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Abstract. Over the past fifteen years, trapped-charge (T-C) thermochronometry has been established as an ultra-low 20 

temperature (<80 °C) thermochronometric system. Its novelty is its ability to resolve rock cooling within the final few km of 

Earth’s surface, as well as rock-surface temperature changes since the Last Glacial Maximum to the present day. Deriving 

temperature histories from the luminescence signals of feldspar minerals, or the electron spin resonance signals of quartz 

minerals, requires the modelling of both signal accumulation and signal loss in response to mineral exposure to ionizing 

radiation and temperature, as well as athermal signal losses for feldspar minerals. Two open-source libraries have been 25 

developed in MATLAB that allow different numerical models to be used for this purpose; the first is applicable to the infra-

red stimulated luminescence (IRSL) of feldspar minerals (OSLThermo) and the second to the electron spin resonance (ESR) 

signal of quartz minerals (ESRThermo). These libraries have been made available in GITHUB and this contribution describes 

their broad structure, the T-C models that have been implemented and their practical use. 

 30 

Codes are available for download on GitHub: https://github.com/GeorginaKing/OSLThermo for luminescence 

thermochronometry & https://github.com/GeorginaKing/ESRThermo for ESR thermochronometry. 
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1 Introduction 

The development of trapped-charge thermochronometry over the past fifteen years (e.g., Herman et al., 2010; Guralnik et al., 

2015a; Wu et al., 2015; King et al., 2016a; Brown et al., 2017; Biswas et al., 2018; King et al., 2020; Zhang et al., 2025) and 35 

recent investigations of trapped-charge thermometry (e.g., Guralnik and Sohbati, 2019; Biswas et al., 2020) have built upon 

both previous applications of the method (e.g., Houtermans et al., 1957; Ronca and Zeller, 1965; Grün et al., 1999) and earlier 

fundamental research describing the accumulation and loss of trapped-charge signals (e.g., Prokein and Wagner, 1994; Toyoda 

and Ikeya, 1991). The premise of the technique is that, as the luminescence and electron spin resonance (ESR) signals of 

feldspar and quartz minerals are thermally sensitive, they can be used to determine temperature histories. Temperature changes 40 

occur, for example, as rocks are exhumed towards the Earth’s surface (e.g., King et al., 2016c; Bouscary et al., 2024), or as 

atmospheric temperature changes due to climatic variations and affects rock surface temperatures (e.g., Guralnik and Sohbati, 

2019; Biswas et al., 2020). 

Luminescence and ESR thermochronometry have been applied in a variety of settings to determine rock-thermal histories, 

including the Southern Alps of New Zealand (Herman et al., 2010), the Himalayas (De Sarkar et al., 2013; King et al., 2016c; 45 

Bouscary et al., 2024), the European Alps (Lambert, 2018; Wen et al., 2024), Taiwan (Wu et al., 2015), the Chilean Andes 

(Stalder et al., 2022), and in the Japanese Alps (King et al., 2023; Bartz et al., 2024) and alpine foreland (Ogata et al., 2022). 

Recent reviews are given by King et al. (2016b) and Herman and King (2018). 

Luminescence and ESR thermochronometry rely on the combination of laboratory measurements with numerical models, that 

allows the conversion of trapped-charge concentrations into thermal histories. Two or three laboratory experiments are 50 

typically used to build an ESR or luminescence thermochronometry measurement, respectively (e.g., Herman et al., 2010; 

Guralnik et al., 2015b; King et al., 2016a; Biswas et al., 2018; Fang and Grün, 2020; King et al., 2020) (Fig. 1). The first 

experiment (Fig. 1B and Fig. 1E) measures the concentration of trapped charge within the sample, and is usually done using a 

single aliquot regenerative dose method (e.g., Murray and Wintle, 2000; Tsukamoto et al., 2015). The measurement comprises 

construction of a sample-specific calibration curve, for sample signal response to laboratory irradiation, known as a dose 55 

response curve (DRC). As trapped-charge thermochronometry data are often described as saturation ratios, i.e. the proportion 

of electrons trapped (𝑛) relative to the maximum possible number of trapped electrons (𝑁), laboratory DRC are generally 

measured until signal saturation (i.e. no further increase in sample signal for increasing dose). For some samples, the 

exceptionally high saturation level of the quartz ESR Al-centre makes this impractical, and for this signal, the system may be 

treated as non-saturating (e.g., King et al., 2020). The second experiment (Fig. 1C and Fig. 1F) measures the thermal decay of 60 

the luminescence or ESR signals in response to temperature. Generally, it comprises an isothermal decay experiment whereby 

signal loss relative to a fixed temperature is measured following different isothermal heating durations (e.g., Bouscary and 

King, 2022). The final experiment is only applicable to the luminescence of feldspar minerals and consists of measuring the 

rate of anomalous fading (Wintle, 1973; Visocekas et al., 1994) by measuring signal loss at ambient temperature following 

different delay durations (Fig. 1A). 65 
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Figure 1: Experimental IRSL and ESR data together with model fits (see Section 2) for two samples from the Japanese Alps. 
(A) Athermal signal loss, (B) dose response, (C) and isothermal decay for the IRSL225 signal of the K-feldspar extract of sample 
KRG104 (King et al., 2020). (D) Comparison of luminescence natural saturation ratios, 𝒏"𝒏𝒂𝒕, with those calculated for athermal 70 
steady state, 𝒏"𝒔𝒔, (dashed line indicates 15% deviation from unity) for the four IRSL signals of sample KRG104. (E) Dose response 
and (F) isothermal decay for the Al-centre of sample TTY-A05 (Bartz et al., 2024). 

