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Text S1 Standard preparation

We use the stock solution for dilution to make the standard, which is all purchased from Anple
The working standard solution was freshly prepared by diluting stock solutions several times using
10 mL flasks respectively with ACN and DCM solvent, producing final working solution
concentrations are showed in Table S2. Table S2 shows the corresponding IS and other details for
external standards (ESs). Table S3 lists the standard preparation details for internal standards.

Different volumes with range from 5 to 25 pL of working standard solution (ranging from 5 to
25 pL) and a fixed volume (5 pL) of ISs were injected into the collection and thermal desorption
cell (CTD) to build calibration curves using the same analysis procedure as that for the samples.
Calibration curves were constructed by fitting the normalized peak area of ESs to their

corresponding ISs.

Text S2 Derivation of a decay rate using an inert substance as the reference

The rate expression for the concentration of species i in the atmosphere can be written as

(Donahue et al., 2005):
aC;
20 = ~kriCox - (A +f) — kg, - Ci = kay - G + E; (1
CloxCly
fi =< Cox Ci @)

k,; is the second-order reaction rate constant of species 7 in the aerosol, C; is the measured
concentration of species i in the aerosol, Cyx is the average oxidant concentration in the aerosol,
kg, and kg, are the dilution and deposition rate constant of the species i, E; is the source
emission rate of species i, f; is a fractional covariance term that describes spatial variations of the
reactants within the particle. f; is zero if either oxidant or the reactant species i is well mixed (i.e.,
gradients C',, =0or C';=0). f; is greater than zero when species i and oxidant are concentrated
at the particle surface. f; is negative when species i is depleted near the particle surface and the
oxidant is concentrated near the particle surface(Huff Hartz et al., 2007).

The interference from source emissions, atmospheric dilution and deposition can be eliminated

by using the concentration ratio of C—’ , that is, species i is normalized by a reference species j which
J

showed the same source origins, thus:

j Ci Ci Ci
5=~k Cox (L4 f) =k Cox - (L4 = (ke = ka) o = (kay = kar) -+ (B = Ep) (3)
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Assuming the deposition and dilution rate and fractional covariance term for species i and j are
not species dependent, i.c., kg, = kd]., ka, = kd,]. . fi = fj. In our consideration, the species i
and j are from the same source. If they show comparable emission rates, i.e., E; = E; , or there are

no fresh emissions or emissions are negligible within the consideration timeframe, i.e., E; = 0 and

E; =0, then:

C;
ot
C;

C .
a_tj=_(kri_krj)'(1+fi)'C0X'F “)
J
If we consider a scenario where the reaction occurs at or near the aerosol surface, the reagent

concentration within the particle is well mixed initially, thus f; = 0 and the following equation

holds:
ag—; c
Fr —(kri — krj) Cox - C_j (5)
Applying the identity 2 lgt(x) = %) . (i), and Equation 5 can be rewritten as:
TR = (ki — k) + Cox (©)

To determine the decay rate of the BB-emitted saccharides, we select the K™gp as the reference
species j. K'gp is inert to the oxidants (k,; = 0), thus:

