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25 Abstract

26  Organic nitrogen (ON) is an important yet poorly constrained component of aerosol
27  total nitrogen (TN), particularly over remote oceans. We quantified aerosol ON in 92
28  total suspended particulate samples collected across approximately 160° of latitude in
29  the marine atmospheric boundary layer (MABL) during Chinese Antarctic and Arctic
30  expeditions (2019-2024), using a newly developed method that simultaneously
31  determines ON and inorganic nitrogen. A significant latitudinal gradient was observed,
32 with significantly higher ON concentrations in the Northern Hemisphere (83.3+141.4
33 ng m?) than in the Southern Hemisphere (15.4+12.4 ng mm). Regionally, coastal
34  East Asia recorded the highest ON levels (164.6+179.1 ng mm™) but a lower ON/TN
35 ratio (21.1%), indicating strong terrestrial and anthropogenic influence. In contrast,
36  the Arctic Ocean had lower ON concentrations (19.1+19.0 ng mm-) but the highest
37 ON/TN ratio (38.6%), suggesting dominant marine biogenic sources. The Southern
38  Ocean showed the lowest ON concentration (12.0+£7.1 ng m™) yet a relatively high
39  ON/TN ratio (27.8%), also pointing to oceanic origins. Near Antarctica, samples
40  influenced by sea-ice air masses displayed markedly elevated ON and ON/TN ratios.
41  These increases were strongly correlated with sea ice concentration and chlorophyll-a
42 exposure, indicating enhanced biogenic emissions from sea-ice-associated ecosystems.
43 This study offers the first direct ON measurements along a global MABL transect,
44 revealing distinct latitudinal and regional patterns, and emphasizing the combined
45 roles of continental inputs and marine sources. It also identifies sea-ice dynamics as a
46  key factor influencing ON in Antarctic regions, providing crucial data for improving

47  atmospheric and climate models.
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49  Key points.

50 1. Aerosol organic nitrogen (ON) in the global marine boundary layer was quantified
51  along a transect from the Antarctic to the Arctic (~160° latitude) for the first time.

52 2. A strong latitudinal gradient in ON was observed, revealing distinct hemispheric
53 and regional patterns.

54 3. Near Antarctic, ON concentrations and ON/TN ratios were distinctly elevated in

55  sea-ice-influenced air masses, highlighting the role of sea-ice dynamics.
56 1. Introduction

57  Marine atmospheric boundary layer (MABL) aerosol particles contain significant
58 amounts of organic nitrogen (ON) and inorganic nitrogen (IN), both recognized as
59  major components of atmospheric particulate matter (Li et al., 2023). ON may
60  account for roughly 20-80% of total reactive nitrogen deposition to the surface ocean,
61  implying a potentially large, yet uncertain, role in marine nitrogen cycling and climate
62  (Altieri et al., 2016, 2021). However, ON remains poorly constrained due to analytical
63  limitations (Baker et al., 2017). Previous studies focused on the water-soluble fraction
64  of aerosol ON (WSON) inferred indirectly by subtraction IN from total nitrogen (TN)
65 (ON = TN — IN), while the water-insoluble organic nitrogen (WION) fraction has
66  been largely unquantified (Cornell, 1999; Mace et al., 2003). The subtraction
67  approach is prone to errors and artifacts, especially when TN and IN concentrations
68  are similar, leading to underestimation and large uncertainties in ON burdens and
69  fluxes.

70 Aerosol ON arises from diverse sources. Marine pathways include primary
71  emissions via sea spray enriched with organic matter from the sea surface microlayer
72 and secondary formation from marine precursors (e.g., alkylamines) reacting with
73 acidic species (Facchini et al., 2008; Miyazaki et al., 2011a). Continental pathways
74 include long-range transport of organic emissions from fossil fuel combustion,
75  biomass burning, soils, and vegetation (Cape et al., 2011; Jickells et al., 2013; Luo et
76 al.,, 2018). Primary marine emissions inject large amounts of particulate matter

77  annually, carrying organic carbon and nitrogen from plankton, bacteria, and surface
3
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78  films (Violaki et al., 2015a). Observations have shown that sea spray can carry
79  substantial ON and that WION can dominate ocean-influenced aerosol ON (Miyazaki
80 etal.,2011a).

