
1 

 

Impact of burial conditions on NO3
--N source apportionment in groundwater: 1 

Insights from PCA-APCS-MLR and MixSIAR methods 2 

Yang Liu1,2, Jian Luo3, Yajie Wu4, Ziyang Zhang1,2, Xilai Zheng1,2, Tianyuan 3 

Zheng1,2* 4 

1. College of Environmental Science and Engineering, Ocean University of China, 5 

Qingdao 266100, China 6 

2. Shandong Provincial Key Laboratory of Marine Engineering Geology and the 7 

Environment, Ocean University of China, Qingdao 266100, China 8 

3. School of Civil and Environmental Engineering, Georgia Institute of Technology, 9 

Atlanta, GA 30332, USA  10 

4. College of Engineering, Ocean University of China, Qingdao 266100, China 11 

 12 

Corresponding author:  13 

Tianyuan Zheng 14 

E-mail: zhengtianyuan@ouc.edu.cn 15 

 16 

Abstract 17 

NO3
--N contamination in groundwater poses a significant threat to drinking water 18 

safety and ecosystem health, with accurate source identification being crucial for 19 

effective pollution control. Previous studies on NO3
--N source apportionment in 20 

groundwater have largely neglected aquifer burial conditions. In this study, 21 

groundwater samples from aquifers with varying burial conditions were collected and 22 

analyzed using an integrated approach combining hydrochemical analysis (PCA-23 

APCS-MLR) and stable isotope mixing modeling (MixSIAR) to identify and quantify 24 

NO3
--N pollution sources. The results demonstrate that NO3

--N concentrations in 75% 25 

of the groundwater samples exceeded the WHO drinking water standard. PCA-APCS-26 

MLR analysis revealed that the dominant NO3
--N sources in unconfined groundwater 27 

and confined groundwater were chemical fertilizers (52.5%) and manure & sewage 28 
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(53.9%), respectively. The MixSIAR model further identified soil nitrogen (58%) and 29 

manure & sewage (37.9%) as the primary contributors to NO3
--N in unconfined and 30 

confined groundwater, respectively. These findings suggest that unconfined 31 

groundwater in regions with high soil nitrogen reserves is at persistent risk of NO3
--N 32 

contamination. In addition, neglecting aquifer burial conditions would introduce 33 

absolute errors of 22%-24% in source apportionment results obtained from both PCA-34 

APCS-MLR and MixSIAR approaches. This study highlights that aquifer confinement 35 

must be rigorously considered as a critical factor in NO3
--N source identification and 36 

pollution control strategies to enhance the accuracy of source apportionment and the 37 

effectiveness of management measures.  38 

Keywords: Groundwater; NO3
--N pollution; Source apportionment; PCA-APCS-MLR; 39 

MixSIAR 40 

 41 
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 44 

Highlights 45 

• Elucidated the sources of NO3
--N in aquifers under different burial conditions. 46 

• Soil nitrogen contributes over 50% to the NO3
--N in the unconfined aquifer.  47 
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• NO3
--N in confined aquifer mainly originates from manure & sewage. 48 

• Source apportionment results have an error of 24% without considering the burial 49 

conditions. 50 

 51 

1. Introduction 52 

Groundwater NO3
--N contamination has persisted for nearly a century worldwide, 53 

emerging as a critical environmental challenge that threatens both human health and 54 

ecological security (Xin et al., 2019). As a highly toxic pollutant, NO3
--N poses 55 

significant health risks including methemoglobinemia and cancer when ingested 56 

through drinking water (Picetti et al., 2022), while also causing severe ecological 57 

impacts such as aquatic eutrophication (Romanelli et al., 2020). The environmental 58 

persistence of NO3
--N is exacerbated by limited natural attenuation in groundwater 59 

systems due to weak denitrification processes, resulting in long-term accumulation of 60 

this contaminant (Rivett et al., 2008). The primary sources of NO3
--N include non-point 61 

source pollution from agricultural activities (fertilizer application and livestock 62 

operations) and point source pollution from industrial effluents and domestic sewage 63 

(Xin et al., 2021). Consequently, the accurate identification and dissection of NO3
--N 64 

pollution sources are pivotal to the assessment and control of groundwater pollution 65 

risks. Despite some advancements in NO3
--N source apportionment over the past 66 

decades (Yang et al., 2013; Gibrilla et al., 2020), the majority of studies have 67 

overlooked the burial conditions and stratigraphic characteristics of unconfined and 68 

confined aquifers. Ignoring this issue can lead to inaccurate source apportionment 69 

results, and consequently affect the scientific nature and effectiveness of groundwater 70 

pollution prevention and control strategies. 71 

Current studies on NO3
--N source apportionment in groundwater predominantly 72 

simplifies complex multi-layer aquifer systems into single-layer models without 73 

accounting for differences in burial conditions (Yu et al., 2020). While this 74 

simplification facilitates analysis, it introduces substantial limitations due to 75 
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fundamental differences between unconfined and confined aquifers in terms of recharge 76 

mechanisms, flow paths, hydraulic characteristics, and contaminant transport behavior. 77 

