topography and persistent salinity imbalances between fresh and saline water inputs. Most of the Baltic Sea is permanently stratified. A fresher upper layer - sustained primarily by river runoff and, to a lesser extent, excess precipitation - overlies more saline bottom waters, which are renewed by intermittent saline inflows from the North Sea. This persistent stratification hinders vertical mixing and ventilation, making the Baltic Sea particularly vulnerable to hypoxic and eutrophic conditions.

The Baltic Sea represents a unique interface where Atlantic, Arctic and continental climate influences create a dynamic system that is governed by remote teleconnections (Stigebrandt and Gustafsson, 2003). Its climate reflects a sensitive balance between moist, relatively mild marine air from the North Atlantic and the Eurasian continental influence, resulting in transitions between maritime and subarctic conditions. The southern and western parts of the Baltic Sea belong to the central European mild climate zone governed by westerly winds, whereas the northern part is typically located north of the polar front with a winter climate that is cold and dry due to Arctic air outbreaks from the east (Meier et al., 2022). Consequently, conditions vary depending on the exact location of the polar front and the strength of the westerlies, with strong seasonal and interannual variability.

Key large-scale modes include the North Atlantic Oscillation (NAO; Hurrell et al., 2003), the atmospheric blocking (Woollings et al., 2010a) and, on longer timescales, their interplay with the Atlantic Multidecadal Variability (AMV; Börgel et al., 2018). These large-scale patterns are fundamentally connected to variations in the jet stream, whose position and strength are primary controls on weather and climate in the mid-latitudes, including the Baltic Sea region.

Together with high anthropogenic pressure (e.g., human-induced warming and nutrient inputs) and complex interactions among physical and biogeochemical processes across multiple spatiotemporal scales, these climate drivers contribute to the deterioration of the Baltic Sea's water quality (Jokinen et al., 2018; Meier et al., 2019; Krapf et al., 2022; Meier et al., 2022; Müller-Karulis et al., 2024; Ehrnsten et al., 2025). Permanent anoxic bottom waters have developed in the deep basins of the central Baltic Sea during the 20th century (e.g., Gustafsson et al., 2012; Carstensen et al., 2014; Meier et al., 2012, 2019; Papadomanolaki et al., 2018; Carstensen and Conley, 2019). Despite great efforts to reduce the nutrient loads into the basin

since the 1980s, the Baltic Sea shows little improvement in eutrophication and even a worsening in oxygen conditions in its deep waters (Gustafsson et al., 2012; Almroth-Rosell et al., 2021; Hansson et al., 2020; Krapf et al., 2022). Atmospheric Euro-Atlantic teleconnections inevitably impact the marine ecosystem (e.g., Hänninen et al., 2000; Dippner et al., 2019; Gröger et al., 2024b). However, the effects vary regionally as coastal and sub-basin dynamics respond differently to various physical forcings (Eremina et al., 2012; Lehtoranta et al., 2017; Dietze and Löptien, 2021; Gröger et al., 2021a; Stoicescu et al., 2022; Löptien and Dietze, 2022; Polyakov et al., 2023; Dabulevičienè and Servaitè, 2024). Given the multiple interacting drivers, it is important to study the sources of natural variability and how local biogeochemistry relates to large-scale processes.

Despite being one of the most thoroughly studied basins in the world with exceptionally long-term observations, direct empirical evidence from field studies that link large-scale atmospheric and oceanic patterns to Baltic Sea variability are rare and many implications remain theoretical, especially for biogeochemistry. This review synthesizes current understanding of teleconnections between the North Atlantic and the Baltic Sea region, providing an in-depth analysis of the physical mechanisms that drive climate variability and their subsequent impacts on biogeochemical processes.

2 Atmosphere and Ocean Dynamics

2.1 Atmospheric features originating in the North Atlantic and impacting the Baltic Sea region

2.1.1 North Atlantic Jet Stream, Baroclinicity and Planetary Waves

The dynamics of the tropospheric polar jet stream are a key control of weather and climate in the mid-latitudes. These dynamics arise from the interplay of baroclinic instability and large-scale wave patterns known as Rossby waves (Achatz, 2022; Lindzen, 1990). To zeroth order, these components are driven by meridional temperature gradients, the thermal wind relation and the Earth's rotation. In the North Atlantic region, the polar jet is often referred to as the North Atlantic jet.

The North Atlantic jet influences regional weather across Europe and the Baltic Sea region by modulating pressure systems, temperature advection, cloud cover, radiative processes and precipitation patterns. The North Atlantic jet is closely connected to the development and tracks of North Atlantic cyclones, which collectively form the North Atlantic storm track. Several localized processes further modulate this large-scale circulation and form the basis for typical synoptic-scale weather phenomena and dominant climate modes in the Baltic Sea region. Factors such as orography, seasonal snow, ice cover, radiative processes, ocean heat transport and differences between land and ocean surfaces all contribute to a distinct thermal structure that drives a seasonal cycle. As a consequence, mean jet stream patterns follow a seasonally varying pattern with locally modified characteristics (Hallam et al., 2022; Woollings et al., 2010a).

Because the jet's latitude and strength vary seasonally, upstream Pacific circulation anomalies (Harnik, 2014; Messori et al., 2016; Franzke et al., 2004) as well as the state of the North Atlantic ocean (Ruggieri et al., 2021), project differently onto the jet. Consequently, the eastward transport of these anomalies - and their impacts over Europe and the Baltic Sea region - are season-dependent (Woollings et al., 2010a, 2014; Simpson et al., 2019; Börgel et al., 2020; Messori et al., 2022; Strommen et al., 2023; Ruggieri et al., 2021).

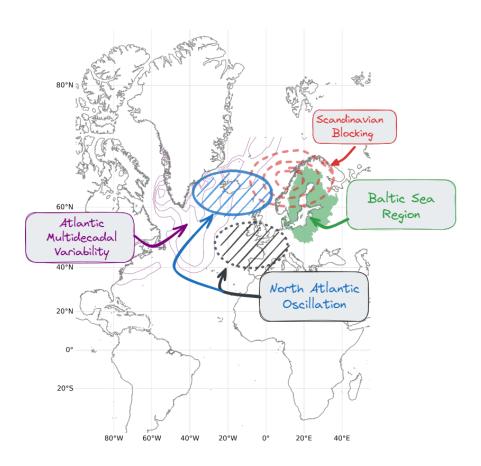


Figure 1. Geographic extent of the Baltic Sea catchment (green) with schematized teleconnections that modulate its climate: Atlantic Multidecadal Variability (AMV; purple), North Atlantic Oscillation (NAO; blue/black), and Scandinavian Blocking (SB; red).

Changes in the structure, latitude and strength of the North Atlantic jet not only drive extreme weather in the mid-latitudes, such as heat waves, cold-air outbreaks and droughts, but also regulate moisture and precipitation (Gimeno, 2014). Close to 90% of the poleward moisture transport occurs within atmospheric rivers (Gimeno et al., 2016; Gimeno, 2014), long, narrow corridors in the atmosphere characterized by strong horizontal water vapor transport. Atmospheric rivers are typically in the warm conveyor belt ahead of extratropical cyclones. By influencing cyclone growth and storm tracks, the North Atlantic jet sets the preferred corridors and landfall latitudes. Accordingly, atmospheric river occurrence, intensity and associated precipitation patterns over the Baltic Sea region are sensitive to shifts in the North Atlantic jet as well.

Given the complexity of mid-latitude dynamics, it is difficult to disentangle the individual impacts of these processes on the Baltic Sea region's climate and to understand the non-linear feedback mechanisms involved. Pattern-based dimensionality reduction approaches are commonly used to face this complexity, including canonical teleconnections such as the NAO (Hurrell, 1995) or the Euro-Atlantic weather regimes (Vautard, 1990), which collapse these complex atmospheric dynamics into a small number of reference states and display a systematic connection to jet characteristics (Madonna et al., 2017). These approaches

provide an interpretable link between large-scale atmospheric circulation and its regional importance in the Baltic Sea region and allow to detail the local dynamics by describing their patterns and statistical properties.

2.1.2 Blocking patterns in the mid-latitudes

An atmospheric block is a long-lasting (days to a few weeks) weather pattern that occurs when persistent and quasi-stationary flow patterns develop, effectively halting the typical overarching westerly flow in the mid-latitudes (Liu, 1994). This often leads to a deflected and strong zonal flow north and south of the blocking system (Michel et al., 2023) and prevents the usual progression of synoptic weather systems across large areas (Rex, 1950; Steinfeld et al., 2022). Blocking systems typically extend vertically across the whole troposphere and are associated with large high pressure systems at the surface.

In the mid-latitudes, blocking is frequently associated with extreme weather conditions, including heatwaves (Pfahl and Wernli, 2012; Schielicke and Pfahl, 2022; Röthlisberger and Papritz, 2023b), cold spells (Buehler et al., 2011; Brunner et al., 2017; Röthlisberger and Papritz, 2023a), heavy rainfall (Lenggenhager and Martius, 2020) and compound weather events (Kautz et al., 2022). The type of extreme event also depends on the exact location of the blocking pattern. Moreover, a single blocking event can cause different surface extremes at different locations (Figure 2). In general, blocking events are 7-10 days long and the most extreme events last 2-3 weeks. However, the societal relevance of these events is not solely defined by their persistence but also by the number of total blocking days and their seasonality (Brunner et al., 2018; Schaller et al., 2018; Kautz et al., 2022)

Figure 2 illustrates the potential extreme surface weather conditions in the Baltic Sea region associated with the Omega pattern: a blocking high with two cutoff lows on either side, with a high-pressure system squeezed in between. Panels a) and b) are separating the impacts between the cold season (October to March) and the warm season (April to September), respectively. During the colder months, the eastern side of the blocking system may exhibit low-temperature anomalies. In contrast, the warmer months are prone to heatwaves beneath the blocking system, occasionally coinciding with drought conditions. Additionally, the probability of thunderstorms increases at both the eastern and western flanks of the blocking system. Regardless of the season, heavy rainfall events - potentially leading to floods and associated with high integrated water vapor concentrations - are observed at the edges and near the poleward boundary of the blocking ridge.

2.2 Natural variability

Variability within the North Atlantic climate system affects the Baltic Sea region across multiple temporal and spatial scales, ranging from individual extreme events such as storms and heatwaves (Gröger et al., 2015, 2021b; Dutheil et al., 2023; Safonova et al., 2024) to multi-decadal shifts in precipitation intensity (Börgel et al., 2022). The impacts on society span various sectors, for instance affecting energy production, agriculture, forestry, traffic, biodiversity, fisheries, maritime activities and the livelihood of coastal communities (HELCOM, 2023). This section focuses on linking our current knowledge of natural variability and its impact at different timescales, unfolding from days to multi-decades. More specifically, we address synoptical (1-7 days), intraseasonal (10-90 days), seasonal (1 year), interannual (1 to 9 years), decadal and multidecadal (10 years and longer) timescales.

130

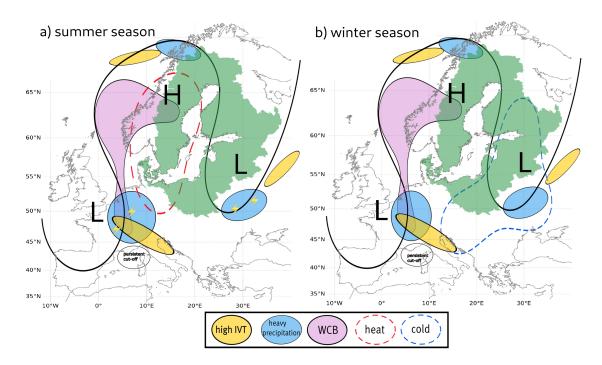


Figure 2. Schematic illustration of the omega pattern (i.e., a blocking system) over the Baltic Sea region (black line, indicating a geopotential height or PV contour) and some associated surface extremes during (a) the warm season and (b) the cold season. Rossby wave breaking occurs on the flanks of the block, leading to (persistent) cutoff systems in this area. Areas with heavy precipitation are marked in light blue (poleward edge of the ridge and at both flanks). Areas with high integrated water vapor transport (IVT) are illustrated in orange. Thunderstorm activity is marked by yellow lightning bolt symbols. The position of a warm conveyor belt (WCB) appears in purple. Areas with temperature extremes are marked with dashed lines (red for heat waves and blue for cold spells) (after Kautz et al., 2022).

2.2.1 Synoptic, intraseasonal and seasonal time scales

The climate of the Baltic Sea region is driven by the interplay of atmospheric, oceanic and terrestrial factors. Departures from the climatological reference state appear as geopotential height anomalies that can persist for up to 3 or 4 weeks. These recurrent disturbances are modulated by variations in the Euro-Atlantic atmospheric circulation, and are well summarized by the Euro-Atlantic weather regimes (Vautard, 1990; Falkena et al., 2020; Cassou et al., 2004). At their core, weather regimes represent a statistical description of persistent and recurrent circulation patterns, similar to attractors in non-linear dynamical systems (Corti et al., 1999; Palmer, 1999) that can be described in terms of their quasi-stationarity and frequency of occurrence. These characteristic flow patterns are generally closely linked to interactions with the jet stream.

Traditionally, weather regimes are defined for winter and classified by four patterns: the positive and negative NAO-like regimes - Zonal (NAO+) and Greenland Blocking (NAO-) - as well as the Atlantic Ridge and the Scandinavian Blocking (Cassou, 2008; Vautard, 1990; Barrier et al., 2014; Fabiano et al., 2021). The Zonal pattern (NAO+) corresponds to a central North Atlantic jet, which brings mild and wet air masses as well as Atlantic cyclones into Northern Europe (Gómara et al.,

140

145

150

160

2014). In contrast, Greenland Blocking (NAO-) represents a more southern jet position, weakening the westerlies, favoring colder, drier conditions. The Atlantic Ridge describes a high pressure system over the Atlantic with a northward shift of the jet, leading to stable weather and potentially blocking the eastward progression of wet and windy conditions. The Scandinavian Blocking is a high pressure system over Scandinavia featuring a jet structure that tilts from southwest to northeast (Figure 3).

A year-round classification adds three more regimes (Figure 3): the Scandinavian Trough, a low pressure system over Scandinavia, the Atlantic Trough, associated with a low pressure system over the North Atlantic, and European Blocking, marked by a high pressure system over western Europe that blocks the North Atlantic jet (Grams et al., 2017). In total, the seven weather regimes represent different types of zonal regimes (Atlantic Trough, Zonal, and Scandinavian Trough), responsible for the advection of warm (or cold) air masses from the North Atlantic region into the Baltic Sea region, as well as four regional blocking regimes (Atlantic Ridge, European Blocking, Scandinavian Blocking, and Greenland Blocking).

Depending on the season, zonal regimes are associated with wet and cool (warm) conditions in northern Europe during summer (winter). In contrast, the blocked regimes interrupt the mean flow and are often associated with hot and dry spells during summer and cold spells on their eastern flank during winter (Grams et al., 2017; Beerli and Grams, 2019; Domeisen, 2019; Mockert et al., 2023; Teubler et al., 2023).

The seven regimes (Figure 3) occur with a similar frequency but have strong seasonal preferences. Zonal regimes (i.e. Atlantic Trough, Zonal/NAO+ and Scandinavian Trough) are more common in winter (November-March), with Zonal being particularly frequent. Summer (May-September) is dominated by blocked regimes (i.e. Atlantic Ridge, European Blocking, Scandinavian Blocking and Greenland Blocking), with Scandinavian Blocking occurring most often. Atlantic Trough occurs year round and European Blocking is the leading winter blocking pattern, while Scandinavian Blocking dominates summer (Grams et al., 2017).

Seasonal circulation variability over the Baltic Sea thus shifts from winter's to summer's dynamics-driven variability. The first is dominated by zonal (NAO-like) patterns, enhanced baroclinicity and high internal variability. The latter is often weaker, with a poleward-shifted jet and a more barotropic background. In summer, the thermodynamic processes such as land-sea contrasts, soil-moisture feedback and diabatic heating play a larger role in driving circulation variability and extremes (Jakobson and Jakobson, 2024; Liné et al., 2024; Gröger et al., 2024b; Dutheil et al., 2023). This implies that the role of teleconnections in the Baltic Sea is likely larger during winter.

2.2.2 Interannual timescales

Interannual variability can be understood through the lens of the jet stream. Specifically, anomalies in the location and intensity of the jet stream during the winter season drive climate variability that can explain much of the observed interannual variability (Harnik, 2014). Good examples are the winters of 2009/10 and 2011/12 (Figure 4), which exhibited opposite jet regimes: the former displayed an anomalously southerly, zonal jet, while the latter displayed an anomalously northerly jet (Santos et al., 2013). The first led to an anomalously cold winter in the Baltic region, while the second led to an unusually warm winter.

The NAO is the primary driver of the observed interannual variability due to its tight coupling to the zonal jet. Notably, both the intensity (NAO+ or NAO-; Figure 4) and the geographic positioning of the NAO centers of action vary substantially

180

185

year-to-year (Hilmer and Jung, 2000; Hurrell and Deser, 2009; Peterson et al., 2002, 2003; Luo and Gong, 2006; Luo et al., 2010b, a; Börgel et al., 2020). These spatial shifts of the NAO modify how strongly the NAO teleconnection affects the Baltic Sea region, as changes in the pressure gradient orientation alter prevailing wind patterns (Lehmann et al., 2011; Börgel et al., 2020). This dynamic is likely linked to the interaction between the NAO and the jet stream (Woollings et al., 2015), which due to the zonal shift of the Icelandic Low aligns the westerly winds directly toward the Baltic Sea.

Beside the NAO, the East Atlantic pattern and Scandinavian patterns both exhibit interannual variability. To link this interannual view with the synoptic-intraseasonal weather regime diagnostics of the previous section, we map the interannual teleconnection indices to their weather regime analogues, based on the geometry of the pressure and jet anomalies. The positive East Atlantic pattern (Barnston and Livezey, 1987a) corresponds to a quasi stationary ridge over the North Atlantic aligning with the Atlantic Ridge regime, while the negative East Atlantic corresponds to the Atlantic Trough (Carvalho-Oliveira et al., 2024). Together with the NAO, the East Atlantic pattern can be used as a combined framework describing both climatological changes and interannual and multidecadal variability in the North Atlantic jet (Woollings et al., 2010b; Woollings and Blackburn, 2012; Perez et al., 2024). However, the NAO primarily describe shifts in the jet latitude, which tends to be more relevant for interannual time scales (Woollings et al., 2015). For the Baltic Sea region, this distinction implies that NAO-driven jet-latitude shifts dominate year-to-year variability in winter temperature, sea-ice and storminess, whereas changes linked with the East Atlantic pattern modulate multidecadal tendencies.

While the Scandinavian pattern (Kauker and Meier, 2003, e.g.,) in its positive state resembles the Scandinavian Blocking the negative Scandinavian pattern aligns with the Scandinavian Trough. After the NAO and East Atlantic pattern, it is the third most important winter sea level pressure pattern over the North Atlantic domain (Comas-Bru and McDermott, 2014a) and in the Baltic Sea region, specifically, it is considered the second most important pattern (Kauker and Meier, 2003).

Since the Scandinavian pattern resembles the negative Scandinavian Blocking regime (Comas-Bru and McDermott, 2014a), the question arises how it might be connected to the interannual variability of blocking occurrences. According to Bueh and Nakamura (2007), the anticyclonic center of the Scandinavian pattern lies in a region where the potential vorticity gradients are generally very low during the winter months, possibly favoring the development of a block. However, Rimbu et al. (2014) found that the dominant winter blocking patterns are connected to different large-scale circulation modes, the Scandinavian pattern only being one of them. This could be different in the summer season where Scandinavian Blocking occurs more often, but studies on summer modes of interannual variability are still scarce.

Multiple other interannual circulation patterns in the Euro-Atlantic sector have been identified, for example the East Atlantic / West Russia pattern (Barnston and Livezey, 1987b; Kauker and Meier, 2003; Craig and Allan, 2022) or the Barents Sea Oscillation (Skeie, 2000; Tremblay, 2001). They all represent a statistical description of characteristic jet features. However, there is little literature specifically addressing their role in modulating the climate of the Baltic Sea region on interannual timescales.

200

2.2.3 Decadal and multidecadal timescales

On decadal time scales, climate variability in Northern Europe is modulated by an interplay of the aforementioned atmospheric modes with the North Atlantic ocean. The ocean's memory, especially through the Atlantic Meridional Overturning Circulation (AMOC), drives much of this decadal variability as it transports heat into higher latitudes altering sea surface temperature (SST) patterns (e.g., Latif et al., 2022).

One central component of this variability is the AMV, which refers to basin-wide fluctuations in the North Atlantic SSTs over multidecadal periods (e.g., Enfield et al., 2001; Knight et al., 2006). The main driver of these fluctuations is likely a combination of internal variability that is coupled to AMOC variability (Robson et al., 2023; Wills et al., 2019; Deser and Phillips, 2021) and a response to external forcing (Mann et al., 2021). For the Baltic Sea region, the response to external forcing appears to be more relevant than internal variability (Barghorn et al., 2025a).

Sea surface temperature anomalies that are advected along the North Atlantic current influence temperature variations in the Norwegian Sea (Langehaug et al., 2022; Fan et al., 2023) and over Norway (Årthun et al., 2017a). These anomalies can often be traced back to oceanic advection of signals from the North Atlantic subpolar gyre (SPG) (Fan et al., 2023), which is one of the most predictable regions in the world on decadal to multidecadal time scales (Yeager and Robson, 2017; Borchert et al., 2021). This connection indicates a potential for successful near-term predictions of decadal climate variability in the Baltic Sea region.

Multidecadal SST variations in the North Atlantic have been shown to alter the atmospheric circulation in the North Atlantic and the climate variability in the region, imprinting onto Europe (Dong et al., 2013a; Delworth and Zeng, 2016; Ruprich-Robert et al., 2017; Smith et al., 2020; O'Reilly et al., 2017; Ruggieri et al., 2021; O'Reilly et al., 2023) with downstream impacts on the Nordic Seas (Årthun et al., 2017b; Koul et al., 2019; Fan et al., 2023) and the Baltic Sea (Börgel et al., 2018, 2020, 2022, 2023a; Barghorn et al., 2025a; Meier et al., 2023b; Kniebusch et al., 2019). One example of this influence is the modulation of a subpolar wave train, an atmospheric teleconnection pattern that responds to SST anomalies and projects onto the European climate (Borchert et al., 2019; Monerie et al., 2021). This wave train is often centered over Northern Europe and transports oceanic signals from the North Atlantic into the Baltic Sea region.