81 ON affects climate and biogeochemistry by supplying bioavailable nitrogen,
82  modifying cloud condensation nuclei and ice-nucleating particle populations, and
83  contributing to aerosol light absorption. Hygroscopic ON compounds (e.g., amino
84  acids, amines, sugars) enhance water uptake and cloud condensation nuclei (CCN)
85  activity; some proteinaceous organics act as efficient ice nuclei (Alsante et al., 2024;
86  Chan et al., 2005). Marine alkylamines can form salts with sulfuric acid, promoting
87 new particle formation and growth, thereby linking ON to aerosol number and
88  radiative forcing (Almeida et al., 2013; Brean et al., 2021). Nitrogen-containing
89  chromophores (brown nitrogen) can dominate the absorptive properties of organic
90 aerosol regionally and contribute substantially to global absorption by carbonaceous
91 aerosol (Li et al., 2025).

92 Despite this importance, ON sources over remote oceans remain debated. Some
93  studies implicate continental transport (e.g., dust, anthropogenic emissions), whereas
94  others point to direct sea spray emissions or secondary formation from marine-derived
95  alkylamines (Altieri et al., 2016; Lesworth et al., 2010; Zamora et al., 2011).
96  Correlations between ON and ocean biological proxies (e.g., chlorophyll-a) suggest in
97  situ marine production, particularly during phytoplankton blooms (Altieri et al., 2016;
98  Dall’Osto et al., 2019). Yet open-ocean and polar regions, where sea-ice dynamics
99  may create distinct ON emissions, remain sparsely observed (Matsumoto et al., 2022).
100  Around Antarctica in particular, the paucity of direct ON measurements—especially
101 of WION—Iimits understanding of ON sources, seasonality, and impacts on
102 high-latitude atmospheric chemistry.

103 To address these gaps, we measured aerosol ON and IN using samples collected
104  during three Chinese Antarctic research expeditions campaigns, spanning ~160° of
105  latitude from the Arctic to Antarctica. We employed a newly developed aerosol
106  nitrogen analyzer based on thermal evolution and chemiluminescence detection to

107  measure aerosol IN and ON simultaneously, eliminating subtraction-based method
1
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108  biases and capturing both WSON and WION (Yu et al., 2021). This dataset enables
109  evaluation of hemispheric and regional patterns, assessment of controlling factors
110  (e.g., continental influence, marine biological activity), and explicit investigation of
111 sea-ice—associated processes near Antarctica. The results provide observational
112 constraints to improve representation of nitrogen cycling and atmosphere—ocean

113 interactions in climate and atmospheric chemistry models.
114 2. Methodology
115 2.1. Sample Collection

116 A total of 92 total suspended particulate (TSP) samples were collected during three
117  Chinese Antarctic research expeditions and one Arctic expedition aboard the
118  icebreaker R/V Xuelong. Sampling spanned a latitudinal range of approximately 160°
119 (86°N to 75°S), encompassing polar and mid-latitude marine regions. The Antarctic
120  samplings were conducted in October to November in 2019 (SP2019, 14 samples),
121 November 2021 to March 2022 (SP2021, 23 samples), and October 2023 to April
122 2024 (SP2023, 15 samples), while the Arctic campaign occurred in July to September
123 in 2021 (40 samples).

124 During the Antarctic campaigns, aerosols were collected using a high-volume air
125 sampler (HVAS, TISCH Environmental, USA; flow rate: 1.2 m® min™') equipped with
126  pre-baked (500°C, 24 h) Whatman quartz filters (20.3 x 25.4 cm; Whatman Ltd., UK).
127 For Arctic sampling, a DIGITEL DHA-80 sampler (flow rate: 500 L min') with 14.2
128 cm diameter Whatman quartz filters were employed. Each sample represented a
129 48-hour integrated collection period, corresponding to 2—4° latitude traversed during
130 ship transits. To minimize contamination from ship emissions, a wind sector controller
131 restricted sampling to air masses within 120° of the ship’s heading. Filters were
132 handled using nitrile gloves and masks to avoid potential contamination.
133 Post-sampling, filters were folded with the collection surface inward, wrapped in
134 pre-cleaned aluminum foil, sealed in polyethylene bags, labeled with sampling time
135 and location, and stored at -20°C. Detailed protocols followed established