 

Fitting these experimental data using models that describe signal accumulation, thermal or athermal decay, allows the 

experimental data to be reduced to several kinetic parameters, as illustrated in Eq. (1): 75 
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The trapped-charge population 𝑛( at a given time t (Ma) is given by three terms. The first term on the right-hand side of the 

equation describes trapped-charge accumulation where 𝐷̇  (Gy·Ma-1) is the environmental dose rate, 𝐷1  (Gy) is the 

characteristic dose of saturation and 𝛼 is an exponent ≥1, depending on whether electron trapping is described as first (𝛼 = 1) 

or general (𝛼 > 1) order. The second term describes thermal loss at a given temperature, T (K), where s (s-1) is the frequency 80 

factor, 𝐸2 (eV) is the activation energy of the electron trap, 𝑘3 (eV·K-1) is the Boltzmann constant, and 𝛽 the order of kinetics 
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≥1. The final term describes athermal loss where 𝑠̃ (3 x 10-15 s-1) is a frequency factor, 𝜌4 is a dimensionless description of the 

density of recombination centres and r’ is a dimensionless distance between traps and recombination centres (Huntley, 2006). 

A variety of different models describing signal accumulation and athermal or thermal signal loss have been investigated for 

use in trapped-charge thermochronometry/thermometry applications (e.g., Guralnik et al., 2015b; Biswas et al., 2018; Lambert, 85 

2018; Biswas et al., 2020; King et al., 2020), and have been validated against data collected in the laboratory as well as 

independent temperature measurements (e.g., Lambert, 2018; Bouscary and King, 2022). These kinetic parameters can then 

be used together with Eq. (1), to predict a trapped-charge concentration for a particular time-temperature history, allowing the 

natural trapped charge concentration of a sample to be inverted for its thermal history. 

In this contribution, we present two MATLAB libraries, OSLThermo and ESRThermo, that are available for the processing of 90 

trapped-charge thermochronometry data. We first outline the T-C models implemented in the codes and then describe the 

structure of the OSLThermo and ESRThermo libraries as well as the required input format of experimental data. Note that we 

do not comment on the suitability of different models for specific datasets, but rather list those models that have been 

implemented in the libraries at present. We anticipate that these libraries will be further updated in the future. 

2 Model overview 95 

In this section, the specific T-C models implemented in the OSLThermo and ESRThermo libraries are described. Although 

athermal signal losses are often not measured first, here we begin with fitting these data as athermal losses must also be 

accounted for when constraining the trapped-charge concentration and fitting isothermal decay data of feldspar minerals in the 

OSLThermo library. 

2.1 Athermal signal loss (OSLThermo library only) 100 

Athermal signal losses are known to affect the luminescence of feldspar minerals (Visocekas et al., 1994) and must be 

accounted for when fitting luminescence data to derive the kinetic parameters of signal dose response and thermal decay. The 

OSLThermo library uses the model of Huntley (2006), as implemented by Kars et al. (2008), to compute the natural dose 

response curve of feldspar signals by correcting the data for athermal fading, and to calculate the natural steady-state 

luminescence signal, 𝑛(55. This signal is expressed as the ratio between the trapped-charge concentration, 𝑛, and the maximum 105 

possible trapped-charge concentration in the absence of anomalous fading, 𝑁. Signal saturation is the main limitation of 

luminescence thermochronometry (e.g., Valla et al., 2016), and accurate screening of luminescence signals for saturation is 

essential. 

The rate of anomalous fading induced signal loss can be calculated from: 

𝑛(𝑡∗) = 𝑛(0) ∙ 	𝜑(𝑡∗)           (2) 110 

where 𝑛(0) is the initial trapped-charge concentration at time 0, 𝑛(𝑡∗) is the signal remaining after fading time t* (s), which 

is calculated following Appendix F of Aitken (1985), and 

https://doi.org/10.5194/egusphere-2025-5474
Preprint. Discussion started: 18 November 2025
c© Author(s) 2025. CC BY 4.0 License.



5 
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in which 𝜌4 ≡	 ?@-
A'+

, where 𝜌 is the density of recombination centres and 𝛼 is a constant (Huntley, 2006; Kars et al., 2008). 

To compute the athermal steady-state value of feldspar luminescence signals, 𝑛(ss, the following equation is used (Li and Li, 115 

2008; King et al., 2016a): 
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where the dimensionless distance 𝑟4 ≡ ??@-
A
@
*
+ 𝑟, with 𝑟 the tunnelling distance from a trap to a recombination centre, and the 

probability that the nearest recombination centre is at a distance between 𝑟’ and 𝑟’ + 	𝑑𝑟’ is given by 𝑝(𝑟4)𝑑𝑟′ = 3𝑟4F𝑒,/)
+
𝑑𝑟′ 

(Huntley, 2006). 120 

2.2 Signal growth 

Trapped-charge signals accumulate in response to the exposure of feldspar and quartz minerals to ionizing radiation. Various 

models have been proposed for luminescence and ESR signal growth. In the OSLThermo library, the single-saturating 

exponential (SSE; Apers et al., 1981) and general order kinetic (GOK; Guralnik et al., 2015b) growth functions have been 

implemented. In the ESRThermo library in addition to SSE and GOK, a linear (LIN) growth function has also been 125 

implemented for signals that do not appear to experience saturation (King et al., 2020). 

In trapped-charge thermochronometry, the saturation ratio of the centre under investigation is usually considered, rather than 

the age, consequently, 𝑛( ratios are calculated for all of the signal growth fitting options with the exception of the LIN model, 

where N, the maximum possible trapped-charge concentration, cannot be constrained, and 𝑛( thus only represents the trapped-

charge population. For this model, rather the total dose, 𝐷 (Gy), accumulated, i.e., the equivalent dose, 𝐷B (Gy), of the natural 130 

sample is considered. 