Similar to the interannual timescale, in Northern Europe, decadal atmospheric variability in wintertime is dominated by the NAO (e.g., Paolini et al., 2022; Patrizio et al., 2023). More specifically, the decadal to multidecadal SST anomalies, linked to the AMV, influence both the position and strength of the NAO (Börgel et al., 2020) and the jet stream (Ruggieri et al., 2021; Athanasiadis et al., 2020). Hence, during wintertime, the AMV influences the advection of air masses from the North Atlantic, weakening the westerlies during its positive states. Negative AMV states are associated with increased westerlies, transporting moist air masses into the Baltic Sea region (Börgel et al., 2022). This coupling between the ocean and the atmosphere has been linked to the relative importance of the NAO for the Baltic Sea region (Omstedt and Chen, 2001) on multidecadal time scales (Börgel et al., 2020). During summer, subtropical North Atlantic SST excites an atmospheric Rossby wave which connects to decadal surface air temperature fluctuations in Europe, with an imprint on the Baltic Sea region (e.g., Müller et al., 2020).

235

240

250

260

265

The respective impacts of the NAO and the other aforementioned teleconnection patterns mirror those observed at synoptic time scales; however, it is their interactions with sea surface temperature and other memory-holding variables that establish these atmospheric modes as significant drivers of decadal variations (Müller et al., 2020). For example, beside its interplay with the AMV, one key feedback loop involves the NAO and the North Atlantic SST tripole pattern (Deser et al., 2010). The direction of this interaction is still under debate with studies illustrating an SST influence on the NAO (Rodwell et al., 1999; Reintges et al., 2017) and some showing NAO influence on SST (Athanasiadis et al., 2020). It was also shown that the location of the Gulf Stream front may imprint onto NAO on these time scales (Joyce et al., 2000). Recent research proposes a negative feedback loop: NAO-induced SST anomalies affect the AMOC, which in turn alters the SSTs which influence the NAO in the opposite direction (Patrizio et al., 2025). Some studies also indicate that a vertical component in the atmosphere is included in this feedback loop (Omrani et al., 2022). This feedback loop acts on decadal-to multidecadal time scales and may give rise to important variability in Northern Europe as well (Börgel et al., 2020). In this context, the representation of coupled ocean-atmosphere modes in climate models was recently drawn into question, and important gaps in the simulation of realistic connections between the North Atlantic and atmospheric teleconnections in the Euro-Atlantic regions were pointed out (Carvalho-Oliveira et al., 2024). This highlights important room for improvement through model development.

North Atlantic freshwater anomalies may also affect Baltic Sea regional weather through atmospheric teleconnections. These anomalies are associated with a sharper sea surface temperature front between the subpolar and subtropical North Atlantic in winter, inducing large-scale atmospheric circulation anomalies (Oltmanns et al., 2024). Overall, these hydrographic anomalies, modulated by SPG variability, contribute to multiyear predictability in both oceanic and atmospheric conditions (Koul et al., 2019; Holliday et al., 2020; Fan et al., 2023; Oltmanns et al., 2024).

Longer-range teleconnections which can modulate the North Atlantic climate, particularly from the Indian and Pacific Oceans, add further complexity to European climate variability (Cassou, 2008; Fletcher and Cassou, 2015; Ferster et al., 2023). One notable mode of Pacific variability is the Pacific Decadal Oscillation (PDO), the leading mode of North Pacific SST variability (EOF1 of SSTs over 20°-70°N) (Mantua et al., 1997; Newman et al., 2016). While direct studies on the PDO's influence on the Baltic climate remain limited, its impact on the region is often mediated through its interactions with other climate modes such as the NAO, El Niño-Southern Oscillation (ENSO) and Arctic sea ice variability. For instance, Simon et al. (2022) report clear PDO-related anomalies over the Baltic region, though they emphasize its modulation of broader sea ice effects. Additionally, the PDO has been shown to modulate ENSO's influence on the North Atlantic (Wang et al., 2014; Karami et al., 2023), further underscoring its indirect role in shaping atmospheric circulation patterns that can affect Northern Europe. This is because PDO-related shifts in the Aleutian Low and North Pacific jet reshape the North Pacific waveguide, steering ENSO-forced Rossby waves and altering their downstream projection into the North Atlantic (Maher et al., 2022). More broadly, such extratropical teleconnections are dependent on the climatological background flow (O'Reilly et al., 2019). This interconnectedness highlights the PDO's potential contribution to decadal to multidecadal variability in the region, reinforcing the broader role of Pacific teleconnections in modulating European climate.

2.3 Key regional climatic effects of natural variability

The climate of the Baltic Sea region can be perceived as an interplay between the aforementioned teleconnections and regional features. In particular, one should recall the unique bathymetry of the Baltic Sea (see Figure 5) which is characterized by a shallow mean depth, a suite of sub-basins and narrow and shallow connections to the open ocean.

270 2.3.1 Precipitation

275

280

285

295

Precipitation in the Baltic Sea region varies across time scales, with different mechanisms dominating at each timescale. On synoptical and intra-seasonal time scales, a stronger and northward-shifted jet together with NAO conditions adjusts the flow patterns and channels North Atlantic storm tracks into the region. In contrast, NAO- or the positive Scandinavian pattern with a southerly displaced jet, favour drier conditions. Blocking further modulates these anomalies, suppressing precipitation beneath the block but enhancing it along the side and the poleward edge where moisture transport and warm conveyor belts concentrate (Kautz et al., 2022; Lenggenhager and Martius, 2020). Atmospheric Rivers, often guided by the jet, provide an additional pathway for intense precipitation. On interannual timescales, the NAO remains the main driver with East Atlantic and Scandinavian patterns modulating the spatial pattern and the magnitude of the precipitation anomalies in the Baltic Sea region (Cassou, 2008; Craig and Allan, 2022; Lehmann et al., 2011). On multidecal timescales, North Atlantic SST variability reorganizes the North Atlantic jet and sea level pressure patterns, tending to favour relatively drier conditions in the Baltic Sea region during positive AMV and wetter conditions during negative AMV (Ruggieri et al., 2021; Börgel et al., 2022). Lastly, while Arctic sea-ice decline (Deser and Teng, 2008) pushes the North Atlantic jet northward and leads to wetter conditions in the Baltic Sea region (Francis et al., 2009), Pacific sea-ice decline can push the jet south and reduce precipitation over the Baltic Sea region (Yu et al., 2023). The net impact on Baltic precipitation remains unclear (Screen et al., 2014; McKenna et al., 2018).

2.3.2 Storms

Variability in storminess in the Baltic Sea region is closely connected to the location and level of activity of the North Atlantic storm track and reflects the multiple drivers discussed above. On synoptical to intra-seasonal timescales, the NAO and jet stream provide an effective lens for understanding storminess in the region (Lehmann et al., 2011; Börgel et al., 2020; Rutgersson et al., 2022). Generally, a stronger and northward-shifted jet - such as during a NAO+ or positive East Atlantic pattern - increases storminess over the Baltic Sea region. Blocked regimes (Atlantic Ridge and European/Scandinavian Blocking) tend to suppress storms locally beneath the ridge, while enhancing activity along the flanks. A positive NAO increases extreme wind return levels along the southern Baltic Sea, indicating higher risk of storm surges (Priestley et al., 2023).

On interannual timescales, the Scandinavian Pattern modulates storm activity in the Baltic Region strongest during winter, followed by the NAO and the Polar/Eurasian pattern - a pattern projecting onto a zonal/NAO+ regime during its positive phase, while the negative phase projects onto blocked regimes, mainly Greenland Blocking (NAO-) and sometimes Scandinavian Blocking. The East Atlantic pattern also plays a large role, especially for the forecasting skill of storm tracks culminating in

300

305

320

325

330

the Baltic Sea region (Degenhardt et al., 2023; Walz et al., 2018). Moreover, the positioning of the jet stream and the strength of the meridional pressure gradient in the North Atlantic can also explain a large part of the decadal changes in 10 m wind speeds in northern Europe, with low windiness in winters of the 1980s and 2010s and high windiness in the 1990s (Laurila et al., 2021). On multidecadal timescales, the warm phase of the AMV corresponds to an equatorward-shifted jet and a storm track that is less extended poleward compared to the AMV cold phase (Ruggieri et al., 2021), favouring reduced storminess in the Baltic region.

2.3.3 Sea level

Sea level variability in the Baltic is predominantly driven by the large-scale atmospheric circulation owing to small tidal amplitudes. On synoptic time scales the Baltic Sea sea level is driven by wind stress inside the basin, whereas on seasonal to multidecadal time scales the controlling signal is originating from the adjacent basin Kattegat and thus ultimately from the North Atlantic (Samuelsson and Stigebrandt, 1996). This is because the Danish straits separating the Baltic Sea from the Kattegat act as a physical low pass filter, essentially damping synoptic scale variability, while allowing seasonal and longer time scales to pass (Hieronymus et al., 2017). The sea level has a pronounced seasonal cycle with higher sea levels in autumn and winter than in summer and spring (Stramska, 2013). The interannual sea level variability has been found to correlate with the NAO (Andersson, 2002). Westerly winds over the area are typically stronger during the positive phase of the NAO, which pushes water into the Baltic and raises the sea level (Johansson et al., 2001; Johansson and Kahma, 2016). The strength of the correlation between the NAO and mean sea level, however, varies between different basins and in time. The temporal variability can partly be explained by the interplay between the NAO, the East Atlantic and the Scandinavian teleconnection patterns (Kauker and Meier, 2003; Chafik et al., 2017). An index based on the sea level pressure difference between the Bay of Biscay and Tromso has also been suggested as an alternative to the NAO (Karabil et al., 2018). Decadal and multidecadal sea level variability is much less explored than interannual variability.

Karabil et al. (2017) found robust connections between decadal sea level variability and variations in sea level pressure and precipitation. However, they found no robust connection to the AMV. Not only mean sea level but also sea level extremes in the Baltic Sea are correlated to the NAO (e.g., Marcos and Woodworth, 2018; Hieronymus and Kalén, 2020). In part the relationship can be explained as a preconditioning, where storm surges occur from a higher baseline during positive NAO phases owing to its effect on the mean sea level, but there is likely an effect also on the surges themselves (Weisse et al., 2021). This indicates that multiple timescales from synoptic to at least interannual could be contributing to this effect. Moreover, wind waves and river runoff in the area has also been found to correlate with the NAO (Wrzesiński and Paluszkiewicz, 2011; Adell et al., 2023), indicating that the risk of compound flooding may also be linked to the NAO (e.g., Hieronymus et al., 2024).

2.3.4 Surface Air Temperature and Sea Temperatures

Surface air temperature (SAT) and sea-surface temperature (SST) in the Baltic Sea are tightly coupled. In summer, the surface mixed layer is typically 15-20 m deep, while in autumn-winter it often reaches the seabed in shallow areas or deepens to the halocline (40-80 m) in deeper basins. Consequently, daily SAT anomalies are reflected in SST with a lag of only a few days; in

340

345

350

summer the lag rarely exceeds two weeks. Hence, more than 80 % of the monthly SST variance is explained by the combined sensible and latent heat fluxes that depend on SAT and incoming shortwave radiation (Kniebusch et al., 2019).

Low winter SST is associated with negative NAO phases and severe winters, whereas high SST is linked to positive NAO phases and mild winters (Schmidt et al., 2007; Kniebusch et al., 2019) closely following the winter NAO-SAT relationship (Tinz, 1996). Most of the interannual winter SAT variability (87% at Stockholm) is explained by the NAO and a Barents Sea Oscillation (Skeie, 2000) like pattern that describes the displacements of the NAO centers of action (Meier and Kauker, 2003).

The properties of the cold intermediate layer are established during winter mixing, and this water mass persists in the water column until the following winter. Consequently, the interannual variability of cold intermediate layer temperature is strongly correlated with the severity of the preceding winter, which is largely determined by the winter NAO (Liblik and Lips, 2011; Hans-Harald et al., 2007; Mohrholz et al.).

On decadal and longer time scales, SST is likely to increase during positive AMV states, thereby amplifying global warming estimates (Kniebusch et al., 2019; Börgel et al., 2023b; Barghorn et al., 2025a). This is driven by a combination of NAO influence with an atmospheric teleconnection pattern that responds to SST anomalies and projects onto the European climate (Borchert et al., 2019; Monerie et al., 2021). This wave train is often centered over Northern Europe and transports oceanic signals from the North Atlantic into the Baltic Sea region.

Temperature swings on all time scales provide the baseline for marine heatwaves (MHWs) in the Baltic Sea, which are predominantly linked to atmospheric modes (Gröger et al., 2024b; Bashiri et al., 2024). These MHW coincide very likely with atmospheric heat waves although a dedicated comparison is missing. Gröger et al. (2024b) identified the dominant preconditions for MHWs on seasonal time scales. During summer, a prevailing stable high pressure system over Scandinavia supports anomalous high shortwave absorption and thus heat uptake in the upper water layer. The associated weak-wind regime further delimits mixing of heated surface waters with colder water from below resulting in a stable and shallow thermocline. Winter MHWs are mainly caused by external warm and humid air masses derived from the North Atlantic via the westerly wind regime (Gröger et al., 2024b). Consequently, atmospheric conditions resembling the positive phase of the NAO elevate the risk for MHWs in the Baltic Sea. The local processes are characterized by an anomalous low heat flux out of the sea. Here, reduced latent heat fluxes (due to the humid air masses) and reduced sensible heat fluxes (due to anomalous warm air) play the dominant roles.

2.3.5 Sea ice cover

Sea ice in the Baltic Sea shows pronounced interannual variability (Granskog et al., 2006). Over the past century, a shift toward milder ice winters has been observed, with reductions in both ice extent and thickness expected to continue in the present century (Meier et al., 2022; Haapala et al., 2015b).

The variability is strongly influenced by the NAO and the Arctic Oscillation (Vihma and Haapala, 2009; Vihma, 2014; Haapala et al., 2015a; Uotila et al., 2015). Statistical modelling shows that both zonal flow (particularly in February) and meridional flow (notably in November and January) play key roles in determining sea ice extent (Omstedt and Chen, 2001). Winters dominated by strong westerlies (NAO+) are typically associated with reduced sea ice cover in the Baltic Sea. Between

380

January and March, negative NAO phases (NAO < -0.5) are linked to substantially larger mean annual ice extent (259,000 kmš), while positive phases (NAO > +0.5) are associated with reduced ice extent (121,000km² Vihma and Haapala, 2009). The relationship between NAO and annual maximum ice extent is non-stationary and can vary across different time periods (Omstedt and Chen, 2001; Chen and Li, 2004), possibly linked to shifting of the NAO centers of action (Börgel et al., 2020)

In addition to the NAO and Arctic Oscillation, interannual variations in Baltic Sea ice parameters have also been found to correlate with the Pacific Decadal Oscillation (PDO Uotila et al., 2015). The physical mechanisms underlying this teleconnection remain unclear, but correlations can be of comparable magnitude to those of the Atlantic Oscillation, although they are not temporally persistent (Vihma, 2014).

2.3.6 Salinity and Stratification

Salinity variations in the Baltic Sea are controlled by the interplay of freshwater input, mainly through river runoff and irregular saltwater inflows from the North Sea. The river runoff lowers the salinity in the surface layer of the Baltic Sea via direct dilution (Radtke et al., 2020). Consequently, the outflowing water through the Danish straits becomes fresher. This water partly mixes with the underlying saltier layer which decreases the salinity of subsequent saltwater inflows" (Meier et al., 2023b).

Saltwater inflows that shape the salinity of the deeper parts in the Baltic Sea occur under specific synoptic wind conditions and are connected to the passage of deep cyclones over the region (e.g., Matthäus and Franck, 1992; Schinke and Matthäus, 1998; Lehmann et al., 2017). Wind variations on synoptic timescales are reflected in salinity fluctuations in the rather shallow western Baltic Sea whereas the deeper basins of the central Baltic Sea act as a low-pass filter (e.g., Gräwe et al., 2015). Depending on their density, inflows spread at intermediate depths or form a deep layer that follows along the bottom. Only large inflows, major Baltic inflows (MBIs), can pass through the sills, reach the deep basins of the Baltic proper and settle along the bottom. The MBIs are less frequent than the smaller Baltic inflows (Mohrholz et al., 2015; Mohrholz, 2018). The MBIs are modulated by the accumulated freshwater supply over multidecadal time scales (Meier et al., 2023a), while the smaller inflows, affecting the subhalocline layer (100 m depth) (Elken, 1996; Meier, 2005) show strong dependency on interannual atmospheric forcing.

Directly linking NAO and salinity variations is challenging (Radtke et al., 2020; Schimanke and Meier, 2016) due to their differing dominant time scales: the NAO fluctuates mainly on 4-10-year periods (Meier et al., 2023b), while the water balance of the Baltic Sea is characterized by multidecadal 30-year fluctuations (e.g., Meier and Kauker, 2003; Kniebusch et al., 2019; Meier et al., 2023b; Stockmayer and Lehmann, 2023). Longer periods with predominant NAO+ (i.e., persistent strong westerlies) elevate the mean sea level in the Baltic Sea, suppressing saltwater inflows and lowering bottom salinties (Lass and Matthäus, 1996; Schinke and Matthäus, 1998; Lehmann et al., 2017; Meier et al., 2023b).

On a multidecadal scale, the salinity of the Baltic Sea is correlated with the AMV. During the course of the last millennium, the dominant time scales were above 120 years and 60-90 years during the Little Ice Age (Börgel et al., 2018, their Figure 2). For the 20th century, common power was also found between 20 and 30 years (Radtke et al., 2020). The dominance of 30-year fluctuations in the water cycle of the Baltic Sea has been a matter of discussion for a long time, given that neither the NAO nor the AMV are dominant in that band period. Recently, Meier et al. (2023b) argued that the superposition of 60-year temperature

https://doi.org/10.5194/egusphere-2025-5496 Preprint. Discussion started: 14 November 2025

© Author(s) 2025. CC BY 4.0 License.

405

410

415

420

425

fluctuations in the North Atlantic related to the AMV and the 60-year periodicity in the displacement of the NAO's centers of 400 action evoked by, again, the AMV (Börgel et al., 2020) causes the 30-year variability in the water balance of the Baltic Sea.

2.3.7 Solar radiation

Changes in solar radiation, more specifically shortwave irradiance, are affected by atmospheric processes altering the amount of sunlight, which can be adsorbed, reflected or scattered by atmospheric transparency, water vapour, cloud cover and albedo. In the 1950s to 1980s a decrease in shortwave irradiance (dimming) has been detected in many regions in Europe, followed by an increase (brightening) until present (Wild et al., 2009; Ohvril et al., 2009; Russak, 2009; Sanchez-Lorenzo et al., 2015; Parding et al., 2016; Post and Aun, 2020).

Several studies attribute brightening in Europe to a decline in aerosols (Ohvril et al., 2009; Wild et al., 2005). However, a recent investigation found a more subtle shift in attribution over the last four decades (Schilliger et al., 2024) supporting earlier results (Meier et al., 2022). While the aerosol effect was primarily responsible for brightening between 1983 and 2002, variability in cloud cover emerged as the predominant driver of observed brightening between 2001 and 2020. Post and Aun (2024) found a significant increase in solar radiation accompanied by a decrease in cloud cover in the Baltic Sea during the past half-century. They show that while anticyclonic (clear) circulation patterns become more frequent, zonal (overcast) patterns are less frequent with a significant negative trend. This can be partially explained by variations in the synoptic patterns over Scandinavia (section 2.3.7) likely linked to a northward shift in the North Atlantic storm tracks which enter the Arctic, without passing Scandinavia, and promote the blocking over northwestern Europe (Knight et al., 2005; Folland et al., 2009; Dong et al., 2013b; Parding et al., 2016).

The increase in surface solar radiation may also explain shifts in seasonality, especially to longer and earlier summers in the Baltic Sea (Post and Aun, 2024). Kahru et al. (2016) detected important seasonal shifts in a variety of physical and biological parameters, with e.g. the cumulative sum of 30 000 W m⁻² of surface incoming shortwave irradiance being reached 23 days earlier in 2013 compared to 1983. The shift is highly correlated with earlier warming and later cooling of SST, which in turn also affects the availability of light in the water column (see also section 2.2.1).

A recent modeling study suggests that in the Northern Hemisphere, about 20-40% of the shortwave variability is related to the PDO alone, mainly controlling the year-to-year variability in shortwave radiative fluxes through redistribution of clouds. A negative PDO anomaly is also suggested to lead to a reduction in atmospheric shortwave reflectivity in Europe (Chtirkova et al., 2024).

Biogeochemistry

Main biogeochemical processes 3.1

Although the biogeochemical functioning of the Baltic Sea system has been widely investigated - an extensive review is given by (Kuliński et al., 2022) - the role of teleconnections in biogeochemistry remains understudied. As a first step towards linking

biogeochemical processes to teleconnections, we focus on three major biogeochemical processes, namely deoxygenation, primary productivity and ocean acidification in the Baltic Sea (e.g., Meier et al., 2006; Kuliński et al., 2022; Viitasalo and Bonsdorff, 2022). During the last decades, all these three processes have undergone major changes primarily by regional pressures, in particular due to eutrophication. Here, however, we focus on the potential links between teleconnections and variability on different time scales.

5 3.1.1 Deoxygenation

Oxygen concentrations in surface waters are determined by the exchange with the atmosphere, oxygen production during photosynthesis, sea surface temperatures, sea surface salinity and the supply of oxygen through vertical and lateral transport. Surface oxygen is then distributed to the rest of the water column. In the Baltic Sea, mechanisms controlling oxygenation in the interior differ per subbasin (hereafter following the subbasin names of Savchuk, 2018), largely depending on the presence/absence of a permanent halocline.