136 methodologies (Shi et al., 2021). Following expeditions, samples were transported to
5
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137  the laboratory under frozen conditions and maintained at -20°C until analysis. The
138 sampling location for the Antarctic and Arctic campaigns are illustrated in Fig. 1.
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141 Figure 1. TSP Aerosol sampling locations along the cruises path from Shanghai, China to
142 Antarctica and Arctic.
143 2.2. Chemistry Analysis for major ions, EC and OC
144 Major ions were quantified through ion chromatographic analysis of water extracts of
145  the aerosol samples. The extraction of filters in the laboratory followed protocols
146 comparable to those described in the previous study (Shi et al., 2021). Prior to
147  measurement, three-quarters of each filter was sectioned into small pieces using
148  acid-cleaned Teflon-coated scissors and transferred into high-purity Milli-Q water
149 (182 M Q). The suspensions were subjected to ultrasonic treatment for 30 min,
150  followed by continuous shaking at 120 rpm for 12 h to ensure thorough extraction of
151  water-soluble components. The extracts were subsequently filtered through 0.22 pm
152 polytetrafluoroethylene (PTFE) membranes prior to ion analysis. The concentrations
153 of the main ions (NO;~, SO4*", Na', NH4*, K*, and Ca®") in the sample were
154 determined by an ion chromatograph (AQ1100, RFIC, equipped with a CS12 column
155  (2x250 mm) for cation analysis, AS11 column (2x250 mm) for anion analysis,
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156 Thermo Scientific, USA), and the eluents of cation and anion were 18.00 mM
157 methylsulfonic acid (MSA) and potassium hydroxide (KOH), respectively. During
158  sample analysis, the relative deviation of repeated assays (n = 5) of all ions is usually
159 less than 5%. We used the following formula to calculate non-sea salt SO

160 (nssSO4%"), non-sea salt Ca>* (nssCa?") and non-sea salt K* (nssK*):

[nssSO4%] = [total SO4*] —0.253 x [Na"] (1)
[nssCa?*] = [total Ca?*] —0.038 x [Na*] 2
[nssK*] = [total K] —0.037 x [Na™] 3)

161  where 0.252, 0.037, and 0.038 in the above expressions are the ratios of SO4*/Na* (Xu
162 etal., 2013), Ca?*/Na" (Anonymous, 1997), and K*/Na* (Keene et al., 1986) in the sea
163 water, respectively.

164 OC and EC concentrations were determined using a Thermal/Optical Carbon
165  Analyzer (DRI, Model 2001, Atmoslytic Inc., USA) following the IMPROVE
166  protocol as implemented by Wu et al., (2024). OC and EC measurements were
167  conducted for aerosol filters collected during the 2021 Arctic and 2019 Antarctic

168  cruises.
169  2.3. ON measurement

170 Aerosol ON and IN were simultaneously measured using the recently developed
171 Aerosol Nitrogen Analyzer system, which enables sensitive quantification directly
172 from filter samples without pretreatment. Detailed descriptions of the method are
173 provided in Yu et al (2021). In brief, the analyzer integrates a thermal aerosol carbon
174 analyzer and a chemiluminescence NOy analyzer. Aerosol samples collected on quartz
175  fiber filters were thermally evolved under a programmed 6-step temperature protocol
176 (150, 180, 300, 400, 500, and 800 °C) in a 1% 02/99% He carrier gas. The evolved
177  materials were catalytically oxidized to CO: and nitrogen oxides (NOy), with the C
178  signal monitored via methanator-FID detection and the N signal recorded through
179 chemiluminescence after converting NOy to NO. The C signal assists in
180  differentiating IN and ON components, as ON aerosols produce both C and N signals

181  while the IN fraction only yields an N signal. The programmed thermal evolution

7
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182 facilitates separation of aerosol IN and ON due to their distinct thermal characteristics.
183 Quantification of IN and ON is achieved through multivariate curve resolution (MCR)

184  data treatment of the C and N thermograms using USEPA PMF (version 5.0).
185  2.4. Backward Trajectory Analysis