The different dose response models are given below: 

 

(i) Single saturating exponential (SSE) growth 

𝑛((𝑡) = 𝜑(𝑡∗) ∙ 𝐴 G1 − 𝑒,	
Ḋ3$4	5
/! H          (5) 135 

where 𝑛((𝑡)	is the ratio of trapped electrons at time 𝑡 (s), 𝐴 is a pre-exponential multiplier, ḊG2H	(Gy·s-1) is the laboratory dose 

rate and 𝜑  accounts for athermal detrapping (Eq. (2) and Eq. (3)). Note that athermal detrapping is only applicable for 

luminescence signals from feldspar and this term is not incorporated in the ESRThermo library. Single saturating exponential 

fits have been used previously to fit both luminescence (e.g., Herman et al., 2010) and ESR (e.g., Grün et al., 1999) 

thermochronometry data. 140 
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(ii) General order kinetic (GOK) growth 

𝑛((𝑡) = 𝜑(𝑡∗) ∙ 𝐴 G1 − J1 + JḊ3$4
%!
K 𝑐	𝑡KH

,	*6
         (6) 

Where the kinetic order of trapping, a = c + 1 (Guralnik et al., 2015b). General order kinetic models have been used to fit both 

IRSL (e.g., Guralnik et al., 2015a; Lambert, 2018) and thermoluminescence data (Biswas et al., 2018). 145 

 

(iii) Linear (LIN) growth 

𝑛((𝑡) ≈ 𝐷B(𝑡) = 𝑡	𝐷̇           (7) 

Linear growth has been used to describe the ESR response of the Al-centre within the context of ESR-thermochronometry 

(King et al., 2020). 150 

2.3 Thermal signal loss 

The thermal sensitivity of trapped-charge signals is well known (e.g., Aitken, 1985). The following models have been 

implemented in the OSLThermo and ESRThermo libraries: (i) the band-tail states model (BTS; Li and Li, 2013), (ii) the 

general order kinetics model (GOK; Guralnik et al., 2015a), and (iii) the Gaussian distribution model (GAUSS; Lambert, 

2018). The mathematical basis of the models is described below: 155 

 

(i) Band-tail states (BTS) 
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where 𝐸$ (eV) is the trap depth of the electron trap, and	𝐸H (eV) is the depth of the band-tail state below the conduction band. 

The probability of thermally evicting electrons into band-tail states of energy in the range of 𝐸H + 𝑑𝐸H, 𝑃(𝐸H) 𝑑𝐸H ,	is given 160 

by (Poolton et al., 2009; Li and Li, 2013): 

𝑃(𝐸H) 𝑑𝐸H = 𝐶	𝑒(,	
#4
#7
)𝑑𝐸H          (9) 

where 𝐶 is a pre-exponential multiplier and 𝐸M (eV) is the width of the Urbach tail. King et al. (2016a; 2016c), Herman and 

King (2018), King et al. (2020), Bouscary and King (2022) and Ogata et al. (2022) used the BTS model to describe their multi-

luminescence-thermochronometry data from feldspar minerals. 165 

 

(ii) General order kinetics (GOK) 
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Note that if the kinetic order, 𝛽, is fixed at 1 or 2, the model reverts to first-order or second-order kinetics respectively. Guralnik 

et al. (2015b) used GOK thermal decay to fit their infra-red stimulated luminescence thermochronometry for samples from the 170 

KTB borehole, whilst Biswas et al. (2018) and Stalder et al. (2022) used a similar approach to fit their thermoluminescence 

thermochronometry data. Wu et al. (2015) employed first-order kinetics to fit quartz luminescence data for samples from 

Taiwan, while Toyoda and Ikeya (1991) used second-order kinetics to describe the thermal decay of the ESR Al- and Ti-

centres of quartz minerals, noting their potential for thermochronometry. 

 175 

(iii) Gaussian distribution model (GAUSS) 

The GAUSS distribution model assumes a Gaussian distribution of trap depths, with mean trap depth 𝜇(𝐸$) (eV) and width 

𝜎(𝐸$) (eV) (Lambert, 2018), with: 

"($)
"(1)
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where 𝐸2(𝑚𝑎𝑥) is arbitrarily set to 9 eV, corresponding to the maximum optical bandgap for amorphous quartz (DiStefano 180 

and Eastman, 1971), and the probability of eviction 𝑃$(𝐸$) given by: 

𝑃$(𝐸$) =
:

R(L5)	√F@
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#5"9(#5)
<(#5)

*
-
0
          (12) 

Lambert (2018) used the GAUSS model to describe thermal losses from the IRSL signals of feldspar minerals from the Mont 

Blanc massif, whilst King et al. (2020) and Bartz et al. (2024) used the GAUSS model to describe thermal signal losses from 

the ESR Al- and Ti-centres of quartz samples from Japan. 185 

2.4 Data inversion 

Using the kinetic parameters derived from fitting experimental data with the T-C models described above, it is possible to use 

the rate equation Eq. (1) to invert for a thermal history. For the luminescence of feldspar, the model must be integrated over 

the range of recombination centre distances r’ and, for the BTS and GAUSS models, over the range of activation energies 𝐸2 

described by Eq. (8) and Eq. (11) (where 𝐸2= 𝐸$ − 𝐸H for the BTS model, and 𝐸2= 𝐸$ − 𝜇(𝐸$) for the GAUSS model). For 190 

quartz ESR data, as quartz minerals do not experience athermal fading, the third term on the right-hand side of the equation 

can be discarded. In this case, it is only necessary to integrate over the range of activation energies: 

!"#
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Finally for a non-saturating system exhibiting linear dose response, Eq. (14) is used: 

 195 
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3 Structure of OSLThermo and ESRThermo 

The two libraries described here are structured in a similar manner (Table 1), that allows the input of partially processed 

trapped-charge data into MATLAB. Each library can be divided into two main parts: data fitting and inversion. Data fitting 

relates to the derivation of the kinetic parameters that describe signal growth and decay, and inversion to using these parameters 200 

to predict thermal histories from the natural trapped-charge concentrations of the sample under investigation (Table 1). 

