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Abstract. Stokes equations are often difficult to handle in geodynamic modelling because they form a saddle-point system

and involve strong variations in viscosity. Uzawa-type solvers are straightforward to implement, but their convergence may

become slow if a suitable preconditioner is not used. Here, we introduce two adjustments that improve stability and efficiency.

Residuals are evaluated in weak form, giving an effect similar to that of a mass-matrix preconditioner. We also add a projection

step so that the velocity field remains nearly divergence-free. These updates made the solver converge faster and behave more5

stably than the standard Uzawa method. The modified approach was tested in several cases, including ABC flow, SolCx, mantle

convection, block sinking, and compressible convection under the Anelastic Liquid Approximation.

1 Introduction

Geodynamic modelling of the mantle and lithosphere is concerned with processes such as subduction (Gerya, 2022; Li and

Gurnis, 2023; Sime et al., 2024), continental rifting (Huismans et al., 2001; Brune et al., 2012; So and Yuen, 2015), mantle10

plume upwelling (Ismail-Zadeh et al., 2006; Negredo et al., 2022; Kim and So, 2020), and lithospheric buckling (Do et al.,

2023; Xie et al., 2024). The mantle has high viscosity, and the related flows occur at low Reynolds number. As a result, inertial

terms are negligible, and the Navier-Stokes equations reduce to the elliptic Stokes system. This formulation produces large and

sparse saddle-point systems that are challenging to solve, especially when viscosity varies by several orders of magnitude and

complex rheologies are present (Moresi and Gurnis, 1996; Zhong et al., 2000).15

The spatial discretisation of the Stokes equations in geodynamics is frequently performed using finite element (FEM), finite

difference (FDM) procedures, or finite volume (FVM) techniques. These algebraic systems retain the saddle-point structure

of the velocity–pressure formulation. For this reason, direct solvers are not a realistic method for three-dimensional problems

due to memory and computational expense. Due to this reason, iterative Krylov subspace approaches such as the conjugate

gradient (CG) method for symmetric positive definite systems (Hestenes et al., 1952) and the generalized minimal residual20

method (GMRES) or its flexible variant (FGMRES) for nonsymmetric systems (Saad and Schultz, 1986; Saad, 2003) are often
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used for large-scale simulations. In the absence of suitable preconditioning, such methods progress slowly, especially when

strong viscosity contrasts reduce the conditioning of the operator.

A common strategy is to eliminate the velocity variables and form a reduced Schur complement system for the pressure. The

standard Uzawa algorithm (Arrow et al., 1958) applies Richardson-type iterations to this system and recomputes velocity at25

each step. The method is simple but converges slowly and is sensitive to the relaxation parameter, which limits its use in geo-

dynamic applications. Later studies proposed variants with preconditioning and inexact solves, such as block preconditioners

and mass-matrix approximations, to improve efficiency and stability (Cahouet and Chabard, 1988; Elman and Golub, 1994;

Chen, 1998; Bai and Wang, 2008). Braess (Braess, 2001) presented explicit formulations of adaptive Uzawa and conjugate-

directions Uzawa, showing their relation to gradient and conjugate gradient iterations. In geodynamics, Uzawa-type updates30

have been implemented in mantle convection codes such as CitcomS (Zhong et al., 2000), and scalability studies have eval-

uated their performance on large parallel systems (Gmeiner et al., 2016). More generally, Schur complement systems can be

solved using Krylov methods combined with suitable preconditioners, and much work has focused on block preconditioners,

multigrid methods, and algebraic strategies for Stokes flow (Silvester and Wathen, 1994; May and Moresi, 2008; Kronbichler

et al., 2012). These approaches are now widely adopted in large-scale mantle convection modelling.35

Modern geodynamic codes no longer rely on Uzawa-type algorithms, but there are still good reasons to reconsider them.

They are simple, modular, and easy to implement in finite element software. This study revisits Uzawa methods with an

emphasis on handling strong viscosity variations. Building on the work of Braess (Braess, 2001), who formulated the Schur

complement as an explicit conjugate gradient problem, we show that two factors are especially important—the definition of

residuals and the choice of preconditioner.40

Our first extension changes how residuals are updated in the pressure space using inner products, which works the same as

applying a mass-matrix preconditioner. This connects the L2-projected residual update to preconditioned conjugate gradient

(PCG) iterations and brings mass-matrix stabilization into the Uzawa framework (Elman and Golub, 1994; Ramage and Wa-

then, 1994; Chen, 1998; Benzi et al., 2005). We also introduce a viscosity-weighted variant where the mass matrix is replaced

by an η-weighted version. This idea relates to earlier work on Schur complement preconditioners for variable-viscosity Stokes45

flow (May and Moresi, 2008). Unlike block preconditioning, our method puts viscosity weighting directly into the Uzawa

iteration, making it a preconditioned conjugate gradient scheme with a preconditioner that better matches the true Schur com-

plement spectrum. This gives faster and more stable convergence when viscosity contrasts are large.

