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Abstract. Boreal peatlands store 13-32% of the global soil carbon (C) stock, a service dependent on plant-mycorrhizal fungi 

associations. In these nutrient poor systems, ectomycorrhizal and ericoid mycorrhizal fungi supply up to >80% of the nutrient 30 

requirements of their plant hosts, partly with mined nitrogen (N) and phosphorus (P) from soil organic matter that are otherwise 

inaccessible to plants. Despite the ecological significance, mycorrhizal associations are only represented in a few land surface 

or ecosystem models. We modify the peatland branch of version 2 of the Energy Exascale Earth System Land Model (ELMv2-

SPRUCE) to replace the default photosynthesis-driven inorganic N and P (NP) uptake process with a more realistic 

representation of the process via three pathways: (1) direct inorganic NP uptake by uncolonized fine roots, (2) indirect 35 

inorganic NP acquisition and (3) indirect NP acquisition from organic sources by mycorrhizal roots. We systematically 

evaluated the performance of the default and modified models with field observations from a whole ecosystem warming and 

carbon dioxide fertilization experimental site: Spruce and Peatland Responses Under Changing Environment (SPRUCE), in 

northern Minnesota, USA. The modified model reduces the underestimation of the growth response of shrubs in the default 

model to warming from 40-80% to 17-35% and reduces the overall relative absolute error on C fluxes from 1.61 to 1.54. The 40 

improved growth response of shrubs to warming is accompanied by several-fold increase in direct inorganic NP uptake and 

decrease in fungal colonization rate. The modified model simulates a weaker transition of the ecosystem from C sink to C 

source under warming due to alleviation of plant nutrient limitation. Equifinality analysis shows the newly added parameters 

in the modified model can be constrained by the observed C fluxes. Sensitivity analysis shows the newly added parameters 

have stronger statistical interactions than the preexisting parameters in the default model. Overall, the modified model is an 45 

improvement over the default ELMv2-SPRUCE and will be a useful tool for understanding boreal peatland change.  

1  Background 

Boreal peatlands store an estimated 234-546 Gt carbon (C), equal to 13-32% of the global soil C stock (Friedlingstein et al., 

2022; Loisel et al., 2017). The high C storage arises from slow decomposition rates driven by the cold, waterlogged, nutrient-

limited, and acidic conditions of these ecosystems (Dise, 2009; Frolking et al., 2011; Salmon et al., 2021). Ongoing rapid 50 

warming in the northern high latitudes is expected to shift ecosystem C balance, but the magnitude of change remains highly 

uncertain due to poorly constrained temperature sensitivities of vegetation productivity and soil C decomposition (Ito et al., 

2020). More accurate modeling of the mechanisms governing C cycling in boreal peatlands will improve our ability to project 

future changes in this ecosystem and its feedback to the Earth system.  

Among the various biotic and abiotic mechanisms underlying boreal peatland C cycling, plant-mycorrhizal associations 55 

represent a key component owing to their central role in nutrient cycling (Shao et al., 2022, 2023b; Shi et al., 2015, 2021). 

Mycorrhizal fungi have three varieties: ectomycorrhizae (EcM), ericoid mycorrhizae (ErM), and arbuscular mycorrhizae 

(AM). Unlike AM, which are more common in low latitudes and only acquire inorganic nutrients, EcM and ErM can acquire 

nutrients from soil organic matter (SOM), making them suited to cold, nitrogen (N)-limited ecosystems with slow 

decomposition rates (Egerton-Warburton et al., 2013; Ward et al., 2022). One estimate suggests that EcM are associated with 60 
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>75% of the aboveground plant biomass in the non-permafrost boreal region and ~50% in the permafrost region; ErM, which 

selectively colonize ericaceous shrubs, are associated with ~20% aboveground plant biomass in the permafrost region 

(Soudzilovskaia et al., 2019). Plants associated with EcM transfer on average ~13% (0–50% in range) of their net primary 

productivity (NPP) to fungal symbionts while plants associated with ErM transfer on average ~3.5% (0–14% in range) 

(Hawkins et al., 2023). The fraction of plant N supplied by EcM or ErM in return varies from <30% to >80%, depending on 65 

site and plant species, though less is known about the fraction of EcM- or ErM-supplied phosphorus (P) (Hilman et al., 2024; 

Hobbie and Hobbie, 2006; Yin et al., 2022). Beyond nutrient supply, mycorrhizal fungi regulate SOM turnover by competing 

with free-living saprotrophs, transporting C away from the rhizosphere, and promoting soil aggregate formation and 

stabilization (Fernandez and Kennedy, 2016; Hawkins et al., 2023; Smith and Wan, 2019).  

To date, only a limited number of land surface models – here defined as the land component of Earth system models – simulate 70 

mycorrhizal associations (Warren et al., 2015). They generally focus on AM and EcM associations and use the return-on-

investment principle, where “return” refers to gains in growth or nutrient uptake, and “investment” refers to the C costs of 

acquiring nutrient through different pathways (Brzostek et al., 2014). For example, the Community Land Model (CLM) and 

Energy Exascale Earth System Land Model (ELM) have been linked with the Fixation and Uptake of Nitrogen (FUN) model 

(Braghiere et al., 2022; Brzostek et al., 2014; Shi et al., 2016). Plants minimize their C expenditure on N and P (NP) uptake 75 

by optimally allocating their NP demands among biological fixation, retranslocation, nonmycorrhizal passive and active 

uptake, EcM uptake, and AM uptake, each of which has a unique C cost function (Braghiere et al., 2022; Brzostek et al., 2014; 

Shi et al., 2016). Simulations of ELM-FUN  suggest that the EcM and AM pathways together supply ~75% of plant N and 

~41% of plant P globally, and account for ~50% of the NP uptake-related C costs, but neither ELM-FUN or CLM-FUN 

consider organic nutrient mining (Braghiere et al., 2022; Shi et al., 2016). The Symbiotic Nitrogen Acquisition by Plants 80 

(SNAP) model, which is linked to the Geophysical Fluid Dynamics Laboratory land model LM3 (GFDL-LM3), improves 

FUN by dynamically simulating fungal biomass, fungal organic nutrient mining, and the resulting C cost to the plants (Sulman 

et al., 2019). Simulations of GFDL-LM3-SNAP show that EcM-mining of organic N explains the stronger positive response 

to carbon dioxide (CO2) fertilization in EcM-dominated ecosystems than AM-dominated ecosystems (Sulman et al., 2019). 

Also, allowing plants to shift in N uptake pathways results in four times the terrestrial C sequestration relative to fixed N 85 

uptake pathways under a 100-ppm increase in atmospheric CO2 concentration (Sulman et al., 2019).  

Terrestrial ecosystem models not coupled to Earth system models have represented mycorrhizal associations in more detail 

than the return-on-investment models described above. For example, the McGill Wetland Model (MWM) focuses on 

interactions among moss, ericaceous shrub, and ErM in peatland ecosystems and shows that the shrub-ErM association explain 

the increased shrub growth and decreased moss growth in a NP fertilization experiment (Shao et al., 2022, 2023b). The MWM 90 

explicitly models microbial and ErM biomass dynamics and ErM mining of organic nutrients. The MWM models the shrub-

ErM interactions as “excess fluxes” in which (1) shrub transfers C to ErM when shrub C reserve exceeds a set fraction of its 

total stem and root C, (2) ErM fungi transfers NP to the shrub when the NP contents of the ErM exceed predefined fractions 

of the C content of the ErM (Shao et al., 2023b). The excess flux mechanism is likely realistic at the microscopic level (Bunn 
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et al., 2024), but requires many parameters. The CoupModel has been used to compare three representations of nutrient 95 

limitation: fixed limitation, implicit EcM, and explicit EcM, across a climate and N-deposition gradient of EcM-dominated 

boreal forests (He et al., 2018). In the fixed limitation approach, plant growth is scaled down by a constant nutrient limitation 

factor throughout the year. The implicit approach omits the EcM intermediary, simulating plant acquisition of NP from organic 

sources as a function of soil organic nutrients content, plant demand, and optionally root distributions (He et al., 2018, 2021; 

Svensson et al., 2008). The explicit approach simulates EcM biomass dynamics and organic nutrient mining, with plant transfer 100 

of C to EcM determined by belowground allocation, and EcM transfer of NP to plant co-determined by plant demand and 

excess flux (He et al., 2018, 2021). The implicit and explicit approaches outperform the fixed N limitation approach, and both 

indicate declining plant dependence on organic N from the more N-limited northern Sweden to the less N-limited southern 

Sweden; yet the explicit parameterization is more difficult to constrain, and the implicit and explicit approaches differ in the 

simulated litter production, soil respiration, and the magnitude of the north-south trend (He et al., 2018).  105 

The above reviewed modeling studies demonstrate that mycorrhizal associations are needed for more accurate simulation of 

nutrient limitation on productivity and the resulting feedback to Earth system and land surface models can benefit from testing 

alternative model structures than return-on-investment schemes and understanding the parameterization difficulty. We address 

this research gap by adding implicit representation of EcM and ErM associations into the NP uptake processes of a peatland 

branch of ELM, ELMv2-SPRUCE (Griffiths et al., 2017; Shi et al., 2015, 2021). AM is not added because it is not a key 110 

component of northern peatland ecosystems (Egerton-Warburton et al., 2013). We compare the original model, hereafter 

“ELM-OLD”, and the modified model, hereafter “ELM-MYCI” (for mycorrhizal-implicit), against observed C fluxes, pore 

water NP concentrations, resin-exchange-measured plant available NP, and peat C-N-P stocks from the Spruce and Peatland 

Responses Under Changing Environment experiment (SPRUCE) (Griffiths et al., 2017; Griffiths and Sebestyen, 2016; Hanson 

et al., 2020a; Iversen et al., 2022; Salmon et al., 2021). SPRUCE is a whole ecosystem warming and CO2 fertilization 115 

experiment located in a boreal peatland ecosystem (Hanson et al., 2017). The site has EcM-associated trees (black spruce 