In the central and western Baltic proper, below their permanent halocline, oxygenation is controlled by the Major Baltic Inflows (MBIs), the smaller inflows (both often refer to as 'intrusions' of oxygen-rich waters (e.g., Mohrholz et al., 2015; Mohrholz, 2018; Meier et al., 2018; Holtermann et al., 2020; Barghorn et al., 2023, 2025b), vertical mixing and oxygen consumption due to organic matter degradation. The latter is related to the temperature-dependent remineralization in both the water column and the sediments, and the supply of degradable organic matter (e.g., López-Urrutia et al., 2006; Laufkötter et al., 2017; Savchuk, 2018; Börgel et al., 2023b). Only large enough MBIs can ventilate the deeper parts of the central and western Baltic proper (Kullenberg and Jacobsen, 1981b, a; Matthäus, 1990). These subbasins are therefore prone to develop permanent bottom anoxia, which has spread due to the rise of anthropogenic nutrient loads in the 1960s (Figure 6).

The basins without permanent halocline, such as the eastern Gulf of Finland, Gulf of Bothnia and Gulf of Riga, are largely impacted by atmospheric conditions, which control the local stratification/mixing regime (Kuosa et al., 2017; Eremina et al., 2012; Stoicescu et al., 2022; Liblik et al., 2024; Polyakov et al., 2023). These basins are generally more oxygenated, but are not exempt from developing prolonged periods of deoxygenation and bottom anoxia.

Coastal deoxygenation in the Baltic Sea is also affected by additional processes, such as marine heatwaves (MHWs; section 2.3.4). The gradual decline of oxygen, the expansion (both vertically and horizontally) of oxygen deficit, and the increasing hydrogen sulfide-inventory adding to the 'oxygen debt' in the Baltic proper (Figure 6) increase the risk of exporting hypoxic waters to the Bothnian Sea and shallow coastal areas (Rolff et al., 2022).

3.1.2 Primary Productivity

450

455

460

Primary productivity - the rate at which marine autotrophs, mainly phytoplankton, convert inorganic carbon (CO₂) into organic matter through photosynthesis - is heterogeneous in space and consistently enhanced by nutrient inputs in the Baltic Sea (Figure 7). The high nutrient concentrations result from human-induced nutrient enrichment, long water residence times due to limited exchange with the North Sea, vertical mixing and efficient benthic nutrient recycling (e.g., Reissmann et al., 2009; Carstensen et al., 2014; Carstensen and Conley, 2019).

465

480

Natural fluctuations in nutrient and organic matter supply, closely linked to the hydrological cycle, regulate primary productivity. Other physical factors, such as the availability of incoming surface solar radiation, the penetration of light into the water column, the spectral quality of light in the euphotic zone, changes in freshwater supply, ocean mixing, sea surface temperature, and winds, likewise play a role for primary production. While the averaged primary productivity shows consistent patterns (an example for the period 2010-2019 is shown in Figure 7a), significant differences can be found from year to year and from region to region. For example, anomaly analysis shows considerably elevated productivity in relation to the 10-year average in the Baltic proper in 2019 (Figure 7b; Ostrowska et al., 2022).

Since phytoplankton forms the dominant component of primary producers in the Baltic Sea, its growth directly reflects the combined effects of the aforementioned drivers. Light availability, which is further decreased by the presence of organic particles in the water column, is the dominant limiting factor for phytoplankton growth during autumn in the Baltic Sea (Olesen et al., 1999). In contrast, during spring and summer light is not a limiting factor and allows phytoplankton growth, leading to seasonal peaks in primary production. While yearly primary production in the Baltic Sea shows a general slight increasing trend due to the response of phytoplankton to local drivers, primary productivity trends differ per basin (Figure 7c-d; Ostrowska et al., 2022).

In winter, both temperature and light limit phytoplankton growth. Stratification plays a key role in regulating these dynamics as it forms a stable upper mixed layer that is shallower than the euphotic zone. Phytoplankton is then confined within this lighted surface layer allowing blooms to develop. However, stratification also suppresses mixing with deeper layers, gradually limiting the upward transport of nutrients to the surface and thus phytoplankton growth. Still, nitrate is usually fully depleted down to the halocline after the spring bloom period (Schneider and Müller, 2018). A second bloom of nitrogen-fixing primary producers (cyanobacteria) develops in summer, with timing of the onset and intensity subject to large interannual variability (Kahru et al., 2020, 2025).

In early spring, diatoms - a major group of phytoplankton characterized by their capacity of building silica-based cell walls - are the first to bloom, particularly in the southern Baltic Sea. In the central Baltic Sea (Baltic proper, Gulf of Finland and Gulf of Riga), cold-water dinoflagellates may be dominant, especially after warmer winters, while mixotrophic dinoflagellates and occasionally ciliates are dominant in summer (e.g., Klais et al., 2011). Cyanobacteria, which have a low salinity tolerance and capability of fixing atmospheric nitrogen, thrive in summer after nitrogen depletion in surface waters (Wasmund et al., 2008, 2011; Klais et al., 2011; Olli et al., 2011) 2013). However, phytoplankton dynamics in the Baltic Sea are changing, potentially due to changing seasonality of the cumulative surface incoming solar radiation (Kahru et al., 2016), reduced light penetration in the water column (so called darkening), water temperatures and stratification (Jaanus et al., 1990; Dupont and Aksnes, 2013; Opdal et al., 2019; Wasmund et al., 2019).

3.1.3 Ocean acidifcation

Ocean Acidification is a core indicator of the Global Climate Observing System, as rising surface-ocean CO₂ partial pressure (pCO₂) levels closely track rising atmospheric pCO₂. When CO₂ dissolves in seawater, it forms carbonic-acid, releases hydrogen ions (H+) and lowers pH (e.g., Doney et al., 2009; Bates et al., 2012). In the open ocean, ocean acidification is traceable

500

505

510

515

520

525

530

as a decreasing long-term pH trend since at least the 1980s (i.e. since observations have been available), clearly revealing against the background of seasonal pH variability related to photosynthesis and respiration (Ma et al., 2023). In the Baltic Sea (similar to most coastal and shelf waters), ocean acidification trends are less clear (Figure 8), mainly due to changes related to eutrophication and variable total alkalinity which, next to CO₂ dynamics, is a key driver for seawater pH (Carstensen and Conley, 2019; Kuliński et al., 2022).

Total alkalinity is defined as an excess of proton acceptors over proton donors (or bases over acids) and is a measure of buffer capacity against ocean acidification (Dickson, 1992). Although total alkalinity is a conservative salinity-dependent parameter, its surface distribution in the Baltic Sea is complex. This is due to significant differences in the total alkalinity concentrations in river water across the Baltic Sea catchment, a phenomenon closely linked to variations in the geological structure of the surrounding land (Hammer et al., 2017; Kuliński et al., 2017). Generally, the Scandinavian rivers drain catchments underlain by granite bedrock and therefore have low total alkalinity concentrations. Rivers entering the Baltic Sea from the south and south-east flow through a catchment area rich in limestone and heavily agriculturally transformed, which makes these rivers an important net source of total alkalinity. Finally, the Baltic proper acts as a mixing chamber, where these various freshwater types mix with the salty (and therefore alkalinity-rich) water flowing into the Baltic from the North Sea (Kuliński et al., 2022).

The overall low alkalinity suggests that the Baltic Sea is prone to ocean acidification. However, total alkalinity in the Baltic Sea is increasing with time (Müller et al., 2016). The most recent data analysis by Cotovicz Jr. et al. (2024) shows that this increase is between 3.2 µmol kg⁻¹ yr⁻¹ in the Gulf of Bothnia and 5.3 µmol kg⁻¹ yr⁻¹ in the Bornholm Basin, which partially mitigates the pH drop in the Baltic Sea due to increasing pCO₂ (Figure 8b). The source of this increase remains unclear, but it is likely the result of a combination of several different processes, such as a rise in total alkalinity loads from rivers, enhanced erosion, dissolution of carbonate deposits and total alkalinity input due to the expansion of bottom anoxia and low redox conditions (Müller et al., 2016; Gustafsson et al., 2019; Wallmann et al., 2022).

Because both pCO₂ and total alkalinity are key parameters to understand pH variability and ocean acidification, any processes and mechanisms affecting either of them should be considered in the context of teleconnections. This makes correlations between acidification and natural variability, large-scale atmospheric and oceanic patterns difficult to detect in the Baltic Sea, leaving the response to changes across different timescales poorly understood.

3.2 Teleconnections and time scales

While dedicated studies quantifying the teleconnection effects on biogeochemical processes in the Baltic Sea are rare (see Neumann and Schernewski (2008) and references therein), links - often local - between biogeochemical and physical processes have been suggested in the literature. One of the few studies assessing the relative roles of physical parameters on modulating a biogeochemical parameter across different times scales is that of (Kahru et al., 2020). Through correlation and statistical analysis, they show that, in addition to biogeochemical properties (such as nutrient inputs), the temperature is a key driver for surface cyanobacteria accumulation (FCA) on decadal timescales. They also identify temperature, solar radiation and wind as major contributors on interannual timescales (Figure 9). Potential trigger mechanisms for cyanobacterial blooms have been recently suggested (Kahru et al., 2025) and are discussed further below. Occurrence and development of cyanobacterial blooms

535

540

545

550

555

560

is thus one of the few examples in the field of biogeochemistry where it has been attempted to explain variability on different time-scales by physical drivers.

In this section, we gather relevant literature on how teleconnections and physical patterns drive variability in deoxygenation, primary productivity and ocean acidification.

3.2.1 Synoptical, intraseasonal and seasonal time scales

Most of the available biogeochemical observational data do not cover long-term periods with the time resolution to capture synoptical (1-7 days) and intraseasonal (10-90 days) time scales. In addition, atmospheric or oceanic data do not always have the same period, the same frequency or spatial coverage. Only due to the recent availability of satellite observations together with improved measurement techniques and numerical modeling it has become possible to obtain biogeochemical data with higher spatiotemporal resolution. Therefore, it is not surprising that biogeochemical parameters are not typically linked to weather systems on synoptical or intraseasonal time scales. However, the need for early warnings and short-term predictions for biogeochemical parameters (e.g., for risk assessments) demands more studies on the biogeochemistry responses to weather systems, such as weather regimes, storms, or cyclones.

A study by Post and Aun (2024) about solar radiation on synoptical time scales (section 2.3.7) potentially explains the observed earlier onset of phytoplankton growth reported for the Baltic Sea (see section 3.1.2). In 2025, Kahru et al. (2025), suggested that the main controlling factors for the initiation of cyanobacteria blooms are the rate of change in SST due to surface irradiance and reduced vertical mixing due to lower wind speed, while SST itself was not correlated with bloom initiation. Similarly, Müller et al. (2020) observed the vertical carbon removal from the surface layer during a cyanobacterial event, and related the integrated cyanobacterial production to the heat uptake in the surface layer. Increased wind speed and resulting mixed layer deepening ended this productive episode. These findings link both the onset of cyanobacterial blooms and integrated production of individual bloom events to meteorological conditions with persistent low wind speed and reduced cloud coverage. This parallels conditions fostering summer heatwaves, with an apparent link to summerly meteorological blocking patterns (section 2.1.2). Yet, for the most part, a clear correlation between phytoplankton variability and weather systems is still missing.

The shallow and brackish Baltic Sea is affected by marine heatwaves (MHWs) on synoptic time scales (section 2.3.4). Their impact can last from a couple of days to a few months and can reach the seabed at water depths of less than 20 m (Cahill et al., 2024), which has been shown to have led to a significant decrease in oxygen concentration during summer (Safonova et al., 2024; Göbeler, 2024; Vajedsamiei et al., 2024). As MHWs are projected to increase in intensity, duration and frequency in the future (Gröger et al., 2024a), the risk of hypoxic events in Baltic coastal waters is of growing concern (Safonova et al., 2024; Kauppi and Villnäs, 2022; Liblik et al., 2024). Kahru et al. (2020) suggested that MHWs can trigger extreme surface accumulations of cyanobacteria which, in turn, will further increase heating in the uppermost water layer due to increased light absorption and thus modulate air-sea heat fluxes. Kauppi and Villnäs (2022) studied the effect of MHWs on benthic ecosystems in the Baltic Sea and found that the seafloor functioning responds differently depending on the intensity of the heatwave. They suggest that a prolonged, moderate MHW enhances nutrient recycling, by boosting benthic activity, while a strong heatwave

575

580

585

590

reduces organic matter degradation and the nutrient cycling. Over time, both can lead to a build-up of organic matter on the seafloor and cause oxygen depletion (Kauppi and Villnäs, 2022). As bioturbation and related benthic fluxes alter the nutrient recycling and organic matter remineralization, benthic processes can also alter primary productivity.

Most physical parameters in the Baltic Sea, such as temperature, wind speed, cloudiness, runoff, evaporation and precipitation have pronounced intraseasonal/seasonal variations, whose influences decreases with depth according to the bathymetry of each basin. Consequently, such signals are also reflected in most biogeochemical processes, but can be mitigated by other regional effects. For example, while intraseasonal/seasonal variations in oxygen are weak in most of the stratified areas of the Baltic Sea (Stockmayer and Lehmann, 2023), in the Gulf of Finland, bottom water conditions are dominated by seasonal variability as seasonal westerly winds can reverse the estuarine circulation, which deepens the halocline and increases the oxygen content in the near-bottom layer (Liblik et al., 2013; Lips et al., 2016).

Primary productivity in the entire Baltic Sea has a clear seasonal cycle mainly driven by temperature, light and nutrient availability (section 3.1.2). Following changes in p CO_2 caused by seasonal changes in the production and remineralization of organic matter, the pH of the Baltic surface waters also changes seasonally, with higher values observed in summer than in winter. Thus, natural variability of ocean acidification is closely related to that of primary production, but also to the buffering capacity, given by the total alkalinity. In addition, the CO_2 flux at the air-sea interface is largely controlled by temperature, salinity and winds (Thor and Oliva, 2015; Thor and Dupont, 2018), which are directly impacted by teleconnections across different time scales (section 2.2). In deeper waters, the seasonal influence of teleconnections is less evident but may follow that of deoxygenation (Figure 6), since pH is primarily controlled by CO_2 accumulation and alkalinity release during redox processes (Kuliński et al., 2017). In the end, all of these processes are linked to seasonally affected physical parameters. The relative roles of such parameters in controlling the intraseasonal to seasonal variability of primary production and ocean acidification remain unclear and likely vary regionally.

3.2.2 Interannual time scales

The interannual variability (1-9 years) of oxygen deficiency in the Baltic Sea is strongly influenced by atmospheric forcing. On one hand, atmospheric forcing shapes the sea's internal circulation and water exchange with the North Sea. On the other hand, it controls stratification and vertical exchange between oxygen-depleted deep layers and oxygen-saturated upper layers. Thus, interannual variability in atmospheric forcing arising from teleconnections leads to changes in oxygen content.

The interannual variability below the halocline in the western and southern Baltic depends largely on the inflow of oxygenated water from the North Sea (Schmidt et al., 2021; Barghorn et al., 2025b; Löptien et al., 2025). In between MBI events, oxygen concentrations in the near bottom layer decline continuously, however, the frequent smaller inflows (Elken, 1996; Meier, 2005) oxygenate the subhalocline layer (100 m depth) at an interannual time scale. Consequently, year-to-year variability in the subhalocline layer is more closely linked to North Atlantic-Baltic teleconnections layer than the deeper bottom layers in the central Baltic Sea.

The influence of the North Atlantic teleconnection is particularly pronounced in the shallower basins of the Baltic Sea. A positive NAO with accompanying wind from southwest can alter or even reverse the advection of oxygen-depleted saline

600

605

615

620

625

waters from the Baltic proper to the Gulf of Finland and remove hypoxia in the whole gulf (Eremina et al., 2012; Liblik et al., 2013; Lips et al., 2016; Lehtoranta et al., 2017). A negative NAO, on the other hand, supports estuarine circulation and stronger oxygen deficiency. Lennartz et al. (2014) and Hepach et al. (2024) showed that oxygen depletion in the case of a warmer upper layer is not only intensified due to stronger stratification, but that enhanced oxygen consumption in higher temperatures also contributes to the interannual variability of deoxygenation in the shallow southern Baltic Sea.

Wind pattern and heat flux associated with high pressure systems during the European Blocking regime, support the seasonal oxygen depletion occurring from year to year in the gulf of Riga (Liblik et al., 2024; Stoicescu et al., 2022). North-easterly winds cause dense water transport from the Baltic proper to the Gulf of Riga. Although this water is oxygenated, it also causes strong stratification and reduces oxygen transport by vertical mixing in the gulf. Strong heat flux during the prevailing European Blocking regime causes higher sea surface temperature and stratification, which could reduced downward oxygen transport and higher deoxygenation of the deep layer (Stoicescu et al., 2022).

Besides low oxygen conditions, seasonally increasing near-bottom water temperature seems to be the main factor controlling denitrification rates (Aigars et al., 2015). In turn, intensive denitrification and organic matter degradation under anoxic conditions is an important source of alkalinity and thus can affect the year to year acid-base system of the Baltic proper (Gustafsson et al., 2014). Although the effect is usually reversed upon re-oxygenation, denitrification and the formation of vivianite and pyrite are permanent sources of alkalinity (Kuliński et al., 2017), potentially acting on longer time scales.

During 1860-1880 and 1980-2000, negative wavelet coherence between surface and bottom salinity at Gotland Deep and the NAO index is found in the frequency band between 5 and 10 years (Radtke et al., 2020), very likely affecting bottom oxygen concentration dynamics (e.g., Lehmann et al., 2022). Stockmayer and Lehmann (2023) found strong correlation between the positive phase of winter NAO and negative salinity and positive oxygen anomalies in the Baltic proper during the period 1983 to 1990. This suggests that poor oxygen conditions below the halocline were more likely to occur in winter during a positive NAO index while oxygenation was more common during a negative NAO index.

Correlations between the NAO and main factors controlling primary productivity, such as air/sea surface temperature, light and sea ice at interannual timescales are large (Omstedt and Chen, 2001; Kniebusch et al., 2019). Therefore, strong interannual signals are expected to modulate primary productivity in the Baltic Sea. Indeed, a study on primary productivity and teleconnection patterns in the Northeastern Baltic Sea found significant correlations between chlorophyll and the winter values of NAO, Scandinavian pattern and the annual Polar/Eurasian index, which suggests a potential effect on primary productivity (e.g., Golubkov and Golubkov, 2021). Solar radiation has been shown to affect cyanobacteria on interannual time scales rather than on decadal time scales. Wind conditions did not show a strong relationship with how often cyanobacteria blooms occurred, although winds mainly influenced variations from year to year (Kahru et al., 2020, their Figure 9).

3.2.3 Decadal and multidecadal time scale

630 The Baltic Sea exhibits complex decadal to multidecadal-scale variability in oxygen dynamics, primary productivity and ocean acidification. By examining paleoenvironmental archives from sediment records, we can better understand shifts in core biogeochemical processes under conditions of no or minimal anthropogenic influence. Past widespread hypoxia in the Baltic Sea

635

640

645

650

655

660

665

has occurred during the Holocene Thermal Maximum (8,000-4,800 years before present) and the Medieval Climate Anomaly (1,000-700 years before present) (Zillén et al., 2008; Jilbert et al., 2015; Börgel et al., 2023b). These past hypoxic intervals generally coincided with warmer climatic conditions (Kabel et al., 2012) and elevated salinity, both of which favored higher primary productivity and increased organic matter flux to the seafloor. Sediment record studies show that, before major human influence, hypoxia in the Baltic was largely a natural response to climate variability and changes in water exchange with the North Sea (Conley et al., 2009; Jilbert and Slomp, 2013).

Proxy records of hypoxia showed strong multidecadal oscillations likely driven by both the internal iron-phosphorus cycling and the Atlantic Multidecadal Variability (AMV) (Jilbert et al., 2021), in which temperature and salinity played a major role in modulating the remineralization of organic matter (Börgel et al., 2023b) and the timing of massive blooms (Andrén et al., 2020). In addition, oxygen concentration variations at multidecadal timescales have been identified to be negatively correlated with salinity in the major part of the water column, indicating improved ventilation during a fresher state of the Baltic Sea (e.g., Hansson and Gustafsson, 2011). Reduced salinity and consequent improved oxygen conditions have been linked to stronger zonal atmospheric circulation (Zorita and Laine, 2000).

Modern bottom oxygen concentrations in both the Baltic proper and the western Gulf of Finland show strong decadal signals, mainly controlled by runoff and zonal wind stress (Väli et al., 2013). Similarly, Laine et al. (2006) reported an increase in oxygen concentrations in the late 1980s and early 1990s which they attributed to a decrease in salinity due to high runoff and a loss of stratification, thus related to more humid weather conditions.

Primary production has fluctuated over a range of spatial and temporal scales, increasing approximately 2-3-fold since the early-to-mid 20th century as a direct result of nutrient enrichment (Savchuk, 2018). However, multidecadal variability persists, superimposed on the anthropogenic trend. Model and field data show that wind forcing and shifts in atmospheric circulation play a crucial role in regulating primary production and biogeochemical regimes in the Baltic (Andersson et al., 2015). For example, the AMV has been shown to account for a significant fraction (over 50 %) of decadal-scale variability in sea surface temperature in the Baltic, indirectly influencing primary productivity through impacts on thermal stratification and nutrient availability (Lehmann et al., 2017).

Paleoceanographic evidence demonstrates that during the Medieval Climate Anomaly, periods of warmer temperatures promoted abundant cyanobacteria blooms in the Baltic Sea (Funkey et al., 2014) and increased diatom production, boosting organic matter export and contributing to hypoxia in deep basins (Bianchi et al., 2000). Furthermore, significant changes have occurred in net primary productivity since 1993 up to now (Figure 7), which cannot solely be explained by nutrient distribution (Ostrowska et al., 2022). Still, nutrient loads from rivers, especially after industrialization, and nutrient recycling from sediments have become the dominant control on primary productivity (Savchuk, 2018), amplifying and modulating its magnitude rather than overriding its natural, climate-driven variability.

Long-term trends and variations of primary productivity in the Baltic Sea are difficult to study due to the lack of observations in both space and time, especially before the year 1996 (Ostrowska et al., 2022). Nevertheless, long seasonal trends in primary productivity have been identified in the Baltic Sea, especially in the Gulf of Gdansk (e.g., Zdun et al., 2021). As large-scale

temperature, shortwave radiation and cloudiness changes have been shown to affect phytoplankton growth, teleconnections on multidecadal time scales likely impact primary productivity.