The second extension is a post-processing projection step that projects velocity variable onto the constraint-satisfying sub-

space. For incompressible flow, this is the discrete Helmholtz-Hodge decomposition. Chorin (Chorin, 1967) first introduced50

this method for time-dependent Navier-Stokes equations, later refined for better stability and accuracy (Bell et al., 1989; Guer-

mond and Quartapelle, 1998; Brown et al., 2001; Pyo and Shen, 2007). These methods are standard in unsteady fluid dynamics

but have received little attention for elliptic Stokes problems in geodynamics. We use projection after Uzawa iterations to

reduce constraint residuals.

The remainder of this paper is organized as follows. Section 2 presents the mathematical formulation, including the Stokes55

equations, the saddle-point system, Uzawa-type algorithms, residual representations, and the Helmholtz-Hodge projection.
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Section 3 reports numerical experiments using manufactured benchmarks, incompressible and compressible mantle convection,

and block sinking problems. Section 4 summarizes the main results and outlines future work.

2 Mathematical formulation

2.1 Stokes equations and saddle-point formulation60

We consider the incompressible Stokes equations relevant to mantle convection. Because the Prandtl number of mantle materi-

als is effectively infinite (Pr≈ 1023), inertial terms in the Navier-Stokes equations can be neglected, and the governing system

reduces to the elliptic Stokes equations (Schubert et al., 2001).

In a bounded domain Ω⊂ Rnd (nd = 2,3), these are

∇ ·σ + ρg = 0, ∇ ·u = 0,65

where u is velocity, p is pressure, ρ is density, and g is gravitational acceleration. The Cauchy stress tensor is

σ =−pI+ 2ηD(u), D(u) = 1
2

(
∇u+(∇u)T

)
,

with η the dynamic viscosity and D(u) the strain-rate tensor.

In compact form, the Stokes equations then become

∇ ·
(
η(∇u+(∇u)T )

)
−∇p+ ρg = 0, ∇·u = 0. (1)70

In the case of constant viscosity, the momentum equation reduces to a vector Laplacian.

Discretization with stable finite element pairs (Babuška, 1973; Brezzi, 1974; Silvester and Wathen, 1994; Logg et al., 2012)

gives the saddle-point system

 K G

GT 0





u
p


 =


f
h


 , (2)

where K is the discrete viscosity matrix (symmetric positive definite) and G is the discrete gradient operator. The system is75

symmetric but indefinite, and efficient iterative solvers are required.

Eliminating velocity gives the Schur complement system

Sp=GTK−1f −h, S =GTK−1G. (3)

The Schur complement S is symmetric positive definite under the standard inf-sup stability condition. Forming S explicitly is

too expensive, since each multiplication requires solving with K−1, which is costly for large problems with variable viscosity.80

In practice, S is applied implicitly within iterative methods, together with suitable preconditioners.
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2.2 Uzawa-type algorithms

For the Schur complement system (3), we consider three Uzawa-type methods: the standard Uzawa algorithm, its adaptive

variant, and the conjugate-directions version by Braess (Braess, 2001). For convenience, we refer to the last method as the

conjugate-directions Uzawa (CD-U).85

Standard Uzawa. The standard Uzawa algorithm applies Richardson-type iterations to update the pressure and recompute the

velocity. Given an initial pressure p0, each iteration reads

Kuk+1 = f −Gpk,

pk+1 = pk +ω (GTuk+1−h),
(4)

with relaxation parameter ω > 0. The scheme is simple, but its convergence is sensitive to the choice of ω and deteriorates with

large viscosity contrasts.90

Adaptive Uzawa. To reduce this sensitivity, the relaxation parameter is updated adaptively at each step. With residual qk =

h−GTuk and auxiliary solve Kzk =Gqk, the update is

ωk =
(qk)T qk

(Gqk)T zk
,

pk+1 = pk −ωkq
k,

uk+1 = uk +ωkz
k.

(5)

This update formula improves robustness compared with the fixed-ω method.

Conjugate-directions Uzawa (CD-U). The CD-U method accelerates convergence by constructing conjugate directions, in95

analogy with the conjugate gradient method. Starting from p0 with

Ku1 = f −Gp0, q1 = h−GTu1, d1 =−q1,

each iteration (k ≥ 1) performs

Kzk =Gdk, αk =
(qk)T qk

(Gdk)T zk
,

pk+1 = pk +αkd
k, uk+1 = uk −αkz

k,

qk+1 = h−GTuk+1, βk =
(qk+1)T qk+1

(qk)T qk
,

dk+1 =−qk+1 +βkd
k.

(6)

The explicit coefficients αk and βk highlight the connection with CG. By exploiting information from previous steps, CD-U100

achieves faster and more stable convergence, especially for problems with strong viscosity contrasts or heterogeneous coeffi-

cients.
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2.3 Residual representation in Uzawa iterations

The definition of the residual is central to Uzawa-type algorithms. In the Schur complement formulation, the discrete residual

is105

qk = h−GTuk, (7)

which measures the violation of the incompressibility constraint. In its standard (vector) form, qk is assembled directly as a

discrete vector. This is simple but suffers from poor conditioning, and small singular values ofGT can lead to unstable step-size

choices and slow convergence, especially with large viscosity contrasts.