[Picea mariana] and tamarack [Larix laricina]) and various species of ErM-associated ericaceous shrubs, offering an array of 

interactions between plants, fungi, and soils under experimental treatments that have not been tested by the above-reviewed 

modeling studies. The experiment observed increases in shrub productivity, declines in Sphagnum moss productivity, and 

increases in resin-exchange nutrient availability in response to warming (Hanson et al., 2020a, 2025; Iversen et al., 2022). A 120 

persistent issue in ELM-OLD has been the inability to reproduce the larger increase in shrub productivity relative to tree 

productivity under warming (Shi et al., 2021). Using ELM-MYCI, we test the hypothesis that the shrub responses can be 

explained by decreasing dependence on ErM in response to higher nutrients availability under warming, akin to the findings 

or suggestions of multiple previous studies (Defrenne et al., 2021; Duchesneau et al., 2024; He et al., 2018; Shao et al., 2023b). 
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2  Data and Methods 125 

2.1  Site Description 

The SPRUCE experimental site is within the S1 Bog of the United States Department of Agriculture Forest Service Marcell 

Experimental Forest, located in northern Minnesota, USA (47°30.476’N, 93°27.162’W, 418m above mean sea level) (Hanson 

et al., 2017, 2020a; Kolka et al., 2011; Salmon et al., 2021). The bog is an acidic, raised-dome ombrotrophic bog with nutrient 

inputs only from atmospheric deposition and nitrogen (N) fixation. The open forest canopy at the site is Picea mariana (Mill.) 130 

B.S.P. (black spruce) with occasional Larix laricina (Du Roi) K. Koch (eastern tamarack). The trees were harvested in strip 

cuts in 1969 and 1974 and the current canopy is mostly regenerated from the 1974 strip cut (Hanson et al., 2016a). The 

understory is dominated by ericaceous shrubs (Rhododendron groenlandicum [Oeder] Kron & Judd [Labrador tea], 

Chamaedaphne calyculata [L.] Moench. [leatherleaf], Vaccinium angustifolium Aiton [blueberry], and Vaccinium oxycoccos 

L [cranberry]) with a small biomass pool of forbs and sedges (Hanson et al., 2025). The bryophyte layer is dominated by 135 

Sphagnum spp. mosses. This vegetation community is represented by the following plant functional types (PFTs) in both ELM-

OLD and ELM-MYCI: boreal evergreen needleleaf for black spruce, boreal deciduous needleleaf for tamarack, boreal 

deciduous shrub for the ericaceous shrubs, and Sphagnum moss. The forbs and sedges are not modeled but comprise less than 

10% understory cover according to pretreatment surveys  (Iversen et al., 2017b). 

The detailed whole ecosystem warming and CO2 fertilization experimental setup is reported elsewhere (Hanson et al., 2017). 140 

Briefly, the experiment has two unenclosed, ambient plots (ambient temperature, ambient CO2) and five pairs of enclosures 

that target five whole ecosystem warming levels (+0, +2.25, +4.5, +6.75, and +9°C) above ambient temperatures crossed with 

ambient and elevated (+500 ppm) CO2. The belowground heating extends 3 m into the peat profile and began in June 2014. 

The aboveground warming began in August 2015. The CO2 fumigation began on June 15, 2016.  

2.2  The default and modified ELMv2-SPRUCE models (ELM-OLD and ELM-MYCI) 145 

ELM is the land component of the Energy Exascale Earth System Model (E3SM), which consists of atmosphere, land, ocean, 

sea ice, and land ice components (Burrows et al., 2020; Yang et al., 2019, 2023). ELM-OLD is currently branched off ELM 

version 2 with improved peatland processes, including hummock-hollow hydrological interactions (Shi et al., 2015) and the 

Sphagnum moss PFT (Shi et al., 2021). ELM-OLD has been used primarily for site-level simulations, in which we represent 

the bog as two interacting grid cells that represent a hummock soil column and a hollow soil column (Shi et al., 2015). Each 150 

soil column has multiple PFTs that compete for water and nutrients (Shi et al., 2021). Soil decomposition uses a first-order 

decay model with one coarse woody debris pool, three plant litter pools (labile, cellulose, lignin), and four SOM pools (Burrows 

et al., 2020; Oleson et al., 2013) (Supplementary Information [SI] Sect. 1.1.3). Belowground nutrient competition among the 

PFTs and the soil decomposition process is simulated with the Relative Demand approach (SI Sect. 1.1.2). Plant photosynthesis 

creates potential NP uptake through the fixed C:N and C:P in the plant structural tissues (leaf, fine root, coarse root, stem). 155 

Soil decomposition creates potential NP immobilization due to the need for extra NP when C decomposes from an upstream 
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pool that has higher C:N and C:P into a downstream pool that has lower C:N to C:P. The potential uptakes and immobilization 

are compared to the total available inorganic NP in soil, and scaled down by the same factor so that the total available inorganic 

NP is not exceeded (Burrows et al., 2020; Thornton and Rosenbloom, 2005). Due to this NP limitation, some photosynthesized 

C cannot become growth in the structural tissues; those extra C enters the nonstructural carbohydrates (NSC) pool as C reserve 160 

(Burrows et al., 2020).  

ELM-MYCI is designed to improve the process-realism of nutrient uptake for the three vascular PFTs (spruce, tamarack, 

shrubs) by considering the following three pathways: (1) direct inorganic nutrient uptake by uncolonized fine roots, PATHroot, 

(2) indirect inorganic nutrient acquisition by mycorrhizal roots, PATHmyc,inorg, and (3) indirect nutrient acquisition from organic 

sources by mycorrhizal roots, PATHmyc,org. Like in ELM-OLD, ELM-MYCI still calculates the NP demand implied by 165 

photosynthesis, but decouples this demand from the potential NP take, which are determined through the three pathways. 

ELM-MYCI uses fungi-colonization fraction to idealize the fine root into a uncolonized part, which can only use PATHroot, 

and a colonized part, which can only use PATHmyc,inorg and PATHmyc,org. The potential inorganic NP uptake via PATHroot is 

dependent on uncolonized fine root surface area and soil inorganic NP concentrations (Eq. 1). The potential inorganic NP 

acquisition via PATHmyc,inorg is dependent on colonized fine root biomass, soil inorganic NP concentration, and NSC 170 

availability (Eq. 2). The potential NP acquisition from organic sources via PATHmyc,org is dependent on colonized fine root 

biomass and NSC availability (Eq. 3). The NSC availability term reflects fungal dependence on C transfer from the plants 

(Bunn et al., 2024; He et al., 2018; Shao et al., 2023b). All three pathways are also affected by soil temperature, soil moisture, 

and the current NP-limitation level of the plant (Eq. 1-3). The equations for P can be obtained by replacing all N with P in Eq. 

1-3. The potential rates of the three pathways are compared to soil inorganic and organic NP availability to determine actual 175 

rates, which are then compared to the implied demand by photosynthesis to determine plant structural growth. The entire set 

of equations and more details are provided in SI Sect. 1.1.  

 𝑁!"##$,&,' = 𝑣(,!"##$,'$1 −𝑀)*+,'(𝐴!"##$,&,'ℱ'$𝑁+#,+,&(ℱ$𝑇-#&,&(ℱ$Θ-#&,&(ℱ$𝐹(.&)&$,'( (1) 

 𝑁)*+,/#$,&,#"0,&,' = 𝑣(,)*+,'𝑀)*+,'𝐶!"##$,'𝐹!"##$,&,'ℱ'$𝑁+#,+,&(ℱ$𝑇-#&,&(ℱ$Θ-#&,&(ℱ$𝐹(.&)&$,'(𝐹$𝐶,-,'( (2) 

 𝑁)*+,/#$,#"0,&,' = 𝑢(,)*+,'𝑀)*+,'𝐶!"##$,'𝐹!"##$,&,'ℱ$𝑇-#&,&(ℱ$Θ-#&,&(ℱ$𝐹(.&)&$,'(𝐹$𝐶,-,'( (3) 

i – soil layer index 

j – PFT index 

𝑁!"##$,&,' – the potential inorganic N uptake rate via PATHroot, g N m-2 ground area s-1 180 

𝑁)*+,/#$,&,#"0,&,' – the potential inorganic N acquisition rate via PATHmyc,inorg, g N m-2 ground area s-1 

𝑁)*+,/#$,#"0,&,' – the potential N acquisition rate from organic sources via PATHmyc,org, g N m-2 ground area s-1 

𝑣(,!"##$,' – the maximum inorganic N acquisition rate per unit uncolonized fine-root surface area, g N m-2 ground area s-1 

𝑣(,)*+,' – the maximum inorganic N acquisition rate per unit colonized fine-root biomass, g N g C-1 s-1 

𝑢(,)*+,' – the maximum organic N acquisition rate per unit colonized fine-root biomass, gN g C-1 s-1 185 

𝑀)*+,' – fraction of fine roots colonized by EcM (for the spruce and tamarack PFTs) or ErM (for the shrub PFT) 
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𝐴!"##$,&,' – total fine root surface area in one soil layer, cm2 m-2 ground area 

𝐶!"##$,' – total fine root biomass in one soil layer, g C m-2 ground area 

ℱ'$𝑁+#,+,&( – Michaelis-Menten multiplier of soil inorganic N concentration (𝑁+#,+,&, g N m-3 soil volume) 

ℱ$𝑇-#&,&( – Q10 multiplier of soil temperature (𝑇-#&,&, ℃) 190 

ℱ$𝐹(.&)&$,'( – a feedback factor to prevent infinite N uptake when inorganic N is abundant (𝐹(.&)&$,' is the PFT’s N-limitation 

level in the previous time step) 

𝐹$𝐶,-,'( – degree of NSC saturation in the plant (𝐶,-,' is the NSC biomass in the plant, g C m-2 ground area) 