Kahru et al. (2020) showed that the frequency of cyanobacteria in the Baltic proper at decadal time scales are mainly correlated with phosphorus abundance and anoxia in the bottom layers (Figure 9). However, sea surface temperature and wind speed play a significant role in modulating decadal cyanobacteria blooms (Kahru et al., 2018) and its initiation (Kahru et al., 2025). Yet, clear links between primary productivity and large-scale patterns, the relative importance of teleconnections on primary productivity and future primary productivity responses under an acceleration of warming remain unclear in the Baltic Sea.

The recent multidecadal increase in total alkalinity has also been partially explained by changes in precipitation patterns and continental weathering driven by acidic rain (Müller et al., 2016) which are closely linked to the NAO and AMV (section 2.3.1). The latter are expected to change by the end of the 21st century, likely leading to wetter conditions in the northern part of the Baltic Sea, mostly composed of granite, and drier conditions in the southern, limestone-rich Baltic Sea (Meier et al., 2022; Kuliński et al., 2022). The sources of the alkalinity increase are neither well understood nor quantified and are also highly linked to eutrophication and alkalinity production from anaerobic processes (Müller et al., 2016; Cotovicz Jr. et al., 2024). The teleconnections for total alkalinity production through anaerobic processes, though not yet directly investigated, should be similar to those for primary production and hypoxia/anoxia.

3.3 Key biogeochemical teleconnections

685

690

695

The main causes for the recent oxygen decline in the Baltic Sea are the anthropogenic nutrient load from land (Meier et al., 2019), warming, and inflowing North Sea waters driven by climate change, which decreases oxygen solubility, increases mineralization rates and strengthens stratification (Barghorn et al., 2024; Naumov et al., 2023; Polyakov et al., 2022). However, the variability of oxygen is heavily modulated by regional effects of natural variability at different timescales (section 3.2), but relative roles remain unclear.

The same is true for primary productivity. However, there are a number of uncertainties associated with changes in primary production. For example, the consequences of climate change (Viitasalo and Bonsdorff, 2022) or possible shifts in species diversity, patterns of species succession or responses to changes in hydrological patterns are largely unknown (e.g., Viitasalo and Bonsdorff, 2022; ÅAysiak Pastuszak et al., 2004; Zdun et al., 2021; Stoń-Egiert and Ostrowska, 2022; Ostrowska et al., 2022). Further changes affecting primary productivity in the Baltic Sea are expected to continue but specific phytoplankton response to the combined complexity of physical drivers and the related timescales, especially the contribution of natural variability, remains understudied and difficult to detect. In addition, harmful algal blooms (such as blooms of the prymesiophyte Prymnesium polylepis; Karlson et al. 2021) are recurrent phenomena, especially along the coast and the Kattegat-Skagerrak. Most of the harmful (toxic) phytoplankton species only constitute a small fraction of the phytoplankton biomass. However, they affect the composition and the spatio-seasonal distribution of the phytoplankton community. Their drivers are complex and not well understood, but they are clearly impacted by weather conditions (Roiha et al., 2010). Because primary productivity forms

the base of the marine food web, understanding its link to natural variability and large-scale patterns is important to better predict its future and implications.

In addition, there is growing concern over the ecological impacts of coastal ocean darkening (Opdal et al., 2019; Frigstad et al., 2023; Davies and Smyth, 2025), where some of the highest rates of increase since 2003 have been recently observed in the Baltic Sea, in particular in the Gulf of Bothnia (Davies and Smyth, 2025). Climate-driven changes in precipitation, land use and runoff are projected to intensify this darkening phenomena, through increased input of organic material and particulates, altering the penetration and spectral quality of light in the water column, with unknown consequences for photosynthesis, primary production and species behavior (Dupont and Aksnes, 2013; Opdal et al., 2024). Identifying teleconnections between North European precipitation patterns, temperature variability and decadal changes in underwater lightscapes is an emerging research topic.

Ocean acidification is the result of multiple combined drivers and there is still limited knowledge on several key processes and their relative contribution in the Baltic Sea. It is also poorly known how the ecosystems will respond to a combination of changing factors (e.g. nutrient loads, mixing/stagnation and precipitation/evaporation), especially in the coastal ocean. Havenhand et al. (2019) identified as key priorities in future research to quantify the responses to dominant drivers (notably warming, eutrophication, hypoxia) and to determine the effects of diurnal and seasonal environmental fluctuations. In addition, to better understand the complex acid-base system of the Baltic Sea and its future, it is important to improve estimates of the relative contributions between seasonal/interannual and long-term teleconnections affecting carbon fixation rates, pH and total alkalinity sinks and sources. Future research on this should at least include alterations in precipitation and runoff together with a good understanding of changes in the land use and in the rate of CO₂-induced weathering of carbonate and silicate rocks.

A summary of confirmed key physical drivers and teleconnections directly affecting oxygen concentrations, primary productivity and ocean acidification across the analyzed timescales is presented in Figure 10. All physical regional effects on natural variability mentioned in section 2.3 affect in some way these 3 main biogeochemical processes. The temperature (including SST), salinity and ocean stratification are likely the major factors modulating natural variability of deoxygenation. While natural variability of primary productivity is also largely affected by temperature, solar radiation and wind regime also play major roles, likely also in defining the timing of the blooms. Links between physical drivers and ocean acidification are complex and may be more indirect than for other processes. For example, variations in runoff directly affect the nutrient supply, the salinity distribution and the alkalinity.

4 Conclusions

725

The Baltic Sea is located at the confluence of the Atlantic, Arctic and continental influences, with variability controlled primarily through the North Atlantic jet and related teleconnections patterns (e.g., NAO and East Atlantic and Scandinavian patterns) (e.g., Chafik et al., 2017; Comas-Bru and McDermott, 2014b). On longer time scales, coupled ocean-atmosphere interactions linked to the AMOC, the SPG and the AMV exert additional control (Årthun et al., 2017b; Börgel et al., 2023a; Yan et al., 2018).

735

755

760

765

The NAO exerts a strong control during winter, explaining a large fraction of the interannual variability of surface air temperature and surface sea temperature, storms, precipitation, sea level and sea ice (e.g., Rutgersson et al., 2022; Gräwe et al., 2019). East Atlantic and Scandinavian patterns reshape most impacts regionally. On longer time scales, the oceanic memory originating in the North Atlantic appears to be the main driver (Börgel et al., 2023a).

Across time scales, the available literature defines different teleconnection patterns which may also be viewed through the lens of the Weather Regime framework, which is typically used on synoptical scales. Apparent differences described in the literature likely occur due to different methods used as well as the time scales emphasized.

Biogeochemical responses mirror the physical controls but are filtered by strong stratification, restricted water exchange with the North Sea and large anthropogenic pressure (Kuliński et al., 2022). This results in a system where teleconnections clearly matter, yet attribution of their quantitative contribution remains challenging and understudied. Thus, global warming as well as legacy nutrient loads set the stage for the biogeochemistry in the Baltic Sea upon which teleconnections superimpose variability.

Teleconnections are nonstationary: their spatial patterns and strength evolve with changes in the large-scale circulation, including for example Arctic amplification (Zappa and Shepherd, 2017) likely altering their relative importance for the Baltic Sea in the future. Robust attribution and causal disentanglement of teleconnections remain difficult because externally forced signals and internal variability cannot easily be separated (e.g., Deser and Phillips, 2021). Moreover, summer teleconnections that drive variability on decadal and longer time scales are less well resolved for Northern Europe or not well studied.

Studies for the Baltic Sea evidencing quantitative and basin-wide links between teleconnections and factors such as oxygenation, primary production and ocean acidification are limited. In particular, there are significant knowledge gaps regarding the spatial and temporal dynamics of total alkalinity (Kuliński et al., 2017). Physical controls of variability in primary production, in particular with respect to the summer cyanobacterial bloom, have been identified and can be partly lined to teleconnections (Kahru et al., 2020, 2025). Yet, a considerable fraction of annual variability can yet not be explained (Kahru et al., 2025).

Possible predictability in the North Atlantic (e.g., SPG, AMV, AMOC) has not yet been systematically researched for the Baltic Sea region, as regional downscalings of decadadal predictability experiments are not available. Finally, model fidelity is a limiting factor: common biases in jets, storm tracks, sea ice, subpolar gyre and the AMOC, variability and likely incomplete coupling of physics and biogeochemistry do not yet allow for robust results (e.g., Palmer et al., 2023).

To advance our understanding, we highlight the need for:

- Regime-based diagnostics as well as storyline approaches should be more frequently paired with in-depth process analysis to move beyond correlation. In addition, the nonstationarity of teleconnections must be addressed as these are incremental on regional spatial scales. This may be met with multi-model ensembles to separate the impact of external variability.
 - Fully coupled regional Earth-system models that resolve the complex topography of the Baltic Sea in combination with a
 targeted evaluation of jets, storm tracks, subpolar gyre and Atlantic Meridional Overturning originating from the global
 parent model.

https://doi.org/10.5194/egusphere-2025-5496 Preprint. Discussion started: 14 November 2025

© Author(s) 2025. CC BY 4.0 License.

770

785

EGUsphere Preprint repository

 Event-based modeling approaches for storms, atmospheric rivers and marine heatwaves to quantify the biogeochemical responses on short time scales.

- Sustained high-frequency measurements of temperature, salinity, oxygen and the carbonate system from coasts to deep

basins to understand the impact of teleconnections on biogeochemistry.

The main barriers to robust teleconnection attributions and predictions are their non-stationary nature and the limitation of currently available observations and models. Targeted observational, process-focused methods and fully coupled regional models together provide a credible route to near-term gains in understanding and to actionable guidance for the Baltic Sea region.

775 Data availability. All data used in this study are previously published and publicly available from the sources cited in the reference list. No

new measurements were generated. Access details (repositories/DOIs) are given in the corresponding citations.

Code and data availability. No proprietary software was used. The code used to generate the figure(s) in this paper is available from the authors upon reasonable request and relies exclusively on publicly available datasets.

Author contributions. The co-corresponding authorship FB and IRB were responsible for designing, conceptualizing, coordinating, supervising and writing the manuscript. MM, LB, LN, TL, GR and BC contributed in ensuring relevance and consistency. Each author contributed to discussions and writing, focusing on their areas of expertise.

Competing interests. Gabriele Messori is a member of the editorial board of Earth System Dynamics.

Acknowledgements. The research presented in this study is part of the Baltic Earth program (Earth System Science for the Baltic Sea region; https://www.baltic.earth) and contributes to the Baltic Earth Working Groups on (i) Teleconnections between the North Atlantic, Northern Europe and the Baltic Sea region, and (ii) Land-Sea Biogeochemical Linkages in the Baltic Sea region. In addition, this project belongs partly to the SEAGUARD project (Florian Börgel and Lev Naumov), funded by the Federal Ministry of the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) on the basis of a resolution of the German Bundestag.

References

800

805

- Achatz, U.: Atmospheric Dynamics, Springer Berlin Heidelberg, 1 edn., https://link.springer.com/book/9783662639429, 2022.
- Adell, A., Almström, B., Kroon, A., Larson, M., Uvo, C. B., and Hallin, C.: Spatial and temporal wave climate variability along the south coast of Sweden during 1959âĂŞ2021, Regional Studies in Marine Science, 63, 103 011, https://doi.org/10.1016/j.rsma.2023.103011, 2023.
 - Aigars, J., PoikÄAne, R., Dalsgaard, T., EglÄńte, E., and Jansons, M.: Biogeochemistry of N, P and SI in the Gulf of Riga surface sediments: Implications of seasonally changing factors, Continental Shelf Research, 105, 112–120, https://doi.org/10.1016/j.csr.2015.06.008, 2015.
- Almroth-Rosell, E., WÃěhlström, I., Hansson, M., Väli, G., Eilola, K., Andersson, P., Viktorsson, L., Hieronymus, M., and Arneborg, L.: A Regime Shift Toward a More Anoxic Environment in a Eutrophic Sea in Northern Europe, Frontiers in Marine Science, 8, https://doi.org/10.3389/fmars.2021.799936, publisher: Frontiers, 2021.
 - Andersson, A., Meier, H. M., Ripszam, M., Rowe, O., Wikner, J., Haglund, P., Eilola, K., Legrand, C., Figueroa, D., Paczkowska, J., et al.: Projected future climate change and Baltic Sea ecosystem management, Ambio, 44, 345–356, https://doi.org/DOI: https://doi.org/10.1007/s13280-015-0654-8, 2015.
 - Andersson, H. C.: Influence of long-term regional and large-scale atmospheric circulation on the Baltic sea level, Tellus A, 54, 76–88, https://doi.org/10.1034/j.1600-0870.2002.00288.x, 2002.
 - Andrén, E., van Wirdum, F., Ivarsson, L. N., Lönn, M., Moros, M., and Andrén, T.: Medieval versus recent environmental conditions in the Baltic Proper, what was different a thousand years ago?, Palaeogeography, Palaeoclimatology, Palaeoecology, 555, 109878, https://doi.org/DOI: https://doi.org/10.1016/j.palaeo.2020.109878, 2020.
 - Årthun, M., Eldevik, T., Viste, E., Drange, H., Furevik, T., Johnson, H. L., and Keenlyside, N. S.: Skillful prediction of northern climate provided by the ocean, Nature Communications, 8, 15 875, https://doi.org/10.1038/ncomms15875, 2017a.
 - Årthun, M., Eldevik, T., Viste, E., Drange, H., Furevik, T., Johnson, H. L., and Keenlyside, N. S.: Skillful prediction of northern climate provided by the ocean, Nature Communications, 8, 15 875, https://doi.org/10.1038/ncomms15875, 2017b.
- Athanasiadis, P. J., Yeager, S., Kwon, Y.-O., Bellucci, A., Smith, D. W., and Tibaldi, S.: Decadal predictability of North Atlantic blocking and the NAO, npj Climate and Atmospheric Science, 3, 20, https://doi.org/10.1038/s41612-020-0120-6, publisher: Nature Publishing Group, 2020.
 - Barghorn, L., Meier, H. E. M., and Radtke, H.: Changes in Seasonality of Saltwater Inflows Caused Exceptional Warming Trends in the Western Baltic Sea, Geophysical Research Letters, 50, e2023GL103 853, https://doi.org/10.1029/2023GL103853, 2023.
- Barghorn, L., Meier, H. E. M., Radtke, H., Neumann, T., and Naumov, L.: Warm saltwater inflows strengthen oxygen depletion in the western Baltic Sea, Climate Dynamics, 63, 29, https://doi.org/10.1007/s00382-024-07501-x, 2024.
 - Barghorn, L., Börgel, F., Gröger, M., and Meier, H. E. M.: Atlantic multidecadal variability control on European sea surface temperatures is mainly externally forced, Environmental Research Letters, 20, 034 044, https://doi.org/10.1088/1748-9326/adb6bf, 2025a.
 - Barghorn, L., Meier, H. E. M., Radtke, H., Neumann, T., and Naumov, L.: Warm saltwater inflows strengthen oxygen depletion in the western Baltic Sea, Climate Dynamics, 63, 29, https://doi.org/10.1007/s00382-024-07501-x, 2025b.
 - Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns, Monthly Weather Review, 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987a.
 - Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns, Monthly Weather Review, 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987b.

840

850

- Barrier, N., Cassou, C., Deshayes, J., and Treguier, A.-M.: Response of North Atlantic Ocean Circulation to Atmospheric Weather Regimes, Journal of Physical Oceanography, 44, 179–201, https://doi.org/10.1175/JPO-D-12-0217.1, 2014.
 - Bashiri, B., Barzandeh, A., Männik, A., and Raudsepp, U.: Variability of marine heatwavesâĂŹ characteristics and assessment of their potential drivers in the Baltic Sea over the last 42 years, Scientific Reports, 14, 22419, https://doi.org/10.1038/s41598-024-74173-2, 2024.
- Bates, N. R., Best, M. H. P., Neely, K., Garley, R., Dickson, A. G., and Johnson, R. J.: Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean, Biogeosciences, 9, 2509–2522, https://doi.org/10.5194/bg-9-2509-2012, publisher: Copernicus GmbH, 2012.
 - Beerli, R. and Grams, C. M.: Stratospheric modulation of the large-scale circulation in the AtlanticâĂŞEuropean region and its implications for surface weather events, Quarterly Journal of the Royal Meteorological Society, 145, 3732–3750, https://doi.org/10.1002/qj.3653, 2019.
- Bianchi, T. S., Johansson, B., and Elmgren, R.: Breakdown of phytoplankton pigments in Baltic sediments: effects of anoxia and loss of deposit-feeding macrofauna, Journal of experimental marine biology and ecology, 251, 161–183, https://doi.org/DOI: https://doi.org/10.1016/S0022-0981(00)00212-4, 2000.
 - Borchert, L. F., Pohlmann, H., Baehr, J., Neddermann, N.-C., Suarez-Gutierrez, L., and Müller, W. A.: Decadal Predictions of the Probability of Occurrence for Warm Summer Temperature Extremes, Geophysical Research Letters, 46, 14042–14051, https://doi.org/10.1029/2019GL085385, 2019.
 - Borchert, L. F., Menary, M. B., Swingedouw, D., Sgubin, G., Hermanson, L., and Mignot, J.: Improved Decadal Predictions of North Atlantic Subpolar Gyre SST in CMIP6, Geophysical Research Letters, 48, e2020GL091307, https://doi.org/10.1029/2020GL091307, 2021.
 - Börgel, F., Frauen, C., Neumann, T., Schimanke, S., and Meier, H. E. M.: Impact of the Atlantic Multidecadal Oscillation on Baltic Sea Variability, Geophysical Research Letters, 45, 9880–9888, https://doi.org/10.1029/2018GL078943, 2018.
- Börgel, F., Frauen, C., Neumann, T., and Markus Meier, H. E.: The Atlantic Multidecadal Oscillation controls the impact of the North Atlantic Oscillation on North European climate, Environmental Research Letters, 15, 104 025, https://doi.org/10.1088/1748-9326/aba925, publisher: IOP Publishing, 2020.
 - Börgel, F., Meier, H. E. M., Gröger, M., Rhein, M., Dutheil, C., and Kaiser, J. M.: Atlantic multidecadal variability and the implications for North European precipitation, Environmental Research Letters, 17, 044 040, https://doi.org/10.1088/1748-9326/ac5ca1, publisher: IOP Publishing, 2022.
 - Börgel, F., Gröger, M., Meier, H. E. M., Dutheil, C., Radtke, H., and Borchert, L.: The impact of Atlantic Multidecadal Variability on Baltic Sea temperatures limited to winter, npj Climate and Atmospheric Science, 6, 64, https://doi.org/10.1038/s41612-023-00373-8, publisher: Nature Publishing Group, 2023a.
 - Börgel, F., Neumann, T., Rooze, J., Radtke, H., Barghorn, L., and Meier, H. E. M.: Deoxygenation of the Baltic Sea during the last millennium, Frontiers in Marine Science, 10, https://doi.org/10.3389/fmars.2023.1174039, publisher: Frontiers, 2023b.
 - Brunner, L., Hegerl, G. C., and Steiner, A. K.: Connecting Atmospheric Blocking to European Temperature Extremes in Spring, Journal of Climate, 30, 585–594, https://doi.org/10.1175/JCLI-D-16-0518.1, 2017.
 - Brunner, L., Schaller, N., Anstey, J., Sillmann, J., and Steiner, A. K.: Dependence of Present and Future European Temperature Extremes on the Location of Atmospheric Blocking, Geophysical Research Letters, 45, 6311–6320, https://doi.org/10.1029/2018GL077837, 2018.
- Bueh, C. and Nakamura, H.: Scandinavian pattern and its climatic impact, Quarterly Journal of the Royal Meteorological Society, 133, 2117–2131, https://doi.org/10.1002/qj.173, 2007.

865

- Buehler, T., Raible, C. C., and Stocker, T. F.: The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40, Tellus A, 63, 212–222, https://doi.org/10.1111/j.1600-0870.2010.00492.x, 2011.
- Cahill, B., Chrysagi, E., Vortmeyer-Kley, R., and Gräwe, U.: Deconstructing co-occurring marine heatwave and phytoplankton bloom events in the Arkona Sea in 2018, Frontiers in Marine Science, 11, https://doi.org/10.3389/fmars.2024.1323271, publisher: Frontiers, 2024.
- Carstensen, J. and Conley, D. J.: Baltic Sea Hypoxia Takes Many Shapes and Sizes, Limnology and Oceanography Bulletin, 28, 125–129, https://doi.org/10.1002/lob.10350, 2019.
- Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.: Deoxygenation of the Baltic Sea during the last century, Proceedings of the National Academy of Sciences, 111, 5628–5633, https://doi.org/10.1073/pnas.1323156111, publisher: Proceedings of the National Academy of Sciences, 2014.
- Carvalho-Oliveira, J., Di Capua, G., Borchert, L. F., Donner, R. V., and Baehr, J.: Causal relationships and predictability of the summer East Atlantic teleconnection, Weather and Climate Dynamics, 5, 1561–1578, https://doi.org/10.5194/wcd-5-1561-2024, 2024.
- Cassou, C.: Intraseasonal interaction between the MaddenâĂŞJulian Oscillation and the North Atlantic Oscillation, Nature, 455, 523–527, https://doi.org/10.1038/nature07286, publisher: Nature Publishing Group, 2008.
- Cassou, C., Terray, L., Hurrell, J. W., and Deser, C.: North Atlantic Winter Climate Regimes: Spatial Asymmetry, Stationarity with Time, and Oceanic Forcing, Journal of Climate, 17, 1055–1068, https://doi.org/10.1175/1520-0442(2004)017<1055:NAWCRS>2.0.CO;2, 2004.
 - Chafik, L., Nilsen, J. E. O., and Dangendorf, S.: Impact of North Atlantic Teleconnection Patterns on Northern European Sea Level, Journal of Marine Science and Engineering, 5, 43, https://doi.org/10.3390/jmse5030043, publisher: Multidisciplinary Digital Publishing Institute, 2017.
- Chen, D. and Li, X.: Scale-dependent relationship between maximum ice extent in the Baltic Sea and atmospheric circulation, Global and Planetary Change, 41, 275–283, https://doi.org/10.1016/j.gloplacha.2004.01.012, 2004.
 - Chtirkova, B., Folini, D., Ferreira Correa, L., and Wild, M.: Shortwave radiative flux variability through the lens of the Pacific Decadal Oscillation, Journal of Geophysical Research: Atmospheres, 129, e2023JD040520, https://doi.org/https://doi.org/10.1029/2023JD040520, 2024.
- Comas-Bru, L. and McDermott, F.: Impacts of the EA and SCA patterns on the European twentieth century NAO-winter climate relationship, Quarterly Journal of the Royal Meteorological Society, 140, 354–363, https://doi.org/10.1002/qj.2158, 2014a.
 - Comas-Bru, L. and McDermott, F.: Impacts of the EA and SCA patterns on the European twentieth century NAOâĂŞwinter climate relationship, Quarterly Journal of the Royal Meteorological Society, 140, 354–363, https://doi.org/10.1002/qj.2158, 2014b.
- Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., and Likens, G. E.: Controlling
 Eutrophication: Nitrogen and Phosphorus, Science, 323, 1014–1015, https://doi.org/10.1126/science.1167755, publisher: American Association for the Advancement of Science, 2009.
 - Corti, S., Molteni, F., and Palmer, T. N.: Signature of recent climate change in frequencies of natural atmospheric circulation regimes, Nature, 398, 799–802, https://doi.org/10.1038/19745, 1999.
- Cotovicz Jr., L. C., Cahill, B., Sabbaghzadeh, B., Lencina-Avila, J. M., and Rehder, G.: Increase in marginal sea alkalinity may impact airâĂŞsea carbon dioxide exchange and buffer acidification, Limnology and Oceanography, 69, 2332–2347, https://doi.org/10.1002/lno.12672, 2024.
 - Craig, P. M. and Allan, R. P.: The role of teleconnection patterns in the variability and trends of growing season indices across Europe, International Journal of Climatology, 42, 1072–1091, https://doi.org/10.1002/joc.7290, 2022.

