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Abstract. Boreal peatlands store 13-32% of the global soil carbon (C) stock, a service dependent on plant-mycorrhizal fungi
associations. In these nutrient poor systems, ectomycorrhizal and ericoid mycorrhizal fungi supply up to >80% of the nutrient
requirements of their plant hosts, partly with mined nitrogen (N) and phosphorus (P) from soil organic matter that are otherwise
inaccessible to plants. Despite the ecological significance, mycorrhizal associations are only represented in a few land surface
or ecosystem models. We modify the peatland branch of version 2 of the Energy Exascale Earth System Land Model (ELMv2-
SPRUCE) to replace the default photosynthesis-driven inorganic N and P (NP) uptake process with a more realistic
representation of the process via three pathways: (1) direct inorganic NP uptake by uncolonized fine roots, (2) indirect
inorganic NP acquisition and (3) indirect NP acquisition from organic sources by mycorrhizal roots. We systematically
evaluated the performance of the default and modified models with field observations from a whole ecosystem warming and
carbon dioxide fertilization experimental site: Spruce and Peatland Responses Under Changing Environment (SPRUCE), in
northern Minnesota, USA. The modified model reduces the underestimation of the growth response of shrubs in the default
model to warming from 40-80% to 17-35% and reduces the overall relative absolute error on C fluxes from 1.61 to 1.54. The
improved growth response of shrubs to warming is accompanied by several-fold increase in direct inorganic NP uptake and
decrease in fungal colonization rate. The modified model simulates a weaker transition of the ecosystem from C sink to C
source under warming due to alleviation of plant nutrient limitation. Equifinality analysis shows the newly added parameters
in the modified model can be constrained by the observed C fluxes. Sensitivity analysis shows the newly added parameters
have stronger statistical interactions than the preexisting parameters in the default model. Overall, the modified model is an

improvement over the default ELMv2-SPRUCE and will be a useful tool for understanding boreal peatland change.

1 Background

Boreal peatlands store an estimated 234-546 Gt carbon (C), equal to 13-32% of the global soil C stock (Friedlingstein et al.,
2022; Loisel et al., 2017). The high C storage arises from slow decomposition rates driven by the cold, waterlogged, nutrient-
limited, and acidic conditions of these ecosystems (Dise, 2009; Frolking et al., 2011; Salmon et al., 2021). Ongoing rapid
warming in the northern high latitudes is expected to shift ecosystem C balance, but the magnitude of change remains highly
uncertain due to poorly constrained temperature sensitivities of vegetation productivity and soil C decomposition (Ito et al.,
2020). More accurate modeling of the mechanisms governing C cycling in boreal peatlands will improve our ability to project
future changes in this ecosystem and its feedback to the Earth system.

Among the various biotic and abiotic mechanisms underlying boreal peatland C cycling, plant-mycorrhizal associations
represent a key component owing to their central role in nutrient cycling (Shao et al., 2022, 2023b; Shi et al., 2015, 2021).
Mycorrhizal fungi have three varieties: ectomycorrhizae (EcM), ericoid mycorrhizae (ErM), and arbuscular mycorrhizae
(AM). Unlike AM, which are more common in low latitudes and only acquire inorganic nutrients, EcM and ErM can acquire
nutrients from soil organic matter (SOM), making them suited to cold, nitrogen (N)-limited ecosystems with slow

decomposition rates (Egerton-Warburton et al., 2013; Ward et al., 2022). One estimate suggests that EcM are associated with
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>75% of the aboveground plant biomass in the non-permafrost boreal region and ~50% in the permafrost region; ErM, which
selectively colonize ericaceous shrubs, are associated with ~20% aboveground plant biomass in the permafrost region
(Soudzilovskaia et al., 2019). Plants associated with EcM transfer on average ~13% (0-50% in range) of their net primary
productivity (NPP) to fungal symbionts while plants associated with ErM transfer on average ~3.5% (0-14% in range)
(Hawkins et al., 2023). The fraction of plant N supplied by EcM or ErM in return varies from <30% to >80%, depending on
site and plant species, though less is known about the fraction of EcM- or ErM-supplied phosphorus (P) (Hilman et al., 2024;
Hobbie and Hobbie, 2006; Yin et al., 2022). Beyond nutrient supply, mycorrhizal fungi regulate SOM turnover by competing
with free-living saprotrophs, transporting C away from the rhizosphere, and promoting soil aggregate formation and
stabilization (Fernandez and Kennedy, 2016; Hawkins et al., 2023; Smith and Wan, 2019).

To date, only a limited number of land surface models — here defined as the land component of Earth system models — simulate
mycorrhizal associations (Warren et al., 2015). They generally focus on AM and EcM associations and use the return-on-
investment principle, where “return” refers to gains in growth or nutrient uptake, and “investment” refers to the C costs of
acquiring nutrient through different pathways (Brzostek et al., 2014). For example, the Community Land Model (CLM) and
Energy Exascale Earth System Land Model (ELM) have been linked with the Fixation and Uptake of Nitrogen (FUN) model
(Braghiere et al., 2022; Brzostek et al., 2014; Shi et al., 2016). Plants minimize their C expenditure on N and P (NP) uptake
by optimally allocating their NP demands among biological fixation, retranslocation, nonmycorrhizal passive and active
uptake, EcM uptake, and AM uptake, each of which has a unique C cost function (Braghiere et al., 2022; Brzostek et al., 2014;
Shi et al., 2016). Simulations of ELM-FUN suggest that the EcM and AM pathways together supply ~75% of plant N and
~41% of plant P globally, and account for ~50% of the NP uptake-related C costs, but neither ELM-FUN or CLM-FUN
consider organic nutrient mining (Braghiere et al., 2022; Shi et al., 2016). The Symbiotic Nitrogen Acquisition by Plants
(SNAP) model, which is linked to the Geophysical Fluid Dynamics Laboratory land model LM3 (GFDL-LM3), improves
FUN by dynamically simulating fungal biomass, fungal organic nutrient mining, and the resulting C cost to the plants (Sulman
et al., 2019). Simulations of GFDL-LM3-SNAP show that EcM-mining of organic N explains the stronger positive response
to carbon dioxide (CO») fertilization in EcM-dominated ecosystems than AM-dominated ecosystems (Sulman et al., 2019).
Also, allowing plants to shift in N uptake pathways results in four times the terrestrial C sequestration relative to fixed N
uptake pathways under a 100-ppm increase in atmospheric COz concentration (Sulman et al., 2019).

Terrestrial ecosystem models not coupled to Earth system models have represented mycorrhizal associations in more detail
than the return-on-investment models described above. For example, the McGill Wetland Model (MWM) focuses on
interactions among moss, ericaceous shrub, and ErM in peatland ecosystems and shows that the shrub-ErM association explain
the increased shrub growth and decreased moss growth in a NP fertilization experiment (Shao et al., 2022, 2023b). The MWM
explicitly models microbial and ErM biomass dynamics and ErM mining of organic nutrients. The MWM models the shrub-
ErM interactions as “excess fluxes” in which (1) shrub transfers C to ErM when shrub C reserve exceeds a set fraction of its
total stem and root C, (2) ErM fungi transfers NP to the shrub when the NP contents of the ErM exceed predefined fractions

of the C content of the ErM (Shao et al., 2023b). The excess flux mechanism is likely realistic at the microscopic level (Bunn
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et al., 2024), but requires many parameters. The CoupModel has been used to compare three representations of nutrient
limitation: fixed limitation, implicit EcM, and explicit EcM, across a climate and N-deposition gradient of EcM-dominated
boreal forests (He et al., 2018). In the fixed limitation approach, plant growth is scaled down by a constant nutrient limitation
factor throughout the year. The implicit approach omits the EcM intermediary, simulating plant acquisition of NP from organic
sources as a function of soil organic nutrients content, plant demand, and optionally root distributions (He et al., 2018, 2021;
Svensson et al., 2008). The explicit approach simulates EcM biomass dynamics and organic nutrient mining, with plant transfer
of C to EcM determined by belowground allocation, and EcM transfer of NP to plant co-determined by plant demand and
excess flux (He et al., 2018, 2021). The implicit and explicit approaches outperform the fixed N limitation approach, and both
indicate declining plant dependence on organic N from the more N-limited northern Sweden to the less N-limited southern
Sweden; yet the explicit parameterization is more difficult to constrain, and the implicit and explicit approaches differ in the
simulated litter production, soil respiration, and the magnitude of the north-south trend (He et al., 2018).