186  To study air mass origins, air mass backward trajectories have been calculated using
187  the Hybrid Single-Particle Lagrangian Integrated Trajectories (HY-SPLIT) model with
188  meteorological fields from the National Oceanic and Atmospheric Administration
189 (NOAA) air resources laboratory GDAS database. Five-day backward trajectories
190  were calculated in order to reveal the history of the air masses arriving at the sampling
191  site (Stein et al., 2015). Each trajectory originated at the vessel's real-time position
192 with an arrival height of 20 m, capturing boundary layer transport while minimizing

193 local ship influence.
194  2.5. Probability Source Contribution Function analysis

195  Potential Source Contribution Function (PSCF) analysis was implemented to identify
196  source regions of ON observed during the sampling period (Ashbaugh et al., 1985). A
197 higher PSCF value indicates a greater potential source contribution to the receptor site.
198  In our study, the PSCF domain was established within a grid cell encompassing all
199  backward trajectories. The cruises were discretized into 1° latitude x 1° longitude grid
200  cells. The PSCF value for cell ij was calculated as:

201 PSCFiJ:—nij 4

202  where, mj = total trajectory endpoints within cell ij; n; = subset of endpoints
203  associated with aerosol component concentrations exceeding the 75th percentile of
204  cruise measurements. To mitigate uncertainty in cells with sparse trajectory density, a

205 latitude-dependent weighting function (W) was applied:

1.0 when »,>N2
206 W= {08whenN1<s,<N2 (5)
0 when n,<N1

207  where nj is the number of trajectories passing for each cell in the study period and

208  N1=60%*cos(latitude), and N2 =300*cos(latitude). The cosine factor is used to

8
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209  account for the changing grid cell size with varying latitude.
210  2.6. Air-mass exposure to chlorophyll a

211 The Air-mass Exposure to Chlorophyl a (Chl-a) index (AEC) serves as a quantitative
212 metric to assess the influence of marine biogenic emissions on a target region through
213 air mass transport (Blazina et al., 2017; Choi et al., 2019). This approach is grounded
214  in the well-established correlation between ocean surface phytoplankton biomass and
215 marine biogenic emissions, particularly dimethyl sulfide (DMS), where Chl-a
216  concentration acts as a robust proxy for phytoplankton abundance (Siegel et al., 2013).
217 The AEC index estimates the integrated exposure of an air mass to oceanic DMS
218  source regions along its trajectory by accounting for both spatial distribution of Chl-a
219  and atmospheric vertical mixing dynamics (Zhou et al., 2023).

220 For each trajectory point, Chl-a concentrations (Chlai) were obtained from
221  satellite remote sensing products (Aqua-MODIS, OCI algorithm; 8-day composite, 4
222 km x 4 km resolution; https://oceancolor.gsfc.nasa.gov/13/) within a 20-km radius.
223 Trajectory endpoints over Antarctica, sea-ice-covered areas, or at pressures < 850 hPa
224 were assigned Chl-a = 0 (Zhou et al., 2023). Points without valid Chl-a data were

225  excluded. The AEC for a single trajectory was computed as:

.
120 gy xe (1200

226 AEC=% (6)

227  where t; denotes time backward along the trajectory (hours), and n is the total number
228  of valid trajectory points. The time points when the air mass passed over the continent
229  or regions covered by sea ice were assigned a zero chlorophyll value. To ensure
230  robustness, trajectories with n < 90 (75% of 120 h data points at hourly resolution)
231  were discarded. For each sample, the final AEC value was derived from the arithmetic

232 mean of all valid trajectories during the sampling period (Yan et al., 2024).
233 2.7. Sea ice concentration

234 In this study, remote sensing data are utilized to illustrate the spatiotemporal

235  distribution of sea ice concentrations (SICs) in the Southern Ocean. The SIC of each

9
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236  sample is calculated using the following formula:

Ns .
237 SIC=i:Il\I—§IC‘ (7)

238  where SIC; represents the average sea ice density at the endpoint of the specified track.
239  Ns represents the total number of trajectory endpoints located on the sea ice area. Sea
240 ice concentration data are from the AMSR2 dataset (Version 5.4. University of
241  Bremen, Germany. Index of /amsr2/asi_daygrid swath/s3125) (Melsheimer and