 
Table 1: Overview of the structure of the OSLThermo and ESRThermo libraries. 

 Script name Description Output 

D
at

a 
fit

tin
g  

OSLThermo/ 
ESRThermo 

The main script that calls the other scripts, where the 
user selects the T-C models to use and which scripts 
to run (see Stage1 to Stage4b below). 

Depends on the scripts that are run (see 
Stage1 to Stage4b below). 

Stage1_ExceltoStruct Uploads the data from a pre-defined Excel 
spreadsheet format (see Fig. 2). 

filename.mat containing structure, 
‘records’, of the raw data 

Stage2a_Fitparameters Fits the raw data with the selected T-C models to 
obtain kinetic parameters. 

fitpar.mat containing structure, 
‘records.params’, of the kinetic 
parameters 

Stage2b_PlotFit Plots raw data with model fits. Figures of the data fitting (see Fig. 1) 

In
ve

rs
io

n 

Stage3a_Invesion Inverts for a cooling history using the selected T-C 
models and output from Stage2a. 

‘Tt.mat’, structure containing the 
inversion results 

Stage3b_PlotTt Plots cooling inversion results. Figures of the cooling inversion results 
(see Fig. 3) 

Stage4a_InversionExh Inverts for exhumation rate using the selected T-C 
models and output from Stage2a. 

‘Zt.mat’, structure containing the 
inversion results 

Stage4b_PlotExh Plots exhumation inversion results. Figures of the exhumation inversion 
results (see Fig. 4) 

4 Experimental data 

The OSLThermo and ESRThermo libraries are designed for the following three experimental data types but could be modified 205 

for different types of experimental data if required. (i) Luminescence or ESR dose response data measured in a regenerative 

dose protocol until saturation (except in the case of some ESR Al-centre signals that do not saturate at laboratory doses), i.e. 

the luminescence or ESR response to a range of laboratory irradiation doses including zero dose. The laboratory irradiation 

source dose rate (Gy·s-1) must be listed in the data input file, as well as the irradiation times (ks) (Fig. 2). (ii) Isothermal decay 

data for a minimum of one isothermal holding temperature, however, we strongly recommend including at least two isothermal 210 

holding temperatures. Using only one isothermal holding temperature often results on large and poorly constrained errors in 

the derived thermal kinetic parameters, whereas two or more temperatures significantly improve the accuracy and reliability 

of the fit. The isothermal holding temperatures (°C) must be listed in the data input file together with the isothermal holding 

times (ks) (Fig. 2). (iii) Anomalous fading data for feldspar luminescence data only. The fading time (ks), derived from the 

irradiation times and the time delay between irradiation and the start of the trapped-charge measurement, should be calculated 215 
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following Appendix F of Aitken (1985). These times can be directly extracted from the t* (hrs) values given in Analyst (see 

Duller, 2018). 

The data format for the Excel data input file is shown in Fig. 2 for an example luminescence sample. The background subtracted 

integrated signals for each of the measurements (e.g., Lx/Tx values for luminescence) should be input into the Excel 

spreadsheet for each measurement point. Templates populated with the example data shown here are available for download 220 

from GitHub [https://github.com/GeorginaKing/OSLThermo & https://github.com/GeorginaKing/ESRThermo, “Data” 

folder]. Where fewer dose response, isothermal holding temperatures, or athermal fading data have been measured, the rows 

should be deleted and the values of ‘nSAR’ (number of measurements or aliquots measured for dose response curve 

measurements), ‘nITH’ (number of isothermal temperatures used in the isothermal holding experiment), and ‘nFAD’ (number 

of aliquots measured for athermal fading for IRSL) updated in the OSLThermo/ESRThermo script (see Section 5.1). This 225 

spreadsheet (Fig. 2) must be saved in the “Data” folder of the MATLAB library so that it can be called by the script 

Stage1_ExcelToStruct script (see Table 1 and further details below). It should then only be necessary for the user to modify 

the OSLThermo/ESRThermo script to read in, fit and invert their data. 

 

 230 
Figure 2: Example Excel data input sheet for the OSLThermo library. Note that all of these data, except for the average surface 
temperature (that can be manually inputted in Stage3a_Inversion and Stage4a_InversionExh of the OSLThermo and ESRThermo 
scripts) and laboratory dose rates for the isothermal decay and fading measurements, are mandatory for the codes to run. 
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5 Running the code 

The code comprises multiple stages, which are available on GitHub, and can be download at: 235 

https://github.com/GeorginaKing/OSLThermo & https://github.com/GeorginaKing/ESRThermo. Users will need both a 

MATLAB license and the Statistics and Machine Learning Toolbox to run the code. Example datasets are provided from King 

et al. (2016a) for OSLThermo and Bartz et al. (2024) for ESRThermo. The libraries contain the different MATLAB codes, 

with OSLThermo/ESRThermo being the main code/launcher that calls the other code stages that have been selected. Four 

folders are contained in the libraries: “Data” where the Excel files with the luminescence or ESR input data need to be placed, 240 

“Functions” which regroups the different functions used in the MATLAB codes, “ComputeData” where the computed data is 

output, and “Figures” where the computed figures are saved. 

5.1 OSLThermo/ESRThermo 

In OSLThermo/ESRThermo the user must provide the filename and select which models will be used to fit and invert the data 

(‘SAR_fittype’ and ‘ITH_fittype’). The number of aliquots or measurements for the dose response curve, the number of 245 

isothermal temperatures investigated (‘nITH’), and the number of aliquots or measurements for athermal fading (‘nFAD’, only 

for OSLThermo) must also be stated. 
 