- Dabulevičienè, T. and Servaitè, I.: Characteristics of Marine Heatwaves in the Southeastern Baltic Sea Based on Long-Term In Situ and Satellite Observations, Journal of Marine Science and Engineering, 12, 1109, https://doi.org/10.3390/jmse12071109, publisher: Multidisciplinary Digital Publishing Institute, 2024.
 - Davies, T. W. and Smyth, T.: Darkening of the Global Ocean, Global Change Biology, 31, e70 227, https://doi.org/10.1111/gcb.70227, 2025.
 - Degenhardt, L., Leckebusch, G. C., and Scaife, A. A.: Large-scale circulation patterns and their influence on European winter windstorm predictions, Climate Dynamics, 60, 3597–3611, https://doi.org/10.1007/s00382-022-06455-2, 2023.
- 905 Delworth, T. L. and Zeng, F.: The Impact of the North Atlantic Oscillation on Climate through Its Influence on the Atlantic Meridional Overturning Circulation, Journal of Climate, 29, 941–962, https://doi.org/10.1175/JCLI-D-15-0396.1, 2016.
 - Deser, C. and Phillips, A. S.: Defining the Internal Component of Atlantic Multidecadal Variability in a Changing Climate, Geophysical Research Letters, 48, e2021GL095 023, https://doi.org/10.1029/2021GL095023, 2021.
- Deser, C. and Teng, H.: Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979âĂŞ2007, Geophysical Research Letters, 35, https://doi.org/10.1029/2007GL032023, 2008.
 - Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.: Sea Surface Temperature Variability: Patterns and Mechanisms, Annual Review of Marine Science, 2, 115–143, https://doi.org/10.1146/annurev-marine-120408-151453, 2010.
 - Dickson, A. G.: The development of the alkalinity concept in marine chemistry, Marine chemistry, 40, 49–63, https://doi.org/https://doi.org/10.1016/0304-4203(92)90047-E, 1992.
- Dietze, H. and Löptien, U.: Retracing hypoxia in Eckernförde Bight (Baltic Sea), Biogeosciences, 18, 4243–4264, https://doi.org/10.5194/bg-18-4243-2021, publisher: Copernicus GmbH, 2021.
 - Dippner, J. W., Fründt, B., and Hammer, C.: Lake or Sea? The Unknown Future of Central Baltic Sea Herring, Frontiers in Ecology and Evolution, 7, https://doi.org/10.3389/fevo.2019.00143, publisher: Frontiers, 2019.
- Domeisen, D. I.: Estimating the Frequency of Sudden Stratospheric Warming Events From Surface Observations of the North Atlantic Oscillation, Journal of Geophysical Research: Atmospheres, 124, 3180–3194, https://doi.org/10.1029/2018JD030077, 2019.
 - Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean Acidification: The Other CO2 Problem, Annual Review of Marine Science, 1, 169–192, https://doi.org/https://doi.org/10.1146/annurev.marine.010908.163834, publisher: Annual Reviews Type: Journal Article, 2009.
- Dong, B., Sutton, R. T., Woollings, T., and Hodges, K.: Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate, Environmental Research Letters, 8, 034 037, https://doi.org/10.1088/1748-9326/8/3/034037, 2013a.
 - Dong, B., Sutton, R. T., Woollings, T., and Hodges, K.: Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate, Environmental Research Letters, 8, 034 037, https://doi.org/10.1088/1748-9326/8/3/034037, 2013b.
 - Dupont, N. and Aksnes, D. L.: Centennial changes in water clarity of the Baltic Sea and the North Sea, Estuarine, Coastal and Shelf Science, 131, 282–289, https://doi.org/10.1016/j.ecss.2013.08.010, 2013.
- 930 Dutheil, C., Meier, H. E. M., Gröger, M., and Börgel, F.: Warming of Baltic Sea water masses since 1850, Climate Dynamics, 61, 1311–1331, https://doi.org/10.1007/s00382-022-06628-z, 2023.
 - Ehrnsten, E., Humborg, C., Gustafsson, E., and Gustafsson, B. G.: Disaster avoided: current state of the Baltic Sea without human intervention to reduce nutrient loads, Limnology and Oceanography Letters, 10, 318–328, https://doi.org/10.1002/lol2.10443, 2025.
 - Elken, J.: Deep water overflow, circulation and vertical exchange in the Baltic Proper, Estonian Marine Institute Report Series, 6, 91, 1996.
- 935 Enfield, D. B., Mestas-NuÃśez, A. M., and Trimble, P. J.: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S., Geophysical Research Letters, 28, 2077–2080, https://doi.org/10.1029/2000GL012745, 2001.

940

960

965

- Eremina, T. R., Maximov, A. A., and Voloshchuk, E. V.: The influence of the climateâĂŹs variability on the deep-water oxygen conditions in the east of the Gulf of Finland, Oceanology, 52, 771–779, https://doi.org/10.1134/S0001437012060045, 2012.
- Fabiano, F., Meccia, V. L., Davini, P., Ghinassi, P., and Corti, S.: A regime view of future atmospheric circulation changes in northern mid-latitudes, Weather and Climate Dynamics, 2, 163–180, https://doi.org/10.5194/wcd-2-163-2021, publisher: Copernicus GmbH, 2021.
- Falkena, S. K., de Wiljes, J., Weisheimer, A., and Shepherd, T. G.: Revisiting the identification of wintertime atmospheric circulation regimes in the Euro-Atlantic sector, Quarterly Journal of the Royal Meteorological Society, 146, 2801–2814, https://doi.org/10.1002/qj.3818, 2020.
- Fan, H., Borchert, L. F., Brune, S., Koul, V., and Baehr, J.: North Atlantic subpolar gyre provides downstream ocean predictability, npj Climate and Atmospheric Science, 6, 145, https://doi.org/10.1038/s41612-023-00469-1, 2023.
- 945 Ferster, B. S., Borchert, L. F., Mignot, J., Menary, M. B., Cassou, C., and Fedorov, A. V.: Pantropical Indo-Atlantic temperature gradient modulates multi-decadal AMOC variability in models and observations, npj Climate and Atmospheric Science, 6, Article 165, https://doi.org/10.1038/s41612-023-00489-x, 2023.
 - Fletcher, C. G. and Cassou, C.: The Dynamical Influence of Separate Teleconnections from the Pacific and Indian Oceans on the Northern Annular Mode, Journal of Climate, 28, 7985–8002, https://doi.org/10.1175/JCLI-D-14-00839.1, 2015.
- 950 Folland, C. K., Knight, J., Linderholm, H. W., Fereday, D., Ineson, S., and Hurrell, J. W.: The summer North Atlantic Oscillation: past, present, and future, Journal of Climate, 22, 1082–1103, https://doi.org/https://doi.org/10.1175/2008JCLI2459.1, 2009.
 - Francis, J. A., Chan, W., Leathers, D. J., Miller, J. R., and Veron, D. E.: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent, Geophysical Research Letters, 36, https://doi.org/10.1029/2009GL037274, 2009.
- Franzke, C., Lee, S., and Feldstein, S. B.: Is the North Atlantic Oscillation a Breaking Wave?, Journal of the Atmospheric Sciences, 61, 145 160, https://doi.org/10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2, 2004.
 - Frigstad, H., Andersen, G. S., Trannum, H. C., McGovern, M., Naustvoll, L.-J., Kaste, Ã., Deininger, A., and Hjermann, D. Ã.: Three decades of change in the Skagerrak coastal ecosystem, shaped by eutrophication and coastal darkening, Estuarine, Coastal and Shelf Science, 283, 108 193, https://doi.org/10.1016/j.ecss.2022.108193, 2023.
 - Funkey, C. P., Conley, D. J., Reuss, N. S., Humborg, C., Jilbert, T., and Slomp, C. P.: Hypoxia sustains cyanobacteria blooms in the Baltic Sea, Environmental Science & Technology, 48, 2598–2602, https://doi.org/DOI: https://doi.org/10.1021/es404395a, 2014.
 - Gimeno, L.: Oceanic sources of continental precipitation, Water Resources Research, 50, 3647–3649, https://doi.org/https://doi.org/10.1002/2014WR015477, 2014.
 - Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J. C., Taschetto, A. S., Ramos, A. M., Kumar, R., and Marengo, J.: Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events, Annual Review of Environment and Resources, 41, 117–141, https://doi.org/10.1146/annurev-environ-110615-085558, publisher: Annual Reviews, 2016.
 - Göbeler, N.: The role of marine heatwaves for biodiversity and ecosystem functioning in coastal waters, PhD dissertation, https://doi.org/DOI: http://hdl.handle.net/10138/587464, 2024.
 - Golubkov, M. and Golubkov, S.: Relationships Between Northern Hemisphere Teleconnection Patterns and Phytoplankton Productivity in the Neva Estuary (Northeastern Baltic Sea), Frontiers in Marine Science, 8, https://doi.org/10.3389/fmars.2021.735790, publisher: Frontiers, 2021.
 - Gómara, I. n., Rodríguez-Fonseca, B., Zurita-Gotor, P., and Pinto, J. G.: On the relation between explosive cyclones affecting Europe and the North Atlantic Oscillation, Geophysical Research Letters, 41, 2182–2190, https://doi.org/10.1002/2014GL059647, 2014.
 - Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I., and Wernli, H.: Balancing EuropeâĂŹs wind-power output through spatial deployment informed by weather regimes, Nature Climate Change, 7, 557–562, https://doi.org/10.1038/nclimate3338, 2017.

980

985

- 975 Granskog, M., Kaartokallio, H., Kuosa, H., Thomas, D. N., and Vainio, J.: Sea ice in the Baltic Sea âĂŞ A review, Estuarine, Coastal and Shelf Science, 70, 145–160, https://doi.org/10.1016/j.ecss.2006.06.001, 2006.
 - Gräwe, U., Naumann, M., Mohrholz, V., and Burchard, H.: Anatomizing one of the largest saltwater inflows into the B altic S ea in D ecember 2014, Journal of Geophysical Research: Oceans, 120, 7676–7697, https://doi.org/10.1002/2015JC011269, 2015.
 - Gräwe, U., Klingbeil, K., Kelln, J., and Dangendorf, S.: Decomposing Mean Sea Level Rise in a Semi-Enclosed Basin, the Baltic Sea, Journal of Climate, https://doi.org/10.1175/JCLI-D-18-0174.1, section: Journal of Climate, 2019.
 - Gröger, M., Dieterich, C., Meier, M. H. E., and Schimanke, S.: Thermal airâĂŞsea coupling in hindcast simulations for the North Sea and Baltic Sea on the NW European shelf, Tellus A: Dynamic Meteorology and Oceanography, 67, 26911, https://doi.org/10.3402/tellusa.v67.26911, 2015.
 - Gröger, M., Dieterich, C., Haapala, J., Ho-Hagemann, H. T. M., Hagemann, S., Jakacki, J., May, W., Meier, H. E. M., Miller, P. A., Rutgersson, A., and Wu, L.: Coupled regional Earth system modeling in the Baltic Sea region, Earth System Dynamics, 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, publisher: Copernicus GmbH, 2021a.
- Gröger, M., Dieterich, C., and Meier, H. E. M.: Is interactive air sea coupling relevant for simulating the future climate of Europe?, Climate Dynamics, 56, 491–514, https://doi.org/10.1007/s00382-020-05489-8, 2021b.
 - Gröger, M., Börgel, F., Karsten, S., Meier, H. E. M., Safonova, K., Dutheil, C., Receveur, A., and Polte, P.: Future climate change and marine heatwaves Projected impact on key habitats for herring reproduction, Science of The Total Environment, 951, 175756, https://doi.org/10.1016/j.scitotenv.2024.175756, 2024a.
- Gröger, M., Dutheil, C., Börgel, F., and Meier, M. H. E.: Drivers of marine heatwaves in a stratified marginal sea, Climate Dynamics, 62, 3231–3243, https://doi.org/10.1007/s00382-023-07062-5, 2024b.
 - Gustafsson, B. G., Schenk, F., Blenckner, T., Eilola, K., Meier, H. E. M., Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P., and Zorita, E.: Reconstructing the Development of Baltic Sea Eutrophication 1850âĂŞ2006, AMBIO, 41, 534–548, https://doi.org/10.1007/s13280-012-0318-x, 2012.
- Gustafsson, E., Wällstedt, T., Humborg, C., Mörth, C.-M., and Gustafsson, B. G.: External total alkalinity loads versus internal generation:

 The influence of nonriverine alkalinity sources in the Baltic Sea, Global Biogeochemical Cycles, 28, 1358–1370, https://doi.org/DOI: https://doi.org/10.1002/2014GB004888, 2014.
 - Gustafsson, E., Hagens, M., Sun, X., Reed, D. C., Humborg, C., Slomp, C. P., and Gustafsson, B. G.: Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea, Biogeosciences, 16, 437–456, https://doi.org/10.5194/bg-16-437-2019, publisher: Copernicus GmbH, 2019.
- Haapala, J. J., Ronkainen, I., Schmelzer, N., and Sztobryn, M.: Recent ChangeâĂŤSea Ice, in: Second Assessment of Climate Change for the Baltic Sea Basin, edited by The BACC II Author Team, pp. 145–153, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-16006-1_8, 2015a.
 - Haapala, J. J., Ronkainen, I., Schmelzer, N., and Sztobryn, M.: Recent ChangeâĂŤSea Ice, in: Second Assessment of Climate Change for the Baltic Sea Basin, edited by The Bacc Ii Author Team, pp. 145–153, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-16006-1_8, series Title: Regional Climate Studies, 2015b.

1025

1030

- Hallam, S., Josey, S. A., McCarthy, G. D., and Hirschi, J. J.-M.: A regional (landâĂŞocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871âĂŞ2011, Climate Dynamics, 59, 1897–1918, https://doi.org/10.1007/s00382-022-06185-5, 2022.
- Hammer, K., Schneider, B., Kuliński, K., and Schulz-Bull, D. E.: Acid-base properties of Baltic Sea dissolved organic matter, Journal of Marine Systems, 173, 114–121, https://doi.org/https://doi.org/10.1016/j.jmarsys.2017.04.007, 2017.
 - Hänninen, J., Vuorinen, I., and Hjelt, P.: Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea, Limnology and Oceanography, 45, 703–710, https://doi.org/10.4319/lo.2000.45.3.0703, 2000.
 - Hans-Harald, H., Andreas, L., Petereit, C., and Schmidt, J.: Correlation analyses of Baltic Sea winter water mass formation and its impact on secondary and tertiary production, 49, 2007.
- Hansson, D. and Gustafsson, E.: Salinity and hypoxia in the Baltic Sea since AD 1500, Journal of Geophysical Research: Oceans, 116, https://doi.org/DOI: https://doi.org/10.1029/2010JC006676, 2011.
 - Hansson, M. and Viktorsson, L.: Oxygen Survey in the Baltic Sea 2023:-Extent of Anoxia and Hypoxia, 1960-2023, SMHI REPORT OCEANOGRAPHY No. 67, 2019, https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1860636&dswid=-8934, 2024.
 - Hansson, M., Viktorsson, L., and Andersson, L.: Oxygen Survey in the Baltic Sea 2019 Extent of Anoxia and Hypoxia, 1960-2019, SMHI REPORT OCEANOGRAPHY No. 67, 2019, https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1413260&dswid=787, 2020.
 - Harnik, N.: Extreme upper level cyclonic vorticity events in relation to the Southern Hemisphere jet stream, Geophysical Research Letters, 41, 4373–4380, https://doi.org/10.1002/2014GL060009, 2014.
 - Havenhand, J. N., Filipsson, H. L., Niiranen, S., Troell, M., Crépin, A.-S., Jagers, S., Langlet, D., Matti, S., Turner, D., Winder, M., de Wit, P., and Anderson, L. G.: Ecological and functional consequences of coastal ocean acidification: Perspectives from the Baltic-Skagerrak System, Ambio, 48, 831–854, https://doi.org/10.1007/s13280-018-1110-3, 2019.
 - HELCOM: HELCOM (2023) State of the Baltic Sea 2023; Third HELCOM holistic assessment 2016-2021 (HOLAS 3), HELCOM ministerial declaration, ISSN: 0357-2994, url: https://stateofthebalticsea.helcom.fi, 2023.
 - Hepach, H., Piontek, J., Bange, H. W., Barthelmeß, T., von Jackowski, A., and Engel, A.: Enhanced warming and bacterial biomass production as key factors for coastal hypoxia in the southwestern Baltic Sea, Scientific Reports, 14, 29442, https://doi.org/DOI: https://doi.org/10.1038/s41598-024-80451-w, 2024.
 - Hieronymus, M. and Kalén, O.: Sea-level rise projections for Sweden based on the new IPCC special report: The ocean and cryosphere in a changing climate, Ambio, 49, 1587–1600, https://doi.org/10.1007/s13280-019-01313-8, 2020.
 - Hieronymus, M., Hieronymus, J., and Arneborg, L.: Sea level modelling in the Baltic and the North Sea: The respective role of different parts of the forcing, Ocean Modelling, 118, 59–72, https://doi.org/10.1016/j.ocemod.2017.08.007, 2017.
- Hieronymus, M., Berg, P., Ashraf, F. B., and Barquet, K.: Compound Flooding in Halmstad: Common Causes, Interannual Variability and the Effects of Climate Change | Tellus A: Dynamic Meteorology and Oceanography, Tellus. Series A, Dynamic Meteorology and Oceanography (Online), https://doi.org/10.16993/tellusa.4068, 2024.
 - Hilmer, M. and Jung, T.: Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export through Fram Strait, Geophysical Research Letters, 27, 989–992, https://doi.org/10.1029/1999GL010944, 2000.
- Hochman, A., Messori, G., Quinting, J. F., Pinto, J. G., and Grams, C. M.: Do Atlantic-European Weather Regimes Physically Exist?, Geophysical Research Letters, 48, e2021GL095 574, https://doi.org/10.1029/2021GL095574, 2021.
 - Holliday, N. P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., HÃątÞn, H., Johns, W., Josey, S. A., Larsen, K. M. H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H., and Yashayaev, I.: Ocean circulation causes the largest

- freshening event for 120 years in eastern subpolar North Atlantic, Nature Communications, 11, 585, https://doi.org/10.1038/s41467-020-1050 14474-y, publisher: Nature Publishing Group, 2020.
 - Holtermann, P., Prien, R., Naumann, M., and Umlauf, L.: Interleaving of oxygenized intrusions into the Baltic Sea redoxcline, Limnology and Oceanography, 65, 482–503, https://doi.org/10.1002/lno.11317, 2020.
 - Hurrell, J. W.: Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation, Science, 269, 676–679, https://doi.org/10.1126/science.269.5224.676, 1995.
- Hurrell, J. W. and Deser, C.: North Atlantic climate variability: The role of the North Atlantic Oscillation, Journal of Marine Systems, 78, 28–41, https://doi.org/10.1016/j.jmarsys.2008.11.026, 2009.
 - Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.: An Overview of the North Atlantic Oscillation, pp. 1–35, American Geophysical Union (AGU), https://doi.org/https://doi.org/10.1029/134GM01, 2003.
- Inácio, M., Karnauskaité, D., Baltranaité, E., Kalinauskas, M., Bogdzevič, K., Gomes, E., and Pereira, P.: Ecosystem services of the Baltic

 Sea: An assessment and mapping perspective, Geography and Sustainability, 1, 256–265, https://doi.org/10.1016/j.geosus.2020.11.001,
 2020.
 - Jaanus, A., Andersson, A., Olenina, I., Toming, K., and Kaljurand, K.: Changes in phytoplankton communities along a north-south gradient in the Baltic Sea between 1990 and 2008, Boreal environment research Boreal Env. Res, 16, 191–208, 1990.
- Jakobson, E. and Jakobson, L.: Atmospheric teleconnections between the Arctic and the Baltic Sea region as simulated by CESM1-LE, Earth

 System Dynamics, 15, 155–165, https://doi.org/10.5194/esd-15-155-2024, publisher: Copernicus GmbH, 2024.
 - Jakobsson, M., Stranne, C., O'Regan, M., Greenwood, S. L., Gustafsson, B., Humborg, C., and Weidner, E.: Bathymetric properties of the Baltic Sea, Ocean Science, 15, 905–924, https://doi.org/10.5194/os-15-905-2019, 2019.
 - Jilbert, T. and Slomp, C. P.: Rapid high-amplitude variability in Baltic Sea hypoxia during the Holocene, Geology, 41, 1183–1186, https://doi.org/DOI: https://doi.org/10.1130/G34804.1, 2013.
- Jilbert, T., Conley, D. J., Gustafsson, B. G., Funkey, C. P., and Slomp, C. P.: Glacio-isostatic control on hypoxia in a high-latitude shelf basin, Geology, 43, 427–430, https://doi.org/DOI: https://doi.org/10.1130/G36454.1, 2015.
 - Jilbert, T., Gustafsson, B. G., Veldhuijzen, S., Reed, D. C., van Helmond, N. A., Hermans, M., and Slomp, C. P.: Iron-phosphorus feedbacks drive multidecadal oscillations in Baltic Sea hypoxia, Geophysical Research Letters, 48, e2021GL095 908, https://doi.org/DOI: 10.1029/2021GL095908, 2021.
- Johansson, M., Boman, H., Kahma, K. K., and Launiainen, J.: Trends in sea level variability in the Baltic Sea, Boreal Environment Research, 6, 159–179, https://www.borenv.net/BER/archive/pdfs/ber6/ber6-159s.pdf, no DOI assigned by the journal, 2001.
 - Johansson, M. M. and Kahma, K. K.: On the statistical relationship between the geostrophic wind and sea level variations in the Baltic Sea, Boreal Environment Research, 21, 25–43, https://doi.org/10.60910/28e3-mzf0, 2016.
- Jokinen, S. A., Virtasalo, J. J., Jilbert, T., Kaiser, J., Dellwig, O., Arz, H. W., Hänninen, J., Arppe, L., Collander, M., and Saarinen, T.:

 A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century, Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, publisher: Copernicus GmbH, 2018.
 - Joyce, T. M., Deser, C., and Spall, M. A.: The Relation between Decadal Variability of Subtropical Mode Water and the North Atlantic Oscillation, Journal of Climate, https://journals.ametsoc.org/view/journals/clim/13/14/1520-0442_2000_013_2550_trbdvo_2.0.co_2.xml, section: Journal of Climate, 2000.