An alternative is to define the residual variationally in the L2 inner product on the pressure space Q:110

⟨qk, r⟩= ⟨h+∇·uk, r⟩, ∀r ∈Q. (8)

In discrete form this corresponds to solving a mass-matrix system,

Mpq
k =Mph+ b(uk),

where b(uk) denotes the discrete constraint term. This formulation shows that Uzawa iterations implicitly apply the pressure

mass matrix as a preconditioner (Cahouet and Chabard, 1988; Elman and Golub, 1994; Chen, 1998; Benzi et al., 2005). The115

resulting L2-projected residual is smoother and scale-independent, and yields more robust convergence at modest extra cost.

With this modification, the overall update structure of the standard, adaptive, and CD-U algorithms (cf. (4)-(6)) remains the

same. Only the scalar coefficients change, as summarized below.

Standard Uzawa.

⟨pk+1, r⟩= ⟨pk, r⟩−ω⟨qk+1, r⟩, ∀r ∈Q. (9)120

Adaptive Uzawa. Using the L2 residual definition (8), the step size is updated as

ωk+1 =
⟨qk+1, qk+1⟩
⟨∇qk+1,zk+1⟩ . (10)

Conjugate-directions Uzawa (CD-U). With qk defined by (8), the coefficients are

αk =
⟨qk, qk⟩
⟨∇dk,zk⟩ , βk =

⟨qk+1, qk+1⟩
⟨qk, qk⟩ . (11)

Conjugate-directions Uzawa with η-weighted residuals (CD-U-η). The standard L2 residual (8) can be extended by replac-125

ing the mass matrix with an η-weighted version. This introduces a viscosity scaling in the pressure space, which more closely

reflects the spectrum of the true Schur complement for variable-viscosity problems. The resulting scheme is a preconditioned

conjugate-gradient iteration in which both the residual qk and its preconditioned form wk appear in the update formulas.
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Initialization: for all r ∈Q,

p0 = 0, Ku1 = f −Gp0,

⟨q1, r⟩= ⟨h+∇·u1, r⟩,

⟨ 1
ηw

1, r⟩= ⟨q1, r⟩, d1 =−w1.

(12)130

Iteration (k ≥ 1): for all r ∈Q,

Kzk =Gdk, αk =
⟨qk,wk⟩
⟨∇dk,zk⟩ ,

pk+1 = pk +αkd
k, uk+1 = uk −αkz

k,

⟨qk+1, r⟩= ⟨h+∇·uk+1, r⟩, ⟨ 1
ηw

k+1, r⟩= ⟨qk+1, r⟩,

βk =
⟨qk+1,wk+1⟩
⟨qk,wk⟩ , dk+1 =−wk+1 +βkd

k.

(13)

This iteration can be interpreted as a Preconditioned Conjugate Gradient (PCG) method applied to the Schur complement

system. Here qk denotes the residual in the pressure space, and wk its preconditioned form. The search directions dk and

coefficients αk,βk are then defined from inner products such as ⟨qk,wk⟩, following the standard PCG structure.135

With the L2 formulation, the preconditioner is the pressure mass matrix Mp, which is spectrally close to the identity. In this

case wk = qk, and the scheme reduces to a Conjugate Gradient iteration with a trivial preconditioner. In the η-weighted for-

mulation, the preconditioner is the viscosity-weighted mass matrix, so that wk ̸= qk and both quantities appear in the iteration.

Note that the relation between qk and wk cannot be expressed pointwise as wk = ηqk, since η(x) varies spatially. Instead, wk

is defined variationally by140

⟨ 1
ηw

k, r⟩= ⟨qk, r⟩, ∀r ∈Q, (14)

which ensures that wk belongs to the pressure space Q and serves as the Riesz representative of qk under the η-weighted inner

product. This formulation provides a consistent SPD preconditioner in the finite element setting.

In summary, while the L2 formulation corresponds to a CG iteration with a trivial mass-matrix preconditioner, the η-

weighted Uzawa method is a genuine PCG scheme with a physically motivated preconditioner that better reflects the spectral145

properties of the Schur complement, particularly under strong viscosity contrasts (May and Moresi, 2008).

2.4 Helmholtz-Hodge projection as post-processing

Uzawa-type iterations reduce the constraint violation only asymptotically, so the discrete constraint remains slightly violated

after a finite number of steps. To enforce the constraint explicitly, we apply a projection step as a post-processing. The idea

is to correct an intermediate velocity û by adding a gradient field so that the updated velocity satisfies the discrete constraint150

operator

C(u) = h,

6
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where C(u) =∇·u for the incompressible case, and C(u) =∇· (ρ̄u) under the anelastic liquid approximation (ALA).