OSLThermo ESRThermo 
   %%% List of file names %%% 
 filenamevec = {'KRG104'}; 
 
   %%% Number of measurements %%% 
   nSARvec = 3;     % number of aliquots measured for SAR 
 nITHvec = 7;      % number of isothermal decay temperatures 
 nFADvec = 3;  % number of aliquots measured for fading 
 
   %%% Select models %%% 
   SAR_ fittype = 1;  % 1=SSE; 2=GOK 
   ITH_ fittype  = 1;   % 1=BTS; 2=GOK; 3=GAUSS 

   %%% List of file names %%% 
   filenamevec = {'TTY-A05'};  
 
   %%% Number of measurements %%% 
   nSARvec = 3;     % number of SAR measurements 
   nITHvec = 4;      % number of isothermal decay temperatures 
  
   %%% Select models %%% 
   SAR_fittype = 1;    % 1=SSE; 2=GOK; 3=LIN 
   ITH_fittype = 3;      % 2=GOK; 3=GAUSS 
 

 

The user then selects which codes should be run for that particular sample, e.g., Stage1_ExcelToStruct, Stage 250 

2a_Fitparameters, etc. Once a code has been run for a sample, the output is saved (see Table 1), so it is not necessary to run 

the code again unless the raw data have changed, or the data should be fitted with a different model. 

5.2 Stage1_ExcelToStruct 

This function imports the Excel data, stored in the subfolder “Data”, into MATLAB and creates a MATLAB structure called 

‘records’ that is called in Stage2a_Fitparameters: 255 

 
OSLThermo ESRThermo 
 run Stage1_ExcelToStruct  run Stage1_ExcelToStruct 
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 >> records = 

1×4 struct array with fields 
id: 'KRG104 IRSL225' 
typeMeasurement: ‘IRSL’ 
typeSignal: 225 

  params: [1×1 struct] 
  rawdata: [1×13 struct] 
 
 >> records.params = 
 struct with fields: 
  natT: [10 2] 
  natDdot: [1.9533e-10, 2.62693e-11] 
 
 >> records.rawdata = 
 1×13 struct array with fields: 
  T 
  labDdot 
  t 
  L 

 
 >> records = 
 1x2 struct array with fields: 
  id: 'TTY-A05-Al' 
                typeMeasurement: ‘ESR’ 
                typeSignal: ‘Al-centre’ 
  params: [1×1 struct] 
  rawdata: [1×7 struct] 
 
 >> records.params = 
 struct with fields: 
  natT: [10 5] 
  natDdot: [1.2406e-10 1.1725e-11] 
 
 >> records.rawdata = 
 1×7 struct array with fields: 
  T 
  labDdot 
  t 
  ESR 

 

This structure is saved as a .mat file in the subfolder “ComputeData”, with the name filename.mat, and can be accessed without 

running Stage1_ExcelToStruct again. If multiple sheets are present in the Excel file, ‘records’ will comprise multiple datasets, 

which can be accessed separately by inputting records(i) where i is the record number, into the MATLAB Command Window. 260 

The different rows of rawdata, j can also be accessed directly, for example to access the duration of dose/isothermal annealing 

time (Table 2), one can input records(i).rawdata(j).t into the command line. 

 
Table 2: Variable names and description of data stored in the MATLAB structure ‘records’ after running Stage1_ExcelToStruct. 

Excel ID MATLAB ID Description 

Sheet name records(i).id Excel sheet name 

Type of measurement records(i).typeMeasurement Type of measurement (IRSL, ESR) 

Type of signal records(i).typeSignal Type of signal (temperature of IRSL (°C), or ESR defect) 

Natural T (°C) records(i).params.natT Natural temperature (°C) 

Natural Ḋ (Gy·s-1) records(i).params.natDdot Natural environmental dose rate (Gy·s-1) 

T (°C) records(i).rawdata(j).T Measurement temperature (°C) 

Ḋ (Gy·s-1) records(i).rawdata(j).labDdot Instrument dose rate (Gy·s-1) 

t (ks) records(i).rawdata(j).t Duration of dose/isothermal annealing (ks) 

Lx/Tx records(i).rawdata(j).L Luminescence data (OSLThermo only) 

ESR records(i).rawdata(j).ESR ESR data (ESRThermo only) 

 265 
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5.3 Stage2a_Fitparameters 

This script calls filename.mat, created by Stage1a_ExcelToStruct, and fits the raw data using the T-C models specified in the 

OSLThermo/ESRThermo script. The dose response and athermal fading data are fitted independently for each 

aliquot/measurement to account for individual laboratory dose rates and varying maximum trapped-charge signal values. The 

kinetic parameters output by the script are averaged per signal type across the different aliquots/measurements, and depend on 270 

the T-C models used. They are summarised in Table 3 per T-C model. In the MATLAB codes, these parameters are stored in 

the structure ‘records’ as ‘records.params’, and are exported in an Excel table. In addition to the kinetic parameters, the 

modelled data fits are stored in the structure ‘records’ as ‘records.plot’ for plotting in Stage2b_PlotFit. 