1100

- 1085 Kabel, K., Moros, M., Porsche, C., Neumann, T., Adolphi, F., Andersen, T. J., Siegel, H., Gerth, M., Leipe, T., Jansen, E., and Sinninghe Damsté, J. S.: Impact of climate change on the Baltic Sea ecosystem over the past 1,000 years, Nature Climate Change, 2, 871–874, https://doi.org/10.1038/nclimate1595, publisher: Nature Publishing Group, 2012.
 - Kahru, M., Elmgren, R., and Savchuk, O. P.: Changing seasonality of the Baltic Sea, Biogeosciences, 13, 1009–1018, https://doi.org/10.5194/bg-13-1009-2016, publisher: Copernicus GmbH, 2016.
- 1090 Kahru, M., Jacox, M. G., and Ohman, M. D.: CCE1: Decrease in the frequency of oceanic fronts and surface chlorophyll concentration in the California Current System during the 2014âĂŞ2016 northeast Pacific warm anomalies, Deep Sea Research Part I: Oceanographic Research Papers, 140, 4–13, https://doi.org/10.1016/j.dsr.2018.04.007, 2018.
 - Kahru, M., Elmgren, R., Kaiser, J., Wasmund, N., and Savchuk, O.: Cyanobacterial blooms in the Baltic Sea: Correlations with environmental factors, Harmful Algae, 92, 101739, https://doi.org/10.1016/j.hal.2019.101739, 2020.
- 1095 Kahru, M., Cahill, B., Elmgren, R., and Rehder, G.: What initiates cyanobacterial blooms in the Baltic Sea?, Harmful Algae, 148, 102 924, https://doi.org/10.1016/j.hal.2025.102924, 2025.
 - Karabil, S., Zorita, E., and Hünicke, B.: Mechanisms of variability in decadal sea-level trends in the Baltic Sea over the 20th century, Earth System Dynamics, 8, 1031–1046, https://doi.org/10.5194/esd-8-1031-2017, publisher: Copernicus GmbH, 2017.
 - Karabil, S., Zorita, E., and Hünicke, B.: Contribution of atmospheric circulation to recent off-shore sea-level variations in the Baltic Sea and the North Sea, Earth System Dynamics, 9, 69–90, https://doi.org/10.5194/esd-9-69-2018, publisher: Copernicus GmbH, 2018.
 - Karami, M. P., Koenigk, T., and Tremblay, B.: Variability modes of September Arctic sea ice: drivers and their contributions to sea ice trend and extremes, Environmental Research: Climate, 2, 025 005, https://doi.org/10.1088/2752-5295/accbe3, publisher: IOP Publishing, 2023.
 - Karlson, B., Andersen, P., Arneborg, L., Cembella, A., Eikrem, W., John, U., West, J. J., Klemm, K., Kobos, J., Lehtinen, S., Lundholm, N., Mazur-Marzec, H., Naustvoll, L., Poelman, M., Provoost, P., De Rijcke, M., and Suikkanen, S.: Harmful algal blooms and their effects in coastal seas of Northern Europe, Harmful Algae, 102, 101 989, https://doi.org/10.1016/j.hal.2021.101989, 2021.
 - Kauker, F. and Meier, H. E. M.: Modeling decadal variability of the Baltic Sea: 1. Reconstructing atmospheric surface data for the period 1902âĂŞ1998, Journal of Geophysical Research: Oceans, 108, 2003JC001797, https://doi.org/10.1029/2003JC001797, 2003.
 - Kauppi, L. and Villnäs, A.: Marine heatwaves of differing intensities lead to distinct patterns in seafloor functioning, Proceedings of the Royal Society B: Biological Sciences, 289, 20221 159, https://doi.org/10.1098/rspb.2022.1159, publisher: Royal Society, 2022.
- 1110 Kautz, L.-A., Martius, O., Pfahl, S., Pinto, J. G., Ramos, A. M., Sousa, P. M., and Woollings, T.: Atmospheric blocking and weather extremes over the Euro-Atlantic sector âĂŞ a review, Weather and Climate Dynamics, 3, 305–336, https://doi.org/10.5194/wcd-3-305-2022, publisher: Copernicus GmbH, 2022.
 - Klais, R., Tamminen, T., Kremp, A., Spilling, K., and Olli, K.: Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom, PloS one, 6, e21 567, https://doi.org/10.1371/journal.pone.0021567, 2011.
- 1115 Kniebusch, M., Meier, H. M., and Radtke, H.: Changing Salinity Gradients in the Baltic Sea As a Consequence of Altered Freshwater Budgets, Geophysical Research Letters, 46, 9739–9747, https://doi.org/10.1029/2019GL083902, 2019.
 - Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E.: A signature of persistent natural thermohaline circulation cycles in observed climate, Geophysical Research Letters, 32, https://doi.org/10.1029/2005GL024233, 2005.
- Knight, J. R., Folland, C. K., and Scaife, A. A.: Climate impacts of the Atlantic Multidecadal Oscillation, Geophysical Research Letters, 33, https://doi.org/10.1029/2006GL026242, 2006.
 - Koul, V., Schrum, C., Düsterhus, A., and Baehr, J.: Atlantic Inflow to the North Sea Modulated by the Subpolar Gyre in a Historical Simulation with MPI-ESM, Journal of Geophysical Research: Oceans, 124, 1807–1826, https://doi.org/10.1029/2018JC014738, 2019.

- Krapf, K., Naumann, M., Dutheil, C., and Meier, H. E. M.: Investigating Hypoxic and Euxinic Area Changes Based on Various Datasets From the Baltic Sea, Frontiers in Marine Science, 9, https://doi.org/10.3389/fmars.2022.823476, publisher: Frontiers, 2022.
- Kuliński, K., Schneider, B., Szymczycha, B., and Stokowski, M.: Structure and functioning of the acidâĂŞbase system in the Baltic Sea, Earth System Dynamics, 8, 1107–1120, https://doi.org/10.5194/esd-8-1107-2017, publisher: Copernicus GmbH, 2017.
 - Kuliński, K., Rehder, G., Asmala, E., Bartosova, A., Carstensen, J., Gustafsson, B., Hall, P. O. J., Humborg, C., Jilbert, T., Jürgens, K., Meier, H. E. M., Müller-Karulis, B., Naumann, M., Olesen, J. E., Savchuk, O., Schramm, A., Slomp, C. P., Sofiev, M., Sobek, A., Szymczycha, B., and Undeman, E.: Biogeochemical functioning of the Baltic Sea, Earth System Dynamics, 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, publisher: Copernicus GmbH, 2022.
 - Kullenberg, G. and Jacobsen, T.: The Baltic Sea: an outline of its physical oceanography, Marine pollution bulletin, 12, 183–186, https://doi.org/https://doi.org/10.1016/0025-326X(81)90168-5, 1981a.
 - Kullenberg, G. and Jacobsen, T. S.: The Baltic Sea: an outline of its physical oceanography, Marine Pollution Bulletin, 12, 183–186, https://doi.org/10.1016/0025-326X(81)90168-5, 1981b.
- 1135 Kuosa, H., Fleming-Lehtinen, V., Lehtinen, S., Lehtiniemi, M., NygÃĕrd, H., Raateoja, M., Raitaniemi, J., Tuimala, J., Uusitalo, L., and Suikkanen, S.: A retrospective view of the development of the Gulf of Bothnia ecosystem, Journal of Marine Systems, 167, 78–92, https://doi.org/10.1016/j.jmarsys.2016.11.020, 2017.
 - Laine, A. O., Mattila, J., and Lehikoinen, A.: First record of the brackish water dreissenid bivalve Mytilopsis leucophaeta in the northern Baltic Sea, Aquatic Invasions, 1, 38–41, https://doi.org/DOI: 10.3391/ai.2006.1.1.9, 2006.
- 1140 Langehaug, H. R., Ortega, P., Counillon, F., Matei, D., Maroon, E., Keenlyside, N., Mignot, J., Wang, Y., Swingedouw, D., Bethke, I., Yang, S., Danabasoglu, G., Bellucci, A., Ruggieri, P., Nicolì, D., and Årthun, M.: Propagation of Thermohaline Anomalies and Their Predictive Potential along the Atlantic Water Pathway, Journal of Climate, 35, 2111–2131, https://doi.org/10.1175/JCLI-D-20-1007.1, 2022.
 - Lass, H. U. and Matthäus, W.: On temporal wind variations forcing salt water inflows into the Baltic Sea, Tellus A: Dynamic Meteorology and Oceanography, 48, 663, https://doi.org/10.3402/tellusa.v48i5.12163, 1996.
- Latif, M., Sun, J., Visbeck, M., and Hadi Bordbar, M.: Natural variability has dominated Atlantic Meridional Overturning Circulation since 1900, Nature Climate Change, 12, 455–460, https://doi.org/10.1038/s41558-022-01342-4, publisher: Nature Publishing Group, 2022.
 - Laufkötter, C., John, J. G., Stock, C. A., and Dunne, J. P.: Temperature and oxygen dependence of the remineralization of organic matter, Global Biogeochemical Cycles, 31, 1038–1050, https://doi.org/10.1002/2017GB005643, 2017.
- Laurila, T. K., Sinclair, V. A., and Gregow, H.: Climatology, variability, and trends in near-surface wind speeds over the North Atlantic and Europe during 1979âĂŞ2018 based on ERA5, International Journal of Climatology, 41, 2253–2278, https://doi.org/10.1002/joc.6957, 2021.
 - Lehmann, A., Getzlaff, K., and Harlaß, J.: Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009, Climate Research, 46, 185–196, https://doi.org/10.3354/cr00876, 2011.
- Lehmann, A., Höflich, K., Post, P., and Myrberg, K.: Pathways of deep cyclones associated with large volume changes (LVCs) and major Baltic inflows (MBIs), Journal of Marine Systems, 167, 11–18, https://doi.org/10.1016/j.jmarsys.2016.10.014, 2017.
 - Lehmann, A., Myrberg, K., Post, P., Chubarenko, I., Dailidiene, I., Hinrichsen, H.-H., Hüssy, K., Liblik, T., Meier, H. M., Lips, U., et al.: Salinity dynamics of the Baltic Sea, Earth System Dynamics, 13, 373–392, https://doi.org/DOI: https://doi.org/10.5194/esd-13-373-2022, 2022.

- Lehtoranta, J., Savchuk, O. P., Elken, J., Dahlbo, K., Kuosa, H., Raateoja, M., Kauppila, P., Räike, A., and Pitkänen, H.: Atmo-spheric forcing controlling inter-annual nutrient dynamics in the open Gulf of Finland, Journal of Marine Systems, 171, 4–20, https://doi.org/10.1016/j.jmarsys.2017.02.001, 2017.
 - Lenggenhager, S. and Martius, O.: Quantifying the link between heavy precipitation and Northern Hemisphere blockingâĂŤA Lagrangian analysis, Atmospheric Science Letters, 21, e999, https://doi.org/10.1002/asl.999, 2020.
- Lennartz, S. T., Lehmann, A., Herrford, J., Malien, F., Hansen, H.-P., Biester, H., and Bange, H. W.: Long-term trends at the Boknis Eck time series station (Baltic Sea), 1957–2013: does climate change counteract the decline in eutrophication?, Biogeosciences, 11, 6323–6339, https://doi.org/DOI: https://doi.org/10.5194/bg-11-6323-2014, 2014.
 - Liblik, T. and Lips, U.: Characteristics and variability of the vertical thermohaline structure in the Gulf of Finland in summer, https://agris.fao.org/search/en/providers/125344/records/6748a0d97625988a371e97ee, 2011.
- Liblik, T., Laanemets, J., Raudsepp, U., Elken, J., and Suhhova, I.: Estuarine circulation reversals and related rapid changes in winter near-bottom oxygen conditions in the Gulf of Finland, Baltic Sea, Ocean Science, 9, 917–930, https://doi.org/10.5194/os-9-917-2013, publisher: Copernicus GmbH, 2013.
 - Liblik, T., Buschmann, F., Siht, E., Kuprijanov, I., Väli, G., Lipp, M., Erm, A., Laanemets, J., Eschbaum, R., Verliin, A., Saks, L., and Zekker, I.: Environmental impact of water exchange blocking in a strait âĂŞ a multidisciplinary study in the Baltic Sea, Oceanologia, 66, 9–25, https://doi.org/10.1016/j.oceano.2023.06.002, 2024.
- 1175 Lindzen, R. A.: Dynamics in Atmospheric Physics, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511608285, 1990.
 - Liné, A., Cassou, C., Msadek, R., and Parey, S.: Modulation of Northern Europe near-term anthropogenic warming and wettening assessed through internal variability storylines, npj Climate and Atmospheric Science, 7, 272, https://doi.org/10.1038/s41612-024-00759-2, publisher: Nature Publishing Group, 2024.
- Lips, U., Zhurbas, V., Skudra, M., and Väli, G.: A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part II: Mesoscale features and freshwater transport pathways, Continental Shelf Research, 115, 44–52, https://doi.org/10.1016/j.csr.2015.12.018, 2016.
 - Liu, Q.: On the definition and persistence of blocking, Tellus A, 46, 286–298, https://doi.org/10.1034/j.1600-0870.1994.t01-2-00004.x, 1994.
 - López-Urrutia, A., San Martin, E., Harris, R. P., and Irigoien, X.: Scaling the metabolic balance of the oceans, Proceedings of the National Academy of Sciences, 103, 8739–8744, https://doi.org/10.1073/pnas.0601137103, publisher: Proceedings of the National Academy of Sciences, 2006.
 - Löptien, U. and Dietze, H.: Retracing cyanobacteria blooms in the Baltic Sea, Scientific Reports, 12, 10 873, https://doi.org/10.1038/s41598-022-14880-w, publisher: Nature Publishing Group, 2022.
 - Löptien, U., Renz, M., and Dietze, H.: Major Baltic Inflows come in different flavours, Communications Earth & Environment, 6, 232, https://doi.org/10.1038/s43247-025-02209-0, publisher: Nature Publishing Group, 2025.
- Luo, D. and Gong, T.: A possible mechanism for the eastward shift of interannual NAO action centers in last three decades, Geophysical Research Letters, 33, L24 815, https://doi.org/10.1029/2006GL027860, 2006.
 - Luo, D., Zhong, L., Ren, R., and Wang, C.: Spatial Pattern and Zonal Shift of the North Atlantic Oscillation. Part II: Numerical Experiments, Journal of the Atmospheric Sciences, 67, 2827–2853, https://doi.org/10.1175/2010JAS3340.1, 2010a.
- Luo, D., Zhu, Z., Ren, R., Zhong, L., and Wang, C.: Spatial Pattern and Zonal Shift of the North Atlantic Oscillation. Part I: A Dynamical Interpretation, Journal of the Atmospheric Sciences, 67, 2805–2826, https://doi.org/10.1175/2010JAS3345.1, 2010b.

- Madonna, E., Li, C., Grams, C. M., and Woollings, T.: The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector, Quarterly Journal of the Royal Meteorological Society, 143, 2960–2972, https://doi.org/https://doi.org/10.1002/qj.3155, 2017.
- Maher, N., Kay, J. E., and Capotondi, A.: Modulation of ENSO teleconnections over North America by the Pacific decadal oscillation, Environmental Research Letters, 17, 114 005, https://doi.org/10.1088/1748-9326/ac9327, publisher: IOP Publishing, 2022.
 - Mann, M. E., Steinman, B. A., Brouillette, D. J., and Miller, S. K.: Multidecadal climate oscillations during the past millennium driven by volcanic forcing, Science, 371, 1014–1019, https://doi.org/10.1126/science.abc5810, 2021.
 - Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A Pacific interdecadal climate oscillation with impacts on salmon production, Bulletin of the American Meteorological Society, 78, 1069–1079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2, 1997.
 - Marcos, M. and Woodworth, P. L.: Changes in Extreme Sea Levels, CLIVAR Exchanges, pp. 20–24, https://doi.org/10.5065/D6445K82, 2018.
 - Matthäus, W.: Mixing across the primary Baltic halocline, Beiträge zur Meereskunde, pp. 21-31, 1990.
- Matthäus, W. and Franck, H.: Characteristics of major Baltic inflowsâĂŤa statistical analysis, Continental Shelf Research, 12, 1375–1400, https://doi.org/10.1016/0278-4343(92)90060-W, 1992.
 - McKenna, C. M., Bracegirdle, T. J., Shuckburgh, E. F., Haynes, P. H., and Joshi, M. M.: Arctic Sea Ice Loss in Different Regions Leads to Contrasting Northern Hemisphere Impacts, Geophysical Research Letters, 45, 945–954, https://doi.org/10.1002/2017GL076433, 2018.
 - Meier, H. E. M. and Kauker, F.: Modeling decadal variability of the Baltic Sea: 2. Role of freshwater inflow and largeâĂŘscale atmospheric circulation for salinity, Journal of Geophysical Research: Oceans, 108, 2003JC001799, https://doi.org/10.1029/2003JC001799, 2003.
- Meier, H. E. M., Andersson, H. C., Arheimer, B., Blenckner, T., Chubarenko, B., Donnelly, C., Eilola, K., Gustafsson, B. G., Hansson, A., Havenhand, J., Höglund, A., Kuznetsov, I., MacKenzie, B. R., Müller-Karulis, B., Neumann, T., Niiranen, S., Piwowarczyk, J., Raudsepp, U., Reckermann, M., Ruoho-Airola, T., Savchuk, O. P., Schenk, F., Schimanke, S., Väli, G., Weslawski, J.-M., and Zorita, E.: Comparing reconstructed past variations and future projections of the Baltic Sea ecosystemâĂŤfirst results from multi-model ensemble simulations, Environmental Research Letters, 7, 034 005, https://doi.org/10.1088/1748-9326/7/3/034005, publisher: IOP Publishing, 2012.
- Meier, H. E. M., Väli, G., Naumann, M., Eilola, K., and Frauen, C.: Recently Accelerated Oxygen Consumption Rates Amplify Deoxygenation in the Baltic Sea, Journal of Geophysical Research: Oceans, 123, 3227–3240, https://doi.org/10.1029/2017JC013686, 2018.
 - Meier, H. E. M., Eilola, K., Almroth-Rosell, E., Schimanke, S., Kniebusch, M., Höglund, A., Pemberton, P., Liu, Y., Väli, G., and Saraiva, S.: Disentangling the impact of nutrient load and climate changes on Baltic Sea hypoxia and eutrophication since 1850, Climate Dynamics, 53, 1145–1166, https://doi.org/10.1007/s00382-018-4296-y, 2019.
- Meier, H. E. M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M. P., Bartosova, A., Bonsdorff, E., Börgel, F., Capell, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O. B., Dierschke, V., Frauen, C., Frederiksen, M., Gaget, E., Galatius, A., Haapala, J. J., Halkka, A., Hugelius, G., Hünicke, B., Jaagus, J., Jüssi, M., Käyhkö, J., Kirchner, N., Kjellström, E., Kulinski, K., Lehmann, A., Lindström, G., May, W., Miller, P. A., Mohrholz, V., Müller-Karulis, B., Pavón-JordÃan, D., Quante, M., Reckermann, M., Rutgersson, A., Savchuk, O. P., Stendel, M., Tuomi, L., Viitasalo, M., Weisse, R., and Zhang, W.: Climate change in the Baltic Sea region: a summary, Earth System Dynamics, 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, publisher: Copernicus GmbH, 2022.
 - Meier, H. M.: Modeling the age of Baltic Seawater masses: quantification and steady state sensitivity experiments, Journal of Geophysical Research: Oceans, 110, https://doi.org/DOI: https://doi.org/10.1029/2004JC002607, 2005.