For the incompressible case, C(u) =∇·u, the projection requires solving a scalar Poisson problem

−∆ϕ= h+∇· û, uk+1 = û+∇ϕ.155

This corresponds to the discrete Helmholtz-Hodge decomposition, which states that any vector field can be uniquely decom-

posed into a solenoidal part and a gradient part,

u∗ = u+∇ϕ, ∇·u = 0.

Equivalently, the projection operator can be written as

P = I −G(GTG)−1GT ,160

which is symmetric and idempotent.

In variational form, the correction is obtained by solving

⟨∇ϕ,∇ψ⟩= ⟨h+∇· û,ψ⟩, ∀ψ ∈Q,

and updating the velocity consistently in the finite element space,

⟨uk+1,w⟩= ⟨û,w⟩+ ⟨∇ϕ,w⟩, ∀w ∈ V.165

This weak formulation is important: a direct discrete update uk+1 = û+Gϕ does not yield the same accuracy, whereas the

variational form ensures consistency and better convergence. In practice, the projection can also be implemented component-

wise to avoid assembling a large coupled system.

For the compressible case, C(u) =∇· (ρ̄u), and the projection takes the weighted form

−∇ · (ρ̄∇ϕ) = h+∇ · (ρ̄û), uk+1 = û+∇ϕ,170

so that ∇ · (ρ̄uk+1) = h is satisfied exactly. This weighted projection is the natural extension of the Helmholtz-Hodge decom-

position to density-dependent flows.

Although projection methods of this type are standard in computational fluid dynamics, they have not been used previously

as post-processing corrections in geodynamics. As we show in Section 3, this step reduces accumulated divergence errors and

improves the long-term accuracy of mantle convection benchmarks.175

A related approach in particle-in-cell methods is the conservative velocity interpolation (CVI) scheme (Wang et al., 2015),

which enforces local mass conservation during interpolation but follows a different formulation from the projection-based

correction used here. The CVI approach is specifically designed for quadrilateral Q1P0 elements, whereas our projection

method is element-independent and applicable to general finite element discretizations.
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3 Numerical Implementation180

3.1 Finite Element Framework and Parallel Environment

We implemented the proposed algorithms using the open-source finite element library FEniCS (version 2019.2.0.13) (Logg

et al., 2012; Alnæs et al., 2015). FEniCS provides a Python interface that simplifies variational form expression and automates

finite element matrix assembly, which is useful in geodynamics where PDE systems often involve strongly variable rheologies

(Zhamaletdinov et al., 2011; Vynnytska et al., 2013; Wilson et al., 2017; Lee et al., 2024). To solve the large sparse linear185

systems from discretizing the Stokes equations, we coupled FEniCS with PETSc (Balay et al., 2024). We used GMRES and

CG with algebraic multigrid (AMG) preconditioning. Solver configurations were adjusted through PETSc runtime parameters.

All algorithms were implemented within the standard FEniCS–PETSc environment without custom code. This portability

shows that the approach is reproducible, extendable, and transferable to other platforms, in line with current practices in large-

scale geodynamic modeling.190

3.2 Solver configuration and benchmark setup

Each Uzawa iteration with projection requires solving three linear systems: (i) the momentum equation for velocity, (ii) an

L2-projection in the pressure space for residual representation and scalar potential projection, and (iii) a Poisson system for

velocity correction.

We initialized the pressure field to zero at the first step. In time-dependent simulations, we reused the pressure from the195

previous step as the initial guess, which improved convergence. The momentum equation was solved using GMRES with

BoomerAMG from the Hypre library (Yang et al., 2002). The system matrix is symmetric positive definite, so CG could be

used. However, in our tests GMRES proved more robust under strong viscosity contrasts and heterogeneous distributions.

BoomerAMG builds algebraic multigrid hierarchies directly from the system matrix without explicit mesh information, and its

parallel coarsening and smoothing strategies worked well for these systems.200

The L2-projection system was solved with CG preconditioned by block Jacobi, which works well for the diagonally dom-

inant mass matrices from finite element discretizations. The Poisson system for velocity correction was also solved with CG

and BoomerAMG. All solvers used relative and absolute tolerances of 10−10 and 10−12. These tolerances are stricter than

typical values in geodynamic simulations. We chose them to eliminate solver-dependent variations and ensure reproducible

convergence across benchmarks. In practice, these values can be relaxed to 10−6–10−7 without noticeably affecting accuracy.205

Uzawa iterations were terminated using a normalized divergence residual

Rdiv =
∥∇ ·uk∥L2

∥uk∥L2
,

which measures how well the continuity constraint is satisfied. We used relaxed thresholds in long mantle convection runs to

balance efficiency and accuracy.

All benchmarks were discretized with Taylor-Hood (P2-P1) finite elements. Geodynamic models often use quadrilateral or210

hexahedral meshes, but we used structured triangular and tetrahedral meshes generated by splitting each cell along its diagonals.
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In two dimensions, this diagonal subdivision yields a symmetric "union-jack" pattern that preserves benchmark symmetry. This

configuration provides robust velocity-pressure stability and straightforward implementation in FEniCS. Further discussion

on finite element selection for geodynamic Stokes modeling can be found in (Thieulot and Bangerth, 2025). Viscosity η is

represented as a finite-element field and evaluated at quadrature points during local assembly of element matrices.215

To evaluate accuracy we report the relative L2 errors:

Eu =
∥u−uexact∥L2

∥uexact∥L2
, Ep =

∥p− pexact∥L2

∥pexact∥L2
.