Unconfined aquifers, characterized by strong connectivity with surface water, are 78 

highly vulnerable to anthropogenic activities (e.g., agricultural fertilization, industrial 79 

effluents, and domestic sewage), allowing contaminants to readily leach into 80 

groundwater through precipitation or surface runoff, resulting in rapid NO3
--N 81 

accumulation that typically reflects recent pollution caused by recent human activities 82 

(Gutiérrez et al., 2018). In contrast, confined aquifers, protected by overlying aquitards, 83 

exhibit slower contaminant migration, with NO3
--N pollution often representing legacy 84 

effects from historical agricultural practices (Wong et al., 2015). Failure to differentiate 85 

these aquifer types may lead to biased source contribution assessments. In addition, the 86 

transformation rates of nitrogen components from different pollution sources vary in 87 

aquifers with different burial conditions. Unconfined aquifers are generally aerobic 88 

environments, where the mineralization and nitrification of organic nitrogen occur 89 

rapidly, leading to a swift increase in NO3
--N concentration (Liu et al., 2022). In contrast, 90 

confined aquifers tend to have reducing conditions, which restrict the nitrogen 91 

transformation rate and cause a lag in NO3
--N formation (Ma et al., 2019). As a result, 92 

the source of NO3
--N may be mistakenly attributed to other pollution sources. Therefore, 93 

elucidating the sources of NO3
--N pollution in actual double-layered aquifers with 94 

different burial conditions and revealing the discrepancies between these results and 95 

those obtained without considering burial conditions can provide a more accurate basis 96 

for groundwater NO3
--N pollution risk assessment. 97 

In recent years, some progress has been made in the identification of NO3
--N 98 

pollution sources in groundwater through the application of hydrochemical analysis 99 

methods and stable isotope mixing models (Minet et al., 2017; Yu et al., 2022). 100 

Hydrochemical analysis methods mainly include ion ratio methods, hydrochemical 101 

diagram methods, and quantitative hydrochemical analysis methods. Among these, 102 

quantitative hydrochemical analysis is the core, which encompasses models such as the 103 
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chemical mass balance (CMB), positive matrix factorization (PMF), and multivariate 104 

statistical models (e.g., principal component analysis and multiple linear regression 105 

analysis). Among these methods, the absolute principal component score-multiple 106 

linear regression (APCS-MLR) method has garnered considerable attention due to its 107 

high efficiency and broad applicability (Meng et al., 2018; Ruan et al., 2024). APCS-108 

MLR can extract key pollution source information by reducing data redundancy 109 

through principal component analysis while retaining the essential characteristics of 110 

major pollution sources. Additionally, APCS-MLR can establish a quantitative 111 

relationship between principal component scores and actual pollutant concentrations 112 

via multiple linear regression, thereby accurately calculating the contribution rates of 113 

various pollution sources. Subsequently, stable isotope techniques have been applied in 114 

the identification of NO3
--N pollution sources in groundwater. The development of this 115 

technology in groundwater NO3
--N source apportionment has evolved from the use of 116 

single isotopes (δ15N) to the combined application of multiple isotopes (both δ15N and 117 

δ18O) (Kellman and Hillaire-Marcel, 2003; Ji et al., 2022). By analyzing the isotopic 118 

compositions of nitrogen (δ15N) and oxygen (δ18O) in NO3
--N, this technique can 119 

effectively distinguish different sources of NO3
--N pollution in groundwater (such as 120 

agricultural fertilization, domestic sewage, soil nitrogen, and atmospheric deposition) 121 

(Ransom et al., 2016), thereby providing an important supplement to traditional 122 

hydrochemical analysis methods. To further quantify the contribution proportions of 123 

different pollution sources and enhance the accuracy of source identification, the stable 124 

isotope mixing model based on the R language, MixSIAR, has been developed. The 125 

MixSIAR method, by integrating isotope data with prior information on pollution 126 

sources, is capable of quantifying the relative contributions of different pollution 127 

sources and assessing the uncertainty of the results. Mao et al. (2023) used the 128 

MixSIAR method to analyze the distribution of nitrate pollution sources in the 129 

groundwater of Poyang Lake, China, revealing that manure & sewage accounted for 130 

52%, chemical fertilizers for 17%, and soil nitrogen for 21.5% of the pollution sources. 131 
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In this study, hydrochemical analysis methods and the MixSIAR method were 132 

employed to comprehensively identify the sources of NO3
--N pollution in aquifers 133 

under different burial conditions. 134 

The Old County groundwater source area is a vital water supply hub in the central 135 

region of Shandong Province. However, with the development of industry and 136 

agriculture and the increasing level of urbanization, the Old County source area is 137 

facing severe NO3
--N contamination in groundwater. Identifying the sources of NO3

--138 

N in aquifers under different burial conditions in this region is crucial for elucidating 139 

the genesis of “high-nitrogen groundwater”. In this study, groundwater samples were 140 

collected from 64 wells, and soil, fertilizer, manure, and precipitation samples were also 141 

gathered within the study area. The water chemistry indicators and isotopic 142 

characteristics of these samples were analyzed. Subsequently, PCA-APCS-MLR and 143 