2.3  Simulation protocol 

Following previously established protocols (Griffiths et al., 2017; Hanson et al., 2020a; Shi et al., 2021), we first conducted a 195 

single-grid simulation that consists of an accelerated spin-up of 207 years, a normal spin-up of 407 years, and an 1850–2014 

transient simulation, and then branched the simulations into eleven treatments corresponding to one control simulation for 

unenclosed plot + five pairs of enclosures (Sect. 2.1) during 2015-2023. The control simulation only uses one of the two 

unenclosed plots, which is labeled plot 7 in the experiment (Hanson et al., 2020a), because it has a longer water table record, 

which is needed to force ELMv2-SPRUCE. The accelerated and normal spin-ups were driven by cyclic ambient meteorological 200 

forcing during 2015-2023, preindustrial CO2 concentration, preindustrial N deposition, and constant land cover. The transient 

simulation cyclically used the ambient meteorological forcing during 2015-2023, historically varying CO2 concentration and 

N deposition, and included the 1974 strip cut event where 99% aboveground tree biomass was removed. The treatment 

simulations were forced by meteorological observations and water table depths in each enclosure during 2015-2023 (Hanson 

et al., 2016b, 2020b). The simulated water table depths in the two columns equilibrate with each other and observed water 205 

table depths (Shi et al., 2015). The atmospheric CO2 concentrations in the elevated CO2 enclosures were set to 500 ppm above 

ambient level starting from March 15th, 2016. Within the grid, the hummock soil column was set to 64% of the area and hollow 

36% (Graham et al., 2020).  A limitation of this version of ELM is that we do not represent multiple canopy layers. Therefore, 

we must specify fractional coverages for each PFT that add to 100% total. We started with the default assumption that each of 

the four PFT covers 25% and then adjusted for the observed distribution of the two tree types.  Within each soil column, the 210 

PFT fractions were: needleleaf evergreen boreal tree 36% (for spruce), needleleaf deciduous boreal tree 14% (for larch), 

broadleaf boreal deciduous shrub 25% (for ericaceous shrubs), and Sphagnum moss 25% in the pre-treatment simulations and 

fractionally adjusted using the annually observed fractional coverages in the treatment simulations (Table S8). All the 

simulations used an hourly time step.  
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2.4  Evaluation data 215 

2.4.1  Annual C fluxes 

Our primary evaluation data are the following annual C fluxes measurements: (1) the aboveground NPP of the spruce trees 

(AGNPPspruce), (2) the aboveground NPP of the tamarack trees (AGNPPtamarack), (3) the aboveground NPP of the shrubs 

(AGNPPshrub), (4) the NPP of Sphagnum moss (NPPmoss), (5) the belowground NPP of total tree and shrub fine roots 

(BGNPPtreeshrub), (6) heterotrophic respiration (HR) (Hanson et al., 2018a, b, 2020a; Norby et al., 2019). We additionally 220 

summed up (1-5) to obtain (7) an aggregated “NPP” term – note this is not true NPP because it does not contain coarse root 

production. There are some temporal mismatches across the datasets: BGNPPtreeshrub observations only span 2016-2017 

(Malhotra et al., 2020b); the other observations span 2016-2021, but year 2020 was excluded due to the high uncertainty 

associated with the limited measurements taken during the COVID era (Hanson et al., 2020a; Norby and Childs, 2018). To 

facilitate concise comparison, we summarized each of those variables into two mean values and two temperature sensitivities, 225 

similar to a previous approach at the site (Hanson et al., 2020a). The mean values were calculated, respectively, over all the 

years in the ambient CO2 enclosures and over all the years in the elevated CO2 enclosures. The temperature sensitivities were 

calculated as the slope of least squares linear regression between each C-flux variable and observed mean annual 2-m air 

temperatures, respectively, over all the years in the ambient CO2 enclosures, and over all the years in the elevated CO2 

enclosures. Those means and slopes were used in parameter optimization (Sect. 2.5). 230 

2.4.2  Annual maximum leaf area index 

To verify the simulated C biomass, we compared the models against the annual maximum leaf area index (LAI) of the two 

trees and shrub, measured using LICOR LAI 2200 device during 2015–2020 (McPartland et al., 2019). The annual C fluxes 

and LAI observations all have direct correspondence with modeled variables. AGNPPspruce and AGNPPtamarack have strong pre-

treatment variation that impacts the interpretation of results (Hanson et al., 2025). Therefore, we fitted ordinary least squares 235 

linear regression models to remove the pre-treatment effect; because LAI is closely related to aboveground NPP, we used the 

same method to remove the pre-treatment variation in the LAI of the two tree species (SI Sect. 1.2). We did not compare the 

models against observed net C exchange or methane flux data because the net C exchange has small components of lateral 

outflow of organic C and dissolved inorganic C (Hanson et al., 2020a), which are not yet considered in ELMv2-SPRUCE, and 

the model cannot yet fully capture the methane dynamics (Shi et al., In preparation). 240 

2.4.3  Porewater nutrient concentrations 

For nutrient cycling, we compared the models against several forms of observations. The first of those was porewater ammonia 

(𝑁𝐻12), nitrate (𝑁𝑂34), and inorganic P (𝑃𝑂134) concentrations, which characterize the pool of dissolved nutrients in soil. The 

porewater concentrations were measured roughly twice per month during the non-frozen months of 2015-2020 near the bottom 

of the rooting profile (30cm) in the hollow (Griffiths et al., 2016). The pore water nutrient concentrations were measured on a 245 
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per water volume basis (mg N L-1, mg P L-1), but ELM can only simulate nutrient concentrations on a per soil volume basis 

(gN m-3 soil, gP m-3 soil). Therefore, we divided the simulated 𝑁𝐻12, 𝑁𝑂34, and soluble P [as defined in (Yang et al., 2019)] 

concentrations by the simulated volumetric soil water content to bring them to the same unit as the observations. Because the 

sampling interval was irregular and relatively infrequent, and nutrient concentrations in water can exhibit sharp, episodic 

fluctuations (Basu et al., 2010), we chose not to interpolate the observations to annual level like the annual C fluxes (Hanson 250 

et al., 2018a, b, 2020a; Norby et al., 2019). Instead, we downsampled the model outputs to only include the dates on which 

pore water concentrations were measured, ensuring that both observed and modeled data reflect the same seasonality. For each 

enclosure, we then summarized the observed and down-sampled modeled porewater nutrient concentrations into two statistics: 

the mean value and the temporal linear trend, to facilitate concise comparison. Here, the temporal linear trend is defined as the 

slope of a least-squares regression between the modeled/observed values and the elapsed days since January 1, 2015. We chose 255 

enclosure-specific temporal trends, instead of cross-enclosure temperature sensitivity (as done in Sect. 2.4.1), because the 

former metric captures well the behavior of the data when plotted as a time series, whereas scatterplots between the observed 

porewater nutrient concentrations and the air temperature on the corresponding dates do not show clear correlation.  

2.4.4  Resin-exchange plant available nutrients 

The second form of nutrient cycling observations we used is resin-exchange 𝑁𝐻12 and 𝑃𝑂134 (Iversen et al., 2017a). Those 260 

values approximately represent plant-available nutrients but previous study suggests that in shallow soil layers (10 cm), 

competition with roots invalidates this interpretation (Iversen et al., 2017a, 2022). Therefore, we focus on the resin-exchange 

nutrients measured at 30 cm in both the hummock and hollow, and at 60 cm in the hollow during 2015-2018, at which depths 

few roots exist in the anaerobic peatland environment (Iversen et al., 2017a). The raw measurements were cumulative absorbed 

weights of 𝑁𝐻12 or 𝑃𝑂134 per resin capsule surface area during roughly monthly intervals; the values used in this study are the 265 

aggregated annual averages by the data collector (Iversen et al., 2017a). Following previous study, we compared the 

temperature sensitivities of the observed resin-exchange nutrients to the temperature sensitivities of the most comparable 

modeled variable, annual average net nutrient mineralization rates (NET_NMIN [gN m-3 s-1], NET_PMIN [gP m-3 s-1]) for a 

qualitative comparison (Iversen et al., 2022). To remove unit difference between the observed and modeled quantities, we 

divided the observed values and the modeled values, respectively, by the mean value of each during the observational period, 270 

separately for each nutrient species and soil depth. The resulting regression slopes against temperature represent relative (mean-

scaled) changes per unit change in soil temperature. This normalization approach is commonly used in elasticity analysis for 

comparing effects across variables with different units (Sydsaeter and Hammond, 1995).  

2.4.5  Pretreatment peat C, N, P stocks 

The final observation of nutrient cycling we used are pre-treatment vertical profiles of C, N, and P stocks in the peat (Griffiths 275 

et al., 2017; Salmon et al., 2021). The compared model variables are the summed C, N, and P contents of all four SOM pools 

(1, 2, 3, 4) in all the soil layers in the decomposition processes [SI Sect. 1.1.3, (Oleson et al., 2013)] in the control plot. 

https://doi.org/10.5194/egusphere-2025-5471
Preprint. Discussion started: 17 November 2025
c© Author(s) 2025. CC BY 4.0 License.



10 
 

2.5  Sensitivity experiments 

2.5.1  Parameter optimization 

In both ELM-OLD and ELM-MYCI, the soil decomposition process uses column-level parameters that are shared between 280 

hummock and hollow. Vegetation processes like photosynthesis, respiration, and nutrients uptake/acquisition use PFT-specific 

parameters that are also shared between hummock and hollow. We used observed parameter values as much as possible in 

ELM-OLD (SI Table S2) and ELM-MYCI (Table S4). For those unobserved, we used either optimized values obtained from 

ensemble simulations (Tables S3 and S5) or manually set default values (Tables S2 and S4) if a parameter has relatively minor 

influence on the quantities of interest in this study. All the parameter optimization simulations excluded moss parameters for 285 

the purpose of consistency – because moss is not modified in this study, the newly added parameters do not cover moss.  

We selected eleven preexisting parameters in ELM-OLD to optimize based on previous sensitivity findings (Meng et al., 2021; 

Ricciuto et al., 2018). Those parameters affect photosynthesis, plant respiration, plant allocation, and soil decomposition 

processes (Table S3).  

For each parameter, we generated an equal number of uniform random samples between predetermined upper and lower 290 

bounds. We then formed all possible combinations of these samples across the parameters to create a total of 4000 samples. 