 
OSLThermo ESRThermo 
   >> records = 
   1 x 4 struct array with fields: 
 id: ‘KRG104 IR225’ 
 typeMeasurement: ‘IRSL’ 
 typeSignal: 225 
 params: [1×1 struct] 
 rawdata: [1×13 struct] 
 SAR_model: ‘SSE’ 
 ITH_model: ‘BTS’ 
 plot: [1×1 struct] 
 
   >> records.params = 
   struct with fields: 
 natT: [10, 2] 
 natDdot: [1.9533e-10, 2.6269e-11] 
 rhop10: [-5.6606, 0.0573] 
 g2d: [2.6846, 0.3351] 
 D0: [708.8781, 30.9929] 
 GOK_a: [NaN, NaN] 
 Et: [1.3831, 0.0443] 
 Eu: [0.1244, 0.0071] 
 GOK_b: [NaN, NaN] 
 sigmaEt: [NaN, NaN] 
 s10: [8.0616, 0.3714] 
 NatFadedDe: [386.9116, 82.5055] 
 NatFadedD0: [687.1585] 
 AgeOSL: [62.7696, 15.8248] 
 maxAgeOSL: [222.9586] 
 nNnat: [0.2391, 0.0497] 
 nNss: [0.5555, 0.0441] 

   >> records = 
   1 x 2 struct array with fields: 
 id: 'TTY-A05-Al' 
 typeMeasurement: ‘ESR’ 
 typeSignal: ‘Al-centre’ 
 params: [1×1 struct] 
 rawdata: [1×7 struct] 
 SAR_model: ‘SSE’ 
 ITH_model: ‘GAUSS’ 
 plot: [1×1 struct] 
 
   >> records.params = 
   struct with fields: 
 natT: [10, 5] 
 natDdot: [1.2406e-10, 1.1725e-11] 
 De: [1.5093e+03, 48.2475] 
 D0: [1.1030e+04, 965.1034] 
 GOK_a: [NaN, NaN] 
 s10: [13.5306, 0.6237] 
 Et: [1.5338, 0.0561] 
 GOK_b: [NaN, NaN] 
 sigmaEt: [0.0897, 0.0049] 
 AgeESR: [385.5232, 38.4629] 
 nNnat: [0.1279, 0.0041] 
 

 275 
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Table 3: Description of the parameters output by Stage2a_Fitparameters and stored in ‘records.params’, depending on the T-C 

models selected. Additional useful values are calculated in the codes but are not extensively discussed in this manuscript, which 

focuses on the key parameters used in the different scripts. 280 

Parameter OSLThermo MATLAB ID ESRThermo MATLAB ID 
Environmental parameters 

Tnat (°C) – average surface temperature 
Ḋ (Gy·s-1) – natural environmental dose rate 

 
Athermal detrapping model (OSLThermo script only) 
𝜌’ (-) – recombination centre density 
g2d (%/dec.) – fading rate normalised to 2 days 
𝑛'%% (-) – athermal steady-state signal (fading corrected) 

 
Trapping models 

SSE 
𝑛'&'( (-) – natural signal 
De (Gy) – equivalent dose 
D0 (Gy) – characteristic dose of saturation 
D0_nat (Gy) – D0 for the natural faded signal 
 
GOK 
𝑛'&'( (-) – natural signal 
De (Gy) – equivalent dose 
D0 (Gy) – characteristic dose of saturation 
D0_nat (Gy) – D0 for the natural faded signal 
𝑎 (-) – kinetic order of trapping 
 
LIN 
De (Gy) – equivalent dose 

 
Detrapping models 

BTS 
𝐸( (eV) – trap depth  
𝐸) (eV) – Urbach width 
s (s-1) – frequency factor 

 
GOK 
𝐸( (eV) – trap depth 
𝑏 (-) – kinetic order of detrapping 
s (s-1) – frequency factor 

 
GAUSS 
𝜇(𝐸() (eV) – mean trap depth 
𝜎(𝐸() (eV) – standard deviation of trap depth (width) 
s (s-1) – frequency factor 

 
Ages 

Age (ka) – Apparent age 
Agemax (ka) – Max. age, calculated for 2.D0_nat 

 
natT 
natDdot 
 
 
rhop10 
g2d 
nNss 
 
 
 
nNnat * 
NatFadedDe* 
D0 * 
NatFadedD0 * 
 
 
nNnat * 
NatFadedDe* 
D0 * 
NatFadedD0 * 
GOK_a 
 
 
- 
 
 
 
Et 
Eu 
s10 
 
 
Et 
GOK_b 
s10 
 
 
Et 
sigmaEt 
s10 
 
 
AgeOSL * 
maxAgeOSL * 

 
natT 
natDdot 
 
 
- 
- 
- 
 
 
 
nNnat 
De 
D0 
- 
 
 
nNnat 
De 
D0 
- 
GOK_a 
 
 
De 
 
 
 
- 
- 
- 
 
 
Et 
GOK_b 
s10 
 
 
Et 
sigmaEt 
s10 
 
 
AgeESR 
- 

Note: for the OSLThermo script, all data with an asterisk (*) are fading corrected values. 
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5.4 Stage2b_PlotFit 

Stage2b_PlotFit calls filename.mat, created in Stage1_ExcelToStruct and updated in Stage2a_Fitparameters, and produces 

plots of the raw data and model fits. In the OSLThermo library, the output of the Huntley (2006) model to test for luminescence 

signal saturation due to anomalous fading (Kars et al., 2008; Valla et al., 2016) is also plotted (𝑛(55 vs. 𝑛("2$; Fig. 1D). The 285 

figures produced for the two example datasets are shown in Fig. 1 and are automatically saved as either .png, .svg, or .eps files 

to the subfolder “Figures”. Whilst it is not necessary to run Stage2b_PlotFit prior to running Stage3a_Inversion as no additional 

data fitting occurs in the script, it is good practice to make a visual inspection of the quality of data fitting before proceeding 

to the data inversion. 

5.5 Stage3a_Inversion 290 

Stage3a_Inversion inverts trapped-charge data for rock cooling history, using the parameters calculated in 

Stage2a_Fitparameters, assuming monotonic cooling. All the data from a single Excel file are inverted together, for example 

different temperature IRSL data saved on different sheets of the same Excel file (Fig. 2). Note that the same T-C models used 

for fitting the data, must be used for the inversion. For OSLThermo, default parameters are setup for the model to run for 

1 Myr assuming cooling from Tmax = 150 °C to Tmin = 10 ± 5 °C using niter = 5000 iterations; and for ESRThermo, the 295 

model is setup to run for 5 Myr assuming cooling from Tmax = 200 °C to Tmin = 10 ± 5 °C using niter = 5000 iterations. 