MixSIAR methods were employed for data analysis. The objectives of this study are (1) 144 

to quantify the concentration and distribution of NO3
--N in groundwater within the 145 

study area; (2) to quantitatively identify the sources of NO3
--N contamination in 146 

aquifers under different burial conditions using hydrochemical analysis and the 147 

MixSIAR method; and (3) to define the error in the analysis of groundwater NO3
--N 148 

sources apportionment without considering burial conditions. The study aims to provide 149 

a more accurate basis for assessing the risk of NO3
--N contamination in regional 150 

groundwater. 151 

 152 

2. Materials and methods 153 

2.1 Study region 154 

The study area is located on the western edge of the Tai-Lai Basin in the lower 155 

reaches of the Yellow River (Fig.1), to the east of Tai'an urban area (117°04′09″E–156 

117°26′45″E, 36°04′16″N–36°12′10″N), with a total area of approximately 220 km². 157 

The topography is characterized as a proluvial and alluvial plain at the foot of Mount 158 

Tai, with an overall terrain slope from the northwest to the southeast. The study area 159 
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falls within the temperate continental semi-humid monsoon climate zone, featuring hot 160 

and rainy summers, as well as cold and dry winters. The average annual temperature is 161 

12.9°C, and the average annual precipitation is 790.69 mm. Precipitation exhibits 162 

significant spatiotemporal variability, with uneven seasonal distribution and large 163 

interannual fluctuations. The primary aquifer formations in the study area consist of 164 

two types: the Quaternary unconsolidated porous aquifer group and the Cambrian-165 

Ordovician carbonate rock fracture karst aquifer group. The former is mainly composed 166 

of medium to coarse sand, with recharge primarily from atmospheric precipitation and 167 

infiltration of surface water, and discharge through evaporation, artificial extraction, 168 

replenishment of surface water, and inter-aquifer flow to other aquifers. The latter is 169 

mostly situated beneath the Quaternary strata, with recharge mainly from "skylight" 170 

recharge of Quaternary water and lateral flow recharge from regional bedrock fracture 171 

aquifers, and discharge through artificial extraction, runoff discharge, and upward 172 

replenishment to the Quaternary porous water. The urban population in the study area 173 

is approximately 28,000, with over 85% of the population engaged in agriculture and 174 

animal husbandry. 175 

 176 

Fig.1. Location of the Tailai Basin in lower reaches of the Yellow River and sampling sites in the 177 

study region. 178 
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2.2 Sample collection 179 

A total of 64 groundwater samples were collected from the study area. Prior to 180 

sampling, wells were thoroughly flushed, and samples were taken from a depth of more 181 

than 0.5 m below the groundwater table. For sealed wells, water stored in the pumping 182 

pipe was completely drained before sampling. After collection, groundwater samples 183 

were filtered through a 0.45 μm membrane filter and stored in 500 mL amber glass 184 

bottles, which were then sealed and transported to the laboratory for refrigeration at 185 

4°C. Groundwater samples intended for isotopic analysis were filtered through a 0.22 186 

μm membrane filter and stored frozen in 50 mL polyethylene bottles. Five atmospheric 187 

precipitation samples were collected using stainless-steel precipitation samplers. For 188 

single-day precipitation events, one complete-event sample was collected, while for 189 

multi-day precipitation events, samples were collected at 24-hour intervals. All 190 

precipitation samples were stored in polyethylene bottles. Five typical fertilizer samples 191 

(including urea and compound fertilizers) were collected based on local farmers' 192 

fertilization practices. Given the difficulty in distinguishing between manure & sewage 193 

pollution sources using δ15N and δ18O isotopes, these two sources were combined into 194 

one category in this study. A total of 10 samples (including cow manure, pig manure, 195 

chicken manure, sheep manure, goose manure, and sewage) were collected. Manure 196 

samples were air-dried for later use, while sewage samples were filtered through a 0.22 197 

μm membrane filter and stored frozen. Additionally, 20 agricultural soil samples were 198 

collected using the plum blossom point layout method. Each sample was composed of 199 

a mixture from 5 to 15 sampling points at a depth of 30 cm, with all sampling points 200 

avoiding fertilized areas. The collected soil samples were thoroughly mixed after 201 

removing roots and gravel and then stored.  202 

2.3 Sample Analysis 203 

The concentration of NO3
--N was determined using ultraviolet spectrophotometry. 204 

The concentrations of K+, Na+, Ca2+, Mg2+, Cl-, and SO4
2- were measured using an ion 205 

chromatograph (ICS-3000, Dionex, USA), the concentration of HCO3
- was determined 206 
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by acid-base titration. 207 

For liquid samples (groundwater, atmospheric precipitation, and sewage), δ15N and 208 

δ18O were measured using the azide reduction method. This involved chemically 209 

reducing NO3
--N in the samples to N2O, which was then analyzed using an elemental 210 

analyzer coupled with an isotope ratio mass spectrometer (Vario Isotope Cube - 211 