Finally, we ranked these combinations by relative absolute error (RAE) and select the combination with the lowest RAE as 

the optimized parameter values. The RAE formula is shown in Eq. 4 and considers the relative errors in mean and in 

temperature sensitivity of annual C fluxes:  

 𝑅𝐴𝐸 =
1
|𝑉| 7 89

𝐴-&),5,+ − 𝐴#6-,5,+
𝑈#6-,5,+

9 + 9
𝑆-&),5,+ − 𝑆#6-,5,+

𝑄#6-,5,+
9>

5∈8
+∈{:;<=>?@,>A>B:@>C}

 (4) 

, where the subscripts 𝑠𝑖𝑚 means simulated, 𝑜𝑏𝑠 means observed, 𝑣 is variable name,	𝑐 is the CO2 treatment (ambient or 295 

elevated), 𝑉 is the set of variables compared, |𝑉| is the size of 𝑉, 𝐴 is the mean of the variable, 𝑆 is the temperature response 

slope of the variable, 𝑈 is the observational uncertainty in mean, 𝑆 is the observational uncertainty in slope. The performance 

metric is only based on annual C fluxes because those are directly comparable to model outputs (see Sect. 2.4.1, items 1-6). 

We did not include the aggregate NPP (item (7)) or annual maximum LAI because of strong overlap with items 1-6. The 

𝑈#6-,5,+ values were estimated from pre-treatment standard deviation across the enclosure locations (Hanson et al., 2020a, 300 

2025) by assuming that the relative uncertainty stays the same, i.e. the ratio of pre-treatment standard deviation to pre-treatment 

mean is the same as the ratio of 𝑈#6-,5,+ to 𝐴#6-,5,+. The 𝑄#6-,5,+ values are the 1𝜎 uncertainty in the linear regression slopes 

(DeGroot and Schervish, 2018). We chose normalization by uncertainty to ensure the BGNPPtreeshrub variable, which are based 

on ingrowth core samples that had limited spatial representativeness and only span two years, was not overemphasized 

compared to the other C fluxes, which have five-year estimates (Hanson et al., 2020a; Iversen et al., 2021)) are not 305 

overemphasized. The normalization additionally ensured that all the variables are unitless, making them intercomparable. 
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For ELM-MYCI, the total number of preexisting and newly added parameters resulted in an extremely large search space that 

cannot be covered by 4000 samples. Therefore, we focus on perturbing the most sensitive half (18) of the 37 newly added 

parameters (Table S5). The most sensitive half was predetermined using one-at-a-time (OAT) perturbation – for each parameter, 

we generated 50 uniform random samples per parameter between pre-defined upper and lower bounds (Table S4-S5). We then 310 

calculated the standard deviations of 𝐴-&),5,+ and 𝑆-&),5,+ over all the random samples for each variable and CO2 treatment. 

This approach resulted in a 4th order tensor of 37 parameters x 6 variables x 2 CO2 treatments x 2 coefficients [mean or 

temperature response slope]. We converted the standard deviation tensor to a same-dimensioned rank tensor by ranking the 

standard deviations high-to-low across the parameters separately for each variable, CO2 treatment, and mean or slope. We 

show the ranks in Figure S4, with the last three dimensions of the rank tensor compressed into the form of boxplots. The 315 

selected most sensitive parameters are those with lowest median ranks in Figure S4 and are listed in Table S5. We then 

perturbed those most sensitive 18 parameters in a 4000-member ensemble simulation and calculate the RAE in the same way 

as done for ELM-OLD.  

It is desirable to understand whether our structural change can improve ELM-OLD beyond the capability of parameter 

optimization. Therefore, we conducted two sets of 4000-member ensemble simulations for ELM-MYCI: one with the 320 

preexisting parameters fixed at default levels, and one with the preexisting parameters fixed at optimized levels. Table 1 lists 

the final four simulations compared in this study. Comparing ELM-OLDoptim to ELM-OLD gives the effect of parameter 

optimization. Comparing either ELM-MYCI to ELM-OLD, or ELM-MYCIoptim to ELM-OLDoptim, gives the effect of structural 

modification. Comparing ELM-MYCIoptim to ELM-OLD gives the combined effects of parameter optimization and structural 

modification.  325 
Table 1: Summary of parameter perturbation experiments and the optimal runs compared in this study 

Notation 
Notation for the 

corresponding ensemble 
simulation 

Model Structure Preexisting 
parameters choice 

New parameters 
choice 

ELM-OLD - 
Default (Shi et al., 

2021) Default - 

ELM-OLDoptim ELM-OLDoptim _ENS Default (Shi et al., 
2021) Optimized - 

ELM-MYCI ELM-MYCI _ENS Updated (this study) Default Optimized 
ELM-

MYCIoptim ELM-MYCIoptim _ENS Updated (this study) Optimized Optimized 

2.5.2  Verification of parameter constraint 

Equation (4) only uses C fluxes but the optimized new parameters are mainly relevant to NP. To examine whether the selected 

optimal parameter values are indeed from a constrained subregion of the search space by Eq. (4), or simply perform best by 

chance, we used a clustering metric. This metric, though not using a formal likelihood framework, is consistent with the 330 

equifinality concept, where parameters are considered identifiable if the high-likelihood parameter values are concentrated in 

a small region, and non-identifiable if broadly distributed across the parameter space (Raue et al., 2009). We first normalized 
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all the sampled parameter values to between 0 and 1 using the predefined ranges (Tables S3 and S5). Then, we calculated the 

Euclidean distances between the normalized parameter values of two types of ensemble member pairs. The first type was all 

the pairs that can be formed between the best performing 1% (i.e. 40) members. The second type was all the pairs formed 335 

between one value from the best performing 1% members, and one value from the bottom 99% (4000 – 40 = 3960) members. 

If the pairwise distances in the first group are systematically lower than the pairwise distances in the second group, it means 

the better-performing parameter sets are clustered, which we interpret as being constrained by Eq. (4).  

2.5.3  Sobol’s sensitivity analysis 

While the OAT perturbation helps us to downsize the number of parameters to perturb, it offers limited insight into the full 340 

sensitivity of model outputs, because it omits potential interactions among parameters. Using the 4000-member ensembles, we 

therefore applied a previously established procedure on ELM to calculate Sobol’s main-effect and total-effect indices between 

selected model outputs and all the perturbed parameters (Ricciuto et al., 2018). Sobol’s sensitivity indices are based on variance 

decomposition, where the total variance in a model output is decomposed into fractions attributed to individual parameters and 

interactions among parameters (Saltelli et al., 2004). The main effect measures the relative fraction attributed to a parameter 345 

excluding all interactions. Due to the omission of interactions, the sum of main effects across all the parameters is less than 1. 

The total effect measures the relative fraction attributed to a parameter including itself and all higher-order interactions 

involving the parameter. Due to duplicated counting of interactions, the sum of total effects across all the parameters is greater 

than 1. 

3  Results 350 

3.1  Comparison between model and observations 

3.1.1  Model performance on C fluxes and leaf area index 

Based on the aggregate RAE metric, ELM-MYCIoptim best captures the mean and temperature sensitivity of the C fluxes (RAE 

= 1.54), followed by ELM-OLDoptim (RAE = 1.61), ELM-OLD (RAE = 1.80), and lastly ELM-MYCI (RAE = 1.82) (Figure 

1). Also, ELM-MYCIoptim and ELM-OLDoptim have the fewest number of variables falling outside the +/- one standard deviation 355 

observational uncertainty window (6 out of 28), followed by ELM-MYCI (8 out of 28), and lastly ELM-OLD (9 out of 28; the 

number of “x’s”of Figure 1).  

Among the individual variables, the mean NPPmoss under elevated CO2, the temperature sensitivity of BGNPPTreeShrub under 

ambient and elevated CO2, and the temperature sensitivity of aggregate NPP under elevated CO2 are least well-captured, with 

all four model setups simulating outside the observational uncertainty (Figure 1acd). ELM-MYCI captures mean HR better 360 

than the other three model setups but performs worse on several other variables (mean AGNPPshrub, temperature sensitivity of 

AGNPPspruce under ambient CO2, mean NPPmoss under ambient CO2, and temperature sensitivity of NPPmoss under elevated 
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CO2) (Figure 1). Consistent with our hypothesis (see end of Sect. 1), structural modification improves model performance in 

capturing the observed large positive response of shrub growth to warming. The temperature sensitivity of AGNPPshrub under 

ambient and elevated CO2 are outside the observational uncertainty in ELM-OLD (Figure 1c). Using optimized preexisting 365 

parameters, ELM-OLDoptim simulates the temperature sensitivity of AGNPPshrub within the observational uncertainty range, 

but still underestimates it by ~50% under elevated CO2 (Figure 1c). With structural modification on top of optimized 

preexisting parameters, ELM-MYCIoptim best captures the temperature sensitivity of AGNPPshrub, with only 17-35% 

underestimation (Figure 1c). Structural modifcation appears to negtatively influence the simulated mean AGNPPspruce, which 

is more severely underestimated in ELM-MYCI and ELM-MYCIoptim than in the other two model setups.  370 

The results of Figure 1 are aggregated for all the enclosures. To separate the within-enclosure error from the cross-enclosure 

error, we additionally calculated the enclosure-wise mean and temperature sensitivities for a subset of the C fluxes 

(AGNPPspruce, AGNPPtamarack, AGNPPshrub, NPPmoss; Figure S5). Although quantitative differences exist between the four model 

setups, they share common broad patterns, such as decreasing spruce growth from the coldest to warmest enclosures and 

insignificant temperature sensitivities. The general underestimation of AGNPPspruce in the ambient CO2 enclosures, 375 

overestimation of NPPmoss in the elevated CO2 enclosures (Figure S5d) and inability to capture the negative temperature 

sensitivity of AGNPPtamarack in all enclosures (Figure S5f) suggest robust pattern not captured by any of the model setups. 