The above reviewed modeling studies demonstrate that mycorrhizal associations are needed for more accurate simulation of
nutrient limitation on productivity and the resulting feedback to Earth system and land surface models can benefit from testing
alternative model structures than return-on-investment schemes and understanding the parameterization difficulty. We address
this research gap by adding implicit representation of EcM and ErM associations into the NP uptake processes of a peatland
branch of ELM, ELMv2-SPRUCE (Griffiths et al., 2017; Shi et al., 2015, 2021). AM is not added because it is not a key
component of northern peatland ecosystems (Egerton-Warburton et al., 2013). We compare the original model, hereafter
“ELM-OLD”, and the modified model, hereafter “ELM-MYCI” (for mycorrhizal-implicit), against observed C fluxes, pore
water NP concentrations, resin-exchange-measured plant available NP, and peat C-N-P stocks from the Spruce and Peatland
Responses Under Changing Environment experiment (SPRUCE) (Griffiths et al., 2017; Griffiths and Sebestyen, 2016; Hanson
et al., 2020a; Iversen et al., 2022; Salmon et al., 2021). SPRUCE is a whole ecosystem warming and CO: fertilization
experiment located in a boreal peatland ecosystem (Hanson et al., 2017). The site has EcM-associated trees (black spruce
[Picea mariana] and tamarack [Larix laricina]) and various species of ErM-associated ericaceous shrubs, offering an array of
interactions between plants, fungi, and soils under experimental treatments that have not been tested by the above-reviewed
modeling studies. The experiment observed increases in shrub productivity, declines in Sphagnum moss productivity, and
increases in resin-exchange nutrient availability in response to warming (Hanson et al., 2020a, 2025; Iversen et al., 2022). A
persistent issue in ELM-OLD has been the inability to reproduce the larger increase in shrub productivity relative to tree
productivity under warming (Shi et al., 2021). Using ELM-MYCI, we test the hypothesis that the shrub responses can be
explained by decreasing dependence on ErM in response to higher nutrients availability under warming, akin to the findings

or suggestions of multiple previous studies (Defrenne et al., 2021; Duchesneau et al., 2024; He et al., 2018; Shao et al., 2023b).
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2 Data and Methods
2.1 Site Description

The SPRUCE experimental site is within the S1 Bog of the United States Department of Agriculture Forest Service Marcell
Experimental Forest, located in northern Minnesota, USA (47°30.476°N, 93°27.162°W, 418m above mean sea level) (Hanson
etal., 2017, 2020a; Kolka et al., 2011; Salmon et al., 2021). The bog is an acidic, raised-dome ombrotrophic bog with nutrient
inputs only from atmospheric deposition and nitrogen (N) fixation. The open forest canopy at the site is Picea mariana (Mill.)
B.S.P. (black spruce) with occasional Larix laricina (Du Roi) K. Koch (eastern tamarack). The trees were harvested in strip
cuts in 1969 and 1974 and the current canopy is mostly regenerated from the 1974 strip cut (Hanson et al., 2016a). The
understory is dominated by ericaceous shrubs (Rhododendron groenlandicum [Oeder] Kron & Judd [Labrador tea],
Chamaedaphne calyculata [L.] Moench. [leatherleaf], Vaccinium angustifolium Aiton [blueberry], and Vaccinium oxycoccos
L [cranberry]) with a small biomass pool of forbs and sedges (Hanson et al., 2025). The bryophyte layer is dominated by
Sphagnum spp. mosses. This vegetation community is represented by the following plant functional types (PFTs) in both ELM-
OLD and ELM-MYCI: boreal evergreen needleleaf for black spruce, boreal deciduous needleleaf for tamarack, boreal
deciduous shrub for the ericaceous shrubs, and Sphagnum moss. The forbs and sedges are not modeled but comprise less than
10% understory cover according to pretreatment surveys (Iversen et al., 2017b).

The detailed whole ecosystem warming and CO:z fertilization experimental setup is reported elsewhere (Hanson et al., 2017).
Briefly, the experiment has two unenclosed, ambient plots (ambient temperature, ambient COz) and five pairs of enclosures
that target five whole ecosystem warming levels (+0, +2.25, +4.5, +6.75, and +9°C) above ambient temperatures crossed with
ambient and elevated (+500 ppm) COz. The belowground heating extends 3 m into the peat profile and began in June 2014.
The aboveground warming began in August 2015. The CO: fumigation began on June 15, 2016.

2.2 The default and modified ELMv2-SPRUCE models (ELM-OLD and ELM-MYCI)

ELM is the land component of the Energy Exascale Earth System Model (E3SM), which consists of atmosphere, land, ocean,
sea ice, and land ice components (Burrows et al., 2020; Yang et al., 2019, 2023). ELM-OLD is currently branched off ELM
version 2 with improved peatland processes, including hummock-hollow hydrological interactions (Shi et al., 2015) and the
Sphagnum moss PFT (Shi et al., 2021). ELM-OLD has been used primarily for site-level simulations, in which we represent
the bog as two interacting grid cells that represent a hummock soil column and a hollow soil column (Shi et al., 2015). Each
soil column has multiple PFTs that compete for water and nutrients (Shi et al., 2021). Soil decomposition uses a first-order
decay model with one coarse woody debris pool, three plant litter pools (labile, cellulose, lignin), and four SOM pools (Burrows
et al., 2020; Oleson et al., 2013) (Supplementary Information [SI] Sect. 1.1.3). Belowground nutrient competition among the
PFTs and the soil decomposition process is simulated with the Relative Demand approach (SI Sect. 1.1.2). Plant photosynthesis
creates potential NP uptake through the fixed C:N and C:P in the plant structural tissues (leaf, fine root, coarse root, stem).

Soil decomposition creates potential NP immobilization due to the need for extra NP when C decomposes from an upstream
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pool that has higher C:N and C:P into a downstream pool that has lower C:N to C:P. The potential uptakes and immobilization
are compared to the total available inorganic NP in soil, and scaled down by the same factor so that the total available inorganic
NP is not exceeded (Burrows et al., 2020; Thornton and Rosenbloom, 2005). Due to this NP limitation, some photosynthesized
C cannot become growth in the structural tissues; those extra C enters the nonstructural carbohydrates (NSC) pool as C reserve
(Burrows et al., 2020).

ELM-MYCI is designed to improve the process-realism of nutrient uptake for the three vascular PFTs (spruce, tamarack,
shrubs) by considering the following three pathways: (1) direct inorganic nutrient uptake by uncolonized fine roots, PATH™,
(2) indirect inorganic nutrient acquisition by mycorrhizal roots, PATH™%"¢ and (3) indirect nutrient acquisition from organic
sources by mycorrhizal roots, PATH™***¢, Like in ELM-OLD, ELM-MYCI still calculates the NP demand implied by
photosynthesis, but decouples this demand from the potential NP take, which are determined through the three pathways.
ELM-MYCI uses fungi-colonization fraction to idealize the fine root into a uncolonized part, which can only use PATH™,
and a colonized part, which can only use PATH™<n¢ and PATH™°"¢, The potential inorganic NP uptake via PATH™ is
dependent on uncolonized fine root surface area and soil inorganic NP concentrations (Eq. 1). The potential inorganic NP
acquisition via PATH™<®"%¢ is dependent on colonized fine root biomass, soil inorganic NP concentration, and NSC
availability (Eq. 2). The potential NP acquisition from organic sources via PATH™“'¢ is dependent on colonized fine root
biomass and NSC availability (Eq. 3). The NSC availability term reflects fungal dependence on C transfer from the plants
(Bunn et al., 2024; He et al., 2018; Shao et al., 2023b). All three pathways are also affected by soil temperature, soil moisture,
and the current NP-limitation level of the plant (Eq. 1-3). The equations for P can be obtained by replacing all N with P in Eq.
1-3. The potential rates of the three pathways are compared to soil inorganic and organic NP availability to determine actual
rates, which are then compared to the implied demand by photosynthesis to determine plant structural growth. The entire set

of equations and more details are provided in SI Sect. 1.1.

Neroot,ij = VN,froot,j(l - Mmyc,j)Afroot,i,jTj(Nconc,i)T(Tsoi,i)?(@soi,i)T(Fmtmit,j) ©))
Ninyc,pot,inorg,ij = UN,myc,ijyc,jCfroot,ijroot,i,jTj(Nconc,i)T(Tsoi,i)T(G)soi,i)T(FNlimit,j)F(Cns,j) 2
Ninyepotorg,ij = uN,myc,ijyc,jCfroot,jFfroot,i,jT(Tsoi,i):F(Osoi,i)T(FNlimit,j)F(Cns,j) 3)

i — soil layer index

j—PFT index

Nfy o011, — the potential inorganic N uptake rate via PATH™, g N m™ ground area s™!

Npyepot,inorg,i,j — the potential inorganic N acquisition rate via PATH™®i"2 o N m? ground area s™!

Niyepotorg,i,j — the potential N acquisition rate from organic sources via PATH™%°¢, g N m ground area s™!

U froot,j — the maximum inorganic N acquisition rate per unit uncolonized fine-root surface area, g N m ground area s
Un myc,; — the maximum inorganic N acquisition rate per unit colonized fine-root biomass, g N g C' s™!

Uy myc,; — the maximum organic N acquisition rate per unit colonized fine-root biomass, gN g C' s™!

M,,

y¢,j — fraction of fine roots colonized by EcM (for the spruce and tamarack PFTs) or ErtM (for the shrub PFT)

6
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Afroot,;,j — total fine root surface area in one soil layer, cm? m? ground area

Crroot,j — total fine root biomass in one soil layer, g C m ground area

F; (Nconc'l-) — Michaelis-Menten multiplier of soil inorganic N concentration (Nyy;, g N m™ soil volume)

F (Tsm-,i) — Qio multiplier of soil temperature (T;,; ;, °C)

F (FNlimit, j) —a feedback factor to prevent infinite N uptake when inorganic N is abundant (Fyim;;,; is the PFT’s N-limitation
level in the previous time step)

F (Cns‘ j) — degree of NSC saturation in the plant (C,; ; is the NSC biomass in the plant, g C m™ ground area)