Isoprime, Elementar) to obtain the isotopic values of δ15N and δ18O. For solid samples 212 

(soil, fertilizer, and manure), δ15N and δ18O were measured using the high-temperature 213 

oxidation method. This procedure involved weighing an appropriate amount of 214 

thoroughly ground powder sample, encapsulating it in a tin cup, and analyzing it using 215 

an elemental analyzer coupled with an isotope ratio mass spectrometer. 216 

2.4 Source apportionment methods 217 

2.4.1 Hydrochemical analysis method 218 

(1) Piper diagram 219 

The method used to determine the hydrochemical type of groundwater is the 220 

Schoeller classification method. First, the concentrations of K+, Na+, Ca2+, Mg2+, HCO3
-, 221 

SO4
2-, Cl-, and NO3

--N in groundwater samples, expressed in milligrams per liter (mg 222 

L-1), are converted to milliequivalent concentrations (meq L-1). Subsequently, the 223 

milliequivalent percentage of each ion is calculated. Finally, the hydrochemical type is 224 

determined based on the ions with a milliequivalent percentage greater than 25%. The 225 

milliequivalent percentages of cations and anions for all water samples in the water 226 

quality monitoring data are plotted on a Piper diagram. 227 

(2) PCA-APCS-MLR 228 

Principal Component Analysis (PCA) was employed to extract the dominant 229 

pollution factors, and the potential sources of groundwater contamination were inferred 230 

in conjunction with water quality indicators: 231 
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PC1, PC2, ..., PCm represent the principal components 1, 2, ..., m that can explain the 233 

original indicators. The eigenvalues λm (m≤j) of the correlation coefficient matrix are 234 

the variances of PCm, and the larger the variance, the greater the contribution to the 235 

principal component. 236 

Subsequently, on the basis of PCA, the absolute principal component scores (APCS) 237 

were determined. A multiple linear regression (MLR) was performed with the measured 238 

pollutant concentrations as the dependent variables and the absolute principal 239 

component scores as the independent variables. The pollution contributions of each 240 

factor were calculated based on the regression coefficients, thereby determining the 241 

contribution rates of the pollution sources: 242 
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p represents the principal component extracted during the principal component analysis 244 

(PCA) process. ( )
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A0  denotes the absolute principal component score for principal 245 

component p. Spj represents the scoring coefficient of indicator j within principal 246 

component p.  247 
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                      (3) 248 

Cj represents the measured concentration of pollutant j. bj denotes the constant term in 249 

the multiple linear regression analysis. bpj represents the regression coefficient for 250 

principal component p. bpj×APCSip indicates the concentration contribution of principal 251 

component p to pollutant j in sample i. The average value of bpj×APCSip represents the 252 

average concentration contribution of principal component p (the pollution source) to 253 
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pollutant j. Finally, by converting the concentration contributions of each pollution 254 

source into percentages, the contribution rates of the pollution sources can be 255 

determined. 256 

2.4.2 MixSIAR method 257 

The principle of the MixSIAR method is to use the Dirichlet distribution as the prior 258 

distribution and to obtain the posterior distribution characteristics of the contributions, 259 

such as the mean, variance, and probability density, through the application of Bayes' 260 

theorem. Assuming there are n samples, k different sources, and j isotopes, the 261 

MixSIAR mixing model can be expressed as follows:  262 

ij

K

k jkjkkij SPX  ++= =1
)(  263 

jkS ~  264 

~ ),( 2

jkjkN   265 

~                            (4) 266 

Xij represents the value of the j isotope in the i sample (i=1, 2, 3, …, N；j=1, 2, 3, …, 267 

J). Pk denotes the contribution rate of the k source (k=1, 2, 3, …, K), which is predicted 268 

using the MixSIAR method. Sjk represents the value of the j isotope from the k source, 269 

with a mean of μjk and a variance of ωjk
2. εjk represents the enrichment coefficient of the 270 

j isotope from the k source, with a mean of λjk and a variance of τjk
2. νij represents the 271 

residual, with a mean of 0 and a variance of σj
2. 272 

2.5 Data analysis 273 

The stable isotope mixing model used in this study was run in the R package 274 

MixSIAR (R version x64 4.3.2). The Pearson correlation test was employed to evaluate 275 

the relationships between hydrochemical indices, with data analysis conducted using 276 

SPSS 20. The spatial distribution of NO3
--N concentrations was generated using Surfer 277 

15 software, and the cartographic work was completed with Origin 2020. 278 

 279 

),( 2

jkjkN 
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3. Results 280 

3.1 Characteristics of groundwater NO3
--N pollution 281 

The type of groundwater in the study area is predominantly of the Ca-type, with the 282 

molar percentage of Ca²⁺ exceeding 50% in most sampling points (Fig.2). In addition, 283 

the groundwater in the study area can be classified into two main types: Cl-
NO3

-
HCO3

-284 

-Ca2+ and Cl-
NO3

-
SO4

--Ca2+. Specifically, the Cl-
NO3

-
HCO3

--Ca2+ type is primarily 285 

found in karst water, while the Cl-
NO3

-
SO4

--Ca2+ type is mainly distributed in pore 286 

water. 287 

 288 

Fig.2. Piper graph illustrating hydrochemical types of groundwater. 289 

Kriging interpolation was employed to analyze the spatial distribution of NO3
--N 290 

concentration in the groundwater of the study area. The results indicate that the NO3
--291 