3.3 Baseline comparison of Uzawa variants

We first establish a baseline solver among the three Uzawa variants: standard Uzawa (S-U), adaptive Uzawa (A-U), and

conjugate-directions Uzawa (CD-U). For this comparison, we use two complementary tests. The ABC flow with constant220

viscosity assesses convergence behavior in an ideal setting and is used to compare S-U, A-U, and CD-U directly. The SolCx

problem with a viscosity contrast of 106 provides a stress test under strong heterogeneity; here we focus on CD-U and con-

trast three residual formulations—vector (algebraic), L2 inner-product, and the viscosity-weighted CD-U-η—to examine ro-

bustness. In both tests we track the relative L2 errors in velocity and pressure and the normalized divergence residual over

iterations, and select the most effective configuration for the remainder of the paper.225

3.3.1 ABC Flow (smooth analytical solution)

The ABC (Arnold-Beltrami-Childress) flow (Zhao et al., 1993) is used as a smooth manufactured benchmark to compare

the three Uzawa variants (S-U, A-U, CD-U) and to select a baseline solver. With constant viscosity (η = 1.0), all residual

formulations reduce to the trivial case wk = qk. This setting isolates the algorithmic differences among the variants without

interference from viscosity contrasts.230

The exact velocity and pressure fields are

u(x,y,z) =




sin(πz)+ cos(πy)

sin(πx) + cos(πz)

sin(πy)+ cos(πx)


 , p(x,y,z) = sin(πx)cos(πy)cos(πz).

Figure 1 shows the relative velocity and pressure errors together with the normalized continuity residual Rdiv as functions

of iteration count. S-U converges very slowly and is highly sensitive to the relaxation parameter. A-U improves robustness but

stagnates at higher error levels. CD-U, in contrast, converges rapidly and monotonically for all quantities. These results support235

choosing CD-U as the baseline solver for the following benchmarks.
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Figure 1. ABC flow benchmark. Comparison of S-U, A-U, and CD-U: relative velocity error, pressure error, and normalized continuity

residual Rdiv as functions of iteration count.

3.3.2 SolCx (viscosity contrast benchmark)

The SolCx problem (Zhong, 1996) is a standard two-dimensional benchmark for testing solver performance under strong

viscosity contrasts. It is posed on Ω = [0,1]2 with a discontinuous viscosity,

η(x,y) =





1, x≤ 0.5,

106, x > 0.5,
240

and a density field ρ(x,y) = sin(πy)cos(πx). A gravitational acceleration of unit magnitude (|g|= 1) was applied in the

vertical direction, and reference solutions were taken from Underworld (Mansour et al., 2020; Moresi et al., 2007).

This benchmark poses a challenging test for Uzawa-type solvers. Here we compare three variants of the Conjugate-Directions

Uzawa method. The first is the discrete residual update (6), where the residual is updated in purely algebraic (vector) form.

The second is the L2 inner-product formulation, in which the residual is defined variationally as in (8), and the update coeffi-245

cients are computed using the inner-product relations in (11). Finally, we consider the viscosity-weighted extension CD-U-η,

initialized as in (12) and iterated according to (13), which realizes a preconditioned conjugate-gradient method on the Schur

complement with a physically motivated η-weighted mass matrix.

Figure 2 shows that the discrete CD-U update converges slowly and stagnates at high pressure error. The L2 inner-product

version achieves faster convergence but with oscillations in Rdiv. The η-weighted variant provides the most rapid initial re-250

duction of velocity and pressure errors and reaches much lower Rdiv within a few iterations. At later steps, Rdiv shows a mild

increase. This occurs when conjugacy—the orthogonality of successive search directions in the preconditioned Schur comple-

ment inner product—degrades due to inexact inner solves for Kzk =Gdk and Mηw
k = qk. Loss of conjugacy means that a

new step partly points back toward earlier directions. Progress measured in the physical L2 divergence can be reversed locally,

even though the preconditioned CG energy still decreases.255

In our numerical experiments, we found that restarts or periodic reinitialization could alleviate this effect. We did not ap-

ply them here because the iteration counts are not large enough to require it. Subsequent benchmarks remain stable without
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Figure 2. Convergence of CD-U variants on the SolCx benchmark. Relative velocity error Eu, pressure error Ep, and normalized divergence

residual Rdiv are compared for the discrete update, the L2 inner-product update, and the η-weighted update. All three share the same CD-U

framework.

reinitialization. The small increase in Rdiv is a characteristic of the baseline η-weighted formulation rather than a practical

limitation.