2.3 Simulation protocol

Following previously established protocols (Griffiths et al., 2017; Hanson et al., 2020a; Shi et al., 2021), we first conducted a
single-grid simulation that consists of an accelerated spin-up of 207 years, a normal spin-up of 407 years, and an 1850-2014
transient simulation, and then branched the simulations into eleven treatments corresponding to one control simulation for
unenclosed plot + five pairs of enclosures (Sect. 2.1) during 2015-2023. The control simulation only uses one of the two
unenclosed plots, which is labeled plot 7 in the experiment (Hanson et al., 2020a), because it has a longer water table record,
which is needed to force ELMv2-SPRUCE. The accelerated and normal spin-ups were driven by cyclic ambient meteorological
forcing during 2015-2023, preindustrial CO2 concentration, preindustrial N deposition, and constant land cover. The transient
simulation cyclically used the ambient meteorological forcing during 2015-2023, historically varying CO2 concentration and
N deposition, and included the 1974 strip cut event where 99% aboveground tree biomass was removed. The treatment
simulations were forced by meteorological observations and water table depths in each enclosure during 2015-2023 (Hanson
et al., 2016b, 2020b). The simulated water table depths in the two columns equilibrate with each other and observed water
table depths (Shi et al., 2015). The atmospheric CO2 concentrations in the elevated CO: enclosures were set to 500 ppm above
ambient level starting from March 15%, 2016. Within the grid, the hummock soil column was set to 64% of the area and hollow
36% (Graham et al., 2020). A limitation of this version of ELM is that we do not represent multiple canopy layers. Therefore,
we must specify fractional coverages for each PFT that add to 100% total. We started with the default assumption that each of
the four PFT covers 25% and then adjusted for the observed distribution of the two tree types. Within each soil column, the
PFT fractions were: needleleaf evergreen boreal tree 36% (for spruce), needleleaf deciduous boreal tree 14% (for larch),
broadleaf boreal deciduous shrub 25% (for ericaceous shrubs), and Sphagnum moss 25% in the pre-treatment simulations and
fractionally adjusted using the annually observed fractional coverages in the treatment simulations (Table S8). All the

simulations used an hourly time step.
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2.4 Evaluation data
2.4.1 Annual C fluxes

Our primary evaluation data are the following annual C fluxes measurements: (1) the aboveground NPP of the spruce trees
(AGNPPspruce), (2) the aboveground NPP of the tamarack trees (AGNPPumarack), (3) the aboveground NPP of the shrubs
(AGNPPshruv), (4) the NPP of Sphagnum moss (NPPmoss), (5) the belowground NPP of total tree and shrub fine roots
(BGNPPreesirub), (6) heterotrophic respiration (HR) (Hanson et al., 2018a, b, 2020a; Norby et al., 2019). We additionally
summed up (1-5) to obtain (7) an aggregated “NPP” term — note this is not true NPP because it does not contain coarse root
production. There are some temporal mismatches across the datasets: BGNPPueeshrub Observations only span 2016-2017
(Malhotra et al., 2020b); the other observations span 2016-2021, but year 2020 was excluded due to the high uncertainty
associated with the limited measurements taken during the COVID era (Hanson et al., 2020a; Norby and Childs, 2018). To
facilitate concise comparison, we summarized each of those variables into two mean values and two temperature sensitivities,
similar to a previous approach at the site (Hanson et al., 2020a). The mean values were calculated, respectively, over all the
years in the ambient CO: enclosures and over all the years in the elevated COz enclosures. The temperature sensitivities were
calculated as the slope of least squares linear regression between each C-flux variable and observed mean annual 2-m air
temperatures, respectively, over all the years in the ambient COz enclosures, and over all the years in the elevated CO2

enclosures. Those means and slopes were used in parameter optimization (Sect. 2.5).

2.4.2 Annual maximum leaf area index

To verify the simulated C biomass, we compared the models against the annual maximum leaf area index (LAI) of the two
trees and shrub, measured using LICOR LAI 2200 device during 2015-2020 (McPartland et al., 2019). The annual C fluxes
and LAI observations all have direct correspondence with modeled variables. AGNPPspruce and AGNPPramarack have strong pre-
treatment variation that impacts the interpretation of results (Hanson et al., 2025). Therefore, we fitted ordinary least squares
linear regression models to remove the pre-treatment effect; because LAI is closely related to aboveground NPP, we used the
same method to remove the pre-treatment variation in the LAI of the two tree species (SI Sect. 1.2). We did not compare the
models against observed net C exchange or methane flux data because the net C exchange has small components of lateral
outflow of organic C and dissolved inorganic C (Hanson et al., 2020a), which are not yet considered in ELMv2-SPRUCE, and
the model cannot yet fully capture the methane dynamics (Shi et al., In preparation).

2.4.3 Porewater nutrient concentrations

For nutrient cycling, we compared the models against several forms of observations. The first of those was porewater ammonia
(NH}"), nitrate (NO3 ), and inorganic P (P03™) concentrations, which characterize the pool of dissolved nutrients in soil. The
porewater concentrations were measured roughly twice per month during the non-frozen months of 2015-2020 near the bottom

of the rooting profile (30cm) in the hollow (Griffiths et al., 2016). The pore water nutrient concentrations were measured on a
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per water volume basis (mg N L', mg P L"), but ELM can only simulate nutrient concentrations on a per soil volume basis
(gN m? soil, gP m™ soil). Therefore, we divided the simulated NH;, NO3, and soluble P [as defined in (Yang et al., 2019)]
concentrations by the simulated volumetric soil water content to bring them to the same unit as the observations. Because the
sampling interval was irregular and relatively infrequent, and nutrient concentrations in water can exhibit sharp, episodic
fluctuations (Basu et al., 2010), we chose not to interpolate the observations to annual level like the annual C fluxes (Hanson
et al., 2018a, b, 2020a; Norby et al., 2019). Instead, we downsampled the model outputs to only include the dates on which
pore water concentrations were measured, ensuring that both observed and modeled data reflect the same seasonality. For each
enclosure, we then summarized the observed and down-sampled modeled porewater nutrient concentrations into two statistics:
the mean value and the temporal linear trend, to facilitate concise comparison. Here, the temporal linear trend is defined as the
slope of a least-squares regression between the modeled/observed values and the elapsed days since January 1, 2015. We chose
enclosure-specific temporal trends, instead of cross-enclosure temperature sensitivity (as done in Sect. 2.4.1), because the
former metric captures well the behavior of the data when plotted as a time series, whereas scatterplots between the observed

porewater nutrient concentrations and the air temperature on the corresponding dates do not show clear correlation.

2.4.4 Resin-exchange plant available nutrients

The second form of nutrient cycling observations we used is resin-exchange NH; and PO;~ (Iversen et al., 2017a). Those
values approximately represent plant-available nutrients but previous study suggests that in shallow soil layers (10 cm),
competition with roots invalidates this interpretation (Iversen et al., 2017a, 2022). Therefore, we focus on the resin-exchange
nutrients measured at 30 cm in both the hummock and hollow, and at 60 cm in the hollow during 2015-2018, at which depths
few roots exist in the anaerobic peatland environment (Iversen et al., 2017a). The raw measurements were cumulative absorbed
weights of NHJ or PO3™ per resin capsule surface area during roughly monthly intervals; the values used in this study are the
aggregated annual averages by the data collector (Iversen et al., 2017a). Following previous study, we compared the
temperature sensitivities of the observed resin-exchange nutrients to the temperature sensitivities of the most comparable
modeled variable, annual average net nutrient mineralization rates (NET NMIN [gN m™ s7'], NET PMIN [gP m™ s!]) for a
qualitative comparison (Iversen et al., 2022). To remove unit difference between the observed and modeled quantities, we
divided the observed values and the modeled values, respectively, by the mean value of each during the observational period,
separately for each nutrient species and soil depth. The resulting regression slopes against temperature represent relative (mean-
scaled) changes per unit change in soil temperature. This normalization approach is commonly used in elasticity analysis for

comparing effects across variables with different units (Sydsaeter and Hammond, 1995).

2.4.5 Pretreatment peat C, N, P stocks

The final observation of nutrient cycling we used are pre-treatment vertical profiles of C, N, and P stocks in the peat (Griffiths
et al., 2017; Salmon et al., 2021). The compared model variables are the summed C, N, and P contents of all four SOM pools
(1, 2, 3, 4) in all the soil layers in the decomposition processes [SI Sect. 1.1.3, (Oleson et al., 2013)] in the control plot.
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2.5 Sensitivity experiments
2.5.1 Parameter optimization

In both ELM-OLD and ELM-MYCI, the soil decomposition process uses column-level parameters that are shared between
hummock and hollow. Vegetation processes like photosynthesis, respiration, and nutrients uptake/acquisition use PFT-specific
parameters that are also shared between hummock and hollow. We used observed parameter values as much as possible in
ELM-OLD (SI Table S2) and ELM-MYCI (Table S4). For those unobserved, we used either optimized values obtained from
ensemble simulations (Tables S3 and S5) or manually set default values (Tables S2 and S4) if a parameter has relatively minor
influence on the quantities of interest in this study. All the parameter optimization simulations excluded moss parameters for
the purpose of consistency — because moss is not modified in this study, the newly added parameters do not cover moss.

We selected eleven preexisting parameters in ELM-OLD to optimize based on previous sensitivity findings (Meng et al., 2021;
Ricciuto et al., 2018). Those parameters affect photosynthesis, plant respiration, plant allocation, and soil decomposition
processes (Table S3).