242 Spreen, 2019).
243 3. Results

244  Atmospheric ON concentrations exhibited significant hemispheric differences
245  (independent samples t-test; p < 0.001), with values in the Northern Hemisphere (NH:
246 83.3 £ 141.4 ng m3, N = 55) being approximately five times higher than those in the
247 Southern Hemisphere (SH: 15.4 + 12.4 ng m™3, N = 37). The ON/TN ratios showed
248  broadly similar magnitudes between hemispheres, with slightly higher in the NH
249  (30.4 = 13.6%) compared to the SH (27.9 £ 10.6%). Samples from three Antarctic
250  cruises—SP2019 (mean = 19.4 ng m™3; range: 9.5-555.6 ng m™3), SP2021 (mean =
251 20.4 ng m3; range: 1.3-81.3 ng m), and SP2023 (mean = 18.3 ng m; range:
252 1.8-457.0 ng m™>) showed no significant variation (one-way ANOVA; p > 0.2),
253 indicating that interannual variation was rather minor. A clear latitudinal gradient in
254 ON concentrations was observed along the Antarctic-to-Arctic transect, with peak
255  values in the 20—40° N zone and a gradual decline toward both polar regions (Fig. 2a).
256  Based on spatial distribution patterns, the study transect can be divided into four
257  regions (Fig. 1): (1) the Arctic Ocean region (AO, north of ~60° N); (2) the Coastal
258  East Asia region (CEA, 20-60° N); (3) the Southeast Asia-Australia Tropical Ocean
259  region (SATO, ~ 20° N—40° S); and (4) the Southern Ocean region (SO, south of ~
260 40°8S).

261 The CEA region exhibited the highest ON concentrations (mean = 164.6 ng m™>)
262 but the lowest ON/TN ratio (mean = 21.1%). In contrast, the SO region showed the
263 lowest ON concentrations (mean = 12.0 ng m~; range: 1.78-32.3 ng m™>) and higher

264  ON/TN ratios (mean = 27.8%). Notably, the AO region displayed the highest ON/TN
10
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265  ratios (mean = 38.6%) despite relatively low ON concentrations (mean = 19.1 ng m™3;
266  range: 5.2-32.2 ng m~3). The ON/TN ratio in SATO region (26.8%) is similar to that
267  of SO but with a lower ON concentration (mean = 23.4 ng m3; range: 5.7-70.1 ng
268  m~3), which is much lower than the CEA region, but higher than the high latitude two
269  pole regions.

270 Since direct measurement data of total ON in global MABL are limited, WSON
271  data were summarized for comparison (Table 1). Overall, the previous results are
272 consistent with the spatial trends of ON in our study. WSON concentrations exhibit
273  significant spatial variation, generally higher in the NH than in the SH, highlighting
274  the substantial contribution of anthropogenic sources (Violaki et al., 2015b). In
275  addition, WSON concentrations tend to be higher closer to land, while in remote
276  ocean areas, WSON levels are generally lower. The reported ratios of WSON/TN in
277  previous studies vary significantly across different investigation sites. Moreover, in
278  remote marine environments, the WSON/TN ratio is relatively high, suggesting that
279  WSON plays a substantial role in the biogeochemical cycle of nitrogen within these
280  remote regions. It is important to note that most previous studies over the remote
281  ocean measured only WSON, without accounting for the WION. As a result, the
282 ON/TN ratios in this region were likely underestimated. Based on our comparison, the
283 total ON concentration in the Southern Ocean may have been underestimated by
284  approximately 40%, hinting the significant contribution of the insoluble organic
285  fraction that has been largely overlooked in earlier datasets due to measurement

286  method limitations.
287

11
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289 Figure 2. Latitudinal distributions of ON concentration, TN concentration and ON/TN ratio (a, b,

290 c), and the statistics (d, e, f) over the the Arctic Ocean region (AO), the Coastal East Asia region

291 (CEA), the Southeast Asia-Australia Tropical Ocean region (SATO) and the Southern Ocean

292 region (SO), respectively.
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294 4. Discussion
295 4.1 Source identification of ON

296 ON in the MABL primarily originates from two main source pathways: marine
297  emissions and long-distance continental transport. Marine sources include primary
298  ON, predominantly associated with sea-spray particles enriched in biological material
299  from the ocean surface microlayer, and secondary ON, which often derives from
300 marine precursors such as alkylamines that react with acidic species to form new
301  particles (Altieri et al., 2016; Facchini et al., 2008). Continental sources involve the
302  long-range transport of organic emissions—including combustion byproducts, soil-
303 and vegetation-derived compounds, and biomass burning aerosols—that can
304  significantly influence remote ocean regions (Cape et al., 2011; Jickells et al., 2013).