3.4 Post-processing strategies for incompressible problems260

We next examine the effect of the post-processing correction in two incompressible tests: linear mantle convection with variable

viscosity and the block sinking problem with sharp density and viscosity contrasts. In both tests the mesh, boundary conditions,

and time stepping are kept identical; the only change is in the Stokes solver. Results from CD-U-η are compared with those

from CD-U-η combined with post-processing. Reference solutions are obtained with the direct LU solver MUMPS (Amestoy

et al., 2000), which solves the discrete system to near machine precision.265

Performance is evaluated by the relative L2 errors of velocity and scalar fields (temperature, composition, or density) and

by the normalized continuity residual Rdiv. A breakdown of solver cost is also reported, showing that the post-processing step

adds little to the total runtime, while momentum solves remain the dominant cost.

3.4.1 Linear mantle convection

The linear mantle convection benchmark was solved on Ω = [0,2]× [0,1] using a 320× 160 structured grid, subdivided into270

triangular P2-P1 Taylor-Hood elements for velocity and pressure. Viscosity followed a depth- and temperature-dependent

exponential law (Blankenbach et al., 1989),

η(x,y) = exp
(
−b T

∆T
+ c(1− y)

)
, b= log(2.5), c= log(2.0).

The body force in the Stokes equations was given by thermal and compositional buoyancy,

f =
(
RaT T +Raϕϕ

)
ĝ, ĝ = (0,−1),275
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Figure 3. Comparison of CD-U-η and CD-U-η+Post-processing over 5000 steps (∆t = 10−6). The post-processing step reduces errors in

velocity, composition, and temperature fields, and maintains lower Rdiv throughout the run.

with Rayleigh numbers

RaT =Raϕ = 106.

Initial temperature was prescribed from boundary-layer theory (van Keken, 1997), and the composition field ϕwas initialized

as a dense basal layer (Tan and Gurnis, 2005). Boundary conditions were no-slip at the bottom and free-slip elsewhere for

velocity; T = 1 at the bottom and T = 0 at the top with insulating sidewalls; and ϕ= 1 at the bottom with homogeneous280

Neumann elsewhere.

The transport equations for temperature T and composition ϕ are

∂tT +u ·∇T −∇ · (κ∇T ) = 0, ∂tϕ+u · ∇ϕ= 0,

with κ= 1. Both fields were discretized with P1 discontinuous Galerkin elements using upwind fluxes. Time integration em-

ployed the second-order BDF2 scheme, initialized by backward Euler. The Stokes system was solved at each step with CD-U-η285

or CD-U-η + Post-processing. Iterations were stopped once the normalized continuity residual Rdiv fell below 10−3.

Figure 3 shows that the post-processing step improves accuracy in all fields. Velocity errors remain smaller at every stage,

and the normalized continuity residualRdiv is consistently lower. Since the composition and temperature fields are advected by

the velocity, they also benefit and show clear error reductions. Over 5000 steps, these corrections accumulate, yielding higher

long-term accuracy compared with the baseline solver.290
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Figure 4. Reference fields (top) and absolute errors in composition and temperature at the final step (5000). Middle: CD-U-η; Bottom: CD-

U-η+Post-processing. The post-processing correction reduces localized interface errors and improves the accuracy of scalar advection.

Figure 4 shows composition and temperature errors at the final step. CD-U-η alone produces noticeable errors near the

interface, especially in the composition field. With post-processing, these localized errors are reduced and the solution is closer

to the reference from the direct LU solver MUMPS, which is effectively exact for the discrete system. This demonstrates that

post-processing improves accuracy and aligns the iterative solution more closely with that of a direct solver.

Table 1 summarizes the solver cost for CD-U and CD-U-η with post-processing. The viscosity-weighted variant reduces295

the average number of momentum solves per step (2.40 versus 3.05) under the same tolerance, leading to an overall runtime

reduction of about 10%. The extra mass-matrix operations in CD-U-η (two solves per iteration instead of one) are inexpensive,

contributing only about 1-2% of the total cost. Similarly, the post-processing corrections, consisting of a Poisson solve and

velocity update, account for only a small fraction of the runtime compared with the dominant momentum solves. The main

benefit of CD-U-η is therefore the reduction in momentum iterations, while the additional scalar operations have negligible300

impact on efficiency.

13

https://doi.org/10.5194/egusphere-2025-5480
Preprint. Discussion started: 18 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Table 1. Cost breakdown for 5000 steps (∆t = 10−6, tolerance 10−3, 32 cores). Only solver execution time is included. Both CD-U and

CD-U-η are shown with post-processing.