These conditions can be changed by editing the following lines of code: 

 
 %%% Model parameters 
 Tmax = 150;    % maximum temperature in (°C) 300 
 Tsurf = 10;   TsurfErr = 5;   % average modern surface or sample temperature in (°C), and uncertainty 
 tmax = 1;     % maximum time in (Ma) 
 tmin = 0;     % minimum time in (Ma) 
 nstep = 501;    % discretisation of the model in time 
 time = linspace(tmin,tmax,nstep); 305 
 
 %%% Number of iterations 
 niter = 5000;    % number of random realisations / Monte Carlo iterations 
 

More iterations will require a longer computational time. The principles of the inversion are fully described in King et al. 310 

(2016a) and King et al. (2020) and are outlined briefly here. Random monotonic cooling histories are generated, and for each 

history, the accumulation of trapped-charge is calculated using Eq. (1) (Fig. 3B-E, H) and the sample specific kinetic 

parameters determined in Stage2a_Fitparameters. The quality of each model fit to the natural measured data is assessed by 

comparing the final modelled 𝑛(PTU  value, 𝑛(PTU,W  (i.e. the value calculated after 1 Ma for OSLThermo, and 5 Ma for 

ESRThermo) to the natural measured value 𝑛("2$  using a misfit function, 𝑀 (Eq. (15); Fig. 3F, I). This function has been 315 

updated since King et al. (2016a) following Wheelock et al. (2015), and as described by King et al. (2020) and Biswas et al. 

(2020): 
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𝑀 = Y:
F
	 "#=$5
R"#=$5

	log	( "#=$5
"#>?@,B

)]
F
          (15) 

where, 𝜎𝑛("2$ is the uncertainty on 𝑛("2$. The value of 𝜎𝑛("2$ can be determined either from the measured uncertainty or set 

arbitrarily, for example as 5 or 10% of 𝑛("2$ , or as a fixed value, e.g., 0.05. 320 

 
 %%% Redefine uncertainties (OPTIONAL) 
 % snNnat(snNnat<0.05) = 0.05;      % set the uncertainty to 0.05 when it is <0.05 
 % snNnat(snNnat./nNnat<0.05) = 0.05*nNNnat;     % set the uncertainty to 5% of 𝑛'&'( when it is <5% 
 snNnat = 0.05*nNnat;       % set the uncertainty on 𝑛'&'( to 5% of 𝑛'&'( 325 
 

The results of the inversion (time-temperature paths, 𝑛(PTU	vectors, and misfit values) are saved in a MATLAB structure called 

‘Tt’, which is saved in the “ComputeData” subfolder. 

 
OSLThermo ESRThermo 
   >> Tt = 
   struct with fields: 
 misfit: [5000×1 double] 
 time: [5000×501 double] 
 temp: [5000×501 double] 
 nNmod: [5000×501×4 double] 
 nNnat: [0.0866 ; 0.1577 ; 0.1802 ; 0.2391] 
 snNnat: [0.0043 ; 0.0079 ; 0.0090 ; 0.0120] 
 AgeOSL: c1 [81.37 ; 57.61 ; 56.93 ; 62.77] 

                c2 [15.39 ; 16.01 ; 14.02 ; 15.82] 
 maxAgeOSL: [236.95 ; 219.70 ; 243.70 ; 222.96] 
 TypeMeasurement: {‘IRSL’ ‘IRSL’ ‘IRSL’ ‘IRSL’} 
 TypeSignal: [50 100 150 225] 

   >> Tt = 
   struct with fields: 
 misfit: [5000×1 double] 
 time: [5000×501 double] 
 temp: [5000×501 double] 
 nNmod: [5000×501×2 double] 
 nNnat: [0.1279 ; 0.4754] 
 snNnat: [0.0064 ; 0.0238] 
 AgeESR: c1 [385.52 ; 508.76] 

                 c2 [38.46 ; 50.24] 
 TypeMeasurement: {‘ESR’ ‘ESR’} 
 TypeSignal: {‘Al-centre’ ‘Ti-centre’} 
 

 330 

In addition to investigating rock cooling, it is also possible to investigate isothermal histories or specific thermal histories by 

replacing the random cooling history generated using the randpathAD function with a specific time-temperature history. 

5.6 Stage3b_PlotTt 

Stage3b_PlotTt uses the output from Stage3a_Inversion and computes a probability density function from the inversion results. 

The likelihood,	𝐿, of a particular cooling history is computed from the misfit scores: 335 

𝐿 = 𝑒,X             (16) 

and normalised by the maximum likelihood (𝐿P2Q), before these values are passed through a rejection algorithm whereby 

values of 𝐿 are contrasted with a random number between 0 and 1, and only values that are greater than the random number 

are retained (Tarantola, 2005). The cooling histories retained are then used to compute a probability density function. This is 

done by dividing the time-temperature space into equal-size cells and calculating the number of time-temperature paths passing 340 

through each cell. The results of inverting the example datasets are shown in Fig. 3. 
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Figure 3: Cooling history inversion results for IRSL and ESR data from the two Japanese Alps example samples (King et al, 2020; 

Bartz et al., 2024). Probability density function of the accepted time-temperature history (cooling path) (A) for all four IRSL signals 345 
of sample KRG104 and (G) for the Al-centre and Ti-centre of sample TTY-A05; modelled signal accumulation (B-E, H-I) and misfit 

between measured and modelled values (F, J) for the time-temperature paths that passed the rejection algorithm. In (A, G), the red 

line is the median cooling path, and the green and black lines are the 68% and 95% confidence intervals, respectively. 