For each parameter, we generated an equal number of uniform random samples between predetermined upper and lower
bounds. We then formed all possible combinations of these samples across the parameters to create a total of 4000 samples.
Finally, we ranked these combinations by relative absolute error (RAE) and select the combination with the lowest RAE as

the optimized parameter values. The RAE formula is shown in Eq. 4 and considers the relative errors in mean and in

) @

, where the subscripts sim means simulated, obs means observed, v is variable name, c is the CO: treatment (ambient or

temperature sensitivity of annual C fluxes:

RAE = i Z <|Asim,v,c - Aobs,v,c +

|V| | Uobs,v,c

Ssim,v,c - Sobs,v,c

Qobs,v,c

vEV
ce{ambient,elevated}

elevated), V is the set of variables compared, |V| is the size of IV, A is the mean of the variable, S is the temperature response
slope of the variable, U is the observational uncertainty in mean, S is the observational uncertainty in slope. The performance
metric is only based on annual C fluxes because those are directly comparable to model outputs (see Sect. 2.4.1, items 1-6).
We did not include the aggregate NPP (item (7)) or annual maximum LAI because of strong overlap with items 1-6. The
Uopspc values were estimated from pre-treatment standard deviation across the enclosure locations (Hanson et al., 2020a,
2025) by assuming that the relative uncertainty stays the same, i.e. the ratio of pre-treatment standard deviation to pre-treatment
mean is the same as the ratio of Uy, ¢ 10 Appspc. The Qppsy Values are the 1o uncertainty in the linear regression slopes
(DeGroot and Schervish, 2018). We chose normalization by uncertainty to ensure the BGNPPyreeshrub variable, which are based
on ingrowth core samples that had limited spatial representativeness and only span two years, was not overemphasized
compared to the other C fluxes, which have five-year estimates (Hanson et al., 2020a; Iversen et al., 2021)) are not

overemphasized. The normalization additionally ensured that all the variables are unitless, making them intercomparable.
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For ELM-MYCI, the total number of preexisting and newly added parameters resulted in an extremely large search space that
cannot be covered by 4000 samples. Therefore, we focus on perturbing the most sensitive half (18) of the 37 newly added
parameters (Table S5). The most sensitive half was predetermined using one-at-a-time (OAT) perturbation — for each parameter,
we generated 50 uniform random samples per parameter between pre-defined upper and lower bounds (Table S4-S5). We then
calculated the standard deviations of Ay, 4 - and Sy, 4, - over all the random samples for each variable and CO: treatment.
This approach resulted in a 4" order tensor of 37 parameters x 6 variables x 2 CO> treatments x 2 coefficients [mean or
temperature response slope]. We converted the standard deviation tensor to a same-dimensioned rank tensor by ranking the
standard deviations high-to-low across the parameters separately for each variable, CO: treatment, and mean or slope. We
show the ranks in Figure S4, with the last three dimensions of the rank tensor compressed into the form of boxplots. The
selected most sensitive parameters are those with lowest median ranks in Figure S4 and are listed in Table S5. We then
perturbed those most sensitive 18 parameters in a 4000-member ensemble simulation and calculate the RAE in the same way
as done for ELM-OLD.

It is desirable to understand whether our structural change can improve ELM-OLD beyond the capability of parameter
optimization. Therefore, we conducted two sets of 4000-member ensemble simulations for ELM-MYCI: one with the
preexisting parameters fixed at default levels, and one with the preexisting parameters fixed at optimized levels. Table 1 lists
the final four simulations compared in this study. Comparing ELM-OLDoptim to ELM-OLD gives the effect of parameter
optimization. Comparing either ELM-MY CI to ELM-OLD, or ELM-MY Cloptim to ELM-OLDoptim, gives the effect of structural
modification. Comparing ELM-MY Cloptim to ELM-OLD gives the combined effects of parameter optimization and structural
modification.

Table 1: Summary of parameter perturbation experiments and the optimal runs compared in this study

Notation for the Preexistin New parameters
Notation corresponding ensemble Model Structure g pars
. . parameters choice choice
simulation
Default (Shi et al.,

ELM-OLD 2021) Default -

ELM-OLDopiim | ELM-OLDopim _ENS Defa“%zs?)l ctal, Optimized ;
ELM-MYCI ELM-MYCI ENS Updated (this study) Default Optimized
i ELM-MYCloypim ENS | Updated (this study) Optimized Optimized

optim

2.5.2 Verification of parameter constraint

Equation (4) only uses C fluxes but the optimized new parameters are mainly relevant to NP. To examine whether the selected
optimal parameter values are indeed from a constrained subregion of the search space by Eq. (4), or simply perform best by
chance, we used a clustering metric. This metric, though not using a formal likelihood framework, is consistent with the
equifinality concept, where parameters are considered identifiable if the high-likelihood parameter values are concentrated in

a small region, and non-identifiable if broadly distributed across the parameter space (Raue et al., 2009). We first normalized
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all the sampled parameter values to between 0 and 1 using the predefined ranges (Tables S3 and S5). Then, we calculated the
Euclidean distances between the normalized parameter values of two types of ensemble member pairs. The first type was all
the pairs that can be formed between the best performing 1% (i.e. 40) members. The second type was all the pairs formed
between one value from the best performing 1% members, and one value from the bottom 99% (4000 — 40 = 3960) members.
If the pairwise distances in the first group are systematically lower than the pairwise distances in the second group, it means

the better-performing parameter sets are clustered, which we interpret as being constrained by Eq. (4).

2.5.3 Sobol’s sensitivity analysis

While the OAT perturbation helps us to downsize the number of parameters to perturb, it offers limited insight into the full
sensitivity of model outputs, because it omits potential interactions among parameters. Using the 4000-member ensembles, we
therefore applied a previously established procedure on ELM to calculate Sobol’s main-effect and total-effect indices between
selected model outputs and all the perturbed parameters (Ricciuto et al., 2018). Sobol’s sensitivity indices are based on variance
decomposition, where the total variance in a model output is decomposed into fractions attributed to individual parameters and
interactions among parameters (Saltelli et al., 2004). The main effect measures the relative fraction attributed to a parameter
excluding all interactions. Due to the omission of interactions, the sum of main effects across all the parameters is less than 1.
The total effect measures the relative fraction attributed to a parameter including itself and all higher-order interactions
involving the parameter. Due to duplicated counting of interactions, the sum of total effects across all the parameters is greater

than 1.

3 Results
3.1 Comparison between model and observations
3.1.1 Model performance on C fluxes and leaf area index

Based on the aggregate RAE metric, ELM-MY Cloptim best captures the mean and temperature sensitivity of the C fluxes (RAE
= 1.54), followed by ELM-OLDoptim (RAE = 1.61), ELM-OLD (RAE = 1.80), and lastly ELM-MYCI (RAE = 1.82) (Figure
1). Also, ELM-MY Cloptim and ELM-OLDptim have the fewest number of variables falling outside the +/- one standard deviation
observational uncertainty window (6 out of 28), followed by ELM-MYCI (8 out of 28), and lastly ELM-OLD (9 out of 28; the
number of “x’s”of Figure 1).

Among the individual variables, the mean NPPmoss under elevated COa, the temperature sensitivity of BGNPPrreeshub under
ambient and elevated CO», and the temperature sensitivity of aggregate NPP under elevated CO: are least well-captured, with
all four model setups simulating outside the observational uncertainty (Figure lacd). ELM-MYCI captures mean HR better
than the other three model setups but performs worse on several other variables (mean AGNPPsnwb, temperature sensitivity of

AGNPPspruce under ambient CO2, mean NPPmoss under ambient CO», and temperature sensitivity of NPPmoss under elevated
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CO») (Figure 1). Consistent with our hypothesis (see end of Sect. 1), structural modification improves model performance in
capturing the observed large positive response of shrub growth to warming. The temperature sensitivity of AGNPPsnub under
ambient and elevated COz are outside the observational uncertainty in ELM-OLD (Figure 1c). Using optimized preexisting
parameters, ELM-OLDoptim simulates the temperature sensitivity of AGNPPsnuby within the observational uncertainty range,
but still underestimates it by ~50% under elevated CO2 (Figure 1c). With structural modification on top of optimized
preexisting parameters, ELM-MY Cloptim best captures the temperature sensitivity of AGNPPswuwb, with only 17-35%
underestimation (Figure 1c). Structural modifcation appears to negtatively influence the simulated mean AGNPPspruce, which
is more severely underestimated in ELM-MYCI and ELM-MY Cloptim than in the other two model setups.

The results of Figure 1 are aggregated for all the enclosures. To separate the within-enclosure error from the cross-enclosure
error, we additionally calculated the enclosure-wise mean and temperature sensitivities for a subset of the C fluxes
(AGNPPspruce, AGNPPramarack, AGNPPsnrub, NPPmoss; Figure S5). Although quantitative differences exist between the four model
setups, they share common broad patterns, such as decreasing spruce growth from the coldest to warmest enclosures and
insignificant temperature sensitivities. The general underestimation of AGNPPspruce in the ambient CO: enclosures,
overestimation of NPPmoss in the elevated COz enclosures (Figure S5d) and inability to capture the negative temperature
sensitivity of AGNPPumarack in all enclosures (Figure S5f) suggest robust pattern not captured by any of the model setups.