1235

- Meier, M., Feistel, R., Jan, P., Arneborg, L., Burchard, H., Volker, F., Nikolay, G., Natalia, K., Mohrholz, V., Christian, N., Paka, V., Stips, A., and Zhurbas, V.: Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observations and models, Oceanologia, 48, 2006.
- Meier, M., Barghorn, L., Börgel, F., Gröger, M., Naumov, L., and Radtke, H.: Multidecadal climate variability dominated past trends in the water balance of the Baltic Sea watershed, npj Climate and Atmospheric Science, 6, 58, https://doi.org/https://doi.org/10.1038/s41612-023-00380-9, 2023a.
- Meier, M. H. E., Barghorn, L., Börgel, F., Gröger, M., Naumov, L., and Radtke, H.: Multidecadal climate variability dominated past trends in the water balance of the Baltic Sea watershed, npj Climate and Atmospheric Science, 6, 58, https://doi.org/10.1038/s41612-023-00380-9, 2023b.
 - Messori, G., Caballero, R., and Gaetani, M.: On cold spells in North America and storminess in western Europe, Geophysical Research Letters, 43, 6620–6628, https://doi.org/10.1002/2016GL069392, 2016.
- Messori, G., Wu, M., Vico, G., and Galfi, V. M.: Atmospheric jet stream variability reflects vegetation activity in Europe, Agricultural and Forest Meteorology, 322, 109 008, https://doi.org/10.1016/j.agrformet.2022.109008, 2022.
 - Michel, S. L. L., von der Heydt, A. S., van Westen, R. M., Baatsen, M. L. J., and Dijkstra, H. A.: Increased wintertime European atmospheric blocking frequencies in General Circulation Models with an eddy-permitting ocean, npj Climate and Atmospheric Science, 6, 50, https://doi.org/10.1038/s41612-023-00372-9, publisher: Nature Publishing Group, 2023.
- Mockert, F., Grams, C. M., Brown, T., and Neumann, F.: Meteorological conditions during periods of low wind speed and insolation in Germany: The role of weather regimes, Meteorological Applications, 30, e2141, https://doi.org/10.1002/met.2141, 2023.
 - Mohrholz, V.: Major Baltic Inflow Statistics âĂŞ Revised, Frontiers in Marine Science, 5, https://doi.org/10.3389/fmars.2018.00384, publisher: Frontiers, 2018.
 - Mohrholz, V., Dutz, J., and Kraus, G.: The impact of exceptionally warm summer inflow events on the environmental conditions in the Bornholm Basin, 60, 285–301, https://doi.org/10.1016/j.jmarsys.2005.10.002.
- Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., and Gräwe, U.: Fresh oxygen for the Baltic Sea âĂŤ An exceptional saline inflow after a decade of stagnation, Journal of Marine Systems, 148, 152–166, https://doi.org/10.1016/j.jmarsys.2015.03.005, 2015.
 - Monerie, P.-A., Robson, J., Dong, B., and Hodson, D.: Role of the Atlantic Multidecadal Variability in Modulating East Asian Climate, Climate Dynamics, 56, 381–398, https://doi.org/10.1007/s00382-020-05477-y, 2021.
- Müller, J. D., Schneider, B., and Rehder, G.: Long-term alkalinity trends in the Baltic Sea and their implications for CO2-induced acidification, Limnology and Oceanography, 61, 1984–2002, https://doi.org/10.1002/lno.10349, 2016.
 - Müller, W., Borchert, L., and Ghosh, R.: Observed Subdecadal Variations of European Summer Temperatures, Geophysical Research Letters, 47, e2019GL086 043, https://doi.org/10.1029/2019GL086043, 2020.
 - Müller-Karulis, B., McCrackin, M. L., Dessirier, B., Gustafsson, B. G., and Humborg, C.: Legacy nutrients in the Baltic Sea drainage basin: How past practices affect eutrophication management, Journal of Environmental Management, 370, 122 478, https://doi.org/10.1016/j.jenvman.2024.122478, 2024.
 - Naumov, L., Meier, H. M., and Neumann, T.: Dynamics of oxygen sources and sinks in the Baltic Sea under different nutrient inputs, Frontiers in Marine Science, 10, 1233 324, https://doi.org/DOI: https://doi.org/10.3389/fmars.2023.1233324, 2023.
 - Neumann, T. and Schernewski, G.: Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model, Journal of Marine Systems, 74, 592–602, 2008.

- 1270 Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Lorenzo, E. D., Mantua, N. J., Miller, A. J., Minobe, S., Nakamura, H., Schneider, N., Vimont, D. J., Phillips, A. S., Scott, J. D., and Smith, C. A.: The Pacific Decadal Oscillation, Revisited, Journal of Climate, 29, 4399–4427, https://doi.org/10.1175/JCLI-D-15-0508.1, 2016.
 - Ohvril, H., Teral, H., Neiman, L., Kannel, M., Uustare, M., Tee, M., Russak, V., Okulov, O., Jõeveer, A., Kallis, A., et al.: Global dimming and brightening versus atmospheric column transparency, Europe, 1906–2007, Journal of Geophysical Research: Atmospheres, 114, https://doi.org/https://doi.org/10.1029/2008JD010644, 2009.
 - Olesen, C., Hald Steffensen, F., Lauge Nielsen, G., Jong-van den Berg, L., Olsen, J., Toft SÄÿrensen, H., and The Euromap group: Drug use in first pregnancy and lactation: a population-based survey among Danish women, European Journal of Clinical Pharmacology, 55, 139–144, https://doi.org/10.1007/s002280050608, 1999.
- Olli, K., Klais, R., Tamminen, T., Ptacnik, R., and Andersen, T.: Long term changes in the Baltic Sea phytoplankton community, Boreal Environment Research, 16, 3, 2011.
 - Oltmanns, M., Holliday, N. P., Screen, J., Moat, B. I., Josey, S. A., Evans, D. G., and Bacon, S.: European summer weather linked to North Atlantic freshwater anomalies in preceding years, Weather and Climate Dynamics, 5, 109–132, https://doi.org/10.5194/wcd-5-109-2024, publisher: Copernicus GmbH, 2024.
- Omrani, N.-E., Keenlyside, N., Matthes, K., Boljka, L., Zanchettin, D., Jungclaus, J. H., and Lubis, S. W.: Coupled stratosphere-troposphere1285 Atlantic multidecadal oscillation and its importance for near-future climate projection, npj Climate and Atmospheric Science, 5, 59,
 https://doi.org/10.1038/s41612-022-00275-1, publisher: Nature Publishing Group, 2022.
 - Omstedt, A. and Chen, D.: Influence of atmospheric circulation on the maximum ice extent in the Baltic Sea, Journal of Geophysical Research: Oceans, 106, 4493–4500, https://doi.org/10.1029/1999JC000173, 2001.
- Opdal, A. F., Lindemann, C., and Aksnes, D. L.: Centennial decline in North Sea water clarity causes strong delay in phytoplankton bloom timing, Global Change Biology, 25, 3946–3953, https://doi.org/10.1111/gcb.14810, 2019.
 - Opdal, A. F., Lindemann, C., Andersen, T., Hessen, D. O., Fiksen, Ã., and Aksnes, D. L.: Land use change and coastal water darkening drive synchronous dynamics in phytoplankton and fish phenology on centennial timescales, Global Change Biology, 30, e17 308, https://doi.org/10.1111/gcb.17308, 2024.
- O'Reilly, C. H., Woollings, T., and Zanna, L.: The Dynamical Influence of the Atlantic Multidecadal Oscillation on Continental Climate, Journal of Climate, 30, 7213–7230, https://doi.org/10.1175/JCLI-D-16-0345.1, 2017.
 - O'Reilly, C. H., Woollings, T., Zanna, L., Scaife, A. A., Osso, A., Smith, D. M., Dunstone, N., Yeager, S., Ruggieri, P., Deser, C., Lehner, F., Hirschi, J., and Robson, J.: Challenges with interpreting the impact of Atlantic Multidecadal Variability using SST-restoring experiments, npj Climate and Atmospheric Science, 6, 14, https://doi.org/10.1038/s41612-023-00335-0, 2023.
- Ostrowska, M., Ficek, D., Stoltmann, D., Stoń-Egiert, J., Zdun, A., Kowalewski, M., Zapadka, T., Majchrowski, R., Pawlik, M., and Dera,

 J.: Ten years of remote sensing and analyses of the Baltic Sea primary production (2010âĂŞ2019), Remote Sensing Applications: Society and Environment, 26, 100715, https://doi.org/10.1016/j.rsase.2022.100715, 2022.
 - Palmer, T. E., McSweeney, C. F., Booth, B. B. B., Priestley, M. D. K., Davini, P., Brunner, L., Borchert, L., and Menary, M. B.: Performance-based sub-selection of CMIP6 models for impact assessments in Europe, Earth System Dynamics, 14, 457–483, https://doi.org/10.5194/esd-14-457-2023, 2023.
- Palmer, T. N.: A Nonlinear Dynamical Perspective on Climate Prediction, Journal of climate, https://journals.ametsoc.org/view/journals/clim/12/2/1520-0442_1999_012_0575_andpoc_2.0.co_2.xml, section: Journal of Climate, 1999.

- Paolini, L. F., Athanasiadis, P. J., Ruggieri, P., and Bellucci, A.: The Atmospheric Response to Meridional Shifts of the Gulf Stream SST Front and Its Dependence on Model Resolution, Journal of Climate, https://doi.org/10.1175/JCLI-D-21-0530.1, 2022.
- Papadomanolaki, N. M., Dijkstra, N., van Helmond, N. A. G. M., Hagens, M., Bauersachs, T., Kotthoff, U., Sangiorgi, F., and Slomp,

 C. P.: Controls on the onset and termination of past hypoxia in the Baltic Sea, Palaeogeography, Palaeoclimatology, Palaeoecology, 490,

 347–354, https://doi.org/10.1016/j.palaeo.2017.11.012, 2018.
 - Parding, K. M., Liepert, B. G., Hinkelman, L. M., Ackerman, T. P., Dagestad, K.-F., and Olseth, J. A.: Influence of synoptic weather patterns on solar irradiance variability in northern Europe, Journal of Climate, 29, 4229–4250, https://doi.org/https://doi.org/10.1175/JCLI-D-15-0476.1, 2016.
- Patrizio, C. R., Athanasiadis, P. J., Frankignoul, C., Iovino, D., Masina, S., Paolini, L. F., and Gualdi, S.: Improved Extratropical North Atlantic AtmosphereâĂŞOcean Variability with Increasing Ocean Model Resolution, Journal of Climate, https://doi.org/10.1175/JCLI-D-23-0230.1, section: Journal of Climate, 2023.
 - Patrizio, C. R., Athanasiadis, P. J., Smith, D. M., and NicolÃň, D.: Ocean-atmosphere feedbacks key to NAO decadal predictability, npj Climate and Atmospheric Science, 8, 146, https://doi.org/10.1038/s41612-025-01027-7, publisher: Nature Publishing Group, 2025.
- Perez, J., Maycock, A. C., Griffiths, S. D., Hardiman, S. C., and McKenna, C. M.: A new characterisation of the North Atlantic eddy-driven jet using two-dimensional moment analysis, Weather and Climate Dynamics, 5, 1061–1078, https://doi.org/10.5194/wcd-5-1061-2024, 2024.
 - Peterson, K. A., Greatbatch, R. J., Lu, J., Lin, H., and Derome, J.: Hindcasting the NAO using diabatic forcing of a simple AGCM, Geophysical Research Letters, 29, 1336, https://doi.org/10.1029/2001GL014502, 4 pp., 2002.
- Peterson, K. A., Lu, J., and Greatbatch, R. J.: Evidence of nonlinear dynamics in the eastward shift of the NAO, Geophysical Research Letters, 30, 1030, https://doi.org/10.1029/2002GL015585, 4 pp., 2003.
 - Pfahl, S. and Wernli, H.: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales, Geophysical Research Letters, 39, https://doi.org/10.1029/2012GL052261, 2012.
- Polyakov, I. V., Tikka, K., Haapala, J., Alkire, M. B., Alenius, P., and Kuosa, H.: Depletion of oxygen in the Bothnian Sea since the mid-1950s, Frontiers in Marine Science, 9, 917 879, https://doi.org/DOI: https://doi.org/10.3389/fmars.2022.917879, 2022.
 - Polyakov, I. V., Ingvaldsen, R. B., Pnyushkov, A. V., Bhatt, U. S., Francis, J. A., Janout, M., Kwok, R., and Skagseth, O.: Fluctuating Atlantic inflows modulate Arctic atlantification, Science, https://doi.org/10.1126/science.adh5158, publisher: American Association for the Advancement of Science, 2023.
- Post, P. and Aun, M.: Changes in satellite-based cloud parameters in the Baltic Sea region during spring and summer (1982–2015), Advances in Science and Research, 17, 219–225, https://doi.org/https://doi.org/10.5194/asr-17-219-2020, 2020.
 - Post, P. and Aun, M.: Changes in cloudiness contribute to changing seasonality in the Baltic Sea region, Oceanologia, 66, 91–98, https://doi.org/https://doi.org/10.1016/j.oceano.2023.11.004, 2024.
 - Priestley, M. D. K., Stephenson, D. B., Scaife, A. A., Bannister, D., Allen, C. J. T., and Wilkie, D.: Return levels of extreme European windstorms, their dependency on the North Atlantic Oscillation, and potential future risks, Natural Hazards and Earth System Sciences, 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023, publisher: Copernicus GmbH, 2023.
 - Radtke, H., Brunnabend, S.-E., Gräwe, U., and Meier, H. E. M.: Investigating interdecadal salinity changes in the Baltic Sea in a 1850âĂŞ2008 hindcast simulation, Climate of the Past, 16, 1617–1642, https://doi.org/10.5194/cp-16-1617-2020, publisher: Copernicus GmbH, 2020.

- Reintges, A., Latif, M., and Park, W.: Sub-decadal North Atlantic Oscillation variability in observations and the Kiel Climate Model, Climate Dynamics, 48, 3475–3487, https://doi.org/10.1007/s00382-016-3279-0, 2017.
 - Reissmann, J. H., Burchard, H., Feistel, R., Hagen, E., Lass, H. U., Mohrholz, V., Nausch, G., Umlauf, L., and Wieczorek, G.: Vertical mixing in the Baltic Sea and consequences for eutrophication âĂŞ A review, Progress in Oceanography, 82, 47–80, https://doi.org/10.1016/j.pocean.2007.10.004, 2009.
- Rex, D. F.: Blocking Action in the Middle Troposphere and its Effect upon Regional Climate, Tellus, 2, 275–301, https://doi.org/10.3402/tellusa.v2i4.8603, 1950.
 - Rimbu, N., Lohmann, G., and Ionita, M.: Interannual to multidecadal Euro-Atlantic blocking variability during winter and its relationship with extreme low temperatures in Europe, Journal of Geophysical Research: Atmospheres, 119, 13621–13636, https://doi.org/10.1002/2014JD021983, 2014.
- Robson, J., Sutton, R., Menary, M. B., and Lai, M. W. K.: Contrasting internally and externally generated Atlantic Multidecadal Variability and the role for AMOC in CMIP6 historical simulations, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381, 20220 194, https://doi.org/10.1098/rsta.2022.0194, 2023.
 - Rodwell, M. J., Rowell, D. P., and Folland, C. K.: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate, Nature, 398, 320–323, https://doi.org/10.1038/18648, 1999.
- Roiha, P., Westerlund, A., Nummelin, A., and Stipa, T.: Ensemble forecasting of harmful algal blooms in the Baltic Sea, Journal of Marine Systems, 83, 210–220, https://doi.org/10.1016/j.jmarsys.2010.02.015, 2010.
 - Rolff, C., Walve, J., Larsson, U., and Elmgren, R.: How oxygen deficiency in the Baltic Sea proper has spread and worsened: The role of ammonium and hydrogen sulphide, Ambio, 51, 2308–2324, https://doi.org/10.1007/s13280-022-01738-8, 2022.
 - Röthlisberger, M. and Papritz, L.: A Global Quantification of the Physical Processes Leading to Near-Surface Cold Extremes, Geophysical Research Letters, 50, e2022GL101670, https://doi.org/10.1029/2022GL101670, 2023a.
- Röthlisberger, M. and Papritz, L.: Quantifying the physical processes leading to atmospheric hot extremes at a global scale, Nature Geoscience, 16, 210–216, https://doi.org/10.1038/s41561-023-01126-1, publisher: Nature Publishing Group, 2023b.
 - Ruggieri, P., Bellucci, A., Nicolí, D., Athanasiadis, P. J., Gualdi, S., Cassou, C., Castruccio, F., Danabasoglu, G., Davini, P., Dunstone, N., Eade, R., Gastineau, G., Harvey, B., Hermanson, L., Qasmi, S., Ruprich-Robert, Y., Sanchez-Gomez, E., Smith, D., Wild, S., and Zampieri, M.: Atlantic Multidecadal Variability and North Atlantic Jet: A Multimodel View from the Decadal Climate Prediction Project,
- Journal of Climate, 34, 347–360, https://doi.org/10.1175/JCLI-D-19-0981.1, publisher: American Meteorological Society Section: Journal of Climate, 2021.
 - Ruprich-Robert, Y., Msadek, R., Castruccio, F., Yeager, S. G., Delworth, T. L., and Danabasoglu, G.: Assessing the Climate Impacts of the Observed Atlantic Multidecadal Variability Using the GFDL CM2.1 and NCAR CESM1 Global Coupled Models, Journal of Climate, 30, 2785–2810, https://doi.org/10.1175/JCLI-D-16-0127.1, 2017.
- 1375 Russak, V.: Changes in solar radiation and their influence on temperature trend in Estonia (1955–2007), Journal of Geophysical Research: Atmospheres, 114, https://doi.org/https://doi.org/10.1029/2008JD010613, 2009.
 - Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M., Jylhä, K., Kujala, P., Larsén, X. G., HalsnÃes, K., Lehtonen, I., Luomaranta, A., Nilsson, E., Olsson, T., Särkkä, J., Tuomi, L., and Wasmund, N.: Natural hazards and extreme events in the Baltic Sea region, Earth System Dynamics, 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, publisher: Copernicus GmbH, 2022.

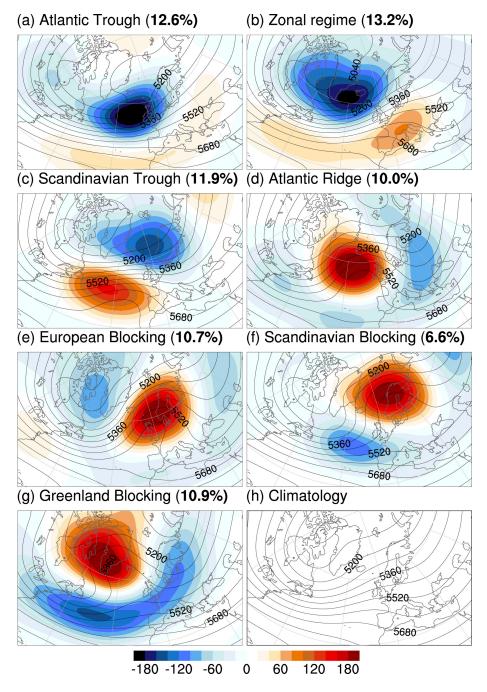
- Safonova, K., Meier, H. E. M., and Gröger, M.: Summer heatwaves on the Baltic Sea seabed contribute to oxygen deficiency in shallow areas, Communications Earth & Environment, 5, 106, https://doi.org/10.1038/s43247-024-01268-z, publisher: Nature Publishing Group, 2024.
 - Samuelsson, M. and Stigebrandt, A.: Main characteristics of the long-term sea level variability in the Baltic sea | Tellus A: Dynamic Meteorology and Oceanography, Tellus a, https://doi.org/10.3402/tellusa.v48i5.12165, 1996.
- 1385 Sanchez-Lorenzo, A., Wild, M., Brunetti, M., Guijarro, J. A., Hakuba, M. Z., Calbó, J., Mystakidis, S., and Bartok, B.: Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012), Journal of Geophysical Research: Atmospheres, 120, 9555–9569, https://doi.org/10.1002/2015JD023321, 2015.
 - Santos, J. A., Woollings, T., and Pinto, J. G.: Are the Winters 2010 and 2012 Archetypes Exhibiting Extreme Opposite Behavior of the North Atlantic Jet Stream?, Monthly Weather Review, https://doi.org/10.1175/MWR-D-13-00024.1, section: Monthly Weather Review, 2013.
- 1390 Savchuk, O. P.: Large-Scale Nutrient Dynamics in the Baltic Sea, 1970âĂŞ2016, Frontiers in Marine Science, 5, https://doi.org/10.3389/fmars.2018.00095, publisher: Frontiers, 2018.
 - Schaller, N., Sillmann, J., Anstey, J., Fischer, E. M., Grams, C. M., and Russo, S.: Influence of blocking on Northern European and Western Russian heatwaves in large climate model ensembles, Environmental Research Letters, 13, 054 015, https://doi.org/10.1088/1748-9326/aaba55, publisher: IOP Publishing, 2018.
- Schielicke, L. and Pfahl, S.: European heatwaves in present and future climate simulations: a Lagrangian analysis, Weather and Climate Dynamics, 3, 1439–1459, https://doi.org/10.5194/wcd-3-1439-2022, publisher: Copernicus GmbH, 2022.
 - Schilliger, L., Tetzlaff, A., Bourgeois, Q., Correa, L. F., and Wild, M.: An investigation on causes of the detected surface solar radiation brightening in Europe using satellite data, Journal of Geophysical Research: Atmospheres, 129, e2024JD041101, https://doi.org/https://doi.org/10.1029/2024JD041101, 2024.
- 1400 Schimanke, S. and Meier, H. E. M.: Decadal-to-Centennial Variability of Salinity in the Baltic Sea, Journal of Climate, 29, 7173–7188, https://doi.org/10.1175/JCLI-D-15-0443.1, 2016.
 - Schinke, H. and Matthäus, W.: On the causes of major Baltic inflows âĂŤan analysis of long time series, Continental Shelf Research, 18, 67–97, https://doi.org/10.1016/S0278-4343(97)00071-X, 1998.
- Schmidt, B., Wodzinowski, T., and Bulczak, A. I.: Long-term variability of near-bottom oxygen, temperature, and salinity in the Southern Baltic, Journal of Marine Systems, 213, 103 462, https://doi.org/10.1016/j.jmarsys.2020.103462, 2021.
 - Schmidt, J., Petereit, C., Lehmann, A., and Hinrichsen, H.-H.: Correlation analyses of Baltic Sea winter water mass formation and its impact on secondary and tertiary production, Oceanologia, 49, 381–395, http://www.iopan.gda.pl/oceanologia/49_3.html#A6, publisher: Institute of Oceanology of the Polish Academy of Sciences, 2007.
 - Schneider, B. and Müller, J. D.: Biogeochemical transformations in the Baltic Sea, Springer, 2018.
- 1410 Screen, J. A., Deser, C., Simmonds, I., and Tomas, R.: Atmospheric impacts of Arctic sea-ice loss, 1979âĂŞ2009: separating forced change from atmospheric internal variability, Climate Dynamics, 43, 333–344, https://doi.org/10.1007/s00382-013-1830-9, 2014.
 - Simon, A., Gastineau, G., Frankignoul, C., Lapin, V., and Ortega, P.: Pacific Decadal Oscillation modulates the Arctic sea-ice loss influence on the midlatitude atmospheric circulation in winter, Weather and Climate Dynamics, 3, 845–861, https://doi.org/10.5194/wcd-3-845-2022, 2022.
- 1415 Simpson, I. R., Yeager, S. G., McKinnon, K. A., and Deser, C.: Decadal predictability of late winter precipitation in western Europe through an oceanâĂŞjet stream connection, Nature Geoscience, 12, 613–619, https://doi.org/10.1038/s41561-019-0391-x, publisher: Nature Publishing Group, 2019.