N concentration in the groundwater ranges from 0 to 68 mg N L-¹, with an average 292 

concentration of 22.45 mg N L-¹ (Fig.3). Based on the World Health Organization's 293 

drinking water standard (NO3
--N ≤ 10 mg N L-¹), the NO3

--N exceedance rate in the 294 

study area is 75%, indicating a relatively severe overall pollution status. Specifically, 295 

the NO3
--N concentration in unconfined groundwater ranges from 0 to 68 mg N L-¹, 296 

with an average concentration of 29.9 mg N L-¹, while that in confined groundwater 297 

ranges from 0 to 62.1 mg N L-¹, with an average concentration of 20.1 mg N L-¹. 298 

Additionally, 50% of the sampling sites in unconfined groundwater and 14% in 299 

confined groundwater exceed 30 mg N L-¹ (Class V groundwater quality standard in 300 

China), suggesting that NO3
--N pollution in unconfined groundwater is more severe 301 
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than that in confined groundwater. Spatially, the NO3
--N pollution in the groundwater 302 

exhibits significant spatial heterogeneity, with the central part of the study area 303 

experiencing more severe NO3
--N contamination compared to the western and eastern 304 

regions. 305 

 306 

Fig.3. (a) Spatial distribution map of NO3
--N concentrations in unconfined and confined 307 

groundwater of the study region. (b) Boxplot of NO3
--N concentrations. The dot and line represent 308 

mean value and median. (c) Percentages of NO3
--N concentrations in unconfined groundwater and 309 

confined groundwater (<10 mg N L-1, ranging from 10 to 30 mg N L-1, and >50 mg N L-1). 310 

3.2 NO3
--N sources apportionment by PCA-APCS-MLR model 311 

3.2.1 Qualitative identification of NO3
--N sources 312 

The results of Pearson correlation analysis demonstrate that, in the generalized 313 

single-aquifer layer without consideration of aquifer burial conditions (hereinafter 314 
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referred to as the generalized single-aquifer layer) (Fig.4a), there is a strong correlation 315 

among the nine hydrochemical indicators. For example, Mg2⁺ is strongly correlated 316 

with Na+, Ca2+, Cl-, SO4
2-, HCO3

-, and NO3
-, while NO3

- exhibits strong correlations 317 

with Ca2+, Mg2+, and Cl-. In the actual double-aquifer layer where aquifer burial 318 

conditions are taken into account (hereinafter referred to as the actual double-aquifer 319 

layer) (Fig.4b and Fig.4c), the indicators also show strong correlations. Specifically, 320 

Ca2+ is strongly correlated with Na+, Mg2+, Cl-, SO₄2-, HCO3
-, and NO3

-, and NO3
- 321 

displays strong correlations with DO, Ca2+, Mg2+, and Cl-. Therefore, the selected 322 

hydrochemical indicators are suitable for principal component analysis. 323 

 324 

Fig.4. Pearson correlation analysis of different hydrochemical indexes. (a) Generalized single-layer 325 

aquifer. (b) Actual double-layer aquifer (unconfined groundwater). (c) Actual double-layer aquifer 326 

(confined groundwater). 327 

Subsequently, we calculated the rotated factor loadings using the varimax rotation 328 
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method. The factor loadings reflect the relative importance of each variable in the 329 

principal components. Typically, factor loadings greater than 0.7, between 0.7 and 0.5, 330 

and between 0.5 and 0.3 are defined as strong, moderate, and weak loadings, 331 

respectively. Based on these factor loading results, we identified pollution sources. The 332 

results indicate that, for the generalized single-aquifer layer (Fig.5a), P1 represents 333 

pollution from chemical fertilizers, P2 represents natural sources, and P3 represents 334 

pollution from manure & sewage. For the actual double-aquifer layer, in the unconfined 335 

groundwater, P1 represents natural sources, P2 represents pollution from chemical 336 

fertilizers, and P3 represents pollution from manure & sewage. In the confined 337 

groundwater, P1 represents pollution from chemical fertilizers, P2 represents pollution 338 

from manure and domestic sewage, and P3 represents natural sources. 339 

 340 

Fig.5. Sankey graph of rotation factor load matrix for hydrochemical indexes. (a) Generalized 341 

single-layer aquifer. (b) Actual double-layer aquifer (unconfined groundwater). (c) Actual double-342 
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layer aquifer (confined groundwater). 343 

3.2.2 Quantitative apportionment of NO3
--N sources  344 

Following the qualitative identification of the major pollution sources, the APCS-345 

MLR method was employed to quantitatively analyze the pollution sources (Table 1). 346 

For the generalized single-aquifer layer, the regression equation between NO3
--N 347 

concentration and the absolute principal component scores was established as: 348 