In addition to C fluxes, we used annual maximum LAI as a proxy to compare modelled C biomass to observed. ELM-MYCI
reduced the overestimation in spruce LAI and the underestimation in shrub LAI by ELM-OLD (Figure S6d-f, j-1). ELM-
MY Cloptim achieved similar error reductions compared to ELM-OLDopiim, although increased the overestimation in tamarack

LAI (Figure S6g-i, m-o0).
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Figure 1: Observed versus simulated mean C fluxes (4,ps c» Asimv,c in Eq. (4)) and temperature sensitivity of C fluxes (S;p5 ,c»

385  Ssimuyc in Eq. 4). RAE is calculated from Eq. (4) for each model setup. The C fluxes names and calculation of the means and
temperature sensitivities are explained in Sect. 2.4.1. The suffix CO2 means values for elevated CO; enclosures, and without this
suffix means values for ambient CO; enclosures. The observational uncertainty intervals are estimated as described in Sect. 2.5.1.
The “x” on top of each bar indicates that the simulated value is outside the observed uncertainty interval.
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3.1.2 Model portrayal of soil nutrients

The observed resin-exchangeable nutrients increase by about two orders of magnitude with warming in all observed
combinations of depth, nutrient, and hummock-hollow (Figure 2). The net mineralization rates increase only by about one
order of magnitude in ELM-OLD and ELM-OLDoptim. ELM-MYCI and ELM-MY Cloptim better capture the observed increases

(yellow line in Figure 2a, yellow and red lines in Figure 2bef, red line in Figure 2c).
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Figure 2: Relationships between normalized plant-available nutrients and annual mean peat temperatures in the observations and
models at different depths of hummock and hollow across all the enclosures. The plant-available nutrients are represented by annual
total resin-exchange nutrients (NH; and POZ‘) in observation and annual mean net mineralization rates (NET_NMIN and
NET_PMIN) in the model. The normalization procedure is reported in Sect. 2.4.4 and reconciles unit difference between observation
and model. Lines are least-squares linear regression lines.
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The modelled soil NH; and soluble P concentrations, converted to per volume soil water basis to compare with observed
porewater values, show mean levels that are ELM-MYCI > ELM-OLD > ELM-MY Cloptim > ELM-OLDoptim (Figure S7ac).
The ELM-OLDopiim values are closest to observed NH; values but still about one order of magnitude higher. The ELM-MYCI
values are closest to observed soluble P values but more than one order of magnitude smaller. The observed NO; mean
concentrations are captured more accurately than NH; or soluble P, with ELM-OLDoptim being closest to observations,
followed by ELM-MY Cloptim, while ELM-OLD and ELM-MYCI remain within one order of magnitude of the observations
(Figure S7b). These large discrepancies call into question if these observed and simulated quantities are comparable, even after
the units are nominally aligned. Like the mean concentrations, the observed and simulated trends differ substantially in
magnitudes. ELM-OLD and ELM-MYCI better capture the observed qualitative transition from negative to positive trends
NH] towards the warmer enclosures than ELM-MY Cloptim; ELM-OLDopim did not capture this transition for the ambient CO2
enclosures (Figure S7d).

All the model setups overestimate the peat C and N stock in the shallow soil layers (0-30 cm; Figure 3ab). In the deeper layers
(30 cm-200 cm), ELM-OLD exhibits underestimation that is exacerbated in ELM-MYCI and remedied in ELM-OLDoptim and
ELM-MY Cloptim (Figure 3ab). All model setups severely underestimate P stock below 30cm (Figure 3c). The total simulated
soil organic C stock of all the soil layers is about 190 kg C m? by ELM-OLD, 240 kg C m™ by ELM-OLDaptim, 140 kg C m?
by ELM-MYCI, and 210 kg C m> by ELM-MY Cloptim. This places ELM-OLDoptim outside the observational uncertainty of the
estimated 176+40 kg C m™ of the S1 bog (McFarlane et al., 2018), probably due to the overestimation in the shallow layers
(Figure 3a).
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Figure 3: Observed pre-treatment peat carbon, nitrogen, and phosphorus stocks and the modelled values in the ambient control
enclosure. Error bars on the observations are the +/- standard errors reported in the original studies (Griffiths et al., 2017; Salmon
et al., 2021). The definitions of acrotelm, mesotelm, and catotelm are in (Salmon et al., 2021).

3.2 Behaviour diagnostics of the modified model
3.2.1 Plant nutrient acquisition response to warming and soil inorganic nutrients levels

Simulation results from ELM-MYCI and ELM-MY Clopiim show that the total N acquisition from organic sources by
PATH™®° across the three vascular PFTs are about 2.5 gN m? year™!, and the total P acquisition by PATH™%°€ about 0.07
gP m? year’!, in the unenclosed ambient plot (TAMB; Figure 4). The PFT-total N acquisition by PATH™®*2 is mainly
accounted by spruce (about 50% of the total spruce N uptake, Figure 4a) and shrub (30-50% of the total shrub N uptake in
TAMB, lower in the warmed enclosures, Figure 4c). The total organic P acquisition mainly comes from tamarack (>50% of
the total tamarack P uptake; Figure 4¢). Those numbers and percentages are comparable to the coarse pretreatment estimates
for the SPRUCE site, which suggests organic N sources account for about 30% of total plants N acquisition (2.4 gN m? year
Pout 0f 7.6 gN m year!), and organic P sources account for a negligible fraction of total plants P acquisition (0.7 gP m year
1) (Salmon et al., 2021).

ELM-MY CI and ELM-MY Cloptim simulates higher total spruce N acquisition through all three pathways, and greater warming-
induced increases in total tamarack and shrub NP acquisitions across all three pathways, than ELM-OLD and ELM-OLDoptim
(Figure 4). The low spruce P acquisition simulated by ELM-MY Cloptim, especially under elevated COz, can explain the
underestimation of AGNPPspruce by this model setup (Figure 1a). The large increases in shrub NP acquisition are driven by
PATH™* (Figure 4cf), consistent with declining fungal colonization rates and rising soil inorganic nutrients under warming
(Figure S7a-c, Figure S9c).

In addition to changing the responses of plants nutrient acquisition to warming (Figure 4), ELM-MYCI and ELM-MY Cloptim
simulate more flexible responses of plants nutrient acquisition to soil inorganic nutrient contents (Figure S10). In ELM-OLD
and ELM-OLDoptim, the uptake always displays a logistic shape where they first increase with soil inorganic N or P and then
plateaus. In ELM-MYCI and ELM-MY Cloptim, the total acquisition across all three pathways can show linear relationships
(e.g. Figure S10bef, ELM-MY Cloptim) or logistic shapes that saturate at higher or lower levels (e.g. Figure S10ab, ELM-MYCI).
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Figure 4: Simulated annual mean nitrogen (N) and phosphorus (P) acquisition by the vascular PFTs in each treatment enclosure
during 2015-2021. The acquisition is equal to inorganic nutrient uptake in ELM-OLD and ELM-OLD,tim, and equal to the sum of
all three pathways (inorganic nutrient uptake by uncolonized fine roots [PATH™!], inorganic nutrient acquisition via mycorrhizal
roots [PATH™®I"'¢] and nutrient acquisition from organic sources via mycorrhizal roots [PATH™*°'¢]) in ELM-MYCI and ELM-
MY Clgptim.

3.2.2 Net ecosystem exchange responses to warming

All model setups simulate a transition from C sink to C source, i.e. negative to positive net ecosystem exchange (NEE), with
warming (Figure 5a). Except for the +0.00°C elevated COz treatment, the C source strength is ELM-OLD > ELM-OLDoptim >
ELM-MYCI > ELM-MY Cloptim. NEE is mainly driven by the balance between gross primary productivity (GPP), heterotrophic
respiration (HR), and autotrophic respiration (AR), i.e. NEE = — (GPP — AR — HR). The low NEE of ELM-MY Cloptim is
because it has the lowest fraction of GPP lost to AR, especially in the warmest enclosures, among all the model setups (Figure

5¢). Like ELM-MY Cloptim, ELM-MYCI has a low AR-to-GPP ratio, but its low NEE is likely driven by the low GPP per se
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(Figure 5bc). In contrast, ELM-OLDoptim has lower NEE than ELM-OLD is because of a high GPP (Figure 5b) and a smaller
fraction of GPP lost as HR (Figure 5d). Structural modification has little effect on HR to GPP ratios (ELM-OLD v.s. ELM-
460 MYCI, ELM-OLDoptim v.s. ELM-MY Cloptim, Figure 5d). The temperature sensitivities of NEE, GPP, AR and HR are generally
insignificant within individual enclosures, but exhibit consistent increasing, decreasing, or bell-shaped patterns across the

enclosure warming levels in all the model setups (Figure Se-1).
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Figure 5: Modelled enclosure-wise mean and temperature sensitivity of the net ecosystem exchange (NEE) and its balance terms:

465  gross primary productivity (GPP), autotrophic respiration (AR), heterotrophic respiration (HR). AR and HR are displayed as ratios
to GPP. The temperature sensitivities are calculated as linear regression slopes between the annual mean NEE, GPP, AR-to-GPP
ratio, HR-to-GPP, or (AR+HR)-to-GPP ratio values against the annual mean air temperatures during 2015-2021 in each enclosure.
The temperature sensitivities have solid bars when they are significantly different from zero at p<0.05 (two-sided t-test), and
otherwise hollow bars.
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3.2.3 Nutrient limitations on plant growth

The difference between structural modification and parameter optimization on AR-to-GPP ratios can be better understood by
examining the individual components of AR (Figure 5). In ELM, AR is the sum of excess, maintenance, and growth respiration
(AR =XR + MR + GR). XR represents respiration loss due to nutrient limitation, and is calculated as an nonlinearly increasing
function of the percentage of plant biomass existing as NSC (SI Sect. 1.1.2); MR represents respiration for maintaining regular
plant metabolism and is approximately proportional to total living biomass; GR is a small and constant fraction of structural
growth and therefore of low interest here (Oleson et al., 2013).

At grid level, the lower fraction of GPP lost as AR in the structurally modified model setups than their unmodified counterparts
(Figure 5c) is mainly driven by lower XR-to-GPP ratios, especially under warming (ELM-MY Cloptim v.s. ELM-OLDoptim,
ELM-MYCI v.s. ELM-OLD) (Figure 6a). Interestingly, parameter optimization induces large decreases in the MR-to-GPP
ratio that are offset by large increases in the XR-to-GPP ratio (ELM-OLD and ELM-MYCI v.s. ELM-OLDgptim and ELM-
MY Cloptim), resulting in small net changes (Figure 6a). This “trade-off” between XR and MR can be explained by their implicit
relationship. At a higher XR-to-GPP ratio, the higher nutrient limitation prevents GPP from being assimilated into structural
growth, leading to lower biomass-to-GPP ratio and therefore lower MR-to-GPP ratio. By the same logic, lower XR-to-GPP
ratio implies a higher biomass-to-GPP ratio, and therefore higher MR-to-GPP ratio.