305 ON concentrations in the CEA region were the highest among all study regions,
306  with air masses spending 22.6% of their 5-day trajectories over continental areas (Fig.
307  3b). A significant correlation between ON and crustal elements such as nssCa’" (r =
308 0.75, p < 0.01; Fig. 4) likely suggests the influences of continental transport of
309  particles on the ON levels in this region (Xiao et al., 2016). A significant correlation
310  between ON and the anthropogenic tracer EC (r = 0.81, p < 0.01; Fig. 4) indicates that
311 fossil fuel combustion and biomass burning are major ON sources (Shubhankar and
312 Ambade, 2016; Wu and Yu, 2016). Similarly, the robust association between ON and
313 nssK* (r = 0.78, p < 0.01; Fig. 4), a tracer of biomass burning, also supports
314  contributions from agricultural and residential biomass burning (Song et al., 2018).
315  Despite the high absolute ON concentrations, the relatively low ON/TN ratio (21.1%)
316  likely reflects disproportionately elevated IN emissions from intensive human
317  activities, particularly NHs volatilization from agriculture and vehicular NOx
318  emissions (Pavuluri et al., 2015). This interpretation aligns with emission inventories
319  that identify the CEA as a global nitrogen pollution hotspot, where ON is co-emitted
320 or formed from precursors that share common sources with EC and other
321  combustion-related pollutants, originating from incomplete combustion and industrial

322 processes (Deng et al., 2024).
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323
324  Figure 3. 5-day air-mass backward trajectories with ON concentrations and ON/TN ratios

325  along the Chinese Arctic/Antarctic expedition voyage over the Arctic Ocean (a), the coastal

326  East Asia (b), the Southeast Asia-Australia Tropical Ocean (c), and the Southern Ocean (d).

327 The SATO region exhibits intermediate level of ON concentrations (mean = 23.4
328 £ 18.0 ng m?), lower than those influenced by anthropogenic activities in CEA but
329  higher than in polar regions. In this region, ON shows a significant positive
330  correlation with nssCa?* (Fig. 4; r = 0.76, p < 0.01), suggesting that continental inputs
331 influence ON levels. In addition, backward trajectory analysis showed that samples
332 affected by continental air masses have significantly higher ON concentrations than
333 those exposed solely to marine air (Fig. 3c), suggesting the influences of continental
334  sources. However, ON does not exhibit significant correlations with nssK* or with EC
335  (p > 0.05), indicating that combustion emissions may not be the primary drivers.
336 These findings suggest that the variability of ON in the SATO region results from a

337  mixture of marine-terrestrial interactions, primarily modulated by episodic continental
15
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338  influences rather than continuous marine emissions. Notably, this region displays an
339 elevated ON/TN ratio (Fig. 2), primarily due to its very low IN levels—approximately
340  85% lower than in the CEA region—which amplifies the relative contribution of ON
341 within TN.
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344  Figure 4. Spatial variations in the correlation between ON and ionic species across four

345  regions (values in cells, with “**” indicating p < 0.01 and “*” indicating p < 0.05).

346 In the AO region, ON concentrations were slightly lower than in the SATO
347  region but significantly lower than in the CEA region. In this area, ON exhibited a
348  significant positive correlation with Na*, which suggest the sea salts inputs (Fig. 4; r =
349 0.43, p < 0.01), and also showed significant correlations with nssK* (r = 0.61, p <
350 0.01). Its correlations with nssCa®" (r = 0.42) and EC (r = 0.42) were weaker but still
351  significant (p < 0.05). These patterns suggest that ON in the AO region may originate
352 not only from primary sea-salt aerosols but may also be linked to biomass burning.
353  However, the backward trajectory analysis shows no significant difference in ON
354  concentrations between air masses influenced by continental sources and those
355  transported solely over the ocean (Fig. S1b; independent samples t-test, p = 0.16),
356  likely suggesting the limited role of terrestrial inputs in this region. Unlike the SATO
357  region, where ON showed no correlation with AEC (Fig. S2b; p > 0.05), ON
358  concentrations in the AO exhibited a strong positive correlation with the AEC (Fig.
359  S2a; p < 0.01), suggesting that marine biological activity is a key driver of ON

16
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360  variability in this region (Creamean et al., 2022). Collectively, these results
361  demonstrate that the AO region is primarily governed by marine processes, with ON
362  derived from both sea-spray organic enrichment and biogenic aerosol precursors,
363  while terrestrial influences remain secondary (Ngjgaard et al., 2022).