C=7.231×P1-9.786×P2+5.655×P3-4.45 (R2=0.789, p < 0.01). This regression model 349 

explains 78.9% of the variation in NO3
--N concentration, with the remaining 21.1% 350 

attributable to unknown pollution sources. For the actual double-aquifer layer, in the 351 

unconfined aquifer, the regression equation between NO3
--N concentration and the 352 

absolute principal component scores is: C=6.85×P1+17.84×P2+3.78×P3+3.197 353 

(R2=0.838, p < 0.01), explaining 83.8% of the variation in NO3
--N concentration, and 354 

the remaining 16.2% is attributed to unknown pollution sources. In the confined aquifer, 355 

the regression equation is: C=5.12×P1+9.16×P2-1.74×P3-9.26 (R2=0.841, p < 0.01), 356 

accounting for 84.1% of the variation in NO3
--N concentration, with the remaining 15.9% 357 

attributed to unknown pollution sources. 358 

Table 1. Multiple regression equation based on APCS-MLR. 359 

Aquifers Multiple regression equation 

Single-layer aquifer C=7.231×P1-9.786×P2+5.655×P3-4.45 

Double-layer aquifer (unconfined groundwater) C=6.85×P1+17.84×P2+3.78×P3+3.197 

Double-layer aquifer (confined groundwater) C=5.12×P1+9.16×P2-1.74×P3-9.26 

Furthermore, we calculated the contribution rates of each pollution source using the 360 

regression equations (Fig.6). For the generalized single-aquifer layer, the contribution 361 

rates of chemical fertilizers, manure & sewage, natural sources, and unknown pollution 362 

sources were 48.75%, 30.15%, 0%, and 21.1%, respectively, with chemical fertilizers 363 

being the dominant pollution source. For the actual double-aquifer layer, in the 364 

unconfined groundwater, the contribution rates of chemical fertilizers, manure & 365 

sewage, natural sources, and unknown pollution sources were 52.51%, 11.13%, 20.16%, 366 
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and 16.2%, respectively. In the confined groundwater, the contribution rates were 30.15% 367 

for chemical fertilizers, 53.95% for manure & sewage, 0% for natural sources, and 15.9% 368 

for unknown pollution sources. Chemical fertilizers and manure & sewage were 369 

identified as the primary pollution sources in the unconfined and confined groundwater, 370 

respectively.  371 

 372 

Fig.6. Quantitative apportionment of NO3
--N source based on the PCA-APCS-MLR method 373 

3.3 NO3
--N sources apportionment by MixSIAR model 374 

3.3.1 Distribution characteristics of δ15N and δ18O in groundwater 375 

We analyzed the δ15N and δ18O values of NO3
--N in potential pollution sources 376 

(atmospheric deposition, soil nitrogen, chemical fertilizers, and manure & sewage) as 377 

well as in groundwater within the study area. The results of the δ15N and δ18O values 378 

for the potential pollution sources are presented in the Supplementary data (S1). The 379 

δ15N and δ18O values of NO3
--N in groundwater within the study area are shown in 380 

Fig.7. For the generalized single-aquifer layer, the δ15N values range from 2.8‰ to 381 

29.29‰, with an average of 9.85‰, while the δ18O values range from -0.85‰ to 382 

15.12‰, with an average of 4.42‰. For the actual double-aquifer layer, the average 383 

δ15N and δ18O values in unconfined groundwater are 10.16‰ and 3.93‰, respectively, 384 

and in confined groundwater, the average δ15N and δ18O values are 9.71‰ and 4.6‰, 385 

respectively. 386 
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 387 

Fig.7. Spatial distribution of δ15N-NO3
- (a) and δ18O-NO3

- (b) in the groundwater 388 

3.3.2 Qualitative identification of NO3
--N sources 389 

The NO3
--N in the groundwater of the study area originates from multiple nitrogen 390 

pollution sources. Given the distinct isotopic signatures of δ15N and δ18O of NO3
--N 391 

from different sources, qualitative identification of groundwater NO3
--N sources can be 392 

achieved based on the characteristic ranges of these dual isotopes. As shown in Fig.8, 393 

the majority of the δ15N and δ18O values in groundwater locate within the ranges 394 

characteristic of chemical fertilizers, soil nitrogen, and manure & sewage. This 395 

indicates that the NO3
--N in the groundwater of the study area is primarily derived from 396 

these three pollution sources. 397 
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 398 

Fig.8. Isotopic ratio plot of δ15N and δ18O of NO3
--N in Groundwater 399 

3.3.3 Quantitative apportionment of NO3
--N sources 400 

The δ15N and δ18O values of groundwater samples, as well as the mean values and 401 

standard deviations of δ15N and δ18O for potential pollution sources, were used as 402 

known parameters and input into the MixSIAR method. To account for potential errors 403 

caused by isotopic fractionation, we calculated the fractionation coefficients for δ15N 404 

and δ18O of different pollution sources (Supplementary data, S2) and incorporated these 405 

coefficients into the MixSIAR method. Ultimately, by treating the contribution rates of 406 

different pollution sources as random variables, we established probabilistic 407 

distribution equations for pollution source contributions using the MixSIAR method, 408 

thereby determining the extent to which each pollution source contributes to NO3
--N 409 

pollution in groundwater. The results indicate that, for the generalized single-aquifer 410 

layer (Fig.9a), the contribution rates of atmospheric deposition, soil nitrogen, chemical 411 

fertilizers, and manure & sewage to NO3
--N pollution are 4.6%, 49.5%, 27.8%, and 412 