5.7 Stage4a_InversionExh 

Stage4a_InversionExh allows the inversion of trapped-charge data for an exhumation history; the approach is fully described 350 

in Biswas et al. (2018) and is only briefly explained here. In this script, random time-temperature histories are first generated 

over a specified time-period and depth. Rock cooling histories for each time-depth path are then computed using the 1D heat-

transfer equation, and the accumulation of trapped-charge is calculated using Eq. (1) and the sample-specific kinetic parameters 

determined in Stage2a_Fitparameters. As for Stage3a_Inversion, the quality of each model fit to the natural measured data is 

assessed by comparing the final modelled 𝑛( value, 𝑛!!"#,%, using Eq. (15). 355 
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The model is set-up to run over the last 5 Ma (‘tmax’) over a depth of 15 km (‘Lz’) with an initial geothermal gradient of 

30 °C·km-1 (‘G’). The thermal diffusivity (‘kappa0’), number of iterations (‘niter’) and discretization of the model (‘nstep’) 

can also be modified. This code is more computationally expensive than Stage3a_Inversion and it requires more iterations to 

yield a similar number of accepted paths. 360 

 
%%% Physics 
kappa0 = 30;                  % thermal diffusivity (km2·Myr-1) 
Lz     = 15;                 % depth (km), use 25 km for high temperature thermochronometers 
G      = 30;                  % initial temperature gradient (°C·km-1) 365 
Tsurf=10; TsurfErr=5;        % surface temperature (°C) and its uncertainty 
  
%%% Numerics: discretization, time steps and plotting frequency 
nz    = 31;                  % number of nodes 
dz    = Lz/(nz-1);            % node size (km) 370 
  
%%% Choose the depth time history (i.e. exhumation rate history) 
Zmax    = Lz;                 % maximum depth in (km) 
Zmin    = 0;                  % surface, i.e. Z=0 km 
tmax    = 5;                  % time in Ma (today) 375 
tmin    = 0;              
nstep   = 6000;              % timestep, to ensure high resolution over the timescale       
dt      = (tmax-tmin)./(nstep-1);  % calculate timestep, dt (Myr) 
tvec    = (tmin:dt:tmax);    % create time vector 
 380 
%%% Number of iterations 
niter   = 100000;              % number of iterations 

 

5.8 Stage4b_PlotZt 

Stage4b_PlotZt plots the inversion results from Stage4a_InversionExh. The depth and time-period of interest are defined in 385 

the plotting script (and are usually smaller than the modelled domain), as is the matrix resolution for computing the exhumation 

history. As the geothermal gradient (𝐺) evolves throughout the inversion, a final geothermal gradient that is unfeasibly high 

may be obtained. For this reason, a threshold value can be defined (𝐺_𝑐𝑢𝑡) to exclude results with a final 𝐺 > 𝐺_𝑐𝑢𝑡 (see 

Stalder et al., 2022 for a discussion). 𝐺_𝑐𝑢𝑡 is set to 100 °C·km-1 in the code, but this value can be modified. 
 390 

%%% Define parameters for plotting 
DoI   = 2;            % depth of interest, last xx (km) 
ToI   = 0.3;              % time of interest, last xx (Ma) 
G_cut = 100;   % cut-off for geothermal gradient (°C·km-1) 
time_window = ToI;   % restrict to a time-window of interest for plotting 395 
  
%%% Resolution of matrix 
nAvM = 1200;    % temporal dt = ToI/nAvM and spatial dZ = DoI/nAvM resolutions 
resampling = 100;     % how many times median is resampled (min. 100) 
nb_path    = 0.10;    % number of resampled paths in % of total accepted paths (min. 10% = 0.10) 400 
vel_interval = 10;    % define velocity smoothing interval in (kyr) 
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This script produces a range of figures, including a probability density function of time-depth for the accepted paths (Fig. 4A, 

D), as well as a comparison between modelled (𝑛(PTU) and measured (𝑛("2$) values, and in the case of luminescence data, the 

predicted field saturation values, 𝑛(55 , for the sample under investigation (Fig. 4B, E). It also produces a figure showing the 405 

time series of the modelled exhumation history in linear and log space (Fig. 4C, D). 

 

 
Figure 4: Exhumation rate inversion results for IRSL (A-C) and ESR (D- F) data following 10,000 iterations. Probability density 

function of the accepted time-depth history (exhumation path) (A) for all four IRSL signals of sample KRG104 and (D) for the ESR 410 
Al- and Ti-centre of sample TTY-A05; misfit between measured and modelled values (B, E) and time-series of exhumation rate 

changes (C, F) plotted in linear space. In (A, D), the red line is the median cooling path, and the green and black lines are the 68% 

and 95% confidence intervals respectively. 

6 Outlook 

We hope that by sharing the codes that we have developed for the modelling of trapped-charge thermochronometry data for 415 

feldspar OSL and quartz ESR, we will encourage broader application and further development of trapped-charge 

https://doi.org/10.5194/egusphere-2025-5474
Preprint. Discussion started: 18 November 2025
c© Author(s) 2025. CC BY 4.0 License.



19 
 

thermochronometry and thermometry techniques. The codes can easily be adapted for other trapped-charge signals, such as 

quartz OSL or thermoluminescence. We will continue to update the OSLThermo and ESRThermo libraries as new T-C models 

emerge and as the trapped-charge community advances efforts to improve thermochronometric analysis, for example, by 

incorporating averaging thermal kinetic parameters (Bouscary and King, 2024), enabling more complex thermal histories (e.g., 420 

reheating), or integrating trapped-charge data with other thermochronometric systems. By fostering open-source development 

and collaboration, we aim to support the growth and integration of trapped-charge thermochronometry within the broader 

thermochronological and geochronological community. 

 

Codes are available for download on GitHub: https://github.com/GeorginaKing/OSLThermo for luminescence 425 

thermochronometry & https://github.com/GeorginaKing/ESRThermo for ESR thermochronometry. 
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