In addition to C fluxes, we used annual maximum LAI as a proxy to compare modelled C biomass to observed. ELM-MYCI 

reduced the overestimation in spruce LAI and the underestimation in shrub LAI by ELM-OLD (Figure S6d-f, j-l). ELM-

MYCIoptim achieved similar error reductions compared to ELM-OLDoptim, although increased the overestimation in tamarack 380 

LAI (Figure S6g-i, m-o).  
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Figure 1: Observed versus simulated mean C fluxes (𝑨𝒐𝒃𝒔,𝒗,𝒄, 𝑨𝒔𝒊𝒎,𝒗,𝒄 in Eq. (4)) and temperature sensitivity of C fluxes (𝑺𝒐𝒃𝒔,𝒗,𝒄, 
𝑺𝒔𝒊𝒎,𝒗,𝒄 in Eq. 4). RAE is calculated from Eq. (4) for each model setup. The C fluxes names and calculation of the means and 385 
temperature sensitivities are explained in Sect. 2.4.1. The suffix CO2 means values for elevated CO2 enclosures, and without this 
suffix means values for ambient CO2 enclosures. The observational uncertainty intervals are estimated as described in Sect. 2.5.1. 
The “x” on top of each bar indicates that the simulated value is outside the observed uncertainty interval.  
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3.1.2  Model portrayal of soil nutrients  

The observed resin-exchangeable nutrients increase by about two orders of magnitude with warming in all observed 390 

combinations of depth, nutrient, and hummock-hollow (Figure 2). The net mineralization rates increase only by about one 

order of magnitude in ELM-OLD and ELM-OLDoptim. ELM-MYCI and ELM-MYCIoptim better capture the observed increases 

(yellow line in Figure 2a, yellow and red lines in Figure 2bef, red line in Figure 2c).  

 
Figure 2: Relationships between normalized plant-available nutrients and annual mean peat temperatures in the observations and 395 
models at different depths of hummock and hollow across all the enclosures. The plant-available nutrients are represented by annual 
total resin-exchange nutrients (𝑵𝑯𝟒

*  and 𝑷𝑶𝟒𝟑, ) in observation and annual mean net mineralization rates (NET_NMIN and 
NET_PMIN) in the model. The normalization procedure is reported in Sect. 2.4.4 and reconciles unit difference between observation 
and model. Lines are least-squares linear regression lines.  
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The modelled soil 𝑁𝐻12 and soluble P concentrations, converted to per volume soil water basis to compare with observed 400 

porewater values, show mean levels that are ELM-MYCI > ELM-OLD > ELM-MYCIoptim > ELM-OLDoptim (Figure S7ac). 

The ELM-OLDoptim values are closest to observed 𝑁𝐻12 values but still about one order of magnitude higher. The ELM-MYCI 

values are closest to observed soluble P values but more than one order of magnitude smaller. The observed 𝑁𝑂34 mean 

concentrations are captured more accurately than 𝑁𝐻12  or soluble P, with ELM-OLDoptim being closest to observations, 

followed by ELM-MYCIoptim, while ELM-OLD and ELM-MYCI remain within one order of magnitude of the observations 405 

(Figure S7b). These large discrepancies call into question if these observed and simulated quantities are comparable, even after 

the units are nominally aligned. Like the mean concentrations, the observed and simulated trends differ substantially in 

magnitudes. ELM-OLD and ELM-MYCI better capture the observed qualitative transition from negative to positive trends 

𝑁𝐻12 towards the warmer enclosures than ELM-MYCIoptim; ELM-OLDoptim did not capture this transition for the ambient CO2 

enclosures (Figure S7d).  410 

All the model setups overestimate the peat C and N stock in the shallow soil layers (0-30 cm; Figure 3ab). In the deeper layers 

(30 cm-200 cm), ELM-OLD exhibits underestimation that is exacerbated in ELM-MYCI and remedied in ELM-OLDoptim and 

ELM-MYCIoptim (Figure 3ab). All model setups severely underestimate P stock below 30cm (Figure 3c). The total simulated 

soil organic C stock of all the soil layers is about 190 kg C m-2 by ELM-OLD, 240 kg C m-2 by ELM-OLDoptim, 140 kg C m-2 

by ELM-MYCI, and 210 kg C m-2 by ELM-MYCIoptim. This places ELM-OLDoptim outside the observational uncertainty of the 415 

estimated 176±40 kg C m-2 of the S1 bog (McFarlane et al., 2018), probably due to the overestimation in the shallow layers 

(Figure 3a).  
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Figure 3: Observed pre-treatment peat carbon, nitrogen, and phosphorus stocks and the modelled values in the ambient control 
enclosure. Error bars on the observations are the +/- standard errors reported in the original studies (Griffiths et al., 2017; Salmon 420 
et al., 2021). The definitions of acrotelm, mesotelm, and catotelm are in (Salmon et al., 2021).  

3.2  Behaviour diagnostics of the modified model 

3.2.1  Plant nutrient acquisition response to warming and soil inorganic nutrients levels 

Simulation results from ELM-MYCI and ELM-MYCIoptim show that the total N acquisition from organic sources by 

PATHmyc,org across the three vascular PFTs are about 2.5 gN m-2 year-1, and the total P acquisition by PATHmyc,org about 0.07 425 

gP m-2 year-1, in the unenclosed ambient plot (TAMB; Figure 4). The PFT-total N acquisition by PATHmyc,org is mainly 

accounted by spruce (about 50% of the total spruce N uptake, Figure 4a) and shrub (30-50% of the total shrub N uptake in 

TAMB, lower in the warmed enclosures, Figure 4c). The total organic P acquisition mainly comes from tamarack (>50% of 

the total tamarack P uptake; Figure 4e). Those numbers and percentages are comparable to the coarse pretreatment estimates 

for the SPRUCE site, which suggests organic N sources account for about 30% of total plants N acquisition (2.4 gN m-2 year-430 
1 out of 7.6 gN m-2 year-1), and organic P sources account for a negligible fraction of total plants P acquisition (0.7 gP m-2 year-

1) (Salmon et al., 2021). 

ELM-MYCI and ELM-MYCIoptim simulates higher total spruce N acquisition through all three pathways, and greater warming-

induced increases in total tamarack and shrub NP acquisitions across all three pathways, than ELM-OLD and ELM-OLDoptim 

(Figure 4). The low spruce P acquisition simulated by ELM-MYCIoptim, especially under elevated CO2, can explain the 435 

underestimation of AGNPPspruce by this model setup (Figure 1a). The large increases in shrub NP acquisition are driven by 

PATHroot (Figure 4cf), consistent with declining fungal colonization rates and rising soil inorganic nutrients under warming 

(Figure S7a-c, Figure S9c).  

In addition to changing the responses of plants nutrient acquisition to warming (Figure 4), ELM-MYCI and ELM-MYCIoptim 

simulate more flexible responses of plants nutrient acquisition to soil inorganic nutrient contents (Figure S10). In ELM-OLD 440 

and ELM-OLDoptim, the uptake always displays a logistic shape where they first increase with soil inorganic N or P and then 

plateaus. In ELM-MYCI and ELM-MYCIoptim, the total acquisition across all three pathways can show linear relationships 

(e.g. Figure S10bef, ELM-MYCIoptim) or logistic shapes that saturate at higher or lower levels (e.g. Figure S10ab, ELM-MYCI).  
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 445 
Figure 4: Simulated annual mean nitrogen (N) and phosphorus (P) acquisition by the vascular PFTs in each treatment enclosure 
during 2015-2021. The acquisition is equal to inorganic nutrient uptake in ELM-OLD and ELM-OLDoptim, and equal to the sum of 
all three pathways (inorganic nutrient uptake by uncolonized fine roots [PATHroot], inorganic nutrient acquisition via mycorrhizal 
roots [PATHmyc,inorg], and nutrient acquisition from organic sources via mycorrhizal roots [PATHmyc,org]) in ELM-MYCI and ELM-
MYCIoptim.  450 

3.2.2  Net ecosystem exchange responses to warming 

All model setups simulate a transition from C sink to C source, i.e. negative to positive net ecosystem exchange (NEE), with 

warming (Figure 5a). Except for the +0.00°C elevated CO2 treatment, the C source strength is ELM-OLD > ELM-OLDoptim > 

ELM-MYCI > ELM-MYCIoptim. NEE is mainly driven by the balance between gross primary productivity (GPP), heterotrophic 

respiration (HR), and autotrophic respiration (AR), i.e. NEE ≈ – (GPP – AR – HR). The low NEE of ELM-MYCIoptim is 455 

because it has the lowest fraction of GPP lost to AR, especially in the warmest enclosures, among all the model setups (Figure 

5c). Like ELM-MYCIoptim, ELM-MYCI has a low AR-to-GPP ratio, but its low NEE is likely driven by the low GPP per se 
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(Figure 5bc). In contrast, ELM-OLDoptim has lower NEE than ELM-OLD is because of a high GPP (Figure 5b) and a smaller 

fraction of GPP lost as HR (Figure 5d). Structural modification has little effect on HR to GPP ratios (ELM-OLD v.s. ELM-

MYCI, ELM-OLDoptim v.s. ELM-MYCIoptim, Figure 5d). The temperature sensitivities of NEE, GPP, AR and HR are generally 460 

insignificant within individual enclosures, but exhibit consistent increasing, decreasing, or bell-shaped patterns across the 

enclosure warming levels in all the model setups (Figure 5e-l).  

   
Figure 5: Modelled enclosure-wise mean and temperature sensitivity of the net ecosystem exchange (NEE) and its balance terms: 
gross primary productivity (GPP), autotrophic respiration (AR), heterotrophic respiration (HR). AR and HR are displayed as ratios 465 
to GPP. The temperature sensitivities are calculated as linear regression slopes between the annual mean NEE, GPP, AR-to-GPP 
ratio, HR-to-GPP, or (AR+HR)-to-GPP ratio values against the annual mean air temperatures during 2015-2021 in each enclosure. 
The temperature sensitivities have solid bars when they are significantly different from zero at p≤0.05 (two-sided t-test), and 
otherwise hollow bars. 
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3.2.3  Nutrient limitations on plant growth 470 

The difference between structural modification and parameter optimization on AR-to-GPP ratios can be better understood by 

examining the individual components of AR (Figure 5). In ELM, AR is the sum of excess, maintenance, and growth respiration 

(AR = XR + MR + GR). XR represents respiration loss due to nutrient limitation, and is calculated as an nonlinearly increasing 

function of  the percentage of plant biomass existing as NSC (SI Sect. 1.1.2); MR represents respiration for maintaining regular 

plant metabolism and is approximately proportional to total living biomass; GR is a small and constant fraction of structural 475 

growth and therefore of low interest here (Oleson et al., 2013).  