18.1%, respectively. For the actual double-aquifer layer (Fig.9b), in the unconfined 413 

groundwater, the contribution rates of atmospheric deposition, soil nitrogen, chemical 414 

fertilizers, and manure & sewage to NO3
--N pollution are 5.7%, 58%, 20.1%, and 415 
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16.2%, respectively. In the confined groundwater, the contribution rates of these four 416 

pollution sources are 3.1%, 27.5%, 31.5%, and 37.9%, respectively. 417 

Fig.9. Quantitative apportionment of NO3
--N source based on the MixSIAR method. (a) 418 

Generalized single-layer aquifer. (b) Actual double-layer aquifer. 419 

 420 

4. Discussion 421 

We employed both the PCA-APCS-MLR method and the MixSIAR method to 422 

quantitatively identify the sources of NO3
--N in aquifers under different burial 423 

conditions. For the PCA-APCS-MLR analysis, different ions exhibit varying loading 424 

strengths in each principal component. Therefore, through hydrochemical analysis and 425 

statistical methods, we can calculate and infer the type of pollution source represented 426 

by each principal component. For example, in unconfined groundwater, Na+, Ca2+, 427 

Mg2+, HCO3
-, SO4

2-, and Cl- have strong loadings in P1. These ions are all major ions 428 

in groundwater, and their average concentrations are relatively low. Moreover, 429 

correlation analysis results show that the concentration of NO3
--N has very low 430 

correlation with the concentrations of Na+, Mg2+, HCO3
-, SO4

2-, and Cl-, indicating that 431 

NO3
--N does not originate from the same source as these ions (Yu et al., 2022). Thus, 432 

it is demonstrated that P1 represents a natural source. In P2, Ca2+ and NO3
--N have 433 
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strong loadings. The correlation results (Fig.4) indicate a significant positive correlation 434 

(p < 0.01) between Ca2+ and NO3
--N, suggesting that Ca2+ originates from 435 

anthropogenic pollution. This is because calcium is required in the cultivation of 436 

tomatoes and cucumbers (the main crop types in the study area) (Gulbagca et al., 2020), 437 

and the extensive use of calcium fertilizers during the application of base fertilizers and 438 

top-dressing fertilizers also increases the concentration of Ca2+ in groundwater (Schot 439 

and Wassen, 1993). Therefore, P2 primarily represents the pollution source from 440 

chemical fertilizers. In P3, DO has a strong loading. Since the oxidation and 441 

decomposition of organic matter require a large amount of DO (Díaz-Cruz and Barceló, 442 

2008), the strong loading of DO is associated with organic pollution of groundwater 443 

(such as from manure and domestic sewage). Thus, P3 mainly represents the pollution 444 

sources of manure & sewage. After determining the pollution sources represented by 445 

each principal component using the above methods, we can calculate the contribution 446 

rate of each pollution source using regression equations. The PCA-APCS-MLR method 447 

has the advantages of being rapid and convenient, but it has the disadvantage of being 448 

unable to further identify soil nitrogen as a pollution source. To compensate for this 449 

limitation, the MixSIAR method was further employed to analyze the sources of 450 

pollution. We identified soil nitrogen as another important source of NO3
--N in 451 

groundwater. Additionally, we incorporated isotope fractionation coefficients into the 452 

calculations. This is because NO3
--N from different sources (atmospheric deposition, 453 

soil nitrogen, chemical fertilizers, and manure & sewage) has distinct isotopic 454 

signatures, and isotopic fractionation occurs during the transport and transformation 455 

processes of nitrogen in the groundwater system (such as ammonification and 456 

nitrification), leading to changes in the δ15N and δ18O values of NO3
--N (Shu et al., 457 

2024). Therefore, considering the effect of isotope fractionation can better eliminate 458 

uncertainties in nitrogen transformation processes and significantly improve the 459 

accuracy of source apportionment results. This approach has also been confirmed by 460 

previous studies (Yu et al., 2020). 461 
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In this study, the PCA-APCS-MLR method identified chemical fertilizers as the 462 

primary source of NO3
--N in unconfined groundwater and manure & sewage as the 463 

main sources of NO3
--N in confined groundwater. The MixSIAR method further 464 

revealed that soil nitrogen is a dominant pollution source for unconfined groundwater, 465 

with a higher contribution rate than that of chemical fertilizers. For confined 466 

groundwater, MixSIAR also confirmed that manure & sewage are the major sources of 467 

NO3
--N. The findings for unconfined groundwater can be attributed to the extensive use 468 

of chemical fertilizers in agricultural production (Hao et al., 2025). Nitrogen from these 469 

fertilizers can directly leach into the unconfined aquifer, causing NO3
--N pollution. 470 