Compared to the grid-level ratios, structural modification has strong effects on the ratios calculated between PFT-specific XR,
MR, and GPP. For spruce, ELM-MY CI and ELM-MY Cloptim have much higher XR-to-GPP ratio and lower MR-to-GPP ratio
than ELM-OLD and ELM-OLDoptim, especially in the colder enclosures (Figure 6b), which indicates a XR-MR trade-off similar
to observed at grid level. For tamarack, ELM-MY Cloptim has much lower XR-to-GPP ratio than ELM-OLDoptim in all the
enclosures (Figure 6¢). For shrub, ELM-MYCI and ELM-MY Cloptim have much lower XR-to-GPP ratio than ELM-OLD and
ELM-OLDoptim in the warmest enclosures (Figure 6d). As such, spruce and shrub are likely the main drivers behind the more
rapid decline of the grid-level XR-to-GPP ratio in the structurally modified models than ELM-OLD or ELM-OLDyptim (Figure
6a). The weaker XR—MR trade-off in tamarack and shrub likely reflects the lower importance of MR in the two PFTs compared

to spruce.

20



https://doi.org/10.5194/egusphere-2025-5471
Preprint. Discussion started: 17 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

All PFTs combined

ELM-OLD
ELM-OLDoptim
ELM-MYCI
ELM-MYCloptim

MR
XR

MR or XR ratio to GPP (gC gC~1)

Tamarack

O b c
o
O 0.8 1 |
2
&
o 0.6
]
£ 0.4+
o
o
X 0.21
G
o
= 0.0-
Shrub Moss
d e

MR or XR ratio to GPP (gC gC~1)

n O »n O wnm O oN oN o o nm O 1n O wnm O oN o o o o
s 885288288 8¢ 5885288288 8¢
o N & ©O o o N ¥ O o
o wnmn un un o o wnm un n o
'—D—Pl—l—l—q‘\!v,\.o ’—l—l—l—l—l—o.r\!q,,\.o
o N F O o o N F O o
495 P (= [ [=

Figure 6: Partitioning of excess respiration (XR) and maintenance respiration (MR) parts of autotrophic respiration relative to gross
primary productivity (GPP) for all PFTs combined or individual PFTs. The ratios are calculated by dividing the 2015-2021 averages
of the PFT-total or PFT-specific terms. XR contributions are stacked on top of MR contributions, so the total bar height reflect how
much of the GPP flux is offset by total XR+MR.

500 3.2.4 Nutrient limitations on heterotrophic respiration

Nutrient limitation of HR occurs in the default and modified models when the available soil inorganic N or P cannot satisfy
the total demand of the plants and immobilization demand from soil litter and organic matter decomposition (Eq. S4, SI Sect.
1.1.3). The immobilization demand arises mainly in the decomposition step from plant litter to SOM (Oleson et al., 2013;
Schimel and Bennett, 2004). The C:N and C:P in the plant litter pool depend on litter inputs and are usually higher than the
505 C:N and C:P of the downstream SOM pools, which are fixed parameters (Oleson et al., 2013). As a result, the process
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immobilizes additional soil inorganic NP to meet the C:N and C:P of the SOM pools. Because ELM-MYCI and ELM-
MY Cloptim allow plants to access the NP in plant litter pools via mycorrhizal roots (Sect. 2.2), the C:N and C:P the litter pools
increase, resulting in greater immobilization demand per unit decomposition, which is proportional to HR. Consistent with this
expectation, for each unit of HR, the corresponding actual immobilized inorganic N in ELM-MYCI and ELM-MY Cloptim are
higher than in ELM-OLDoptim and ELM-OLD at the same level of HR (Figure 7a). The same effect is not seen in P (Figure
7b). Instead, ELM-OLDoptim exhibits considerably higher P-immobilization per unit HR than the other three model setups. All
the model setups exhibit sensitivity to warming, which suggests P-limitation on HR is more affected by litter quality changes

created by relative changes in primary productivity among the PFTs than N-limitaiton on HR (Figure 1).
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Figure 7. Ratio of annual mean actual immobilized NP to annual mean heterotrophic respiration (HR) in the soil decomposition
process, across the enclosures. The bars show the mean values during 2015-2021 and errorbars show the ranges.

3.3 Parameter sensitivity analysis
3.3.1 Constraint of model parameters

The distance metric (Sect. 2.5.2) shows the top-performing 1% parameter values are statistically significantly closer to each
other (smaller distances) than to the remaining 99% parameter values (larger distances) in all three ensemble simulations
(Table 1, Figure 8). The significant separation means the C fluxes can constrain the preexisting and newly added parameters.
The distances are least well-separated for ELM-MYCI_ENS (Figure 8b), which uses the same un-optimized parameters as

ELM-OLD for the unchanged model processes. Those suboptimal parameter values may have caused biases that the new
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model processes cannot compensate for, leading to unstable optimized values in the new parameters in the ELM-MYCI _ENS

simulations.
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Figure 8: Comparing Euclidean distances between the parameter values of two groups of pairs of ensemble members: between the
best-performing 1% members, and between the best-performing 1% members and the other 99% members. Displayed probability
densities are pooled from all pairs in each group. The p-values in each panel indicate whether the two groups are significantly
different, using two-sided t-test for the mean values of two independent samples.

3.3.2 Sensitivity of model outputs to parameter values

We show the parameter sensitivities of ELM-MY Cloptim ENS in the main text (Figure 9), since the finding of Sect. 3.3.1
suggests this may be a more reliable perturbed parameter ensemble than ELM-MYCI_ENS (Figure S11), and the sensitivities
of preexisting parameters (Figure S12) are similar to the well-reported findings of past studies (Meng et al., 2021; Ricciuto et
al., 2018).

The relative sensitivity of model outputs to each parameter is approximately the same whether assessed using total effects or
main effects (compare the rows in Figure 9). The grid total GPP is sensitive to the parameters of all three vascular plants and
grid-level parameters (topmost bar in each panel of Figure 9). The grid total NEE and vegetation C (TOTVEGC) are most
sensitive to spruce parameters, especially the sensitivity of fungal colonization rate to soil inorganic N (b;, Eq. S12) and
maximum rate of inorganic N acquisition via mycorrhizal association (Vy yc j>» Eq. S23). The grid total HR and total soil
organic C (TOTSOMC) are most sensitive to shrub parameters, especially the maximum rate of N uptake via fine root
(Yn,froot,j» EQ. S33). The C variables in any vascular PFT are mainly determined by the parameters specific to that PFT,
especially the maximum uptake/acquisition rates of NP (Up ynyc j and Up py,c i for spruce [Eq. S17], vp ¢yo0¢,; for tamarack
[Eq. S33], and vy fo0¢,; for shrub [Eq. S33]). Moss C variables are sensitive to the parameters of all three vascular plants and

grid-level parameters.

23



550

555

560

565

https://doi.org/10.5194/egusphere-2025-5471
Preprint. Discussion started: 17 November 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Compared to ELM-MY Clopiim ENS, the sensitivities derived from ELM-MYCI_ENS are similar for tamarack and shrub
parameters (Figure 9bcfg, Figure S11bcfg). For spruce parameters, the model outputs of ELM-MYCI ENS are more sensitive
to the fungal colonization rate to soil inorganic N (b;, Eq. S12 and Figure S11ae), whereas ELM-MY Clopiim_ENS are more
sensitive to the maximum organic NP acquisition rates via mycorrhizal association (Uy myc, j and Up my ; for spruce, (Eq. S17;
Figure 9ae). Still, the two sets of parameters fulfil similar functions, with the former controlling all the nutrient
uptake/acquisition pathways (see My, ; in Eq. S17, S23, and S33) and the latter only controlling the organic pathway (Eg.
S17). For column level parameters, ELM-MYCI_ENS is mainly sensitive to the Q1o of NP acquisition rates (g4, Eq. S13) and
has little sensitivity to the C cost of mycorrhizal nutrients acquisition to the plant (cy, Eq. S25, S30) (Figure S11dh). ELM-
MY Cloptiim_ENS exhibits the same contrast, albeit less strongly (Figure 9dh).

Comparing between the newly added (Figure 9, Figure S11) and preexisting parameters (Figure S12), one can see the newly
added parameters exhibit more inter-PFT interactions. That is, the C variables of each PFT are even more strongly determined
by the parameters specific to that PFT in ELM-OLDoptim ENS (Figure S12abcefg) than in ELM-MY Cloptim ENS (Figure
9abcefg) or ELM-MYCI _ENS (Figure S1labcefg). Additionally, the grid-level C variables are mainly responsive to spruce
parameters in ELM-OLDoptim  ENS (Figure S12ae), compared to both spruce and shrub parameters in ELM-MY Cloptin ENS
(Figure 9aceg) and ELM-MYCI ENS (Figure S11laceg). Moss C variables are more responsive to spruce parameters in ELM-
OLDoptim ENS (Figure S12ae), compared to shrub parameters in ELM-MY Cloptim ENS (Figure 9cg) and ELM-MYCI _ENS
(Figure S11cg). The main and total effects of ELM-OLDoptim  ENS are close to 1 when summed over all the parameters (Figure
S12 grey lines), while the main effects of ELM-MYCI_ENS and ELM-MY Cloptim-ENS are much smaller than 1 and the total
effect much greater than 1 (Figure 9, Figure S11, grey lines). The larger difference between total and main effects in the
modified models means the newly added parameters have stronger statistical interactions than the preexisting parameters in

the default model.
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Figure 9: Sobol’s main-effect and total-effect sensitivity indices of selected C-balance variables to the newly added model parameters,
calculated from ELM-MY Clpiim_ENS. For better display, the indices are partitioned into subpanels according to whether it is a
PFT-specific or column-level parameter. Stacking the bars across the four panels in each row gives the sum of the main or total
effects over all the perturbed parameters, which are also displayed as a grey line for reference in each panel. The C-balance variables
in each panel are grouped according to whether it is a column-level, spruce, tamarack, shrub, or moss variable. Parameter definitions
can be found in Table S5 and equations referred therein.