CD-U (Total 2036 s) CD-U-η (Total 1849 s)

Step Total Solves % Time Solves/step Total Solves % Time Solves/step

Momentum solves 15264 73.2% 3.05 11998 69.1% 2.40

Mass-matrix solves (in Uzawa) 15264 0.5% 3.05 23996 1.4% 4.80

Post-processing (Poisson) 5000 2.6% 1.00 5000 3.0% 1.00

Post-processing (velocity) 5000 2.1% 1.00 5000 2.3% 1.00

Composition advection 5000 3.3% 1.00 5000 3.8% 1.00

Temperature advection 5000 18.3% 1.00 5000 20.4% 1.00

3.4.2 Block sinking problem

The block sinking benchmark (Gerya, 2019) is a two-material Stokes flow test designed to evaluate solver robustness under

sharp density and viscosity contrasts. A dense, low-viscosity block sinks into a lighter and more viscous fluid. The interface

was represented by a DG0 level-set field (ϕ), positive inside the block, negative outside, and zero on the interface. The level-set305

was advected in time without reinitialization.

The domain Ω = [0,1]2 was discretized with 256× 256 triangular P2-P1 Taylor-Hood elements for velocity and pressure.

The block initially occupied 0.4≤ x≤ 0.6, 0.7≤ y ≤ 0.9. Material properties showed strong contrasts: density 4200 vs. 2800,

viscosity 0.1 vs. 100. All sides had free-slip boundaries, and the pressure was initialized uniformly. The body force was

buoyancy,310

f = ρ(x,y) ĝ, ĝ = (0,−1),

with ρ defined by the block geometry. The level-set was advanced using a Crank-Nicolson scheme.

Solver iterations used a relaxed stopping condition Rdiv < 0.2 due to the strong viscosity contrasts and interface-driven

complexity. This avoided excessive momentum solves under a strict tolerance while still allowing an effective test of the

post-processing step. The reference solution was computed with the direct LU solver MUMPS.315

Figure 5 shows errors in velocity, density, level-set, and Rdiv for the block sinking problem. Post-processing decreases both

velocity and density errors and suppresses divergence. The irregular pattern in the density error comes from discontinuities

along the block interface introduced by the DG0 scheme. The level-set error profile appears smoother. We observed that this

reflects the nearly uniform field inside and outside the block. Post-processing helps maintain mass balance and improves

agreement with the direct solver.320

Figure 6 shows the density and level-set fields at the final step. Large density errors indicate loss of mass conservation, while

post-processing reduces these errors and brings the results closer to the reference solution.
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Figure 5. Relative errors in velocity (Eu), density (Eρ), level-set (Eϕ), and Rdiv over 1500 steps (∆t = 5× 10−6) for the block sinking

problem.

Table 2. Solver cost breakdown for the block sinking simulation (1500 steps, ∆t = 5×10−6, tolerance 0.2, 32 cores). Only solver execution

time is included.

CD-U (Total 4168 s) CD-U-η (Total 1735 s)

Step Total Solves % Time Solves/step Total Solves % Time Solves/step

Momentum solves 33359 98.5% 22.2 12523 97.2% 8.35

Mass-matrix solves (in Uzawa) 33359 0.8% 22.2 25046 1.4% 16.7

Post-processing (Poisson) 1500 0.3% 1.00 1500 0.7% 1.00

Post-processing (velocity) 1500 0.3% 1.00 1500 0.8% 1.00

Level-set advection 1500 0.1% 1.00 1500 0.2% 1.00

Table 2 compares the solver cost for CD-U and CD-U-η with post-processing in the block sinking problem. The viscosity-

weighted variant reduces the average number of momentum solves per step from 22.2 to 8.35, lowering the total runtime from

4168 s to 1735 s. The extra mass-matrix solves in CD-U-η are inexpensive, contributing only 1-2% of the total. Post-processing325

corrections and level-set advection also remain minor. The main benefit of CD-U-η is therefore the smaller iteration count in

the momentum equations, while the additional scalar operations add little overhead.
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Figure 6. Final-step density and level-set fields after 1500 steps (∆t = 5×10−6). Left: reference solution (MUMPS). Middle: CD-U-η only.

Right: CD-U-η with post-processing.

3.5 Compressible mantle convection

We next consider mantle convection under the Anelastic Liquid Approximation (ALA) (Schubert et al., 2001; King et al.,

2008), which incorporates depth-dependent density while filtering out fast acoustic modes. This benchmark follows (King et al.,330

2008) with Rayleigh number Ra= 105 and dissipation number Di= 0.5. This case extends the projection-based correction to

compressible formulations, where mass conservation is weighted by the background density profile.

Under ALA, mass conservation is expressed as

∇ · (ρ̄u) = 0, ρ̄(z) = ρ0 exp
(
Di(1− z)

γ0

)
.

The momentum equation is335

∇ · τ (u)−∇p′+Raρ̄αT k̂−
(

Di
Γ

cp

cv

)
ρ̄χT p

′ k̂ = 0,

where

τ (u) = 2µε(u)− 2
3µ(∇ ·u)I, ε(u) = 1

2

(
∇u+∇u⊤

)
.

The temperature equation, including advection, diffusion, adiabatic heating, and viscous dissipation, is

ρ̄cp ∂tT + ρ̄cp u ·∇T −∇ ·
(
κ∇(T̄ +T )

)
+αρ̄Diuy T −

Di

Ra
σ(u) :∇u = 0,340
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with background profile

T̄ (z) = T0 exp(Di(1− z)).