At grid level, the lower fraction of GPP lost as AR in the structurally modified model setups than their unmodified counterparts 

(Figure 5c) is mainly driven by lower XR-to-GPP ratios, especially under warming (ELM-MYCIoptim v.s. ELM-OLDoptim, 

ELM-MYCI v.s. ELM-OLD) (Figure 6a). Interestingly, parameter optimization induces large decreases in the MR-to-GPP 

ratio that are offset by large increases in the XR-to-GPP ratio (ELM-OLD and ELM-MYCI v.s. ELM-OLDoptim and ELM-480 

MYCIoptim), resulting in small net changes (Figure 6a). This “trade-off” between XR and MR can be explained by their implicit 

relationship. At a higher XR-to-GPP ratio, the higher nutrient limitation prevents GPP from being assimilated into structural 

growth, leading to lower biomass-to-GPP ratio and therefore lower MR-to-GPP ratio. By the same logic, lower XR-to-GPP 

ratio implies a higher biomass-to-GPP ratio, and therefore higher MR-to-GPP ratio.  

Compared to the grid-level ratios, structural modification has strong effects on the ratios calculated between PFT-specific XR, 485 

MR, and GPP. For spruce, ELM-MYCI and ELM-MYCIoptim have much higher XR-to-GPP ratio and lower MR-to-GPP ratio 

than ELM-OLD and ELM-OLDoptim, especially in the colder enclosures (Figure 6b), which indicates a XR-MR trade-off similar 

to observed at grid level. For tamarack, ELM-MYCIoptim has much lower XR-to-GPP ratio than ELM-OLDoptim in all the 

enclosures (Figure 6c). For shrub, ELM-MYCI and ELM-MYCIoptim have much lower XR-to-GPP ratio than ELM-OLD and 

ELM-OLDoptim in the warmest enclosures (Figure 6d). As such, spruce and shrub are likely the main drivers behind the more 490 

rapid decline of the grid-level XR-to-GPP ratio in the structurally modified models than ELM-OLD or ELM-OLDoptim (Figure 

6a). The weaker XR–MR trade-off in tamarack and shrub likely reflects the lower importance of MR in the two PFTs compared 

to spruce. 
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 495 
Figure 6: Partitioning of excess respiration (XR) and maintenance respiration (MR) parts of autotrophic respiration relative to gross 
primary productivity (GPP) for all PFTs combined or individual PFTs. The ratios are calculated by dividing the 2015-2021 averages 
of the PFT-total or PFT-specific terms. XR contributions are stacked on top of MR contributions, so the total bar height reflect how 
much of the GPP flux is offset by total XR+MR.  

3.2.4  Nutrient limitations on heterotrophic respiration 500 

Nutrient limitation of HR occurs in the default and modified models when the available soil inorganic N or P cannot satisfy 

the total demand of the plants and immobilization demand from soil litter and organic matter decomposition (Eq. S4, SI Sect. 

1.1.3). The immobilization demand arises mainly in the decomposition step from plant litter to SOM (Oleson et al., 2013; 

Schimel and Bennett, 2004). The C:N and C:P in the plant litter pool depend on litter inputs and are usually higher than the 

C:N and C:P of the downstream SOM pools, which are fixed parameters (Oleson et al., 2013). As a result, the process 505 
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immobilizes additional soil inorganic NP to meet the C:N and C:P of the SOM pools. Because ELM-MYCI and ELM-

MYCIoptim allow plants to access the NP in plant litter pools via mycorrhizal roots (Sect. 2.2), the C:N and C:P the litter pools 

increase, resulting in greater immobilization demand per unit decomposition, which is proportional to HR. Consistent with this 

expectation, for each unit of HR, the corresponding actual immobilized inorganic N in ELM-MYCI and ELM-MYCIoptim are 

higher than in ELM-OLDoptim and ELM-OLD at the same level of HR (Figure 7a). The same effect is not seen in P (Figure 510 

7b). Instead, ELM-OLDoptim exhibits considerably higher P-immobilization per unit HR than the other three model setups. All 

the model setups exhibit sensitivity to warming, which suggests P-limitation on HR is more affected by litter quality changes 

created by relative changes in primary productivity among the PFTs than N-limitaiton on HR (Figure 1). 

 

 515 
Figure 7. Ratio of annual mean actual immobilized NP to annual mean heterotrophic respiration (HR) in the soil decomposition 
process, across the enclosures. The bars show the mean values during 2015-2021 and errorbars show the ranges.  

3.3  Parameter sensitivity analysis 

3.3.1  Constraint of model parameters 

The distance metric (Sect. 2.5.2) shows the top-performing 1% parameter values are statistically significantly closer to each 520 

other (smaller distances) than to the remaining 99% parameter values (larger distances) in all three ensemble simulations 

(Table 1, Figure 8). The significant separation means the C fluxes can constrain the preexisting and newly added parameters. 

The distances are least well-separated for ELM-MYCI_ENS (Figure 8b), which uses the same un-optimized parameters as 

ELM-OLD for the unchanged model processes. Those suboptimal parameter values may have caused biases that the new 
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model processes cannot compensate for, leading to unstable optimized values in the new parameters in the ELM-MYCI_ENS 525 

simulations. 

 

 
Figure 8: Comparing Euclidean distances between the parameter values of two groups of pairs of ensemble members: between the 
best-performing 1% members, and between the best-performing 1% members and the other 99% members. Displayed probability 530 
densities are pooled from all pairs in each group. The p-values in each panel indicate whether the two groups are significantly 
different, using two-sided t-test for the mean values of two independent samples. 

3.3.2  Sensitivity of model outputs to parameter values 

We show the parameter sensitivities of ELM-MYCIoptim_ENS in the main text (Figure 9), since the finding of Sect. 3.3.1 

suggests this may be a more reliable perturbed parameter ensemble than ELM-MYCI_ENS (Figure S11), and the sensitivities 535 

of preexisting parameters (Figure S12) are similar to the well-reported findings of past studies (Meng et al., 2021; Ricciuto et 

al., 2018).  

The relative sensitivity of model outputs to each parameter is approximately the same whether assessed using total effects or 

main effects (compare the rows in Figure 9). The grid total GPP is sensitive to the parameters of all three vascular plants and 

grid-level parameters (topmost bar in each panel of Figure 9). The grid total NEE and vegetation C (TOTVEGC) are most 540 

sensitive to spruce parameters, especially the sensitivity of fungal colonization rate to soil inorganic N (𝑏', Eq. S12) and 

maximum rate of inorganic N acquisition via mycorrhizal association (𝑣(,)*+,', Eq. S23). The grid total HR and total soil 

organic C (TOTSOMC) are most sensitive to shrub parameters, especially the maximum rate of N uptake via fine root 

(𝑣(,!"##$,', Eq. S33). The C variables in any vascular PFT are mainly determined by the parameters specific to that PFT, 

especially the maximum uptake/acquisition rates of NP (𝑢(,)*+,' and 𝑢E,)*+,' for spruce [Eq. S17], 𝑣E,!"##$,' for tamarack 545 

[Eq. S33], and 𝑣(,!"##$,' for shrub [Eq. S33]). Moss C variables are sensitive to the parameters of all three vascular plants and 

grid-level parameters.  
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Compared to ELM-MYCIoptim_ENS, the sensitivities derived from ELM-MYCI_ENS are similar for tamarack and shrub 

parameters (Figure 9bcfg, Figure S11bcfg). For spruce parameters, the model outputs of ELM-MYCI_ENS are more sensitive 

to the fungal colonization rate to soil inorganic N (𝑏', Eq. S12 and Figure S11ae), whereas ELM-MYCIoptim_ENS are more 550 

sensitive to the maximum organic NP acquisition rates via mycorrhizal association (𝑢(,)*+,' and 𝑢E,)*+,' for spruce, (Eq. S17; 

Figure 9ae). Still, the two sets of parameters fulfil similar functions, with the former controlling all the nutrient 

uptake/acquisition pathways (see 𝑀)*+,' in Eq. S17, S23, and S33) and the latter only controlling the organic pathway (Eq. 

S17). For column level parameters, ELM-MYCI_ENS is mainly sensitive to the Q10 of NP acquisition rates (𝑞FG, Eq. S13) and 

has little sensitivity to the C cost of mycorrhizal nutrients acquisition to the plant (𝑐(, Eq. S25, S30) (Figure S11dh). ELM-555 

MYCIoptim_ENS exhibits the same contrast, albeit less strongly (Figure 9dh).  