Additionally, excess nitrogen accumulates in the soil and vadose zone, where it is 471 

transformed from organic nitrogen to NH4
+-N and then to NO3

--N under the action of 472 

soil microorganisms (Liu et al., 2023). While NH4
﹢

-N can be adsorbed and immobilized 473 

by the soil, NO3
--N can leach into the deeper vadose zone and aquifer through 474 

atmospheric precipitation or agricultural irrigation, directly contaminating unconfined 475 

groundwater (Wan et al., 2024). Therefore, in assessing the sources of NO3
--N pollution 476 

in regional groundwater, it is crucial not only to focus on the application rates of 477 

chemical fertilizers but also to pay attention to the storage of nitrogen in the soil and 478 

vadose zone. These accumulated nitrogen compounds can continuously leach into 479 

unconfined groundwater under external disturbances (such as irrigation or 480 

precipitation), leading to persistent contamination (Niu et al., 2022). Therefore, it is 481 

essential to guide local farmers in implementing surface management practices (such 482 

as the use of chemical fertilizers and the application of manure) to enforce optimal 483 

agricultural irrigation policies, including reducing irrigation frequency, to delay the 484 

transport of stored nitrogen in the soil to the aquifer. Regarding the results for confined 485 

groundwater, the nitrogen in manure/ sewage primarily exists in the form of large 486 

molecules. These complex nitrogen compounds are difficult to degrade microbially or 487 

transform chemically in a short period, leading to their long-term persistence in the 488 

environment. These pollutants can enter surface water bodies through surface runoff or 489 
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infiltration and then gradually transport to deeper aquifers via the interflow recharge 490 

process between unconfined and confined aquifers, resulting in persistent 491 

contamination (McDonough et al., 2022). Therefore, for the prevention and control of 492 

NO3
--N pollution in confined aquifers, it is crucial to focus on the source control of 493 

manure & sewage to block the migration pathways of pollutants and mitigate their long-494 

term impacts on confined aquifers. 495 

This study compared the errors in source apportionment of NO3
--N in aquifers with 496 

and without consideration of burial conditions. The absolute errors for the PCA-APCS-497 

MLR method were 4%–20% and 5%–24%, while those for the MixSIAR method were 498 

1.1%–8.5% and 1.5%–22%. The causes of these errors can be attributed to two main 499 

factors. First, the sources and recharge mechanisms of groundwater in unconfined and 500 

confined aquifers differ significantly, leading to distinct isotopic compositions and 501 

characteristic values. For example, the isotopic signature of a pollution source in an 502 

unconfined aquifer may resemble that of another source in a confined aquifer. When 503 

mixed calculations are performed without considering the actual burial conditions, the 504 

isotopic differences are obscured, resulting in confusion in pollution source 505 

identification, inaccurate contribution rate calculations, and incomplete analysis of 506 

pollution processes. This, in turn, may lead to underestimation or overestimation of the 507 

contributions of pollution sources to groundwater under different burial conditions. 508 

Second, the migration and transformation capacities of nitrogen vary among different 509 

geological strata. Hydrogeological conditions can influence the intensity of 510 

biogeochemical processes such as ammonification, nitrification, denitrification, and 511 

adsorption (Huang et al., 2022; Li et al., 2023), which further alter NO3
--N 512 

concentrations and isotopic signatures. This ultimately affects the accuracy and 513 

reliability of pollution source apportionment. Consequently, pollution control measures 514 

may deviate from actual needs and fail to effectively mitigate and reduce NO3
--N 515 

contamination in groundwater. 516 

 517 
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5. Conclusion 518 

The study investigated the sources of NO3
--N pollution in aquifers under different 519 

burial conditions and analyzed the errors in source apportionment results of NO3
--N 520 

pollution in groundwater when burial conditions were not considered. The results 521 

showed that the groundwater NO3
--N concentration in the study area ranged from 0 to 522 

68 mg N L-1, with an exceedance rate of 75%. The NO3
--N pollution in unconfined 523 

groundwater (average concentration 29.9 mg N L-1) was more severe than that in 524 

confined groundwater (average concentration 20.1 mg N L-1). The PCA-APCS-MLR 525 

method confirmed that the chemical fertilizer is the primary source of NO3
--N in 526 

unconfined groundwater, while the MixSIAR method further identified soil nitrogen as 527 

the main source of NO3
--N pollution in unconfined groundwater, with a higher 528 

contribution rate than that of chemical fertilizers. Therefore, it is necessary to focus on 529 

the storage of nitrogen in the soil and improve agricultural irrigation practices to prevent 530 

rapid infiltration of NO3
--N into unconfined groundwater, which could lead to persistent 531 

contamination. Both analytical methods indicated that manure & sewage are the main 532 

sources of NO3
--N in confined groundwater. When the burial conditions of groundwater 533 

were not considered, both methods yielded significant errors (with absolute errors 534 

reaching up to 24%). Thus, to accurately identify and effectively manage the sources of 535 

NO3
--N pollution in groundwater, it is essential to carefully incorporate the actual burial 536 

conditions of regional aquifers into the analysis. 537 
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