1425

- Skeie, P.: Meridional flow variability over the Nordic Seas in the Arctic Oscillation framework, Geophysical Research Letters, 27, 2569–2572, https://doi.org/10.1029/2000GL011529, 2000.
- Smith, D. M., Scaife, A. A., Eade, R., Athanasiadis, P., Bellucci, A., Bethke, I., Bilbao, R., Borchert, L. F., Caron, L.-P., Counillon, F., Danabasoglu, G., DelSole, T., Dunstone, N., Estella-Perez, V., Hermanson, L., Keenlyside, N., Kharin, V., Kimoto, M., Merryfield, W. J., Ortega, P., Pankatz, K., Sospedra-Alfonso, R., Swingedouw, D., Wild, S., and Yeager, S. G.: North Atlantic climate far more predictable than models imply, Nature, 583, 796–800, https://doi.org/10.1038/s41586-020-2525-0, 2020.
 - Steinfeld, D., Sprenger, M., Beyerle, U., and Pfahl, S.: Response of moist and dry processes in atmospheric blocking to climate change, Environmental Research Letters, 17, 084 020, https://doi.org/10.1088/1748-9326/ac81af, publisher: IOP Publishing, 2022.
 - Stigebrandt, A. and Gustafsson, B. G.: Response of the Baltic Sea to climate changeâĂŤtheory and observations, Journal of Sea Research, 49, 243–256, https://doi.org/10.1016/S1385-1101(03)00021-2, 2003.
 - Stockmayer, V. and Lehmann, A.: Variations of temperature, salinity and oxygen of the Baltic Sea for the period 1950 to 2020, Oceanologia, 65, 466–483, https://doi.org/10.1016/j.oceano.2023.02.002, 2023.
- 1430 Stoicescu, S.-T., Laanemets, J., Liblik, T., Skudra, M., Samlas, O., Lips, I., and Lips, U.: Causes of the extensive hypoxia in the Gulf of Riga in 2018, Biogeosciences, 19, 2903–2920, https://doi.org/10.5194/bg-19-2903-2022, publisher: Copernicus GmbH, 2022.
 - Stoń-Egiert, J. and Ostrowska, M.: Long-term changes in phytoplankton pigment contents in the Baltic Sea: Trends and spatial variability during 20 years of investigations, Continental Shelf Research, 236, 104 666, https://doi.org/10.1016/j.csr.2022.104666, 2022.
- Stramska, M.: Temporal variability of the Baltic Sea level based on satellite observations, Estuarine, Coastal and Shelf Science, 133, 244–250, https://doi.org/10.1016/j.ecss.2013.09.002, 2013.
 - Strommen, K., Woollings, T., Davini, P., Ruggieri, P., and Simpson, I. R.: Predictable decadal forcing of the North Atlantic jet speed by sub-polar North Atlantic sea surface temperatures, Weather and Climate Dynamics, 4, 853–874, https://doi.org/10.5194/wcd-4-853-2023, publisher: Copernicus GmbH, 2023.
- Teubler, F., Riemer, M., Polster, C., Grams, C. M., Hauser, S., and Wirth, V.: Similarity and variability of blocked weather-regime dynamics in the AtlanticâĂŞEuropean region, Weather and Climate Dynamics, 4, 265–285, https://doi.org/10.5194/wcd-4-265-2023, publisher: Copernicus GmbH, 2023.
 - Thor, P. and Dupont, S.: Ocean Acidification, in: Handbook on Marine Environment Protection: Science, Impacts and Sustainable Management, edited by Salomon, M. and Markus, T., pp. 375–394, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-60156-4_19, 2018.
- Thor, P. and Oliva, E. O.: Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod Pseudocalanus acuspes, Marine Biology, 162, 799–807, https://doi.org/10.1007/s00227-015-2625-9, 2015.
 - Tinz, B.: On the Relation Between Annual Maximum Extent of Ice Cover in the Baltic Sea and Sea Level Pressure as Well as Air Temperature Field, Geophysica, 32, 319–341, https://www.geophysica.fi/pdf/geophysica_1996_32_3_319_tinz.pdf, no DOI assigned, 1996.
- Tremblay, L.-B.: Can we consider the Arctic Oscillation independently from the Barents Oscillation?, Geophysical Research Letters, 28, 4227–4230, https://doi.org/10.1029/2001GL013740, 2001.
 - Uotila, P., Vihma, T., and Haapala, J.: Atmospheric and oceanic conditions and the extremely low Bothnian Bay sea ice extent in 2014/2015, Geophysical Research Letters, 42, 7740–7749, https://doi.org/10.1002/2015GL064901, 2015.
 - Vajedsamiei, J., Warlo, N., Meier, H. E. M., and Melzner, F.: Predicting key ectotherm population mortality in response to dynamic marine heatwaves: A Bayesian-enhanced thermal tolerance landscape approach, Functional Ecology, 38, 1875–1887, https://doi.org/10.1111/1365-2435.14620, 2024.

- Väli, G., Meier, H. E. M., and Elken, J.: Simulated halocline variability in the Baltic Sea and its impact on hypoxia during 1961âÅŞ2007, Journal of Geophysical Research: Oceans, 118, 6982–7000, https://doi.org/10.1002/2013JC009192, 2013.
- Vautard, R.: Multiple Weather Regimes over the North Atlantic: Analysis of Precursors and Successors, Monthly Weather Review, 118, 2056 2081, https://doi.org/10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2, 1990.
- 1460 Vihma, T.: Effects of Arctic Sea Ice Decline on Weather and Climate: A Review, Surveys in Geophysics, 35, 1175–1214, https://doi.org/10.1007/s10712-014-9284-0, 2014.
 - Vihma, T. and Haapala, J.: Geophysics of sea ice in the Baltic Sea: A review, Progress in Oceanography, 80, 129–148, https://doi.org/10.1016/j.pocean.2009.02.002, 2009.
- Viitasalo, M. and Bonsdorff, E.: Global climate change and the Baltic Sea ecosystem: direct and indirect effects on species, communities and ecosystem functioning, Earth System Dynamics, 13, 711–747, https://doi.org/10.5194/esd-13-711-2022, publisher: Copernicus GmbH, 2022.
 - Wallmann, K., Diesing, M., Scholz, F., Rehder, G., Dale, A. W., Fuhr, M., and Suess, E.: Erosion of carbonate-bearing sedimentary rocks may close the alkalinity budget of the Baltic Sea and support atmospheric CO2 uptake in coastal seas, Frontiers in Marine Science, 9, https://doi.org/10.3389/fmars.2022.968069, publisher: Frontiers, 2022.
- 1470 Walz, M. A., Befort, D. J., Kirchner-Bossi, N. O., Ulbrich, U., and Leckebusch, G. C.: Modelling serial clustering and interannual variability of European winter windstorms based on large-scale drivers, International Journal of Climatology, 38, 3044–3057, https://doi.org/10.1002/joc.5481, 2018.
 - Wang, S., Huang, J., He, Y., and Guan, Y.: Combined effects of the Pacific Decadal Oscillation and El Niño–Southern Oscillation on global land dry-wet changes, Scientific Reports, 4, 6651, https://doi.org/10.1038/srep06651, 2014.
- Wasmund, N., Göbel, J., and Bodungen, B. v.: 100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea), Journal of Marine Systems, 73, 300–322, https://doi.org/10.1016/j.jmarsys.2006.09.009, 2008.
 - Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.: Long-term trends in phytoplankton composition in the western and central Baltic Sea, Journal of Marine Systems, 87, 145–159, https://doi.org/https://doi.org/10.1016/j.jmarsys.2011.03.010, 2011.
- Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Marine Ecology Progress Series, 622, 1–16, https://doi.org/10.3354/meps12994, 2019.
 - Weisse, R., DailidienÄŮ, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., and Zorita, E.: Sea level dynamics and coastal erosion in the Baltic Sea region, Earth System Dynamics, 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, publisher: Copernicus GmbH, 2021.
- Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G., Forgan, B., Kallis, A., Russak, V., and Tsvetkov, A.: From dimming to brightening: Decadal changes in solar radiation at Earth's surface, Science, 308, 847–850, https://doi.org/DOI: 10.1126/science.110321, 2005.
 - Wild, M., Trüssel, B., Ohmura, A., Long, C. N., König-Langlo, G., Dutton, E. G., and Tsvetkov, A.: Global dimming and brightening: An update beyond 2000, Journal of Geophysical Research: Atmospheres, 114, https://doi.org/l0.1029/2008JD011382, 2009.
- Wills, R. C. J., Armour, K. C., Battisti, D. S., and Hartmann, D. L.: Ocean–Atmosphere Dynamical Coupling Fundamental to the Atlantic Multidecadal Oscillation, Journal of Climate, 32, 251–272, https://doi.org/10.1175/JCLI-D-18-0269.1, 2019.
 - Woollings, T. and Blackburn, M.: The North Atlantic Jet Stream under Climate Change and Its Relation to the NAO and EA Patterns, Journal of Climate, 25, 886–902, https://doi.org/10.1175/JCLI-D-11-00087.1, 2012.

1510



- Woollings, T., Hannachi, A., and Hoskins, B.: Variability of the North Atlantic eddy-driven jet stream, Quarterly Journal of the Royal Meteorological Society, 136, 856–868, https://doi.org/10.1002/qj.625, 2010a.
 - Woollings, T., Hannachi, A., Hoskins, B., and Turner, A.: A Regime View of the North Atlantic Oscillation and Its Response to Anthropogenic Forcing, Journal of Climate, 23, 1291–1307, https://doi.org/10.1175/2009JCLI3087.1, 2010b.
 - Woollings, T., Czuchnicki, C., and Franzke, C.: Twentieth century North Atlantic jet variability, Quarterly Journal of the Royal Meteorological Society, 140, 783–791, https://doi.org/10.1002/qj.2197, 2014.
- Woollings, T., Franzke, C., Hodson, D. L. R., Dong, B., Barnes, E. A., Raible, C. C., and Pinto, J. G.: Contrasting interannual and multidecadal NAO variability, Climate Dynamics, 45, 539–556, https://doi.org/10.1007/s00382-014-2237-y, 2015.
 - Wrzesiński, D. and Paluszkiewicz, R.: Spatial differences in the impact of the North Atlantic Oscillation on the flow of rivers in Europe, Hydrology Research, 42, 30–39, https://doi.org/10.2166/nh.2010.077, 2011.
- Yan, X., Zhang, R., and Knutson, T. R.: Underestimated AMOC Variability and Implications for AMV and Predictability in CMIP Models,

 Geophysical Research Letters, 45, 4319–4328, https://doi.org/10.1029/2018GL077378, 2018.
 - Yeager, S. G. and Robson, J. I.: Recent Progress in Understanding and Predicting Atlantic Decadal Climate Variability, Current Climate Change Reports, 3, 112–127, https://doi.org/10.1007/s40641-017-0064-z, 2017.
 - Yu, H., Screen, J. A., Hay, S., Catto, J. L., and Xu, M.: Winter Precipitation Responses to Projected Arctic Sea Ice Loss and Global Ocean Warming and Their Opposing Influences over the Northeast Atlantic Region, Journal of Climate, https://doi.org/10.1175/JCLI-D-22-0774.1, section: Journal of Climate, 2023.
 - Zappa, G. and Shepherd, T. G.: Storylines of Atmospheric Circulation Change for European Regional Climate Impact Assessment, Journal of Climate, https://doi.org/10.1175/JCLI-D-16-0807.1, section: Journal of Climate, 2017.
 - Zdun, A., Stoń-Egiert, J., Ficek, D., and Ostrowska, M.: Seasonal and Spatial Changes of Primary Production in the Baltic Sea (Europe) Based on in situ Measurements in the Period of 1993âAŞ2018, Frontiers in Marine Science, 7, https://doi.org/10.3389/fmars.2020.604532, publisher: Frontiers, 2021.
 - Zillén, L., Conley, D. J., Andrén, T., Andrén, E., and Björck, S.: Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact, Earth-Science Reviews, 91, 77–92, https://doi.org/DOI: https://doi.org/10.1016/j.earscirev.2008.10.001, 2008.
- Zorita, E. and Laine, A.: Dependence of salinity and oxygen concentrations in the Baltic Sea on large-scale atmospheric circulation, Climate Research, 14, 25–41, https://doi.org/DOI: https://doi.org/10.3354/cr014025, 2000.
 - ÅAysiak Pastuszak, E., Drgas, N., and PiÄĚtkowska, Z.: Eutrophication in the Polish coastal zone: the past, present status and future scenarios, Marine Pollution Bulletin, 49, 186–195, https://doi.org/10.1016/j.marpolbul.2004.02.007, 2004.

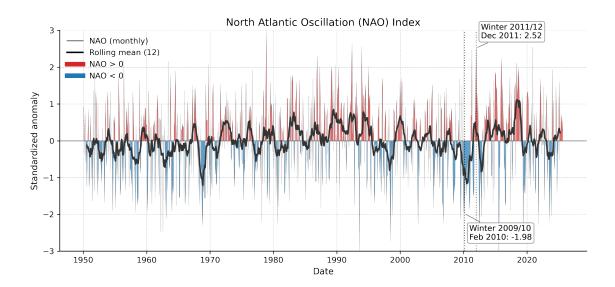


Figure 3. Atlantic-European weather regimes in winter and their relative frequency of occurrence (in percent). (a-g) 500-hPa geopotential height mean composites (contours, every 80 geopotential meters (gpm)) and their anomalies (shading, every 20 gpm) with respect to the seasonal climatology (h) during active regime life cycles (the onset to decay period) in December, January, February of 1979-2019. The weather regimes considered are: (a) Atlantic Trough, (b) Zonal Regime (NAO+), (c) Scandinavian Trough (NAO-), (d) Atlantic Ridge, (e) European Blocking, (f) Scandinavian Blocking, (g) Greenland Blocking. Numbers in the subfigure titles indicate the frequencies of winter days attributed to the respective regime (a-g). The frequency of 'no regime' days is 24.1% (Hochman et al., 2021, their Figure 1).

Figure 4. North Atlantic Oscillation (NAO) index, monthly values (thin gray) with 12-month centered running mean (thick black). Months with NAO > 0 are shaded red; NAO < 0 are shaded blue. Vertical dashed lines mark winters 2009/10 and 2011/12. Data: NOAA CPC monthly standardized NAO (Z500-based)

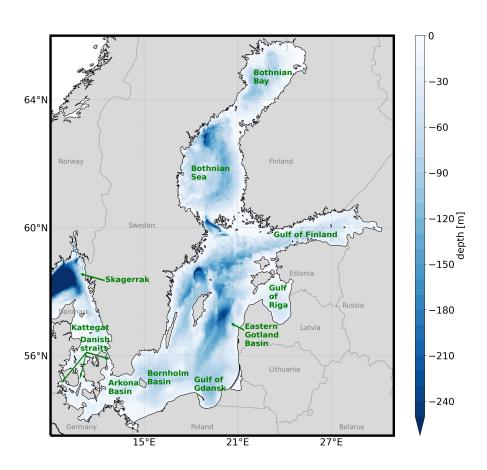
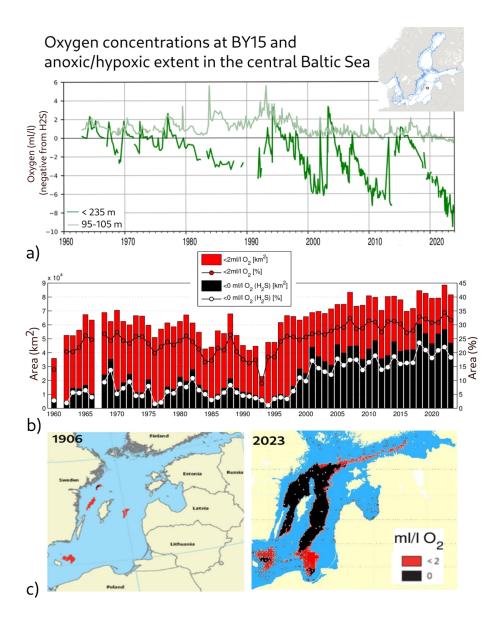
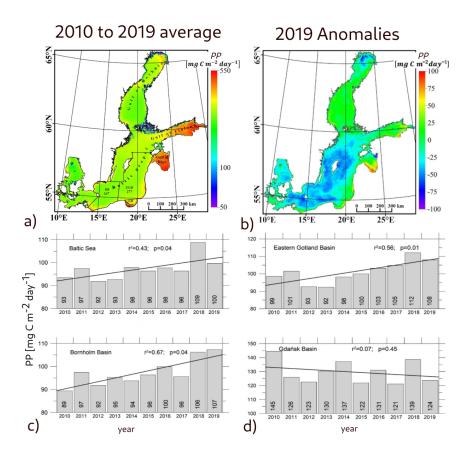


Figure 5. Bathymetry of the Baltic Sea with labels indicating major sub-basins.

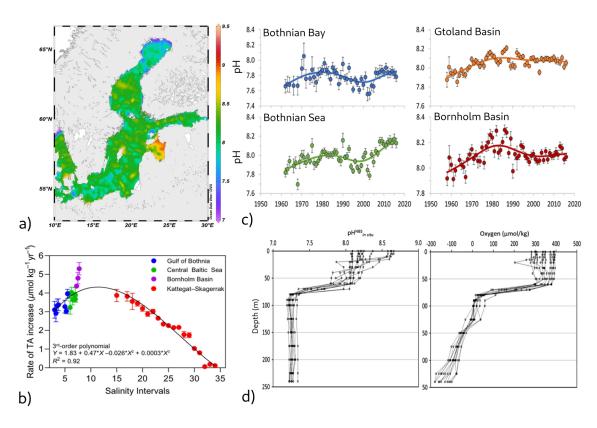

Figure 6. a) Observed oxygen concentrations in intermediate and bottom waters at BY15 (in the Baltic proper) for the period 1960 to 2023, where H2S concentrations were converted to negative oxygen equivalent (1 [H₂ S (ml/l)] = -2 [O₂ (ml/l)]). b) Areal extent of anoxic (O₂ < 0 ml/l) and hypoxic (O_2 < 2 ml/l) conditions in the central Baltic Sea (Baltic proper, Gulf of Finland and Gulf of Riga) from 1960 to 2023 estimated from observations (adapted from Hansson and Viktorsson, 2024). c) Maps showing the extent of hypoxic and anoxic waters for the years 1906 and 2023, adapted from Carstensen et al. (2014) and Hansson and Viktorsson, 2024.

Figure 7. Primary productivity (PP) in the Baltic Sea: a) Daily PP of the Baltic Sea, the mean from the period of 2010-2019. The numbers represent mean values determined for the analyzed basins: the Bornholm Basin, the Eastern Gotland Basin (EGB), the Gdańsk Basin and for the entire Baltic Sea. b) Anomalies of the Baltic Sea primary production determined as the difference between PP in 2019 and the average PP value from 2010 and 2019. The total yearly primary production for c) the entire Baltic Sea and the Bornholm Basin and d) the Eastern Gotland Basin and the Gdańsk Basin together with the trend line; determined based on the monthly means for particular years for the period 2010-2019 (data source: SatBaltyk System) (Ostrowska et al., 2022)

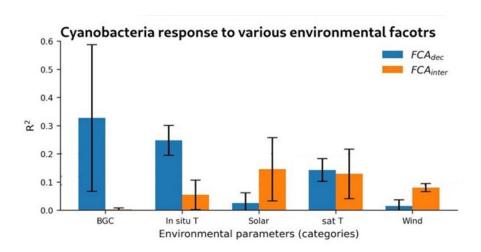


Figure 8. a) Long-term spatial distribution of pH in surface waters in the Baltic Sea showing the long-term mean over the period of 1911-2003 (Havenhand et al., 2019). b) The rate of total alkalinity (TA) increases in surface waters of 4 different basins in the Baltic Sea, averaged over the period 1995 to 2021 (colored dots). The black line represents a third order polynomial regression (Cotovicz Jr. et al., 2024). c) Trends of pH with time in 4 basins of the Baltic Sea (from Kuliński et al. (2022) based of Carstensen and Conley 2019). d) Monthly profiles of pH and oxygen in the Gotland Basin during 2008 (after Ulfsbo et al., 2011). Negative oxygen values show how much oxygen would be required to reoxidize the hydrogen sulphide to sulphate

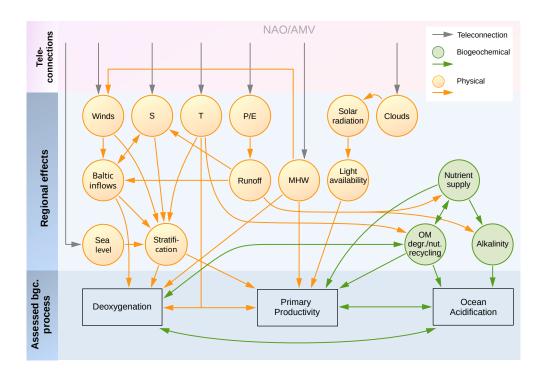


Figure 9. Influence of various environmental factors on cyanobacteria surface accumulations (FCA) expressed as coefficient of determination (R2) on decadal (blue) and interannual (orange) time-scales for the central Baltic proper. The environmental categories include sea surface temperature derived from satellite (sat T) and measured in situ (In situ T) for 0 to 15 m, surface incoming shortwave radiation (Solar), various biogeochemical properties (BGC) and wind (Wind). Error bars highlight the variability within each category. The figure is adapted from Kahru et al. (2020)

.

Figure 10. Simplified diagram summarizing identified teleconnections between physical patterns and deoxygenation, primary productivity and ocean acidification acting in the Baltic Sea across the time scales examined in this study. Arrows only show confirmed links from the literature that are addressed in section 3.2. Potential (unconfirmed) links are not shown. P/E, S, T and OM denote precipitation/evaporation, salinity, temperature and organic matter, respectively.