Comparing between the newly added (Figure 9, Figure S11) and preexisting parameters (Figure S12), one can see the newly 

added parameters exhibit more inter-PFT interactions. That is, the C variables of each PFT are even more strongly determined 

by the parameters specific to that PFT in ELM-OLDoptim_ENS (Figure S12abcefg) than in ELM-MYCIoptim_ENS (Figure 

9abcefg) or ELM-MYCI_ENS (Figure S11abcefg). Additionally, the grid-level C variables are mainly responsive to spruce 560 

parameters in ELM-OLDoptim_ENS (Figure S12ae), compared to both spruce and shrub parameters in ELM-MYCIoptim_ENS 

(Figure 9aceg) and ELM-MYCI_ENS (Figure S11aceg). Moss C variables are more responsive to spruce parameters in ELM-

OLDoptim_ENS (Figure S12ae), compared to shrub parameters in ELM-MYCIoptim_ENS (Figure 9cg) and ELM-MYCI_ENS 

(Figure S11cg). The main and total effects of ELM-OLDoptim_ENS are close to 1 when summed over all the parameters (Figure 

S12 grey lines), while the main effects of ELM-MYCI_ENS and ELM-MYCIoptim-ENS are much smaller than 1 and the total 565 

effect much greater than 1 (Figure 9, Figure S11, grey lines). The larger difference between total and main effects in the 

modified models means the newly added parameters have stronger statistical interactions than the preexisting parameters in 

the default model. 
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Figure 9: Sobol’s main-effect and total-effect sensitivity indices of selected C-balance variables to the newly added model parameters, 570 
calculated from ELM-MYCIoptim_ENS. For better display, the indices are partitioned into subpanels according to whether it is a 
PFT-specific or column-level parameter. Stacking the bars across the four panels in each row gives the sum of the main or total 
effects over all the perturbed parameters, which are also displayed as a grey line for reference in each panel. The C-balance variables 
in each panel are grouped according to whether it is a column-level, spruce, tamarack, shrub, or moss variable. Parameter definitions 
can be found in Table S5 and equations referred therein.  575 

4  Discussion 

4.1  Summary of evaluation performance and remaining gaps 

We present a development of the ELMv2-SPRUCE model to replace the photosynthesis-driven, inorganic-only plant nutrient 

uptake with three pathways that consider influences from fine root biomass, fungi-colonization level, and plant access to 
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organic nutrients through fungi-colonized roots (SI Sect. 1.1). Although EcM and ErM are only implicitly represented and 580 

simplifications are made in the treatment of the C cost of mycorrhizal acquisition and the organic NP sources (Sect. 2.2; SI 

Sect. 1.1.8 and 1.1.9), the modified model shows improved performance. Compared to parameter optimization only (ELM-

OLDoptim), structural modification (ELM-MYCIoptim) leads to lower RAE on vegetation C fluxes (Figure 1), improved LAI in 

two out of the three modified PFTs (Figure S6), improved qualitative similarity to resin-exchange nutrients (Figure 2), and 

similar performance on soil total C-N-P stocks (Figure 3). Interestingly, structural modification imposed on un-optimized 585 

preexisting parameters (ELM-MYCI) does not improve RAE (Figure 1) and the new parameters appear ill-constrained (Figure 

8b). These findings indicate the biases in ELM-OLD arise from both incorrect parameter values and inadequate process 

representation (Bastrikov et al., 2018). The strong performance of ELM-MYCIoptim, after optimizing newly-added parameters 

on top of pre-optimized preexisting parameters, supports stepwise calibration as a viable strategy for land surface models when 

the parameter search space is large (Ma et al., 2024). 590 

One notable finding is that ELM-MYCIoptim captures the observed large positive warming response of AGNPPshrub better than 

the parameter-optimized default model (ELM-OLDoptim; Figure 1b). This increasing growth is accompanied by rising NP 

uptake via PATHroot and unchanging NP acquisition from organic sources via PATHmyc,org (Figure 4c), consistent with our 

initial hypothesis and previous finding at the Mer Bleue peatland site (Shao et al., 2023b), that declining dependence on ErM 

drives shrub growth under warming. Recent analysis of minirhizotron data at the SPRUCE site shows increasing specific root 595 

length for the shrubs with deeper water tables as a consequence of warming (Weber et al., 2025). This shift towards more 

acquisitive fine root trait (Bergmann et al., 2020; Weber et al., 2025) is not yet considered in the current study and might 

partially explain the remaining underestimation in the temperature sensitivity of AGNPPshrub. The simulated high importance 

of direct fine root uptake in shrubs at the SPRUCE site differs from the simulated >90% dependence on fungi-mined organic 

N for shrubs at Mer Bleue (Shao et al., 2023b). This wide range is comparable to past observations (Hilman et al., 2024; 600 

Hobbie and Hobbie, 2006; Yin et al., 2022) and might reflect inter-site difference, wherein SPRUCE is a more southern site 

with lower shrub fractional cover and higher porewater inorganic N compared to Mer Bleue (Kennedy et al., 2018; Shao et al., 

2023b).  

ELM-MYCIoptim more severely underestimates mean AGNPPspruce than the other model setups (Figure 1a), likely because it 

simulates stronger P limitation on spruce (Figure 4d). The stronger P limitation, in turn, may be because the modelled peat P 605 

stock and soil inorganic P levels are generally too low (Figure 3c, Figure S7c). With the enhanced shrub growth in ELM-

MYCIoptim, the remaining inorganic P becomes insufficient to support spruce growth (Figure 1a). All model setups 

underestimate mean AGNPPspruce in the ambient CO2 enclosures and fail to capture the observed lack of response to elevated 

CO2 (Figure 1a). Those biases might be related to seasonal variations and acclimation in spruce photosynthetic parameters 

(Dusenge et al., 2024; Jensen et al., 2019), delayed response to elevated CO2 or increased C allocation belowground (e.g. to 610 

roots, mycorrhizal fungi, or exudates) (Duchesneau et al., 2024; Norby et al., 2010, 2024; Palmroth et al., 2006). Addressing 

them will require future process developments. 
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The severe underestimation of the temperature sensitivity of BGNPPtreeshrub in all model setups (Figure 1b) may be due to high 

uncertainty in the ingrowth core observations or the presence of dynamic above-to-belowground allocation in response to 

warming (Drewniak, 2019; Rehschuh et al., 2022). Dynamic allocation is not yet in the model processes of ELM-OLD or 615 

ELM-MYCI. Note the ingrowth core observations used in Figure 1 only span 2016-2017, while the other evaluation variables 

span 2016-2019 and 2021 (Hanson et al., 2020a). The uncertainty problem will be remedied as additional years of ingrowth 

core and minirhizotron observations are completed for the SPRUCE site. The initial ingrowth core observations do suggest the 

fine root biomass of the trees and shrub are more sensitive to warming than their aboveground NPP (compare the fine root 

biomass reported in Fig. S1 of Malhotra et al. (2020a) to the observed aboveground NPP values this paper Figure S5).  620 

The persistent bias in NPPmoss and its temperature sensitivity is unsurprising. ELMv2-SPRUCE cannot yet simulate the decline 

of moss growth with warming (Norby et al., 2019), instead depending on assigned observed fractional covers (Sect. 2.3). 

Missing processes may include shading from shrub, inaccurate photosynthesis-water relations, and microbial relationships 

(Carrell et al., 2019; Norby et al., 2019; Petro et al., 2023; Shi et al., 2021). The persistent bias in vertical distribution of peat 

C and N may be due to insufficient vertical mixing of the soil decomposition pools (Oleson et al., 2013). The persistent bias 625 

in HR and peat P stock might be due to inaccurate C:P in the SOM pools (Figure 1b, Figure 3), and the current lack of 

consideration of fungal respiration (SI Sect. 1.1.7). Because the HR-to-GPP ratio is remarkably invariant to our current 

structural modification (Figure 5), focused parameter investigation and structural modification on the soil decomposition 

model may be needed to address the HR bias.  

The discrepancy between observed and modelled porewater concentrations (Figure S7) suggests the values are not directly 630 

comparable, which may be due to missing process representation of the adsorption of 𝑁𝐻12 to inorganic and organic matter 

surfaces (Eick et al., 1999; Matschonat and Matzner, 1996), inaccurate partitioning between labile P and soluble P (Yang et 

al., 2023), and underestimation of peat P stock (Figure 3). Better matches between the temperature sensitivities of normalized 

model NP mineralization and normalized resin-available 𝑁𝐻12 and 𝑃𝑂134 (Figure 2) suggest the model is better at capturing 

relative changes in plant nutrient availability than absolute sizes. 635 

4.2  Impact on ecosystem productivity 

We found that parameter optimization reduces the strength of NEE increase under warming (Figure 5a) via higher GPP and 

lower HR (Figure 5b). The GPP effect is likely explained by the dominant control of the photosynthetic parameter “flnr” 

(fraction of leaf N in in Rubisco enzyme) on grid- and PFT-level C balances in ELM-OLDoptim_ENS, and the HR effect likely 

by the parameter “q10_hr” (Q10 for heterotrophic respiration; Figure S12). Interestingly, the overall NEE balance is most 640 

strongly affected by the Q10 parameter of spruce MR (Figure S12), despite this parameter having little effect on the other C-

balance terms (Figure S12) – this might be a case of emergent phenomena (Brient, 2020; Wang et al., 2022) and worth future 

modelling and empirical investigations.  

Structural modification reduces the extent of NEE increases under warming (Figure 5a) via lower AR (Figure 5c), which is 

driven by decreases in XR with warming (Figure 6a), especially in spruce and shrub (Figure 6bd). The XR-MR trade-off at 645 
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grid-level and in spruce (Sect. 3.2.3) mitigates the XR-driven decreases in AR, demonstrating a case of nonlinear feedback. 

The greater declines in XR in ELM-MYCI and ELM-MYCIoptim compared to ELM-OLD and ELM-OLDoptim are directly due 

to declines in NSC (SI Sect. 1.1.2, Figure S8ac), which is in turn likely due to reduced nutrient limitation (Figure 4acdf) under 

warming. Although NSC is additionally affected by the C cost of the mycorrhizal pathways (SI Sect. 1.1.8), the C cost should 

decrease with warming as the importance of the mycorrhizal pathways decline (Figure 4acdf). Therefore, this mechanism 650 

cannot explain the observed NSC decline with warming. The lower nutrient limitation under warming implies greater increase 

of plant carbon use efficiency (CUE), especially for the shrub PFT where most of AR is due to XR (Figure 6d). This modelling 

result is consistent with empirical evidence that EcM-tree association is key to explaining the negative correlation between 

CUE and latitude in northern boreal regions (Mäkelä et al., 2022). This consistency supports the effectiveness of our implicit 

approach as a parameter-efficient framework. Biologically, the CUE-latitude correlation is driven by complex interactions 655 

between plant C flow to mycorrhizal colonization level, and nutrient availability (Mäkelä et al., 2022; Shao et al., 2023b).  