4 Discussion

4.1 Summary of evaluation performance and remaining gaps

We present a development of the ELMv2-SPRUCE model to replace the photosynthesis-driven, inorganic-only plant nutrient

uptake with three pathways that consider influences from fine root biomass, fungi-colonization level, and plant access to
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organic nutrients through fungi-colonized roots (SI Sect. 1.1). Although EcM and ErM are only implicitly represented and
simplifications are made in the treatment of the C cost of mycorrhizal acquisition and the organic NP sources (Sect. 2.2; SI
Sect. 1.1.8 and 1.1.9), the modified model shows improved performance. Compared to parameter optimization only (ELM-
OLDoptim), structural modification (ELM-MY Cloptim) leads to lower RAE on vegetation C fluxes (Figure 1), improved LAI in
two out of the three modified PFTs (Figure S6), improved qualitative similarity to resin-exchange nutrients (Figure 2), and
similar performance on soil total C-N-P stocks (Figure 3). Interestingly, structural modification imposed on un-optimized
preexisting parameters (ELM-MYCI) does not improve RAE (Figure 1) and the new parameters appear ill-constrained (Figure
8b). These findings indicate the biases in ELM-OLD arise from both incorrect parameter values and inadequate process
representation (Bastrikov et al., 2018). The strong performance of ELM-MY Cloptim, after optimizing newly-added parameters
on top of pre-optimized preexisting parameters, supports stepwise calibration as a viable strategy for land surface models when
the parameter search space is large (Ma et al., 2024).

One notable finding is that ELM-MY Cloptim captures the observed large positive warming response of AGNPPsnrub better than
the parameter-optimized default model (ELM-OLDoptim; Figure 1b). This increasing growth is accompanied by rising NP
uptake via PATH™*" and unchanging NP acquisition from organic sources via PATH™<°¢ (Figure 4c), consistent with our
initial hypothesis and previous finding at the Mer Bleue peatland site (Shao et al., 2023b), that declining dependence on ErM
drives shrub growth under warming. Recent analysis of minirhizotron data at the SPRUCE site shows increasing specific root
length for the shrubs with deeper water tables as a consequence of warming (Weber et al., 2025). This shift towards more
acquisitive fine root trait (Bergmann et al., 2020; Weber et al., 2025) is not yet considered in the current study and might
partially explain the remaining underestimation in the temperature sensitivity of AGNPPsnb. The simulated high importance
of direct fine root uptake in shrubs at the SPRUCE site differs from the simulated >90% dependence on fungi-mined organic
N for shrubs at Mer Bleue (Shao et al., 2023b). This wide range is comparable to past observations (Hilman et al., 2024;
Hobbie and Hobbie, 2006; Yin et al., 2022) and might reflect inter-site difference, wherein SPRUCE is a more southern site
with lower shrub fractional cover and higher porewater inorganic N compared to Mer Bleue (Kennedy et al., 2018; Shao et al.,
2023b).

ELM-MY Cloptim more severely underestimates mean AGNPPspruce than the other model setups (Figure 1a), likely because it
simulates stronger P limitation on spruce (Figure 4d). The stronger P limitation, in turn, may be because the modelled peat P
stock and soil inorganic P levels are generally too low (Figure 3c, Figure S7¢). With the enhanced shrub growth in ELM-
MY Cloptim, the remaining inorganic P becomes insufficient to support spruce growth (Figure la). All model setups
underestimate mean AGNPPgprce in the ambient CO: enclosures and fail to capture the observed lack of response to elevated
COz2 (Figure 1a). Those biases might be related to seasonal variations and acclimation in spruce photosynthetic parameters
(Dusenge et al., 2024; Jensen et al., 2019), delayed response to elevated CO2 or increased C allocation belowground (e.g. to
roots, mycorrhizal fungi, or exudates) (Duchesneau et al., 2024; Norby et al., 2010, 2024; Palmroth et al., 2006). Addressing

them will require future process developments.
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The severe underestimation of the temperature sensitivity of BGNPPueeshrub in all model setups (Figure 1b) may be due to high
uncertainty in the ingrowth core observations or the presence of dynamic above-to-belowground allocation in response to
warming (Drewniak, 2019; Rehschuh et al., 2022). Dynamic allocation is not yet in the model processes of ELM-OLD or
ELM-MYCI. Note the ingrowth core observations used in Figure 1 only span 2016-2017, while the other evaluation variables
span 2016-2019 and 2021 (Hanson et al., 2020a). The uncertainty problem will be remedied as additional years of ingrowth
core and minirhizotron observations are completed for the SPRUCE site. The initial ingrowth core observations do suggest the
fine root biomass of the trees and shrub are more sensitive to warming than their aboveground NPP (compare the fine root
biomass reported in Fig. S1 of Malhotra et al. (2020a) to the observed aboveground NPP values this paper Figure S5).

The persistent bias in NPPmoss and its temperature sensitivity is unsurprising. ELMv2-SPRUCE cannot yet simulate the decline
of moss growth with warming (Norby et al., 2019), instead depending on assigned observed fractional covers (Sect. 2.3).
Missing processes may include shading from shrub, inaccurate photosynthesis-water relations, and microbial relationships
(Carrell et al., 2019; Norby et al., 2019; Petro et al., 2023; Shi et al., 2021). The persistent bias in vertical distribution of peat
C and N may be due to insufficient vertical mixing of the soil decomposition pools (Oleson et al., 2013). The persistent bias
in HR and peat P stock might be due to inaccurate C:P in the SOM pools (Figure 1b, Figure 3), and the current lack of
consideration of fungal respiration (SI Sect. 1.1.7). Because the HR-to-GPP ratio is remarkably invariant to our current
structural modification (Figure 5), focused parameter investigation and structural modification on the soil decomposition
model may be needed to address the HR bias.

The discrepancy between observed and modelled porewater concentrations (Figure S7) suggests the values are not directly
comparable, which may be due to missing process representation of the adsorption of NH; to inorganic and organic matter
surfaces (Eick et al., 1999; Matschonat and Matzner, 1996), inaccurate partitioning between labile P and soluble P (Yang et
al., 2023), and underestimation of peat P stock (Figure 3). Better matches between the temperature sensitivities of normalized
model NP mineralization and normalized resin-available NH; and PO}~ (Figure 2) suggest the model is better at capturing

relative changes in plant nutrient availability than absolute sizes.

4.2 Impact on ecosystem productivity

We found that parameter optimization reduces the strength of NEE increase under warming (Figure 5a) via higher GPP and
lower HR (Figure 5b). The GPP effect is likely explained by the dominant control of the photosynthetic parameter “flnr”
(fraction of leaf N in in Rubisco enzyme) on grid- and PFT-level C balances in ELM-OLDopim_ENS, and the HR effect likely
by the parameter “ql0_hr” (Qio for heterotrophic respiration; Figure S12). Interestingly, the overall NEE balance is most
strongly affected by the Q1o parameter of spruce MR (Figure S12), despite this parameter having little effect on the other C-
balance terms (Figure S12) — this might be a case of emergent phenomena (Brient, 2020; Wang et al., 2022) and worth future
modelling and empirical investigations.

Structural modification reduces the extent of NEE increases under warming (Figure 5a) via lower AR (Figure 5c), which is

driven by decreases in XR with warming (Figure 6a), especially in spruce and shrub (Figure 6bd). The XR-MR trade-off at
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grid-level and in spruce (Sect. 3.2.3) mitigates the XR-driven decreases in AR, demonstrating a case of nonlinear feedback.
The greater declines in XR in ELM-MYCI and ELM-MY Cloptim compared to ELM-OLD and ELM-OLDoptim are directly due
to declines in NSC (SI Sect. 1.1.2, Figure S8ac), which is in turn likely due to reduced nutrient limitation (Figure 4acdf) under
warming. Although NSC is additionally affected by the C cost of the mycorrhizal pathways (SI Sect. 1.1.8), the C cost should
decrease with warming as the importance of the mycorrhizal pathways decline (Figure 4acdf). Therefore, this mechanism
cannot explain the observed NSC decline with warming. The lower nutrient limitation under warming implies greater increase
of plant carbon use efficiency (CUE), especially for the shrub PFT where most of AR is due to XR (Figure 6d). This modelling
result is consistent with empirical evidence that EcM-tree association is key to explaining the negative correlation between
CUE and latitude in northern boreal regions (Mékela et al., 2022). This consistency supports the effectiveness of our implicit
approach as a parameter-efficient framework. Biologically, the CUE-latitude correlation is driven by complex interactions
between plant C flow to mycorrhizal colonization level, and nutrient availability (Makel4 et al., 2022; Shao et al., 2023b).