Time discretization used a second-order Crank-Nicolson scheme. Since viscosity is constant, CD-U and CD-U-η coincide;

the focus here is therefore on testing the robustness of the projection-based correction under compressible mass conservation.

To enforce the weighted continuity constraint after each Uzawa iteration, a ρ̄-weighted velocity correction was applied.345

Given an intermediate velocity û, we solved

−∇ ·
(
ρ̄∇ϕ

)
=∇ · (ρ̄û), u = û+∇ϕ,

ensuring ∇ · (ρ̄u) = 0 at the discrete level.

The computational domain Ω = [0,1]2 was discretized into 160× 160 triangular Taylor-Hood (P2-P1) elements for velocity

and pressure, and P1 discontinuous Galerkin elements for temperature. Viscosity was constant (η = 1). Free-slip boundaries350

were imposed on the horizontal sides and no-slip on the vertical sides. Temperature was fixed at the bottom (T ≈ 0.09) and

top (T = 0), with insulated sidewalls. Initial conditions included sinusoidal perturbations of the background temperature, and

pressure was initialized to zero. The Uzawa method with conjugate directions (CD-U) was used as the baseline solver, with

convergence tolerance Rρ̄
div < 10−3, and was compared against CD-U with projection-based correction. Reference solutions

were computed using the direct solver MUMPS.355

0
1000

2000
3000

4000
5000

Simulation steps ( t = 10 6)

0.0000

0.0001

0.0002

0.0003

E u
 (V

el
oc

ity
 E

rr.
)

CD-U only, tol=0.001
CD-U + Projection

0
1000

2000
3000

4000
5000

Simulation steps ( t = 10 6)

0

1

2

3

4

5

E t
 (T

em
pe

ra
tu

re
 E

rr.
)

1e 5

CD-U only, tol=0.001
CD-U + Projection

Figure 7. Relative L2 errors in velocity (Eu) and temperature (Et) over 5000 steps (∆t = 10−6) for compressible mantle convection under

ALA. The ρ̄-weighted velocity correction improves accuracy compared with CD-U alone.

Figure 7 shows that with constant viscosity the CD-U solver alone is already robust, but the ρ̄-weighted correction further

reduces errors in velocity and temperature. Figure 8 confirms improved accuracy near steep thermal gradients.

In terms of cost, the constant-viscosity ALA setup required only about 2-3 momentum solves per step on average, making it

considerably cheaper than variable-viscosity cases. The ρ̄-weighted correction added less than 20% to the runtime, confirming

that its accuracy benefits come at modest overhead.360
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Figure 8. Reference temperature field (left, MUMPS) and absolute temperature errors at the final step (5000). Middle: CD-U only; Right:

CD-U with ρ̄-weighted correction. The correction reduces localized errors near steep gradients.

4 Conclusions

We revisited Uzawa-type algorithms for Stokes equations in geodynamics and propose two enhancements. The residual cal-

culation was reformulated in variational form, which provides a natural preconditioner. We then extended this to a viscosity

weighting version (CD-U-η). This can be interpreted as a preconditioned conjugate gradient method for the Schur comple-

ment. The second enhancement applies a Helmholtz-Hodge projection as post-processing to the velocity field. This enforces365

the constraint more accurately. Through several benchmark tests, we confirmed that these two approaches help the algorithm

obtain more accurate solutions.

Our benchmarks include smooth analytical flows, high-contrast SolCx, linear mantle convection, block sinking with mul-

tiphase interfaces, and compressible mantle convection under ALA. CD-U-η converged faster and stayed robust under large

viscosity contrasts. The projection step improved constraint satisfaction and enhanced long-term accuracy. In time-dependent370

simulations, small corrections at each step accumulated and substantially improved transported fields such as temperature,

composition, and density.

In our benchmark tests, the additional cost of L2 residual and projection corrections was modest—less than 5% of total

solver time. Momentum solves remained the dominant component. The enhancements do not significantly change overall cost.

As problem size increases, the relative cost of these corrections should decrease further since momentum solves become more375

dominant. Additionally, the viscosity-weighted variant helps reduce momentum iterations, further improving computational

efficiency.

It is important to note that the projection step only corrects the velocity field and does not directly enhance pressure conver-

gence. This highlights an inherent limitation of projection-based strategies, which are designed to enforce incompressibility.

Since pressure plays a critical role in many geodynamic applications, its convergence remains governed by the underlying380

Uzawa iteration. Our focus here was to improve velocity and advected fields. Improving pressure convergence represents an

important direction for future research.
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In conclusion, projection-enhanced Uzawa solvers offer a practical alternative to more complex Schur complement methods.

They are easy to implement in standard FEM frameworks like FEniCS-PETSc, work across different platforms, and perform

well for both incompressible and compressible mantle convection problems with strong rheological complexity. These findings385

suggest that projection-enhanced Uzawa solvers can serve as a useful baseline for future work in geodynamic modeling,

combining simplicity with computational efficiency for large-scale problems.
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