In the structurally modified model setups, SOM decomposition becomes more N-limited because of the acquisition of N from 

plant litter pools via PATHmyc,org (Figure 7, SI Sect. 1.1.9). Surprisingly, the higher N-immobilization per unit HR only 

corresponds to slightly lower mean HR in ELM-MYCI and ELM-MYCIoptim (Figure 1bd, Figure 5dh), meaning the lower 

availability of organic N in plant litter pools are offset by higher inorganic N uptake. This pattern suggests that decomposition 660 

suppression through nutrient competition – classically termed the Gadgil effect when mediated by EcM fungi (Fernandez and 

Kennedy, 2016) – may be limited in strength under our simulated conditions. Although our model does not explicitly represent 

fungal guild interactions, the modest reduction in decomposition is consistent with studies showing that such effects are highly 

context-dependent and often confounded by litter quality, niche partitioning among EcM, ErM, and saprotrophs, and priming 

processes (Fanin et al., 2022; Mielke, 2022; Shao et al., 2023a). P-limitation on immobilization appears to be controlled by 665 

more complex factors than N-limitation (Figure 7b) and may be affected by current model bias in peat P stock (Figure 3). 

Additionally, soil decomposition process in ELMv2-SPRUCE do not explicitly simulate microbial biomass and guilds, and 

therefore might misrepresent the partitioning of immobilization demand between the external nutrient uptake and the cycled 

nutrient between dead and live microbial biomass, which is especially important for P (Duchesneau et al., 2024; Schmidt et 

al., 1997). Given this limitation in the ELMv2-SPRUCE soil decomposition model and current model limitation in treating 670 

organic NP sources (SI Sect. 1.1.9), the HR results should be interpreted with caution.  

4.3  Future directions 

Given the high sensitivity of model outputs to acquisition rate parameters (Sect. 3.3.2) and high uncertainty in current 

experimental observations (Table S6), one priority of future model-data integration should be to better constrain these 

parameters. Other large sources of uncertainty in the modified model include the fungal colonization fractions (Figure S9), 675 

relative contributions of different pathways to total plant NP acquisition (Figure 6), and the transfer of plant C to mycorrhizal 

fungi (SI Sect. 1.1.8) – observations of all these quantities vary between 0-100% (Hawkins et al., 2023; Hilman et al., 2024; 

Hobbie and Hobbie, 2006; Ostonen et al., 2011, 2017; Xie et al., 2021; Yin et al., 2022), suggesting multi-site model-data 
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integration may better capture the broad pattern and prevent overfitting. On the process development side, division of fine root 

biomass into transport, absorption, and mycorrhizal pools (Wang et al., 2023) and nutrient-responsive dynamic above-680 

belowground allocation (Knox et al., 2024) are being carried out on ELM, and can be merged with this work to improve the 

model realism and results. Another useful endeavour will be to explicitly simulate fungal and heterotrophic microbial biomass 

in ELMv2-SPRUCE, to separate mycorrhizal fungal and non-mycorrhizal respiration and allowing the fungi to access other 

pools beside the litter pools. Other efforts of interest may include separating the behaviours of EcM and ErM, spruce 

photosynthesis and MR, Sphagnum growth, and considering direct plant uptake of small organic N molecules (Näsholm et al., 685 

2009). Nonetheless, process-development should consider the limited constraint available from empirical observations (Figure 

8) and ensure the complexity is commensurate with our ability to check model accuracy and interpret cause and effect in model 

responses.  

The modified ELMv2-SPRUCE has extended capabilities compared to the default model, e.g. fine tune nutrients competition 

relationships between PFTs using the maximum uptake/acquisition rates and half-saturation parameters (SI Tables S4-S5), 690 

assimilating nutrient uptake kinetics data, and testing the ecosystem impacts of changing fine root traits. Those improvements 

will enable new hypothesis testing and more accurate modelling of peatland C, N, and P cycling. It will also be interesting to 

compare the modified ELMv2-SPRUCE with other models that use similar fine root-based uptake rules (Knox et al., 2024; 

Zhu et al., 2019) and/or have mycorrhizal representations (He et al., 2018; Shao et al., 2023b; Sulman et al., 2019), and to test 

the performance of the model at multi-site to regional scale and its implications for carbon cycle feedbacks to the climate 695 

system.  

5  Conclusions 

We present a development on the ELMv2-SPRUCE model to replace default, photosynthesis-driven nutrient uptake processes 

with fine root and implicit mycorrhizal pathways, allowing more realistic processes like the access to organic nutrients by 

mycorrhizal roots and the dependence of plant nutrient uptake on fine root biomass, fungi colonization level, and environmental 700 

conditions. The modified ELMv2-SPRUCE model better captures the observed large increase in shrub growth under whole 

ecosystem warming than the default model, as well as overall measured C fluxes and resin-exchange nutrients response to 

warming. The modelled increase in shrub growth is accompanied by stable fungi-mediated nutrient acquisition from organic 

matter, and several fold increase in direct fine root inorganic uptake, supporting our initial hypothesis that the observed increase 

in shrub growth is driven by a shift from mycorrhizal outsourcing to direct fine root uptake strategy. Non-validated 705 

comparisons to the default model show the modified model simulates less nutrient limitation on plant growth under warming, 

resulting in weaker C-sink to C-source transition, and more flexible relationships between plant nutrient acquisition and soil 

inorganic nutrient concentrations. Outstanding model biases and caveats indicate needs to improve non-mycorrhizal processes 

for spruce and Sphagnum moss growth, above-to-belowground allocation. Other future developments may add or refine 

representation fine root trait responses to warming, more realistic organic nutrient access, shifts in allocation, and mycorrhizal 710 
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fungal biomass turnover. Overall, the new model is a useful tool for model-data integration, hypothesis testing in ecosystem 

carbon-nitrogen-phosphorus cycling, and investigating boreal peatland responses to environmental change.  

6  Code and data availability 

The ELM-OLD and ELM-MYCI source codes used to conduct all simulations in this study are available at 

https://zenodo.org/records/17582789. The main branch of the E3SM model is at https://github.com/E3SM-Project/E3SM. 715 

ELM simulations must be conducted as land-only simulations in the E3SM framework, and the documentation for conducting 

such simulations are available at https://docs.e3sm.org/E3SM/ELM/user-guide. All the accelerated spin-up simulations in this 

study used the ICB1850CNRDCTCBC compset. All the normal spin-up simulations in this study used the 

ICB20TRCNPRDCTCBC compset. All the transient and treatment simulations in this study used the 

ICB20TRCNPRDCTCBC compset. The analysis and plotting codes are available at https://zenodo.org/records/17584836.  720 

The list of input and evaluation data used by this study is as follows:  

• Environmental forcings:  

o Hanson, P.J., J.S. Riggs, W.R. Nettles, M.B. Krassovski, and L.A. Hook. 2016. SPRUCE Whole 
Ecosystems Warming (WEW) Environmental Data Beginning August 2015. Oak Ridge National 
Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. 725 
https://doi.org/10.3334/CDIAC/spruce.032  

• Water table depth:  

o Hanson, P.J., Phillips, J.R., Nettles, W.R., Pearson, K.J., Hook, L.A. 2020. SPRUCE Plot-Level Water 
Table Data Assessments for Absolute Elevations and Height with Respect to Mean Hollows 
Beginning in 2015. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, 730 
Tennessee, U.S.A. https://doi.org/10.25581/spruce.079/1608615 

• Carbon fluxes:  

o Hanson, P.J., J.R. Phillips, D.J. Brice and L.A. Hook. 2018. SPRUCE Shrub-Layer Growth 
Assessments in S1-Bog Plots and SPRUCE Experimental Plots beginning in 2010. Oak Ridge National 
Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. 735 
https://doi.org/10.25581/spruce.052/1433837  

o Hanson, Paul J, Jana R Phillips, Stan D Wullschleger, W Robert Nettles, Jeffrey M Warren, Eric J Ward, 
Jake D Graham, and Thomas A Ruggles. 2018. SPRUCE Tree Growth Assessments 
of Picea and Larix in S1-Bog Plots and SPRUCE Experimental Plots beginning in 2011. Oak Ridge 
National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, 740 
U.S.A. https://doi.org/10.25581/spruce.051/1433836  

o Ingrowth cores: Malhotra, A., D.J. Brice, J. Childs, H.M. Vander Stel, S.E. Bellaire, E. Kraeske, S.M. 
Letourneau, L. Owens, L.M. Rasnake, C.M. Iversen. 2020. SPRUCE Production and Chemistry of Newly-
Grown Fine Roots Assessed Using Root Ingrowth Cores in SPRUCE Experimental Plots beginning in 
2014. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, 745 
U.S.A. https://doi.org/10.25581/spruce.077/1607860 

o Moss NPP data: Norby RJ, Childs J. 2018. SPRUCE: Sphagnum Productivity and Community 
Composition in the SPRUCE Experimental Plots. Oak Ridge National Laboratory, TES SFA, U.S. 
Department of Energy, Oak Ridge, Tennessee, U.S.A. https://doi.org/10.25581/spruce.049/1426474 

• Pore-water chemistry:  750 
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o Griffiths, N. A., S.D. Sebestyen, K.C. Oleheiser, J.M. Stelling, C.E. Pierce, E.A. Nater, B.M. Toner, & 
R.K. Kolka. 2016. SPRUCE Porewater Chemistry Data for Experimental Plots, Beginning in 2013, 
Version 4. Oak Ridge National Laboratory, TES SFA, US Department of Energy, Oak Ridge, Tennessee, 
USA. https://doi.org/10.3334/CDIAC/spruce.028 

• Resin-exchange measurements:  755 

o Iversen CM, Latimer J, Burnham A, Brice DJ, Childs J, Vander Stel HM, Schwaner GW, Weber SE. 
2017. SPRUCE Plant-Available Nutrients Assessed with Ion-Exchange Resins in Experimental Plots, 
Beginning in 2013. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, 
Tennessee, U.S.A. http://dx.doi.org/10.3334/CDIAC/spruce.036 

• Ectomycorrhizal colonization of tree root tips: 760 

o Duchesneau, K, CE Defrenne, C Petro, A Malhotra, JAM Moore, J Childs, PJ Hanson, CM Iversen, and JE 
Kostka. 2024. SPRUCE Root Tip and Ectomycorrhizal Fungi Colonization Measurements from 
Ingrowth Cores, 2017. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak 
Ridge, Tennessee, U.S.A. https://doi.org/10.25581/spruce.119/2476173 
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