aln(Ci/C +_ )
—— ==k k=l Cox (M



93
94

Table S1 Online instruments and analysis methods of meteorological parameters,

conventional pollutants, as well as PM; s-bound OC/EC and inorganic compounds

Instrument Machine type Manufacturer Monitoring factors Analytical Principle
Zibo, Shandong province, NCP
PMaz 5 online Thermo Fisher
MODEL 50141 PMazs Beta-ray method
monitor Scientific, US
Thermo Fisher Pulsed fluorescence
NOx analyzer MODEL 42i NO. NO2+ NOx
Scientific, US method
Ozone Thermo Fisher Differential absorption
MODEL 49i o O3
Analyzer Scientific, US spectroscopy
Aerosol Fortelice International
- ) Cl'. NOs'v SOs*. Na'.
compositions MODEL S611 Co., Ltd., Taiwan, Ion chromatography
NHs* K*. Mg?*. Ca?*
monitor China
Hangzhou Pengpu
OC/EC online  MODEL ECOC -
Technology Co., Ltd., OC. EC Thermal light Method
monitor 610
China
Meteorological China Meteorological WS. WD. RH. T. P.
\ https://www.cma.gov.cn/
monitor Administration RF
Solar radiation Kipp & Zonen, Zuid - Pulsed light signal
CMP11 SSRD
analyzer Holland, Netherlands method
Changzhou, Jiangsu province, YRD
) Ultrasonic and
Meteorological WS. WD. RH. T. P. B
WXT520 VAISALA, FL capacitive measurement
monitor RF
methods
PMa.s online
BAM1020 Met One, US PMaz s Beta-ray method
monitor
Ozone Thermo Fisher Differential absorption
MODEL 49i O3
Analyzer Scientific, US spectroscopy
) Thermo Fisher Pulsed fluorescence
NOx analyzer MODEL450i o NO. NOz2. NOx
Scientific, US method
OC/EC online .
) RT-4 Sunset Laboratory, US OC. EC Thermal light Method
monitor
MARGA ionic CI'. NOs. SO4*. Na',
ADI2080 Metrohm, CHN Ion chromatography
online analyzer NHs". K*. Mg?", Ca?*
HongKong, PRD
MARGA ionic CI'. NOs. SO4*. Na',
ADI2080 Metrohm, CHN Ion chromatography
online analyzer NHs". K*. Mg?", Ca?*
OC/EC online .
) RT-4 Sunset Laboratory, US OC. EC Thermal light Method
monitor
PM2 5 online Thermo Fisher
Model 50301 PMas Beta-ray method
monitor Scientific, US
Gas pollutants Hong Kong WS. WD. RH. T. P.
AWS tower \
analyzer Environment RF . O3, SSRD. SO2.
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105

Protection Department NO. NOz2. NOx

elemental
Cooper Environmental
species Xact 6251 K. Ca X-ray method
Services
analyzer

Table S2 Alist of corresponding internal standard (IS) and other details for external standards
(ESs) and compounds in samples

Compound Formula Solvent Quantification = Working Quantification
IS solution ion
(ng/nL).
Levoglucosan C6H1005 DCM+ 0.294 204
Galactosan C6H1005 ACN Levoglucosan-d; 0.293 217
Mannosan C6H1005 0.294 204

Table S3 A list of standard preparation details for internal standard (IS) deployed during the

campaign
Working solution  Quantification
Compound Formula Solvent .
(ng/nL) ion
Levoglucosan-d;  C6H3D705 DCM + ACN 1.046 206




106 Table S4 Statistics of meteorological conditions, hourly concentrations of conventional
107 atmospheric pollutants and TAG measured anhydro-saccharides during the campaign

Measurement parameters /B (074 HK
PM: s (ug/m®) 69.4+58.0 49.9+26.4 20.5+8.8
T (°C) -0.2+6.1 10.9+4.9 19.6+5.2
RH (%) 52.1+£22.3 56.6+18.4 68.4£17.51
NO> (nug/m?) 44.4+24.6 45.2424.8 5.8+6.6
O3 (pg/m?) 59.2+16.2 68.9+£26.7 56.9+12.2
WS (m/s) 2.2+1.7 1.3+0.7 3.3+1.7
S04 (ug/m?) 8.8+7.3 6.3£2.7 9.44+8.3
NOs™ (pg/m®) 15.0£15.2 17.6£11.7 2.542.6
OC (png/m3) 7.7+4.9 6.0£3.7 3.6+2.0
EC (ng/m®) 3.3+2.4 1.9+1.4 1.2+0.8
Levoglucosan (ng/m?) 45.5+323 45.1+£38.7 27.6£15.6
Mannosan (ng/m?) 2.4+1.7 3.6£3.2 1.9£1.5
Galactosan (ng/m?) 4.5+3.4 2.4+2.0 0.9+0.7
108
109

110 Table S5 Daytime decay rates of anhydro-saccharides at three sites calculated using the relative
111 rate constant method

Decay of anhydro-saccharides 7B Ccz HK
k lev 0.103£0.027 0.126 0.052 0.097£0.011
k man 0.095%0.033 0.128+0.070 0.137£0.015
k gal 0.105£0.034 0.133£0.082 0.147£0.016

112



113 Table S6 GAM smoothing function related parameters

Smooth variables Edf Ref.df

F p
ALWC 1.0 9.0 52 0.02
T 2.5 9.0 8.7 0.001
Oy 1.8 9.0 6.5 0.01
RH 3.2 9.0 3.1 0.08
SSRD 4.0 9.0 2.3 0.12

Deviance explained (%) =70.9%
R?=0.70
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