364 In the SO region, ON concentrations were the lowest among all regions (mean =
365 12.0 £ 7.1 ng m?), yet the ON/TN ratio was relatively high (27.8 + 11.0%).
366  Back-trajectory analysis indicates that air masses predominantly originated from the
367  open ocean and Antarctic continent (Fig. 3d), with minimal anthropogenic influence.
368  ON here exhibited a significant positive correlation with Na* (Fig. 4; r = 0.43, p <
369  0.01), but no significant relationships with nssK*, nssCa?* or EC. This pattern
370  suggests that primary sea-salt emissions are a major pathway for ON in the SO
371  atmosphere (Matsumoto et al., 2022), likely through the incorporation of
372  marine-derived organic matter into sea-spray aerosols. Meanwhile, the absence of
373 associations with terrestrial tracers further supports the notion that ON in this remote
374  region is controlled primarily by natural marine processes rather than continental or

375  anthropogenic sources (Altieri et al., 2016).
376 4.2 Role of sea-ice—associated biogenic processes in shaping Antarctic aerosol ON

377  Sea-ice and open-ocean environments create distinct conditions for the production and
378  emission of ON. While sea ice restricts direct air—sea exchange, it hosts specialized
379  microbial communities and accumulates organic matter within brine channels. During
380 melt and ice-edge retreat, this organic material is released, enriching the surface
381  microlayer and supplying precursors for aerosolization via sea spray and secondary
382  formation (Dall’Osto et al., 2017; DeMott et al., 2016; Galgani et al., 2016; Wilson et
383 al, 2015).

384 Along the Antarctic coast, we classified samples into two groups based on
385  air-mass histories: open ocean (OO), influenced almost exclusively by open-ocean
386  trajectories, and sea ice (SI), with air masses residing over sea ice for extended
387  periods. SI samples exhibited significantly higher ON concentrations and ON/TN
388  ratios than OO samples (independent-samples t-test, p < 0.01; Fig. 5a, b). Multiple
389  lines of evidence point to sea-ice—linked biological processes as the driver of these
390  enhancements: (1) Strong positive correlations of ON with sea-ice concentration (SIC;
391 r=0.86, p <0.01) and with air-mass exposure to chlorophyll-a (AEC; r = 0.91, p <
392 0.01) in the SI group indicate that both ice cover and associated biological activity

17
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elevate ON (Fig. 5¢c, d); (2) PSCF analysis identifies high-probability source regions
(PSCF > 0.8) over sea ice and its marginal zone for SI samples (Fig. S3c), consistent
with an ice-edge origin; and (3) In contrast, ON shows no significant correlation with
Na* (r=-0.22, p > 0.05) or with IN (p > 0.05) for SI samples (Fig. S4a,b), suggesting
that primary sea-salt emissions and purely abiotic inorganic pathways are not the

dominant contributors.
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Figure 5. Comparison of measured ON concentrations (a) and ON/TN ratio (b) between SI
and OO aerosol samples (“**” indicating p < 0.01). And correlations between SIC (c), AEC (d)
and ON concentration in SI aerosol samples (with n = 10 and 6 for panels ¢ and d,

respectively, owing to missing satellite data and the methodologies in Sections 2.6 and 2.7).

These observations support a mechanistic pathway whereby organic matter
released from sympagic (ice-associated) communities during melt enriches the surface
microlayer and is transferred to the atmosphere via sea spray as ON-rich particles
(DeMott et al., 2016; Wilson et al., 2015). Concurrently, a portion of this organic
nitrogen is rapidly microbially degraded to volatile alkylamines (e.g., methylamines)
(Taubert et al., 2017), which then form aminium salts through acid—base reactions

with marine emissions-derived acids (e.g., HoSO4, MSA), contributing to both ON
18
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411  and IN in SI conditions (Brean et al., 2021; Dawson et al., 2012; Fitzsimons et al.,
412 2023). This process results in the formation of both organic (amine salts, contributing
413 to ON) and inorganic nitrogen aerosol species (NH4* and NO3"), which explains their
414  elevated levels in the SI group samples (Fig. S5). The elevated ON/TN ratios in SI
415 samples (31.0%) relative to OO samples (20.8%) further indicate a greater fractional
416  contribution of ON under sea-ice influence (Fig. 5b), consistent with reported releases
417  of organic material from the sympagic ecosystem during melt (Jang et al., 2023;
418 Mirrielees et al., 2024; Yan et al., 2020).