In the structurally modified model setups, SOM decomposition becomes more N-limited because of the acquisition of N from
plant litter pools via PATH™<¢ (Figure 7, SI Sect. 1.1.9). Surprisingly, the higher N-immobilization per unit HR only
corresponds to slightly lower mean HR in ELM-MYCI and ELM-MY Cloptim (Figure 1bd, Figure 5dh), meaning the lower
availability of organic N in plant litter pools are offset by higher inorganic N uptake. This pattern suggests that decomposition
suppression through nutrient competition — classically termed the Gadgil effect when mediated by EcM fungi (Fernandez and
Kennedy, 2016) — may be limited in strength under our simulated conditions. Although our model does not explicitly represent
fungal guild interactions, the modest reduction in decomposition is consistent with studies showing that such effects are highly
context-dependent and often confounded by litter quality, niche partitioning among EcM, ErM, and saprotrophs, and priming
processes (Fanin et al., 2022; Mielke, 2022; Shao et al., 2023a). P-limitation on immobilization appears to be controlled by
more complex factors than N-limitation (Figure 7b) and may be affected by current model bias in peat P stock (Figure 3).
Additionally, soil decomposition process in ELMv2-SPRUCE do not explicitly simulate microbial biomass and guilds, and
therefore might misrepresent the partitioning of immobilization demand between the external nutrient uptake and the cycled
nutrient between dead and live microbial biomass, which is especially important for P (Duchesneau et al., 2024; Schmidt et
al., 1997). Given this limitation in the ELMv2-SPRUCE soil decomposition model and current model limitation in treating

organic NP sources (SI Sect. 1.1.9), the HR results should be interpreted with caution.

4.3 Future directions

Given the high sensitivity of model outputs to acquisition rate parameters (Sect. 3.3.2) and high uncertainty in current
experimental observations (Table S6), one priority of future model-data integration should be to better constrain these
parameters. Other large sources of uncertainty in the modified model include the fungal colonization fractions (Figure S9),
relative contributions of different pathways to total plant NP acquisition (Figure 6), and the transfer of plant C to mycorrhizal
fungi (SI Sect. 1.1.8) — observations of all these quantities vary between 0-100% (Hawkins et al., 2023; Hilman et al., 2024;
Hobbie and Hobbie, 2006; Ostonen et al., 2011, 2017; Xie et al., 2021; Yin et al., 2022), suggesting multi-site model-data
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integration may better capture the broad pattern and prevent overfitting. On the process development side, division of fine root
biomass into transport, absorption, and mycorrhizal pools (Wang et al., 2023) and nutrient-responsive dynamic above-
belowground allocation (Knox et al., 2024) are being carried out on ELM, and can be merged with this work to improve the
model realism and results. Another useful endeavour will be to explicitly simulate fungal and heterotrophic microbial biomass
in ELMv2-SPRUCE, to separate mycorrhizal fungal and non-mycorrhizal respiration and allowing the fungi to access other
pools beside the litter pools. Other efforts of interest may include separating the behaviours of EcM and ErM, spruce
photosynthesis and MR, Sphagnum growth, and considering direct plant uptake of small organic N molecules (Nésholm et al.,
2009). Nonetheless, process-development should consider the limited constraint available from empirical observations (Figure
8) and ensure the complexity is commensurate with our ability to check model accuracy and interpret cause and effect in model
responses.

The modified ELMv2-SPRUCE has extended capabilities compared to the default model, e.g. fine tune nutrients competition
relationships between PFTs using the maximum uptake/acquisition rates and half-saturation parameters (SI Tables S4-S5),
assimilating nutrient uptake kinetics data, and testing the ecosystem impacts of changing fine root traits. Those improvements
will enable new hypothesis testing and more accurate modelling of peatland C, N, and P cycling. It will also be interesting to
compare the modified ELMv2-SPRUCE with other models that use similar fine root-based uptake rules (Knox et al., 2024;
Zhu et al., 2019) and/or have mycorrhizal representations (He et al., 2018; Shao et al., 2023b; Sulman et al., 2019), and to test
the performance of the model at multi-site to regional scale and its implications for carbon cycle feedbacks to the climate

system.

5 Conclusions

We present a development on the ELMv2-SPRUCE model to replace default, photosynthesis-driven nutrient uptake processes
with fine root and implicit mycorrhizal pathways, allowing more realistic processes like the access to organic nutrients by
mycorrhizal roots and the dependence of plant nutrient uptake on fine root biomass, fungi colonization level, and environmental
conditions. The modified ELMv2-SPRUCE model better captures the observed large increase in shrub growth under whole
ecosystem warming than the default model, as well as overall measured C fluxes and resin-exchange nutrients response to
warming. The modelled increase in shrub growth is accompanied by stable fungi-mediated nutrient acquisition from organic
matter, and several fold increase in direct fine root inorganic uptake, supporting our initial hypothesis that the observed increase
in shrub growth is driven by a shift from mycorrhizal outsourcing to direct fine root uptake strategy. Non-validated
comparisons to the default model show the modified model simulates less nutrient limitation on plant growth under warming,
resulting in weaker C-sink to C-source transition, and more flexible relationships between plant nutrient acquisition and soil
inorganic nutrient concentrations. Outstanding model biases and caveats indicate needs to improve non-mycorrhizal processes
for spruce and Sphagnum moss growth, above-to-belowground allocation. Other future developments may add or refine

representation fine root trait responses to warming, more realistic organic nutrient access, shifts in allocation, and mycorrhizal

29



715

720

725

730

735

740

745

750

https://doi.org/10.5194/egusphere-2025-5471
Preprint. Discussion started: 17 November 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

fungal biomass turnover. Overall, the new model is a useful tool for model-data integration, hypothesis testing in ecosystem

carbon-nitrogen-phosphorus cycling, and investigating boreal peatland responses to environmental change.

6 Code and data availability

The ELM-OLD and ELM-MYCI source codes used to conduct all simulations in this study are available at
https://zenodo.org/records/17582789. The main branch of the E3SM model is at https://github.com/E3SM-Project/E3SM.

ELM simulations must be conducted as land-only simulations in the E3SM framework, and the documentation for conducting

such simulations are available at https://docs.e3sm.org/E3SM/EL M/user-guide. All the accelerated spin-up simulations in this

study used the ICBI8SOCNRDCTCBC compset. All the normal spin-up simulations in this study used the
ICB20TRCNPRDCTCBC compset. All the transient and treatment simulations in this study wused the
ICB20TRCNPRDCTCBC compset. The analysis and plotting codes are available at https://zenodo.org/records/17584836.

The list of input and evaluation data used by this study is as follows:

e  Environmental forcings:

o Hanson, P.J., J.S. Riggs, W.R. Nettles, M.B. Krassovski, and L.A. Hook. 2016. SPRUCE Whole
Ecosystems Warming (WEW) Environmental Data Beginning August 2015. Oak Ridge National
Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
https://doi.org/10.3334/CDIAC/spruce.032
e  Water table depth:

o Hanson, P.J., Phillips, J.R., Nettles, W.R., Pearson, K.J., Hook, L.A. 2020. SPRUCE Plot-Level Water
Table Data Assessments for Absolute Elevations and Height with Respect to Mean Hollows
Beginning in 2015. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge,
Tennessee, U.S.A. https://doi.org/10.25581/spruce.079/1608615
e Carbon fluxes:

o Hanson, P.J., J.R. Phillips, D.J. Brice and L.A. Hook. 2018. SPRUCE Shrub-Layer Growth
Assessments in S1-Bog Plots and SPRUCE Experimental Plots beginning in 2010. Oak Ridge National
Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
https://doi.org/10.25581/spruce.052/1433837

o Hanson, Paul J, Jana R Phillips, Stan D Wullschleger, W Robert Nettles, Jeffrey M Warren, Eric J] Ward,
Jake D Graham, and Thomas A Ruggles. 2018. SPRUCE Tree Growth Assessments
of Picea and Larix in S1-Bog Plots and SPRUCE Experimental Plots beginning in 2011. Oak Ridge
National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee,

U.S.A. https://doi.org/10.25581/spruce.051/1433836

o Ingrowth cores: Malhotra, A., D.J. Brice, J. Childs, H.M. Vander Stel, S.E. Bellaire, E. Kraeske, S.M.
Letourneau, L. Owens, L.M. Rasnake, C.M. Iversen. 2020. SPRUCE Production and Chemistry of Newly-
Grown Fine Roots Assessed Using Root Ingrowth Cores in SPRUCE Experimental Plots beginning in
2014. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee,
U.S.A. https://doi.org/10.25581/spruce.077/1607860

o Moss NPP data: Norby RJ, Childs J. 2018. SPRUCE: Sphagnum Productivity and Community
Composition in the SPRUCE Experimental Plots. Oak Ridge National Laboratory, TES SFA, U.S.
Department of Energy, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.25581/spruce.049/1426474

e Pore-water chemistry:
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o Griffiths, N. A., S.D. Sebestyen, K.C. Oleheiser, J.M. Stelling, C.E. Pierce, E.A. Nater, B.M. Toner, &
R.K. Kolka. 2016. SPRUCE Porewater Chemistry Data for Experimental Plots, Beginning in 2013,
Version 4. Oak Ridge National Laboratory, TES SFA, US Department of Energy, Oak Ridge, Tennessee,
USA. https://doi.org/10.3334/CDIAC/spruce.028
e Resin-exchange measurements:

o Iversen CM, Latimer J, Burnham A, Brice DJ, Childs J, Vander Stel HM, Schwaner GW, Weber SE.
2017. SPRUCE Plant-Available Nutrients Assessed with Ion-Exchange Resins in Experimental Plots,
Beginning in 2013. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge,
Tennessee, U.S.A. http://dx.doi.org/10.3334/CDIAC/spruce.036
e Ectomycorrhizal colonization of tree root tips:

o Duchesneau, K, CE Defrenne, C Petro, A Malhotra, JAM Moore, J Childs, PJ Hanson, CM Iversen, and JE
Kostka. 2024. SPRUCE Root Tip and Ectomycorrhizal Fungi Colonization Measurements from
Ingrowth Cores, 2017. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak
Ridge, Tennessee, U.S.A. https://doi.org/10.25581/spruce.119/2476173
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