419 For OO samples, PSCF hotspots (PSCF > 0.8) shift toward the offshore Southern
420  Ocean (Fig. S3d), in line with trajectories dominated by open-ocean air masses. The
421  positive association between ON and oceanic residence time (r = 0.66, p < 0.01; Fig.
422 S6) suggests that, as sea-ice influence diminishes, ON variability becomes
423 increasingly governed by open-ocean biological processes and long-range marine
424 aerosol transport.

425 Overall, these results establish the ice-edge/sympagic environment as an
426  important regulator of Antarctic aerosol ON. Sea-ice dynamics modulate both the
427  magnitude (higher ON and ON/TN) and sources (biogenic enrichment and
428  amine-driven secondary formation) of ON, underscoring the need to represent

429  sea-ice—associated processes in polar atmospheric chemistry and climate models.
430 5. Conclusions and Implications

431  Taking advantage of a new analytical tool for ON and aerosol samples collected from
432 three Antarctic and Arctic expeditions from 2019 to 2024, we quantified aerosol ON
433 and IN in 92 TSP samples spanning 160° of latitude in the MABL. This dataset
434 provides the first direct, subtraction-free ON measurements along a global-scale
435  marine transect, capturing both water-soluble and water-insoluble fractions.

436 We observed a pronounced hemispheric and latitudinal gradient in ON, with
437  substantially higher concentrations in the Northern Hemisphere (83.3 + 141.4 ng m™)
438  than in the Southern Hemisphere (15.4 + 12.4 ng m). Regionally, Coastal East Asia
439  exhibited the highest ON (164.6 = 179.1 ng m?) but a low ON/TN ratio (21.1%),
440  consistent with strong terrestrial and anthropogenic influences that elevate IN. The
441  Southeast Asia—Australia Tropical Ocean showed intermediate ON and a relatively
442 high ON/TN ratio due to low IN. The Arctic Ocean had lower ON but the highest
443 ON/TN ratio (38.6%), indicating prominent marine biogenic contributions. The
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444 Southern Ocean showed the lowest ON (12.0 + 7.0 ng m) yet a relatively high
445  ON/TN ratio (27.8%), also suggestive of oceanic sources. Interannual variability
446 across the three Antarctic campaigns was minor.

447 Multiple lines of evidence, including correlations with tracers, back-trajectory
448  analysis, and PSCEF, indicate that ON in CEA is dominated by continental inputs from
449  combustion and dust, whereas ON in AO and SO is primarily controlled by marine
450  processes. Along the Antarctic coast, air masses influenced by sea ice exhibited
451  significantly higher ON and ON/TN than those influenced by the open ocean, with
452 strong positive relationships to sea-ice concentration and air-mass exposure to
453 chlorophyll-a. These patterns point to sympagic and ice-edge biogenic
454 activity—through organic enrichment of sea spray and amine-driven secondary
455  formation—as key regulators of ON near Antarctica.

456 Comparison with prior WSON-only datasets suggests that earlier studies likely
457  underestimated total ON—by approximately 40% in the Southern Ocean—due to
458  omission of WION. Accounting for both soluble and insoluble phases is therefore
459  essential for constraining nitrogen deposition to the oceans and for representing ON’s
460  roles in aerosol—cloud interactions and radiative effects.

461 These findings fill a critical observational gap, establish robust hemispheric and
462  regional patterns of marine aerosol ON, and provide essential constraints for
463  atmospheric chemistry and climate models. Future efforts should explicitly represent
464  ON sources, including sea-ice—associated biogenic processes and amine chemistry,
465  and expand year-round, size-resolved, and composition-resolved measurements paired
466  with isotopic and molecular tracers to refine source apportionment and evaluate model

467  parameterizations across regions and seasons.
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